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Fluid concept

. Fluid mechanics is a division in applied mechanics related
to the behaviour of liquid or gas which is either in rest or
in motion.

. The study related to a fluid in rest or stationary is
referred to fluid static, otherwise it is referred to as
fluid dynamic.

. Fluid can be defined as a substance which can deform
continuously when being subjected to shear stress at
any magnitude. In other words, it can flow continuously
as a result of shearing action. This includes any liquid or
gas.
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Fluid concept

. Thus, with exception to solids, any other matters can
be categorised as fluid.

. Examples of typical fluid used in engineering
applications are water, oil and air.

Static
deflection

Free
surface

Solid
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Units and Dimensions

1 Dimensions
Mass  Length  Time  Force
M L T F
Types of systems
- M-L-T system
i~ F-L-T system

Dr. Amir Mobasher

Force = Mass * Acceleration



Units and Dimensions

2" Units
System /  Quantity | Mass | Length | Time | Force
Standard International (S.I) | kg m sec | N
French System (c.g.s.) gm cm | sec | dyne
British (English) slug ft sec Ib
Kilogram weight system kg m sec | kgy
" J
Units and Dimensions
1- Length (1
1ft =12 inch yard=3 ft m =100 cm
inch =2.54 cm mile = 1760 yard ' feet, " inch
e.g. mile = 1760*3*0.3048
1ft =12%254 =1609 m 1
=30.48 cm S Im=73048 T
1ft =03048m 3081t
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Units and Dimensions

1- Mass (m)
[ | slug = 451 Kgl , | ten = loooky | |Kq = 1000 3m

3~ Nolume )

lwe = looo litre = 10° cm

3
| gallon — 3-735 litre

L - Velocity v)

V= length = LT_' (mlsec) o (8t fsec)

Eime
5- Accelevation (a)
-2

a = Velaty _ v - LT
Eime At

Dr. Amir Mobasher
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Units and Dimensions

6 - Grawtational accelayation (3)

4= 98] wm/sec 9-232.2 Ufsed

F- Force (F)

F = wmass % occelarabion _ MLT—Z

N = Kaq.m/lsec?
dane = gwm.cm[sec

Lh = slug. b [sec? \Ko, = 481 N

po\fnfl- (o2) Vam, = 921 dyne
IN = t05 Ayne l 10b= ll-lfm UKQN — 2.205 Cr‘
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Units and Dimensions
8 - Density ()

-3
L= Mass - m. = ML
Volume W
\3MICM3 = looo Kﬁ/\m3. = |14 S$H5/£f3
Oensity of water
Sq5tem SI C.9.5. Enalish
L 000 Kslm \ 9m fcm’ 19y slug [8F
" JEE
Units and Dimensions
9- Sjecific Weight (‘0’)
-3 -2 _-2
5:_- Weight :M_ = FL = ML T
| ¥ .
\[que XMLTZ
¥= 739
specific weight of water
Syotem S1 C.9.%. Evnalish
B 4810 Nlw® | 931 dywekm 624 Cb[E¢°
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Units and Dimensions

o - %geﬁ?:c Volume Jﬁ = M

- Specilic dvavity (.6) = Relative depsity (v.d) -

S5.¢G = \'-0(- = f\iquid. -_;- \Gl\“wid.

(‘ho Units)
£ water B watec

ed
7 9.6 of HS — 136

\2.6 % 48lo el
]SH-S = 136 Uwqffr < \3:6 % 624 Emlish

Dr. Amir Mobasher 11
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Units and Dimensions
12 - Prescure (P), = Stvess (T)

Po T = Foce — #3h - FL a7

Avea

Pa_ (FGSCR\) = f\”i"ﬂ2

Psi = pounds pec Square inch (Jeb/ind\z)
Pef  — Povmats per Square €eek (ﬁbfftj
“Y Convert P=1 Psi — Pst
- "e’( = '|'1i|n(l']
2 1 2
e ] 4y o (12) inch  _ juy €b/f
inch? te?
t Poi = \uy Psf |
Dr. Amir Mobasher 12
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Units and Dimensions

\% - Discharge (@)

Dr. Amir Mobasher
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Units and Dimensions

Gl

Q= Volume = ¥ _ Velocity xAvea = V.A
Eime

|
- U7

Ve fsec = 108 cm/sec

13

Quantity Clomm(?nly used BG (English) Units SI units
dimensions

Acceleration (a) LT fi/sec” /s’

Force (F) For MLT” Ib (slug.ft/sec’) N (kg.m/sec”)

Area (A) L ft! m’

Density (p) ML? shug/ft’ ke/m’

Energy, work or B

quaniy of heat FL ft.lb N.m = Joul (J)

Flowrate (Q) 13T ft¥/sec (cfs) m’s

Frequency T! cycle/sec (sec™) Hz (hertz, s)

Kinematic viscosity (v) LT ft'/sec m’/s

Power FLT! ft.Ib/sec N.m/s = Watt (W)

Pressure (p) FL? Ib/in’ (psi) N/m’ = Pascal (Pa)

Specific weight (y) FL* b/t (pef) N/m®

Velocity (V) LT! ft/sec (fps) m's

Viscosity (1) FTL? Ib.sec/ft’ N.s/m’

Volume (¥) L f’ m’

Dr. Amir Mobasher
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= SN
Units and Dimensions

\L- Momentum = mass xVelocity = Force x Eime

15 - Ene(% (E) = Work = Torc‘/ue (T) — Moment

Work — Force xdistance = F.| — ML2T -
Joule = N.m
clal .
\6 - No of reyolutions (N) = (Y\) Sfeer{ of ROtation.

N = no of TEVolqtionS/hninuf:C

(v.em.)
n = no. of veyslutions/ Second (v.e. s)

Dr. Amir Mobasher
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Units and Dimensions

17 - Avawlar Velocity () ¥ 2

. w
w= 90 .-:= 2Tn (‘c’ad—/aec) >

t Ox
V = Wy (mlsec) or (?t/sec)

13 - Power (P)

_4 _3
P = FO‘(CQ x Velocity - FLT - N\LZT
watt = N.m/sec WP = Horse power = Watt/#35

16
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Fluids Properties

- Surface tension (o)

Surface tension (0): A liquid’s ability to resist tension
- Capillarity
F\B‘

Adhesion > Cohesion Cohesion > Adhesion

Cohesion: Inner force between liquid molecules.
or. Amir Mobasher Adhesion: Attraction force between liquids, and a solid sutface.

" JE
Fluids Properties

- Capillarity
&
o (Td) 058 = Tk, ¥
4
h= 46 Cosh =] _T_
T h
e — —\—l—.—,—.—_—,—.—,—,—_—_-
— 2R f—
Dr. Amir Mobasher 18
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Fluids Properties

- Water droplets
G
=
Y
?o > ?{ I
=
(P'. ~2)
P —
or
AP = 46 7
Dr. Amir Mobasher I 19

Fluids Properties

- Viscosity

F
FoayV
F ool T = AldV] Newtms eqn of Viswosity
Y ( A, ) ;
7 5 —
F «
A Shear Viscosity Velocity
F oo V Stress yradient
A E)
EanB = 4V Friction force
dd

Dr. Amir Mobasher 20
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Fluids Properties

- Viscosity
Mo FLUT
M:: PC_%_ = KS —_ L\I_,.SEC"PO\'S
v . sec m?
= 3w = dune. sec — Poise
Cm. Sec Cmz
slug L. sec
ft. sec fe?
~ .oelP,S
Po‘:SE = o fa. s w,,{:eV_o ?
- :o-olfaise
" JE
Fluids Properties
- Kinematic Viscosity ()
- _! 2"
L= M = mLT  _ LT
f ML—S
2 = (cw'z/ser,) - stoke
= (m?lsec) or (f/sec)
Stoke = Lot w/sec
U, bey = 1678 wilsee  — 102 stoke

Dr. Amir Mobasher
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Applications of Viscosity
1- Plate moving with uniform velocity

=

- aganst o horizontal Plane

Resistance (Fricto fme) - TA

F= MY
3

Dr. Amir Mobasher

-‘ \ubricant

-—-—a -

Fixed Suf?uce (Beﬂf""ﬂ

23

Applications of Viscosity
1- Plate moving with uniform velocity

b- between 2 Planes

F - ’C,Q +T1H

T=mY
9,

T1=MY.
Py

Dr. Amir Mobasher

N
t : : : =
o mo
P el
Bearing
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Applications of Viscosity
1- Plate moving with uniform velocity

C - ogamst an inclined Plane

ak uniborm \eloity = (‘EF:D)
\

&

Wsing = M%A

Dr. Amir Mobasher 25

" JE
Applications of Viscosity
2- Cylinder moving with uniform velocity

a.- Lnner Ca\ind.er Moving \‘\ori%onl:allj

& L .
71 A
F=u LA I I
A-2TTnl v‘%h“" =
- I F
F=u X 2T%L I
\fz__r‘ tascrra s s IBIé;f;{;farlr'lrllfﬂ
Dr. Amir Mobasher 26
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Applications of Viscosity
2- Cylinder moving with uniform velocity

b- Dner Cylinder Moving Vertically under gravity

W=M%ﬂ
A - 2Ty L sening / Seun
W=m Y 2Tl /
2% /
" JE
Applications of Viscosity
2- Cylinder moving with uniform velocity
C- Quker mwih5 and.  Ehe imey gixei
W= YA Moving
Y 7 pipe
= 2Ty, %
A= aThL L e
Y = - Y /
- Fixed fi
W " —y_— 2“,&\— Fixed fipe
Ya-Y,

Dr. Amir Mobasher 28
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Hydrostatic Pressure 0

Pressmre — Force — 3 \iﬁ — Oh
Avrea a
P = \6 H P&SCQ‘)S L\jol.rostq,(:"c ec(uq_tioh
Presure z?:i;fiz P‘:eeis;re
units = Nlm? = Pa 26/%2Psf  Lblinck = Psi
Ty :
” P ar
Pz = P{ + Kf’-\ | mm& \1(---1-—;2-12 IZ
- 9.6 - 32 |
Y w
PQ_ = P; -+ S.¢ Kwh
P, = B, — 5.6 Tuh
: Patm
A ' |
P'l.: Wez (332) _ ‘b : 4{3]2
P = Patm + WZ (absolute) zevo Lol xi0 Nim
| (aage) ~  (absolute)
Gauge Pressure

It is the pressure measured by an

instrument |, in which
the abmospheric pressure

is taken as o datum
Absolute Pressure

lE is the Sum of the oabmospheric

and. gauge Pressure

Po\b S - pq_tm + Pga 9e.

15




@

# x B
Ve gagqe
PFI 9ag9e
| Datum | Standard Atmoseheric Pressure
0 —Ne 9age 8 999
A P t B »*
bs am Suction, VaCuum, —ve Fressure
Pg abs
X Datum?2 A\)So\ubc Zeco (Com(’lete VaCuum)
%y
PH _ 20 XPfa (3«3e)
Pa = 1013 +20 = 1213 KPa (abslute)
P% = —ko KNIW\Z
= 40 KNIm® VaCuum (Qsauae)
= Lo KN [m? Sultion
PQ) - XO\%—L{O = 6\3 KN}W!Z _2_., (QbSoldl'e>
‘%\{ ng (d‘.,\',)\ (_s,f—l\\ ou.ctb gres ‘L"“'“ 59,‘—: -LSJ:
— —— X
. / % S 3 @ guibiad) @l Wl -|
W ' |
\Sm,.? /; Y A s
ILIIIINAY, Jusio JLU ¥
o | @ ot el - ¢
e~
Z (V) (2) {§
N O e\ #P,
A ¢ B Jaio pd K1
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Standard Values of  Paem

Patm = 076 m Hq

= 0-% % = 076 x \3-6 x9910
10:23 vy Wakey = 1032 h’w = 1023 x | «x ‘i?(o

= 1013 %0 Nlw? (Pa) =~ [ x10° Nl = | bar

o—

——
—

= 7 Psia = Wrxwy L/t (Psh
= ‘ (LtYnoSP\r\Qfﬁ = 34 P& water
= Zero (Jause) = 103 Ka /cmz

Pressure meaSurements

\- Barometer

The barometer meaSures Che qtmos?keric pressure  at

its location in absolute units

Pogtm = Barometric Pressure = lotal atmospheric pressure

' 3
Pat\m - Standavd Value = (o123 xwo Pa

e 48 5l
Qv Vapour fressur

"L’Memﬂg Barometer 7N of Ho
" 7| &
, )| Tabm

-xU': measues t\ne Q(ZYY!oSp%er(c V,\*H_u\‘
n q v,
P(GSSLNQ in O\\OSO{WH’- Units ///////H@/

x When a tube flled with Mercury is inveked in o Y€seory
Blled with Merury | the Mercury drops until its height s
balanced oy the abmospheric  Pressure

atw\ = Xk\«g\f\

| _ ®

17



®

b- Aneroid Barometer

It measures the ditfrence between the abmospheric fressure

and an QVO\(_untol Cg\mo{e( Msm(e

Elastic e Patm
oli‘if\wag\m O
_ Evchqte
2- P\’eSSUWe Faunges Cylindey

Rourdon sauge
lt measures the Pressuve relative o the fressure

5W(oundiv33 the dauge

Paauge = Fin = Pout

\Q ?iy\:-. out = Keaolihs = 0

3- Plezometer oy L

\tﬁ_}meqs»\res fostive gauge Pressures oe low Magn;itud.es

x ]

| , 5 b .
‘ B ~ xf . __-%
X 45
* \n= pressure head Sec X=X

Linitakions e

- Piezomebers  does not  Work for Negative fressures

b- It s ‘\mpmctiCa! o mesaure ‘a(ge ?resswe

(We need o very  long Eube)

18



Pressure head @

PTQSSW(Q \f\QGaL {s the »\Qfskt hT sﬁ?\‘ehmeter
ol o column of fuid that wil & — %

Pfoob&ce Che AVen  inkensity og Pressuce

h = -g—— = Pressure head

When a  Piezometer is inSerted in a tube the heisht
ol which Ehe Pliid. vises is Ehe Pressure \ead.

L4 - Manometers oL elozt

It measures flud  pressures by using diffecent Pluids

Which Mhay be heavier or lighter Chan Che Bluil Concerned

A= Simple_manometer gt
Tp ’\2
B=F @ﬁ:‘-- 2 f b,
P, = P4+ B2k, /I
W\A (D? L ///12@) '
P = Patm + Tmhy =) Cn 7 UP

> My = fabm + Yo h, - Uphy  hiay
. Qﬂ"yfv

Differential manometers are used
e When only the difference between two pressures are desired

U-tube manometer is used
e When there is a big pressure difference
e A heavy liquid such as mercury is used

Inverted U-tube manometer is used
o When there is a small pressure difference
e A light liquid such as oil is used.

19



b- Diffewntial _manometer Y oy
f= b, (D=5 §
_ b Cen ;;' =
P\ = Pﬁ t 6@"\3 > "Z k|
. ‘ #- 0} / K
P2 = PB 'l' 6¢ kz + Kb,h| 7 ///////////f@
K\m?&
C- Inverted U Eube Mapometer '
e e N N e
P = P, %o Im<®
P‘ = PH - Ug\)z—vm\n - ® / C@ il
o= fg - Th, “*I@D;: "3
- Micromanometer | ()
. ‘ 8 '
C- Vertical Eube Manometey | i
Ya s f‘a
| e, t
s 1 - - \
- N
\'\g b\ hz
® fa) -j SR ©
+oo-@- o Lo DR | 1
N B N
N i §
\
CL'IV\C‘I'Y\Qo( t“\bﬁ Yhanomet‘er \X\\\\\\\\\“tf\\\\
AA = L(l-
= T
L}




Pascal's low @
The intensity of Prescuve at any Point in a Pluid at

Yest, is the Same in all directions
Consider a t‘r\'angulqr oricm of Very Small Size

SF =0
P, dS ot _ P 4z

e S
s it

)
> Fx =0
P ds Cosh +W = B dx L8
By ks ﬁ+%%¢zvz R, . X Cost < %

P)( = PZ = FSI PG\SCC\\)S ‘QW

21
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Ihtensitj of Pressure means Yate Oe C"\ange of-

Pressure in & Certain  direction (df; éP)

ox B2
Variation 62 Pressuce . 2
R dx) » D
‘L Al Po el dz
fa (OL?)__> é_ﬁc (dz) | 5
‘ AW - N
| /T Fg (OLX) X

Consider a fluid element of Size dxdZ and unt len
| ot the OStatic Pressure at the Center of Ethe element—P

SF o= B2 - By - 0o e ()
ZF’E = ?6 (d..)() - FO(OLX) — GLW =0 _..._.. (2)
PR: P—_a_‘fg_L__)S ) a‘-"—P’t'_a_EO_L_X
oX 2 oxX 2

Pa= Po o dz Po- Prop dz
oz 2 2z 2

AW = V(2 (v

Fom @
- df dx __/{f-"/ P
KP= 28 dx)ldez) AP o dx) ()
: @_?_ = OJ . ‘Fresgu(e does Mt Vary in hoviionta! GLT(?CUOH

22



From @ ,' @
- .@_‘oo_l_’_i‘)%_. +Qf.o_@)!ab(f- Y(d2)dx) = o
of~ z gz 2

-2f Az _X4hE =0
o) -

37 ] [P Vi o ool diet
oz |

For  two points ©,0) z A
e . vl d -
= Z
f 24 "_7(;\"" @
h-f= -7 (Zz'zf) = =Th g[“l— Z2

Lﬁ'—: P, + '\

Load W~ Force F
Pascal's application j. . l )

1- hydraulic press
2- hydraulic jack . Plunger
3- hydraulic lift s A [
4- hydraulic crane | ,
1) P
Liguid

/ Working principle of hydraulic press

By applying a small force F on the plunger a larger load can be lifted
by the ram



Forces on Plane Surfaces @

HOYho3€h€ou5
\i"‘qial

CG = Center of Gravity
C.P. = Cenker of Pressuye

A = Avea of immersed Sucface (_L to the page)

T = V! distance fom C.G to the free Surbace (F.S.)
Y = inclined distonce from C.G bo the Bree Surface (F.s)
O = (@W 3 L Y VoY

To determine the resultant hadvostatic force
dF = PdA = ¥hdA S & = }\3
| = T 9smaedp . = h = 3sina
CSAF = Ysino JYAA
P94A = AT (First moment of Avea about point o))
F - Ysha AY

F = ¥an] 5= b

24



To determine the line of aCtion @

The moment oM due to Ethe eorce about O is
dIM = JFY |
= (\6 \35““& O(A)\j

§ oM = b/smogﬁf 9° 44
v KOLM = F ‘3c.p

j ‘3 A = o ((Secom( moment of Area about Point o))
. F‘jc.e - T sin o I,

€ 3 sinat A, = Boinx I,

%C'P —_ _-[0
AY
—2
IQ = ICS + AS
-2
ﬁ"'? - Ic.g ‘—!'A‘j
AY
\jCP = .‘" N ".' + -S
UL
(F) Resu ltant 3| J:?’\; Ml -
A = Icq A el cg ) gt L,
AD

25



Propecties of Area #
2 |
- R l 2
\ QCL'GV\S e 2 X +c_3. X Z
A=bZ
T - bz’ V,o\!a_)\ s gt ,
* 2 < ’
/1[’ b k
2- Triangle 7T 7
1t
A= LbZ 3 /\ Z
7 X X _r_C-S- x
T, - b2 :l / \
- 7 x
36 b




Special Cases

Free Surface

I _

\- OL::O —
9 - hW/sina = @ h \}F —
Wi Y gy =¥
A = Ic°5:&9=0 Cg.
A3 o)
phs bip \gde 050 LBV & gl mau
-V Cog NAF o jp duduy
2- ol = ‘100
Y= h -
-4
A = IC'S . h r
Al
#-t5H-cs
bz pb bas \gle 0K AW 5 Ll J1 mlay F
ABLs Cg. I il F 581 35 Jid J
3- Gad qu
O Olpir o plisy ¢ 50 W i e Gas T [ oSt
3 >
Wl Cg VAF & jpddyy  rxve 4 P o 00
: , X Cfes P F<]es
F: P As“te b4 4 ! L S

PYCSSw(e PriSm izl jgica

Sasldl o g W1 EL Gl j2t B S0 GF 3430 g
(A2 2 Blsodbeli T @ &0 5 Jidd) o

ABls U5 S0 Ll a4 J5 5 0 GF 300 5
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|- The Equation

(gOY any Suy Eace)

= v (E.s.
F= Yah h e
A= Tes L -

A3 | *4 "?

| Closed Eank with 2 Huids

Wt o plasily S5 OB guy, LI G his f 08 Sl d 3 goie glS" D1 00

| Dl Cg W55k jp
F. = PA
+ P air
F - %hA 1 =
r = th K ¥
— | )
Fl — Xg_ghz f \{2 F 5_
F hz F Fo 1= 2
Eotal = Fo‘t'F""FZ P 2 A
* F2 2
A, = Les
A9, S8 4] J g p 3l A5G Frge Abast 01 14y
FZAZ _ F‘Z > Set Z Mﬂ\ﬁdy%%e}=&ﬂd¢v6}&\ef
el

Inclined ASuf?ace with 2 Quids (Closeo( tan)
Fo= (v, +P)A

F, = ¥,8h, L +P
5, - hy o T
Sinck Y
2
Az = ch hl
AY,

28



Special Case
Gate Supjected to 2 Pluids

29



2- Pressure  distribution

@
(FOY ‘(eceqnsq\a\( "Durgaces Oh‘ﬂ)
) g5 W )
F=L¥h b 3h
F —_
= LYWh ih
2
Yh b
F - ¥ah
A= bh
h = h
Fo¥bh o LYW
- YA
Closed tank with -ve pressure
Fre (b <P, b Qp
+ 3
F— LOh ) hb = Ty
Fzé‘ + ¥F, -)?—-;;_, hz
¥h, ¥h, + P Bhy Yhy P
Closed tank with —ve pressure
F = (b = P)h, b | S
-P “

F= L (h)hb

4

Th, Th,-P

30



Thclined sSurface with 2 Bluids

P‘ = \6.\1‘ +Xz_»‘z - — &
h A "
P, = B + 7.0 " ’{hz
4]
hs
A

3‘Ima3'mar5 Free Surface (I.F. s.)

Fldt 8 5esld 450 Free Surface sig) @ 2 » 45l ods 3,58

¥ P 7‘ I._FS P:O
h| X| ?-{'\6 hl St
' - Yzh

; * _ > $\-“a}7‘ -B/l-

hz | X'L hi Xz hz z C.S [-
: . ~ T e ¥

Y2 Jldl o0 (3 £ Wy 41 P ially v By L e FU kil 4 on
key — P+ th!

%2
Ftotq\ = XZ AE
A = IC-S
_ 7S
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Gate Subjected to 2 Pluids @

Mey, I

..

A

Ney
-gof HYQG 1
hea = £ -
eq, 5 >
Fi = ¥Ah
A | = IC'3|
A9,
3 =\
QOY Avea 2
\'\e = ,P+ Kl\'\\
' L1
F, = ¥A,h,
DN, = Teca
A9,
F - F‘ ‘\'F?_
Fd - F2

gI.F.S)_i ) ? i f
[l = 5
\'\\ Kl A, -

wmﬂ( b,
hz Kz mﬁﬂ ¢3,- k
— e . ley;
et h, g a-ls Jrcb “)"
i
F o f %c,s‘ v
HEP
or e,
Fz—lL-a-[ -
_ 1\,
> et h;

;_> get 2 (Vine of action)
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Forces on Curved Surfaces

|_g Free Surfae, (F:3) (F.s8)
z | S|
-+ | i L
v v

Carved Surfcec. é,)

055 10 & R Aadt e U 15 ot O 131 ko o5 o 3 gos ol i,
S g g7 o1 053 Curved Surface ) & & 3975 2 26 R o1 8l
Rl g

Fy iy 45 05 Fyy &80 15 0 (=8 # QIR Wt S o2

Fu (HO\’iZov\tq\ Compomnt)

¢ Curved Surface J! m) S5 85 sl e Byle & Fyy &8Y1 A8

A - Ic,.s
AY
— —_— ] A ‘- - T
3 = \\ _/ ’ﬁ?
3 1
I(__5 e _b\__y__ b

(') S F
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Jazll & ghad

R ALl we oty aly 6 s A8 Curved Surface JV bt o
i1 B Lt e s s BN 25 ol
Aauw\a,u\;f&mﬁw;:

F\-/ (VQY tical CQMPOY\QY\{:)

dlais y Curved Surface J! oy y 32! B 035 o8 85ke & Fy i S as’
Free Surface J!

Sall &) ghad
 Curved Surface J i Jiuiy Jel blist oz
MY 3l g O ST Y1 b 2 Free Surface !

O 4dads 3 ga g are Alla B

Curved Surface JS B & sy A dbts [duf blint oz
B« A d Free Surface Ji o

AB (C.S)J1 5528t bt 03y 08 53k o Fy il 1 25 41 055,
A B (F.S.) Ji e doinsy

=3 | c ﬁ\
E Inflection point D& Ahaki 3ga g Ala S
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Fluid Masses Subjected to 0
Linear Acceleration

uniform acceleration “a” iokus e 7 o sUl & Jlo hsi13) o
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@ Combined  Horizontal and Vertical accelerabion
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Apply the basic hydrostatics equation to determine the pressure
variation in the horizontal and vertical directions and the slope of

the surface of constant pressure for any body fluid in rigid body
motion.

Fluid Mosses Subjected to lineay Acceleration

F) fo
=3 0y A P i
d*g‘ B i o "'_C]}Z
E‘q of
%@ : oy TPB S
¢ X, X
Consider o Swall Huid elepent with dimensions (dxd2)
Y B o= PAGL%_PCOLE N 0]
SF = RRdX =P dX - dW .0
Ph = P- 2P dx , b= Pa 2P dx
oXx 2 K 2 *@
o= P 2P 4z , To=Piop 4z
oz 2 Pek = 2
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Buoyancy & Floatation

Archimedes principle

Any weight, floating or submerged in a liquid, is acted upon by a
buoyant force equal to the weight of the liquid displaced, and acts
through the center of gravity of the displaced liquid.

-.|Weight of floating body = Weight of liquid displaced

X\; V—b = X\A \LSug:
S9¥,tod = 7596"4‘—/%“5% I

I
| A \\\\FG N ]h
‘“SM\: = 59 C'L (‘m this exmm?le) \\\\\\ \\\‘\\B\\\\ 7:5%
i L

” |

-

4

7l -

Center of Gravity (G) = Centroid of the whole body
Center of Buoyancy (B) = Centroid of the displaced liquid

Rotational stability of floating bodies

UP{Qg\mt Positicn R;gkt;ns Cow’ie Overtmrn.’ng
o mam?ht w
) ( Y
MG
oG
X ; /_‘ A
Fe
Fb Fg
Origina) position M above G M under &
Stakle Stalle Ons talle
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* When the body is upright,'point G and B lie on the same vertical
= no moment
* When the body is slightly rotated through a small angle 6 the
shape of the displaced volume gets different with an increase of
volume towards one side.
= the centroid of the displaced volume B changes to B’
* Let a vertical through B intersect the centerline at M

* The line of action of the buoyant force (acting through B") forms
a righting couple to return the body to its original position.
= the body is stable when point M is above G

* The point (M) is called the metacenter.

GM = BM — BG| )
GCM = metacentrvic height \ ! /
—  4ve  Stavle A NN A
Y,
= —ve Ungtable 2 sab
where Eleyation
BPM = Iy 3
¥Su\> |
Ij: Moment of inertia AYound,
f
axis of votabion
¥5ab= Su\omergeo( vo}ume |
)
BG‘ = A?Stan(@ \‘)QtW{Pn B ow\o{' G— \
Plan
ljaG = C—’zl—’ - “_5‘45 (in Ehis examele)

2
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Center of Buoyancy @
¢ It is the point of application of the force of buoyancy on the body.
e It is always the center of gravity of the volume of fluid displaced.

Types of equilibrium of Floating bodies
1.Stable equilibrium,
2.Unstable equilibrium and
3.Neutral equilibrium.

Stable Equilibrium

e It occurs when a body is tilted slightly by some external force, and then it
returns back to its original position due to the weight and the upthrust.

¢ The position of metacentre M is higher than the center of gravity G.

Unstable Equilibrium

e It occurs when a body does not return to its original position from the
slightly displaced angular position.

e The position of metacentre M is lower than G.

Neutral Equilibrium

e It occurs when a body, when given a small angular displacement,
occupies a new position and remains at rest.

¢ The position of metacentre M coincides with G.

20 IS & (5 g pin s

Metacentre

e The metacentre is the point of intersection of the axis of the body passing
through the center of gravity (G) with the original centre of buoyancy (B)
and a vertical line passing through the centre of buoyancy (B') of the tilted
position of the body.

e The position of metacentre (M) remains practically constant for the small
angle of tilt 0.

Metacentric Height:
o [t is the distance between the centre of gravity of a floating body and
the metacentre.
e GM=BM-BG
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Fundamentals of Fluid Flow

Types of fluid flow

1- Steady and unsteady flow

a- Steady flow

It occurs when velocity, acceleration,.. etc doesn't change with time

dV -
St =0

b- Unsteady flow
It occurs when velocity or acceleration,.. etc changes with time

e.g. flow in a pipe whose valve is opening or closing
M o
ik 7

2-Uniform and Non-uniform flow

a- Uniform flow

It occurs when velocity and cross-section remains constant over a

given length
IV — o , LA — 0O A
oL AL st ~
- L V= V2
7 7 Ay=Ag

b- Non-uniform flow

It occurs when velocity or cross-section changes over a given length

AV A M Ar
x #O > -;L—E :,é() B 3 0 e,

1 Ai#A2
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3- Laminar and turbulent flow @

a- Laminar flow

It occurs when fluid particles in parallel paths and do not intersect

e.g. flow through capillary tubes, ground /\/Strmm lines
water, and blood in veins. % e g
R, <2000

b- Turblent flow

It occurs when fluid particles move in random motion

e.g. Nearly in all flow in pipes

R, > 4000 =

4- Rotational and Irrotational flow

a- Rotational flow o\ 7
It occurs when fluid particles have a e Rt
rotation about an axis 0 —

b- Irrotational flow

It occurs when fluid particles don’t have a rotation about an axis

5- Compressible and incompressible flow

a- Compressible flow
It occurs when the density of the fluid changes from point to point

e.g. Flow of gases through orifices and nozzles

b- Incompressible flow
It occurs when the density is constant for fluid flow

e.g. Liquid are generally considered flowing incompressibly
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6- One, two three dimensional flow @

a- One dimensional flow

It occurs when the velocity is a function of time and one co-ordinate.

v=1(x,1) N e
PR »

e.g. Flow through a straight 3 «

uniform diameter pipe - —

o

The flow is never truly 1 dimensional, because viscosity causes the

fluid velocity to be zero at the boundaries.

b- Two dimensional flow
It occurs when the velocity is a function of time and two co-ordinates
v=1f(x,y,1)

e.g. Flow in the main stream of a wide river

c- Three dimensional flow
It occurs when the velocity is a function of time and three co-ordinates
v=1f(x,y,21)

e.g. Flow in a converging or diverging pipe
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7- Stream lines and streamtubes

a- Streamlines
e Streamlines are imaginary curves drawn
to show the direction of fluid flow

e The tangent at any point gives the

velocity direction e —,

b- Streamtubes

e A stream tube is a fluid mass |
bounded by a group of streamlines _ % -

8- Ideal and Real Fluids
a- Ideal Fluids

e [t is a fluid that has no viscosity, and incompressible
e Shear resistance is considered zero
e |deal fluid does not exist in nature

e.g. Water and air are assumed ideal

b- Real Fluids
e [t is a fluid that has viscosity, and compressible
e |t offers resistance to its flow

e.g. All fluids in nature
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9- Viscous and inviscid flow

a- Viscous flow
e It occurs for fluids that have viscosity which offers shear
resistance to the flow

e A part of the total energy is lost in flow

b- Inviscid flow
e [t occurs for fluids that have no viscosity
e No shear resistance to the flow

e The total energy remains constant.

10- Mean velocity and Discharge

a- Mean velocity

It is the average velocity passing a Vaveraae

given section e 0

\/mecw\ = % r‘“w: Max \

b- Discharge

It is the rate of Volume of liquid passing a given cross-section

Q:}gé:ﬁ.v
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4
2
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| Aec '\T(a-\S)z

55



\:‘U\io(. ngw__\i__c_s

For any Fluid e\ew\ev\t it has

A
Three energies or heads A @
— Potential eneray or Rteatial head f— ?z Datum
PE - Mo Z
Potential head = PE - Msz _=z
unit Weskt Mg Oabum
- Kinektic ewergqy or Velocity head
K.E. = mz SV
Y,
Velocity head = _KE: Y VA
Unt Weight  2M3 29
A S SR (S
29 L T
3- Pressme €neyqy oY Presswe \\eow(
Prescure eney = (M. A.X A —
PYESSMQ head = fressuve eneyg y h ooyl | f::”
Unic weight #lL =T ]
= Zf_b_ﬁl = h =(L) i

YAX
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T deal Fluid e 1 @)
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Rea\ Fluid
Real fluid has an
additiou) Force
Acting  Caused by

Friction

F= T dA=Thrds Q/ A onLs

Apelying Newton 2% law sinf = 4%
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ExXample on Real Fluid ®),
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Pumps (Adds energy to Ehe System)
@
*

_Q_a&tum

Aeelaing Bernoulli eqy between ©,@

[g*’}{f}i + He = 2% +}r§/+ Z2
=0 HP !

Sustem J) Sl Energy aslh @bl e Pump 3 Joxi
R-GL DV ey wp LY TEL v S

T;\r‘:)maS (Extmcts e.nevM @Yom the Ssst(’m)

0 __TE-L. B .
= e et | I_HT TEL H—f @, Datum
L ___Hel. = )
T
] I
APPl‘sinq Beynoulli 9n between @»@

Pl 4+ Vtz Zz, — H—‘- — Pz sz %Z

H = HT

System M o Enegyolh 7l e Tuvbinedl Jozd
Hol D) as Joo W TEL D Jo by e



Be(‘r\ou\\i's Gevneval equatiOV\ _»

at A added lost EXEvacted at B

Eneray + Evnergy — Enerqy - Enerng = EV‘QV%I

Y 29 ¥ 29

Bermoulli Jilo )= ot

LS o s equation ) Dabum Lty ALl o @ -l
Al SUE Y w0y e BT s Datum 3V L]

FL 2 g pubmd o Berndli anhs _c

b e Vi Vo Lgio bes 80Me Jos @ Bogm 3550 &S X
Q=ANi= AV, Continuiby ) 98

\OSSES (sg\ t) e -

Turbine 555 w20 head 1 )@ -0

Pump 5475 ns zU head st 65l e -1

(E@_+_\1ﬂz+2ﬁ)+ Ho — ZH_ - T _(Ps +Ve+23>

Notes

-——a HeL .

- e P=° P"fo
~—— - 8

or (\o? an End
D - End of P#0)
Pipe
or ] (P‘-"— O) <. EX

F-O\ta\ Mistake

63



Higher Technological Institute
Civil Engineering Department

Sheets of

Fluid Mechanics

Dr. Amir M. Mobasher




Higher Technological Institute
Civil Engineering Department
Subject: Fluid Mechanics 5 r
Dr. Amir M. Mobasher g2

Sheet (1) - Units and Dimensions

Q1: Using dimensional analysis, put down the dimensions and units in the
engineering systems {pound (Ib), foot (ft), second (s)} and {kilogram (kg),
meter (m), second (s)} for the following engineering quantities:

e Density (p), specific weight (y), surface tension (o), pressure
intensity (p), dynamic viscosity (), kinematic viscosity (v), energy
per unit weight, power, liner momentum, angular momentum, shear
stress (7).

Q2: Show that the following terms are dimensionless:

v.y p.v.y UV p Luwv?
v’ ou ' Jgy pv? 'hgd

Q3: Find the dimensions for the following terms:

5 dp =
PVEYY g §,p-Q-V,Y-Q-L

)

12
g

<I|©T

Q4: Convert the following terms:

e v=1000 kg/m’ to Ib/ft?

e =981 m/sec’ to ft/sec’

e p=7kg/em’ to N/m’

e yv=710 dyne/cm’ to Ib/ft’, N/m’

o 1 =4640.84 poise to Ib.sec/ft’, Pa.sec



Higher Technological Institute
Civil Engineering Department
Subject: Fluid Mechanics 5 r
Dr. Amir M. Mobasher g2

Sheet (2) — Fluid Properties

Q1: What 1s the diameter of a spherical water drop if the inside pressure is 15
N/m’ and the surface tension is 0.074 N/m.

Q2: The pressure within a bubble of soapy water of 0.05 cm diameter is 5.75
gm/cm’ greater than that of the atmosphere. Calculate the surface tension in
the soapy water in S.I. units.

Q3: Calculate the capillary effect in millimeters in a glass tube of 4 mm diam.,
when immersed in (i) water and (ii) in mercury. The temperature of liquid is
20° C and the values of surface tension of water and mercury at this
temperature in contact with air are 0.0075 kg/m and 0.052 kg/m
respectively. The contact angle for water = 0 and for mercury = 130°.

Q4: To what height will water rise in a glass tube if its diameter is (¢ = 0.072
N/m)
a) 1.50 cm b) 2.0 mm

Q5: The space between a square smooth flat plate (50 x 50) cm’, and a smooth
inclined plane (1:100) is filled with an oil film (S.G. = 0.9) of 0.01 cm
thickness. Determine the kinematic viscosity in stokes if the plate is 2.3 kg.
The velocity of the plate = 9 cm/sec.
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Q6: For the shown figure, Calculate the friction force if the plate area is (2m x3m)
and the viscosity is 0.07 poise.
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Q7: A piston 11.96 cm diameter and 14 cm long works in a cylinder 12 cm
diameter. A lubricating oil which fills the space between them has a
viscosity 0.65 poise. Calculate the speed at which the piston will move

through the cylinder when an axial load of 0.86 kg is applied. Neglect the
inertia of the piston.

)

L cm Yy
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= 0‘36‘ K‘gwt

0Q8: A piece of pipe 30 cm long weighting 1.5 kg and having internal diameter of
5.125 cm is slipped over a vertical shaft 5.0 cm in diameter and allowed to
fall under its own weight. Calculate the maximum velocity attained by the

felling pipe if a film of oil having viscosity equals 0.5 Ib.s/ft* is maintained
between the pipe and the shatft.




Q9: A cylinder of 0.12 m radius rotates concentrically inside of a fixed cylinder of
0.122 m radius. Both cylinders are 0.30 m long. Determine the viscosity of
the liquid which fills the space between the cylinders if a torque of 1 N.m is
required to maintain an angular velocity of 2 rad/s.
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Q10: The thrust of a shaft is taken by a collar bearing provided with a forced
lubrication system. The lubrication system maintains a film of oil of
uniform thickness between the surface of the collar and the bearing. The
external and internal diameters of collar are 16 and 12 cms. respectively.
The thickness of oil film is 0.02 cms. and coefficient of viscosity is 0.91
poise. Find the horse-power lost in overcoming friction when the shaft is

rotated at a speed of 350 r.p.m.
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Sheet (3) — Hydrostatic Pressure

Q1: A tank full of water as shown below. Find the maximum pressure, and h.

4 1 \V4

h
JE 3
R

10 ft

L 2

Q2: A tank full of water and oil (S.G = 0.80), as shown. Find the pressure at the
oil/water interface and the bottom of the tank.

0.9m il

21m Water

-k5




Q3: For the shown figure, find the pressure (P1) if the pressure

(abs)?

f2
G

Rir

o:l 8'3. =08

water

H 9 S4.= 13.¢

1-5m

im

0.2

Q4: If the pressure at point (B) = 300 KPa as shown in figure, find the followings:

a) The height (h)

Rir 80 K.Pn

QS5: For the shown figure, find the height (h)?

b) The pressure at point (A)?

— <
Water h
= «
4\ Hg 0'3
\\ N .@;F-
8
/‘\ a
/) 0.20 kascm
{
EBp= -3 n
of Hg
Air
cil (080
E —
[ =
E WOTEr
? ! 2.10m
'} h I
v |
{/ ] e
8.G=134 !
T/' - £ /_ A /)f

(P2) = 60 KPa
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Q6: For the shown figure, where is the maximum pressure (Pag or Pgc)?
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Q7: For the shown figure, what is the difference in pressure between points 1,2?

2.9, = 0-15
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Q8: Pressure gage B is to measure the pressure at point A in a water flow. If the
pressure at B is 9 t/m’, estimate the pressure at A.

% o (%:i :

11 cm
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QO9: For the shown figure, what is the difference in pressure between points A, B?

. 5'5. = 0-92

watey

Hy

ALANTRSNNENY RN SRS KX

Q10: For the shown figure, what is the pressure at gauge dial P,,?

I gi}gage
| oil (0.82)
2.0
[
|
i water
270 m
030 27774 "
5.6=136

Q11: For the shown figure, what is the pressure of air “Pyy1)”?




Q12: For the configuration shown, Calculate the weight of the piston if the gage
pressure is 70 KPa.

\w P
"l{__’F yaqe
Piston b,
oil
$.9,=036

Q13: For the shown hydraulic press, find the force (F) required to keep the system in
equilibrium.
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Sheet (4) — Hydrostatic Forces on Surfaces

Q1: A vertical triangular gate with water on one side is shown in the figure.
Calculate the total resultant force acting on the gate, and locate the center of
pressure.

Q2: In the shown figure, the gate holding back the oil is 80 cm high by 120 cm long.
If it is held in place only along the bottom edge. What is the necessary resisting
moment at that edge.

Wall

040 m

0Oil
S.G.=0.90

0.8m

10



Q3: In the shown figure, the gate holding back the water is 6 ft wide. If it is held in
place only along the bottom edge. What is the necessary resisting moment at

that edge.
Wall

13 Gate 6 ft wide

Q4: (A) Find the magnitude and line of action of force on each side of the gate.
(B) Find the resultant force due to the liquid on both sides of the gate.
(C) Determine F to open the gate if it is uniform and weighs 6000 Ib.

Gate 6 ft wide

ERL

Q5: Gate AB in the shown figure, calculate force F on the gate and its acting
position X. If the gate is: (a) semi-circle 1.2 radius (b) rectangle 1.2 x 0.8

0il,
$.9:= 0.8

11
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Q6: Find the value of “P” which make the gate in the shown figure just rotate
clockwise, the gate is 0.80 m wide.

P
T —
Air
Water
2.0m
4
"_ 0_.%7111
0.6m
A I |
1 lg.SD ny

Q7: Determine the value and location of the horizontal and vertical components of
the force due to water acting on curved surface per 3 meter length.

Q8: Determine the horizontal and vertical components of the force acting on radial
gate ABC in the shown figure and their lines of action. What F is required to
open the gate. Take the weight of the gate W = 2000 kg acting on 1m from O?

Gate 2 m wide

12

ml



Q9: A cylinder barrier (0.30 m) long and (0.60 m) diameter as shown in figure.
Determine the magnitude of horizontal and vertical components of the force
due to water pressure exerted against the wall.

o\
2.9=09 0.30 m

wvater

—*\-.\‘

Q10: Compute the horizontal and vertical components of the hydrostatic force on
the hemispherical dome at the bottom of the shown tank.

VA
) =

Water
10 ft

2 ft
I

Q11: The hemispherical dome in the figure weighs 30 kN, is filled with water, and is
attached to the floor by six equally spaced bolts. What is the force on each bolt
required to hold the dome down.

13
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Sheet (5) — Accelerated Fluid Mass

Q1: Calculate the total forces on the sides and bottom of the container shown in
Figure 1 while at rest and when being accelerated vertically upward at 3 m/s’.

The container is 2.0 m wide. Repeat your calculations for a downward
acceleration of 6 m/s’.

/
=
~ watcr
— 600
L 3.0m <)
* "
Figure 1
Q2: For the shown container in Figure 2, determine the pressure at points A, B, and
Cif:
e The container moves vertically with a constant linear acceleration of
9.81 m/s”.
e The container moves horizontally with a constant linear acceleration of
9.81 m/s’.
&%
)
=N 2 _—
& water
<
B ¢
1.3m
Figure 2

Q3: A tank containing water moves horizontally with a constant linear acceleration
of 3.5 m/s>. The tank is 2.5 m long, 2.5 m high and the depth of water when the
tank is at rest is 2.0 m. Calculate:

a) The angle of the water surface to the horizontal.
b) The volume of spilled water when the acceleration is increased by 25%.
¢) The force acting on each side if (ax =12 m/s°).

14



Q4: A tank containing water moves horizontally with a constant linear acceleration
of 3.27 m/s’. The tank is opened at point C as shown in Figure 3. Determine
the pressure at points A and B.

ax = 3.27 m/s?

100 m |

25m
fe—s
o]
>

!;40 m=|l 150 m -

Figure 3

Q5: An open cylindrical tank 2.0 m high and 1.0 m diameter contains 1.5 m of
water. If the cylinder rotates about its geometric axis, find the constant angular
velocity that can be applied when:

a) The water just starts spilling over.
b) The point at the center of the base is just uncovered and the percentage
of water left in the tank in this case.

Q6: An open cylindrical tank 1.9 m high and 0.9 m diameter contains 1.45 m of oil
(S.G =0.9). If the cylinder rotates about its geometric axis,
a) What constant angular velocity can be attained without spilling the 01l?
b) What are the pressure at the center and corner points of the tank bottom
when (0 = 0.5 rad/s).

Q7: An open cylindrical tank 2.0 m high and 1.0 m diameter is full of water. If the
cylinder is rotated with an angular velocity of 2.5 rev/s, how much of the
bottom of the tank is uncovered?

Q8: A closed cylindrical container, 0.4 m diameter and 0.8 m high, two third of its
height is filled with oil (S.G = 0.85). The container is rotated about its vertical
axis. Determine the speed of rotation when:

a) The oil just starts touching the lid.
b) The point at the center of the base is just clear of oil.

15



Q9: A closed cylindrical tank with the air space subjected to a pressure of 14.8 psi.
The tank is 1.9 m high and 0.9 m diameter, contains 1.45 m of oil (S.G = 0.9).

If the cylinder rotates about its geometric axis,
a)  When the angular velocity is 10 rad/s, what are the pressure in bar at

the center and corner points of the tank bottom.
b) At what speed must the tank be rotated in order that the center of the

bottom has zero depth?

Q10: A closed cylindrical tank 2 ft diameter is completely filled with water. If the
tank is rotated at 1200 rpm, what increase in pressure would occur at the top of

the tank at that case?

v 16 4
" .
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Sheet (6) — Buoyancy & Floatation

Q1: Will a beam of S.G. = 0.65 and length 1500 mm long with a cross section 136
mm wide and 96 mm height float in stable equilibrium in water with two sides
horizontal?

Q2: A floating body 100 m wide and 150 m long has a gross weight of 60,000 ton.
Its center of gravity is 0.5 m above the water surface. Find the metacentric
height and the restoring couple when the body is given a tilt as shown 0.5m.

Q3: A ship displacing 1000 ton has a horizontal cross-section at water-line as shown
in the figure, its center of bouyancy is 6 ft below water surface and its center of
gravity is 1 ft below the water surface. Determine its metacentric height for
rolling (about y-axis) and for pitching (about x-axis).

4
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Plan

Q4: An empty tank rectangular in plan (with all sides closed) is 12.5m long, and
its cross section 0.70 m width x 0.60 m height. If the sheet metal weights
363 N/m® of the surface, and the tank is allowed to float in fresh water
(Specific weight 9.81 KN/m’) with the 0.60m wedge vertical. Show,
whether the tank is stable or not?

17



0QS: A cylindrical buoy 1.8 m diam., 1.2 m high and weighing 10 KN is in sea
water of density 1025 kg/m’. Its center of gravity is 0.45 m from the bottom.
If a load of 2 KN is placed on the top; find the maximum height of the C.G.
of this load above the bottom if the buoy is to remain in stable equilibrium.

Q6: A spherical Buoy &)svies (floating ball) has a 0.50 m in diameter, weights
500 N, andis anchored to the seafloor with a cable. Although the buoy
normally floats on the surface, at certain times the water depth increases so
that the buoy is completely immersed. What is the tension on the cable?

0-5m

Q7: A wooden cylinder 60 cm in diameter, S.G. = 0.50 has a concrete cylinder 60
cm long of the same diameter, S.G. = 2.50, attached to one end. Determine
the length of wooden cylinder for the system to float in stable equilibrium
with its axis vertical.

Q8: A right solid cone with apex angle equal to 60° is of density k relative to that
of the liquid in which it floats with apex downwards. Determine what range
of k is compatible with stable equilibrium.

Q9: A cylindrical buoy is 5 feet diameter and 6 feet high. It weighs 1500 Ib and
its C.G. 1s 2.5 feet above the base and is on the axis. Show that the buoy will
not float with its axis vertical in sea water. If one end of a vertical chain is
fastened to the centre of the base, find the tension in the chain in order that
the buoy may just float with its axis vertical.

18
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Sheet (7) — Fundamentals of Fluid Flow

Q1: An inclined pipe carrying water gradually changes from 10 cm at A to 40 cm at
B which is 5.00 m vertically above A. If the pressure at A and B are
respectively 0.70 kg/cm2 and 0.5 kg/cm2 and the discharge is 150 liters/sec.
Determine a) the direction of flow b) the head loss between the sections.

Q2: A cylindrical tank contains air, oil, and water as shown. A pressure of 6 lb/in2 is
maintained on the oil surface. What is the velocity of the water leaving the 1.0-
inch diameter pipe (neglect the kinetic energy of the fluids in the tank above

@ 6 Lb)in®

Aiv 0]

elevation A).

Q3: The losses in the shown figure equals 3(V*/2g)ft, when H is 20 ft. What is the
discharge passing in the pipe? Draw the TEL and the HGL.

H=20ft

Q4: To what height will water rise in tubes A and B? (P =25 Kpa, Q = 60)
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