JAR TESTING: CONSIDERATIONS AND PROCEDURE

Purpose of Coagulation and Flocculation

- □□ Remove particulate impurities, especially non-settleable solids and color from the water being treated
- □□ Non-Settleable solids include colloidal material that exhibits slightly negative charges repelling one another and staying in Suspension
- □ □ These contain microbes including pathogens

Removal of Turbidity by Coagulation & Production of Floc

- □ Neutralization of repulsive charges
- □ □ Precipitation with sticky flocs
- □ □ Bridging of suspended matter
- ☐☐ Providing "agglomeration sites" for larger floc
- ■ Weighting down of floc particles

Factors Affecting the Coagulation Process

- \square pH (Al from 5 7; Fe from 5 8)
- □ □ Alkalinity of water (> 30 ppm residual)
- □□ Concentration of Salts (affect efficiency)
- □ □ Turbidity (constituents and concentration)
- □ □ Type of Coagulant used (Al and Fe salts)
- □ □ Temperature (colder requires more mixing)
- □ □ Adequacy of mixing (dispersion of chemical)

Primary Coagulants

- □□ Primary coagulants are lime, aluminum sulfate (alum), ferrous sulfate, ferric sulfate and ferric chloride
- ☐☐ These inorganic salts will react with the alkalinity in the water to form insoluble flocs which will trap the suspended matter in them

Use of Alum as a Coagulant

- □ □ Earliest and Most Widely Used Coagulant
- □ □ Effective Range pH 5.0 to 7.0 (6.5 optimal)
- □ □ Reacts with Alkalinity
- □ □ Results in drop in pH
- □ □ For every 2 mg/L Alum 1 mg/L Lime is

Use of Ferrous Sulfate (Copperas) and Lime for Coagulation

- □ □ Combination produces Ferric Hydroxide
- □ □ pH 8.4 range to 9.0
- Oxygen must added by aeration or chemically such as chlorine
- □ □ Very effective for turbid water
- Care must be taken because color not removed at high pH

Use of Ferric Chloride as a Coagulant

□ □ Has wider pH range than Ferrous Sulfate

□ □ Typically used where color removal is also desirable

Does not require oxygen supplement

Use of Ferric Sulfate as a Coagulant

Does not require oxygen supplement

- □ □ Effective over wider pH ranges
- □ Lower doses required that Ferrous Sulfate

Secondary Coagulants or Coagulant Aids

□ □ Coagulant aids are often added to help stimulate the production of floc

□□ They include sodium aluminate, sodium silicate and various synthetic organic water soluble polyelectrolytes or polymers

Desirable Floc Quality

- ☐☐ The best floc are smooth circular particles that tend to settle quicker
- ☐ Irregular shaped particles settle slower

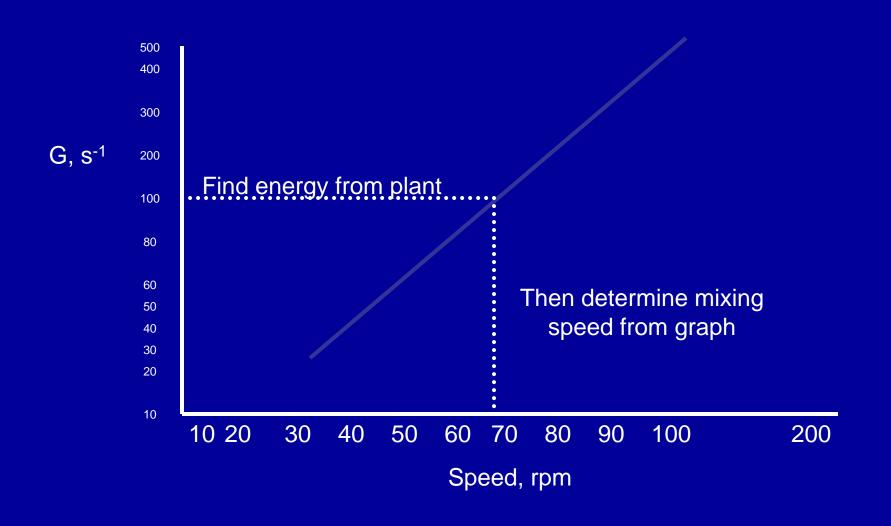
Large clumps (popcorn floc) settle fast but are caused by chemical overdosing

Performance Measurement Using the Jar Test

- □□ A jar test is a laboratory procedure where varying dosages of coagulant are tested in a series of glass or plastic jars under identical conditions
- The jars are injected with coagulant dosages and mixed to match flash mix & flocculation field conditions as closely as possible
- □ After mixing and settling the jars are observed to determine which dosage produce the largest, strongest floc or which dosage produces the floc that settles the fastest
- □ □ Other laboratory tests sometimes include a jar test to determine the optimal pH or determine the turbidity of the

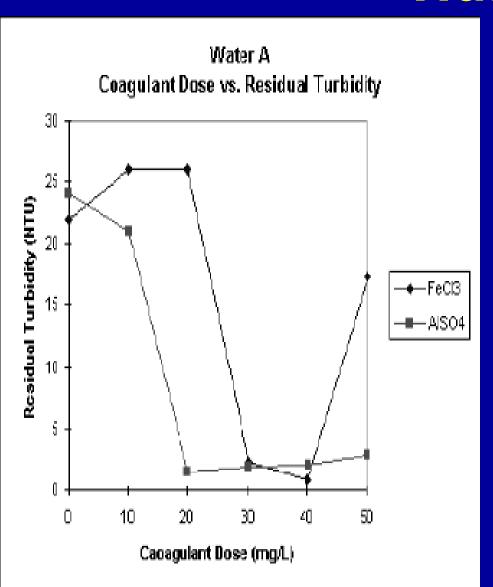
Factors Affecting the Coagulation Process Revisited

- □ □ pH range: 5 7
- □ □ Alkalinity of water > 30 PPM residual
- □ □ Concentration of Salts affects efficiency
- □ □ Turbidity (constituents and concentration)
- □ □ Type of Coagulant used (Al and Fe salts)
- □□ Temperature (colder requires more mixing)
- □ □ Adequacy of mixing (dispersion of chemical)


Jar Test Apparatus and Procedures

- **□ □ Four or six paddles**
- □□ Typically, one container is used as control
- □□ RPM gauge allows for mixing speeds to match plant conditions for flash mix and flocculation
- □ □ Can be programmable or manual

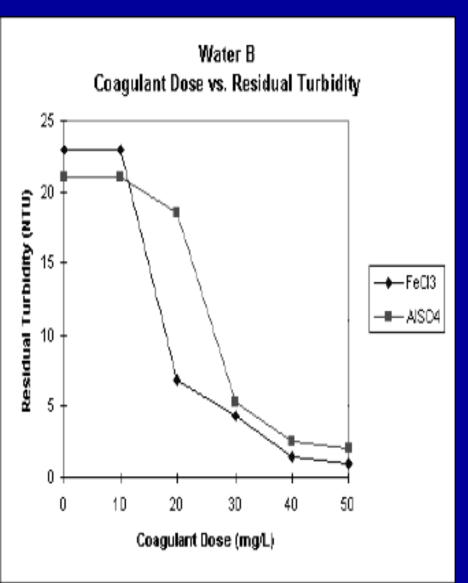
Determining Mixing Scheme


Graph Created by Camp, 2930s

Evaluation of Jar Test Results

- □ □ Rate of Floc Formation
- □ □ Type of Floc Particles
- □ □ Clarity of the Water between the Floc
- □ □ Size of the Floc
- Amount of Floc
- □ □ Clarity of Water above Settled Floc
- □ □ Volume of Floc

Jar Test Plot for Low Alkalinity Water



Alum initially reacts with low alkalinity

With Ferric Chloride requires chemical to reach optimal pH before reacting

□ □ Adding too much

Jar Test Plot for Higher Alkalinity Water

- Higher Coagulant doses are needed for high alkalinity waters
- Ferric Chloride required more chemical but reached lower turbidity
- Since Alum did not produce water <1 NTU a coagulant aid is

Additional Analyses for Jar Testing

■ Alkalinity

□ □ pH

□ □ Turbidity of Supernatant

□ □ Filtered Turbidity of Supernatant

JAR TESTING PROCEDURE

Purpose

To determine the optimum concentration of coagulant to be added to the source water