
Contents

- 1. Introduction
- 2. PVDF membrane for MBR
- 3. MBR Modules
- 4. Case Studies of Full Scale MBR Systems

TORAY's Water Treatment Business

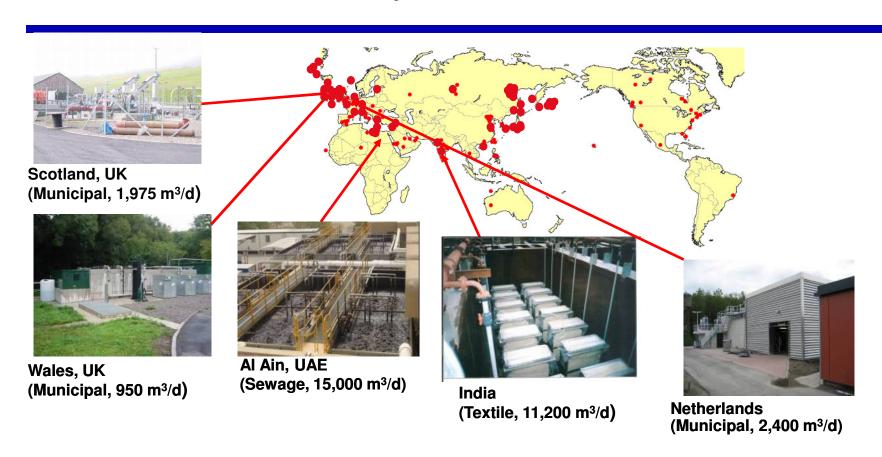
- Research, Development & Production of Membrane: Japan
- Production of Membrane Element: Japan/ USA / China
- Research: China & Singapore

TORAY's membrane solutions across the entire water cycle

Purification of River, Lake and Ground Water

Desalination of Seawater and Brackish Water

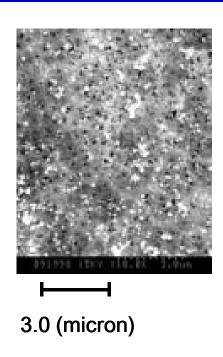
Reuse of Sewage and Industrial WW


Hollow Fiber MF/UF

RO Membrane

MBR Membrane

Job References for Toray MBR Membrane Modules



Accumulated Plants Capacity: 477,000 m³/d (126MGD) (305 plants)

(as of April 2011)

2. PVDF membrane for MBR Membrane pore distribution

Toray PVDF

Membrane

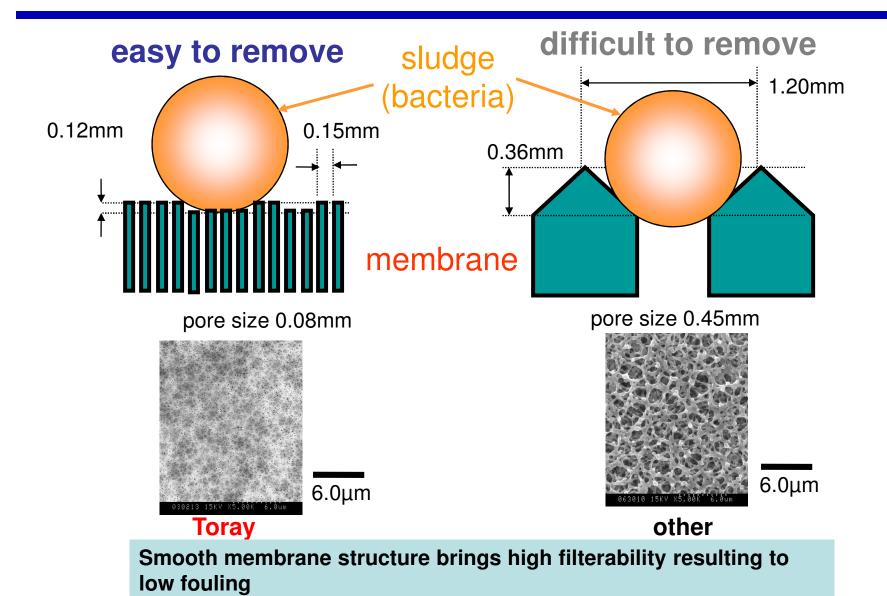
1.5

O.5

O.2

O.4

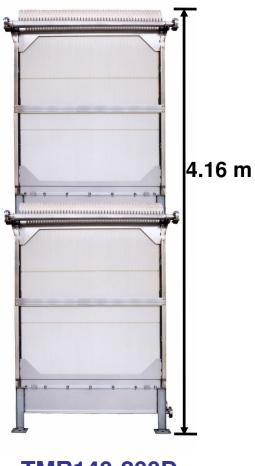
Pore diameter (micron)


SEM photographs of Flat sheet membrane surface

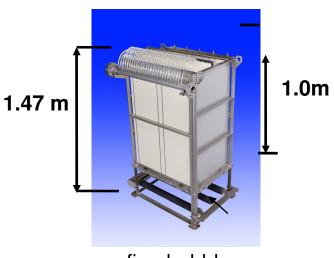
Pore diameter distribution of surface

The PVDF flat sheet membrane has small pores, high porosity and sharp pore size distribution.

2. PVDF membrane for MBR Membrane surface


3. MBR Modules Product line up

TMR140 Series


Basic module

TMR140-200D

TMR090 Series

Small size module

fine bubble rubber diffuser

TMR090-50S

3. MBR Modules Membray[™] Product Family TMR 140-series

Double Deck Modules

Single Deck Modules

TMR140-200D

TMR140-400DW

Galaxy Surfactants Ltd. India

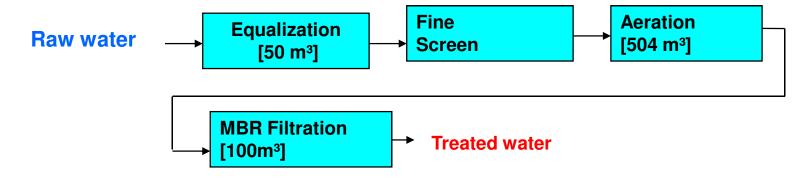
Industrial Waste Water Treatment

4. Case study of full scale MBR systems (Chem. Industry Waste Water) Project background

OHistory of the plant

(1)Descripton of the old plant	Raw water→2nd stage activated sludge process →Sand filtration→Activated carbon filtration
(2)Reasons for installation of the MBR	Increasing the capacity of existing WWTP
(3)Time schedule	October 2009: Mechanical / Electrical Installation December 2009: Membrane installation and start-up Inauguration of the MBR plant

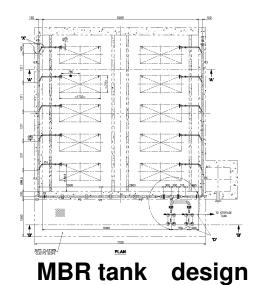
OBackground of the projects


(1)Consultant	None
(2)Construction company	RIECO Industries Ltd, India
(3)End user	Galaxy surfactants Ltd Products: soaps and detergent
(4)The role of Toray	(1)Membrane supply (2)Supervisor for membrane installation

4. Case study of full scale MBR systems (Chem. Industry Waste Water)
Design of the system (1)

Raw water	Wastewater from surfactant manufacturing industry
Capacity	310m³/day
Mechanical Pretreatment	Fine screen(2mm)
Biological Design	HRT 58 hours

Process Flow Chart



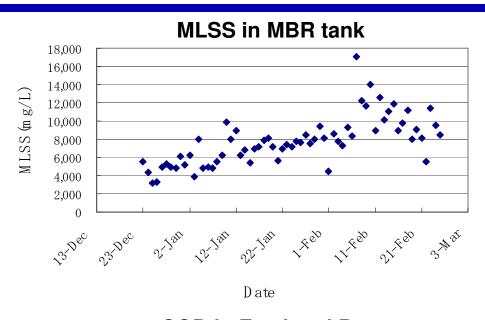
4. Case study of full scale MBR systems (Chem. Industry Waste Water) Photographs

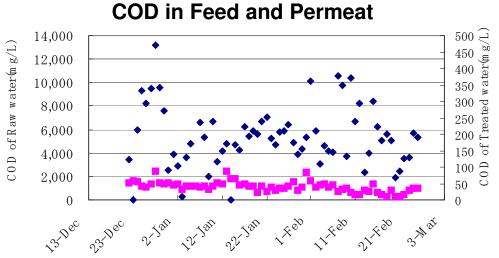
Treatment plant

MBR tank

4. Case study of full scale MBR systems (Chem. Industry Waste Water) Design of the system (2)

○Feed flow and loads

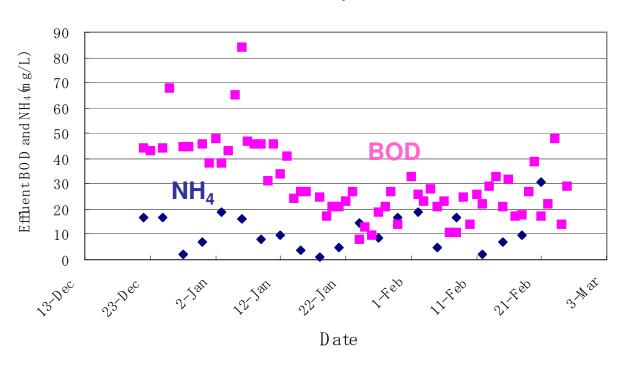

(1)Average Flow	310m ³ /day
(2)Peak Flow	No peak flow (peak will be absorbed by conventional STP)
(3)Design Parameter	Raw water BOD:1850mg/L、COD: 3650mg/L SS: 200mg/L、NH4-N: 250mg/L、pH: 7.5
	Permeate water (Target value) BOD:30mg/L、COD: 100mg/L SS: 10mg/L、NH ₄ -N: 10mg/L、pH: 6.5~7.5 Turbidity: <1 NTU
	Sludge: MLSS 8~12g/L


○MBR filtration design

(1)Train design	10 modules TMR090-100S 2 trains	
(2)Design flux	14LMH (=0.34m/day)	

4. Case study of full scale MBR systems (Chem. Industry Waste Water) Operational data (1)

Date


Treated water

Raw water

4. Case study of full scale MBR systems (Chem. Industry Waste Water) Operational data (2)

BOD and NH₄ in MBR permeate

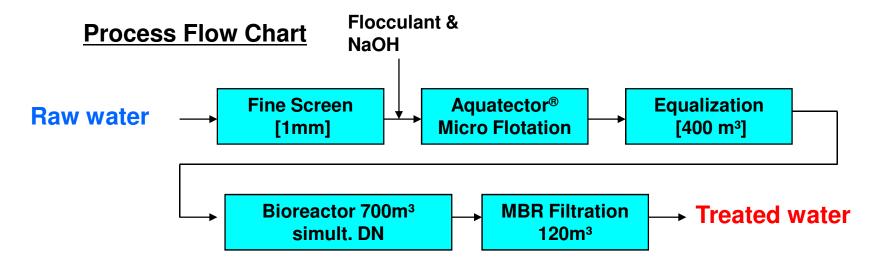
Borgmeier GmbH / Remondis Aqua GmbH

Poultry Meat Processing

4. Case study of full scale MBR systems (Poultry Meat Processing) Project background

OHistory of the plant

(1)Descripton of the old plant	Raw water→1mm screen→Aquatector® Micro Flotation→Municipal WWTP
(2)Reasons for installation of the MBR	Waste Water Treatment direct discharge quality and capacity increase
(3)Time schedule of the project until start-up	April-June 2010: mechanical&electrical installation July/August 2010: Biological &Membrane Start-up


OBackground of the projects

(1)Consultant	Enviplan GmbH, Germany
(2)Construction company	Bremer Pro Aqua GmbH, Germany
(3)Operating Contractor / End user	Remondis Aqua GmbH / Borgmeier GmbH Products: Poultry Meat products
(4)The role of Toray	(1)Membrane supply (2)Supervisor for membrane installation

4. Case study of full scale MBR systems (Poultry Meat Processing) Design of the system

Raw water	Wastewater from surfactant manufacturing industry
Capacity	450-550 m ³ /day
Mechanical Pretreatment	Fine screen(1mm)
Biological Design	HRT > 30 hours
	Sludge Load: 0.1-0.15 kg/COD x d/ kg MLSS

4. Case study of full scale MBR systems (Poultry Meat Processing) Photographs

Scouring Air Manifolds

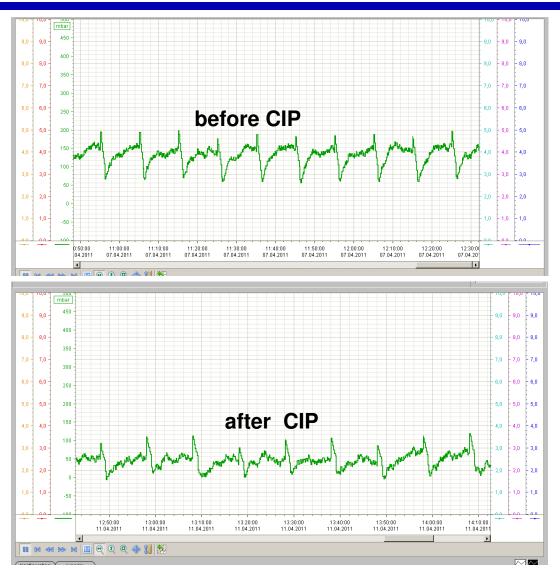
MBR filtration tank with air diffusers

Bioreactor

4. Case study of full scale MBR systems (Poultry Meat Processing) Design of the system (2)

Feed flow and loads

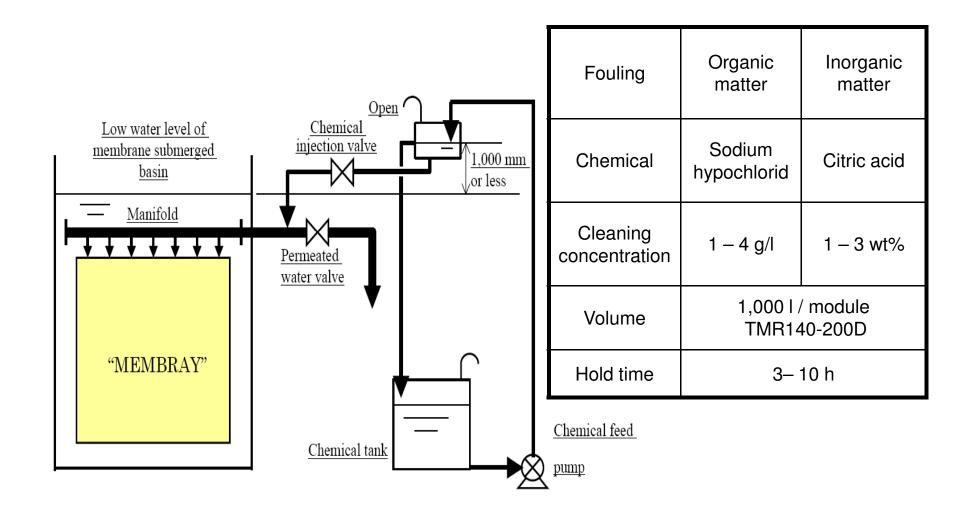
(1)Average flow	480m3/day
(2)Peak flow	25 m³/h
(3)Water quality for design	Raw water BOD:1,200mg/L、COD:1,700mg/L SS:250mg/L、TKNN:250mg/L、pH:6-9
Permeate water (Target value) BOD:10mg/L、COD:60mg/L SS:3mg/L、NH4-N:10mg/L	
	Sludge: MLSS $8\sim$ 10g/L in bioreactor 12-15 g/ in MBR filtration Tank


OMBR filtration design

(1)Train design	TMR140-200D×5MD ×1 train	
(2)Design flux-net	14LMH (=0.34m/day) peak 18 LMH (=0.41m/day)	
(3)Scouring Air	0.27-0.32 Nm ³ /h x m ²	

4. Case study of full scale MBR systems (Poultry Meat Processing) Operational data (1)

TMP before and after CIP


Q: Ø 22m³/h-instant.

T: Ø 23°C

MLSS: 12-15g/L

4. Case study of full scale MBR systems (Poultry Meat Processing) Cleaning in Place

4. Case study of full scale MBR systems (Poultry Meat Processing) Operational data (2)

Q: Ø 22m³/h- instant.

T: Ø 23°C

MLSS: 12-15g/L

Fuji Film Manufacturing Europe B.V.

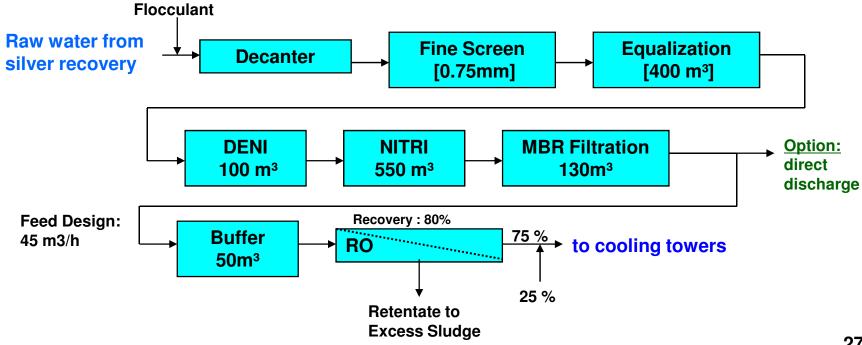
Photo Film Production

4. Case study of full scale MBR systems (Photo Film Manufacturing) Project background

○History of the plant

(1)Descripton of the old plant	Raw water→ activated sludge process
(2)Reasons for installation of the MBR	Recovery of Silver from Production Process / Re-Use of RO Permeate
(3)Time schedule of the project until start-up	Earlier 2004: Pilot Tests 2005: System Design and Installation Spring 2006: Membrane installation and start-up

OBackground of the projects


(1)Consultant	Witteveen&Bos
(2)Construction company	Keppel Seghers N.V. Belgium
(3)End user	FujiFilm Europe B.V. Tilburg/Netherlands Products: Photo Films & Papers
(4)The role of Toray	(1)Membrane supply (2)Supervisor for membrane installation

4. Case study of full scale MBR systems (Photo Film Manufacturing) **Design of the system (1)**

Raw water	Wastewater from photo film production
Capacity	840m³/day max. 45 m³/h
Biological Design	0.05-0.1 kg/COD x d/kg MLSS HRT : 22 hrs

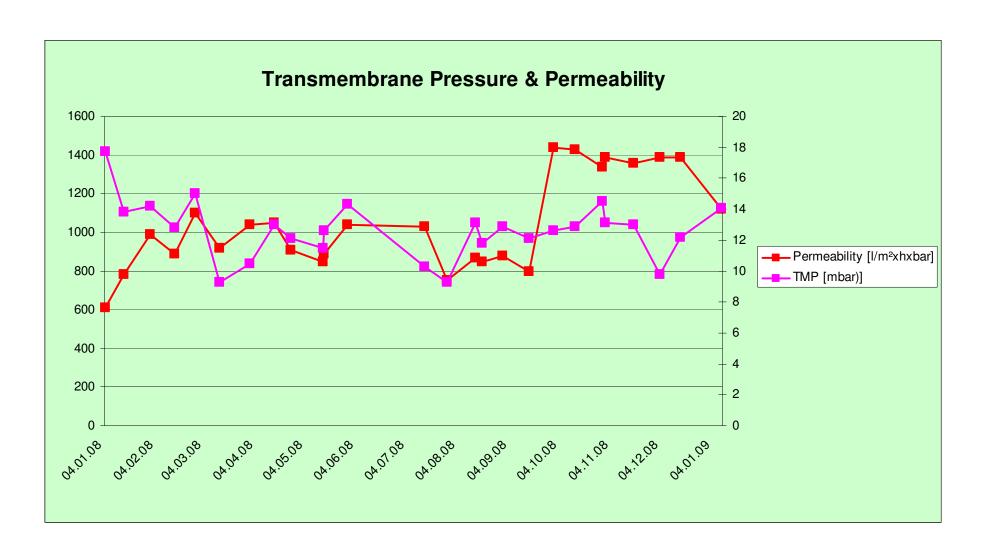
Process Flow Chart

4. Case study of full scale MBR systems (Photo Film Manufacturing) Photographs

Treatment Plant

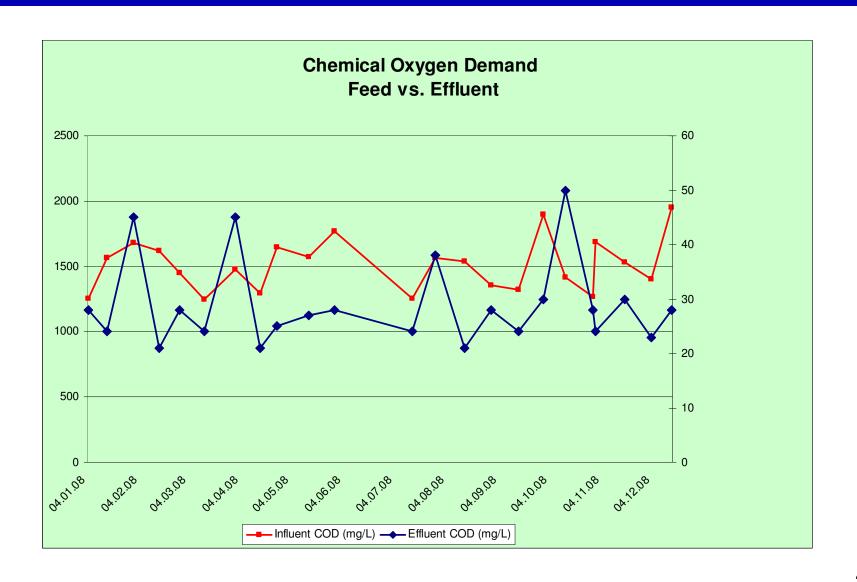
4. Case study of full scale MBR systems (Photo Film Manufacturing) Design of the system (2)

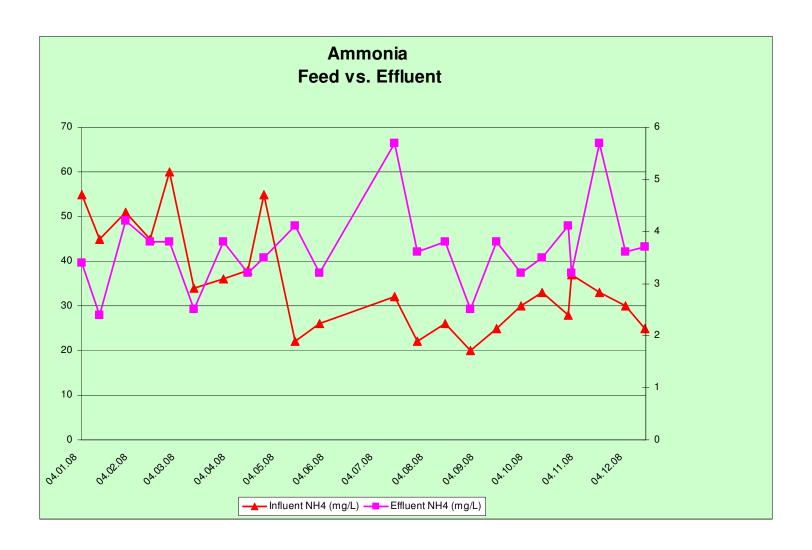
•Feed flow and loads


(1)Average flow	845m ³ /day - 35 m ³ /h
(2)Peak flow	45 m³/h
(3)Water quality for design	Raw water COD:1,730mg/L TKN: 70mg/L, NH4-N: 63mg/L, pH:6.5-7.5 Permeate water (Target value) COD: 30mg/L SS: 3 mg/L, NH ₄ -N: 5mg/L
	Sludge: MLSS 8~12g/L

OMBR filtration design

(1)Train design	TMR140-200D×3 MD ×2 train
(2)Design flux	20LMH (=0.48m/day)


4. Case study of full scale MBR systems (Photo Film Manufacturing) Operational data (1)


4. Case study of full scale MBR systems (Photo Film Manufacturing) Operational data (2)

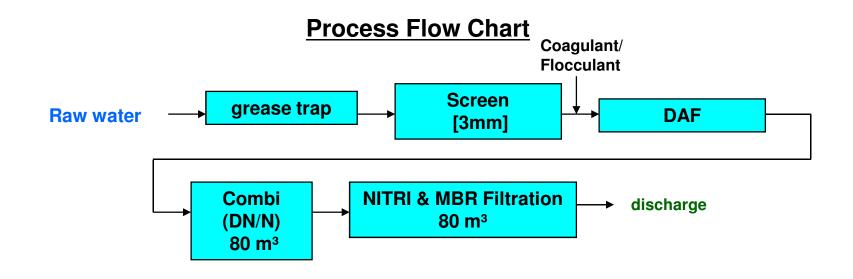
4. Case study of full scale MBR systems (Photo Film Manufacturing) Operational data (3)

Aspen Pharmacare (Pty).Ltd. Nutritionals (Baby Food)

4. Case study of full scale MBR systems (Milk Processing) Project background

OHistory of the plant

(1)Descripton of the old plant	Discharge to Municipal WWTP
(2)Reasons for installation of the MBR	Reduction of cost for discharging to Municipality
(3)Time schedule of the project until start-up	Earlier 2009: Initial Start Up using hollow Fiber Membranes
	Feb. 2011: Change of System Design to Flat Sheet Membranes
	April 2011: Membrane installation and start-up


OBackground of the projects

(1)Construction company	WEC Projects (Pty.)Ltd. Dainfern
(2)End user	Aspen Pharmaceuticals (Pty.) Ltd. Jo'burg SA Products: Baby Food (Milk processing)
(3)The role of Toray	(1)Membrane supply (2)Engineering Support

4. Case study of full scale MBR systems (Milk processing) Design of the system (1)

Raw water	Wastewater from Milk processing (baby food)
Capacity	144m³/day max. 6 m³/h
Biological Design	0.5-0.6 kg/COD x d/kg MLSS HRT : 26 hrs

4. Case study of full scale MBR systems (Milk processing) Design of the system (2)

Feed flow and loads

(1)Average flow	120m ³ /day - 5 m ³ /h
(2)Peak flow	6 m ³ /h
(3)Water quality for design	Raw water COD:9,000 mg/L TKN: 180mg/L、TP: 50mg/L、pH:6.5-7.5
	Permeate water (Target value) COD: <300mg/L (97% removal rate SS: <3 mg/L, TKN: < 25 mg/L
	Sludge: MLSS 10~15g/L

○MBR filtration design

(1)Train design	TMR140-100S×3 MD
(2)Design flux	14LMH (=0.33m/day)

Thank you!

TORAY MEMBRANE EUROPE AG

www.toraywater.com

