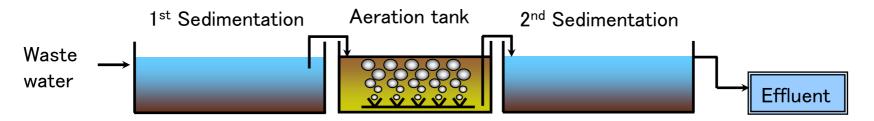
Membrane Bio Reactor (MBR)

Nov, 2006



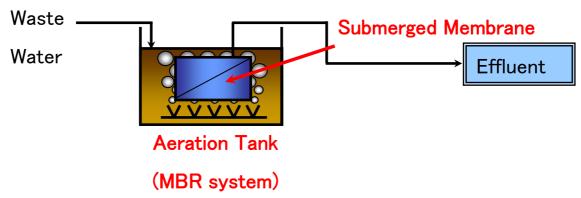
What is MBR?

Conventional STP

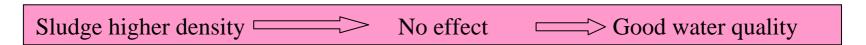
Before we talk about MBR, we define conventional STP system.

Conventional system is the following;

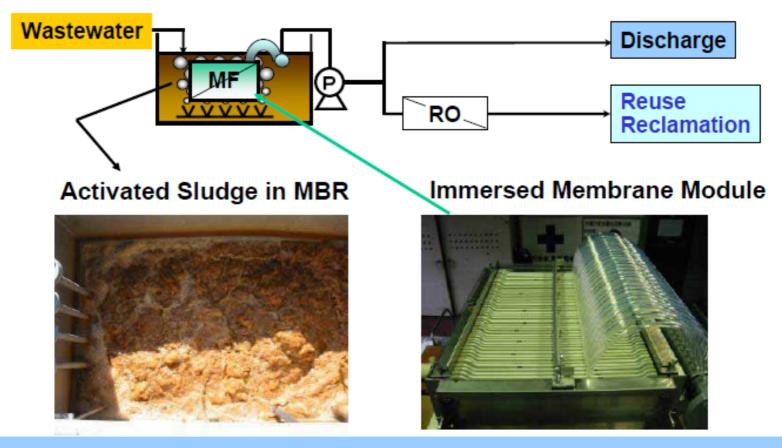
Conventional type is


- * Need big space
- * Not easy to control effluent water quality

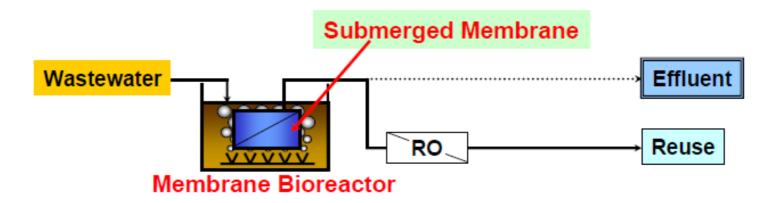
MBR

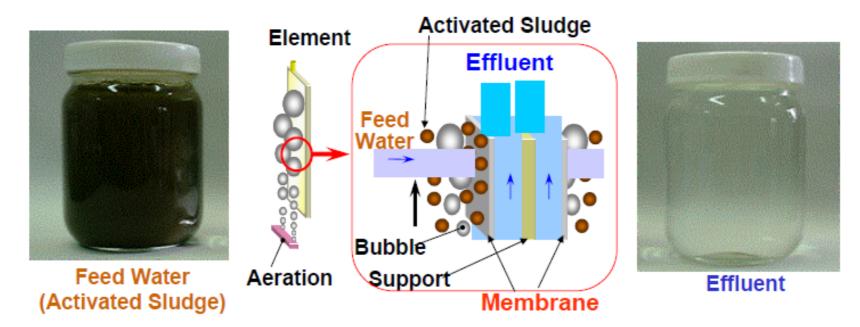

MBR can solve problem in conventional STP.

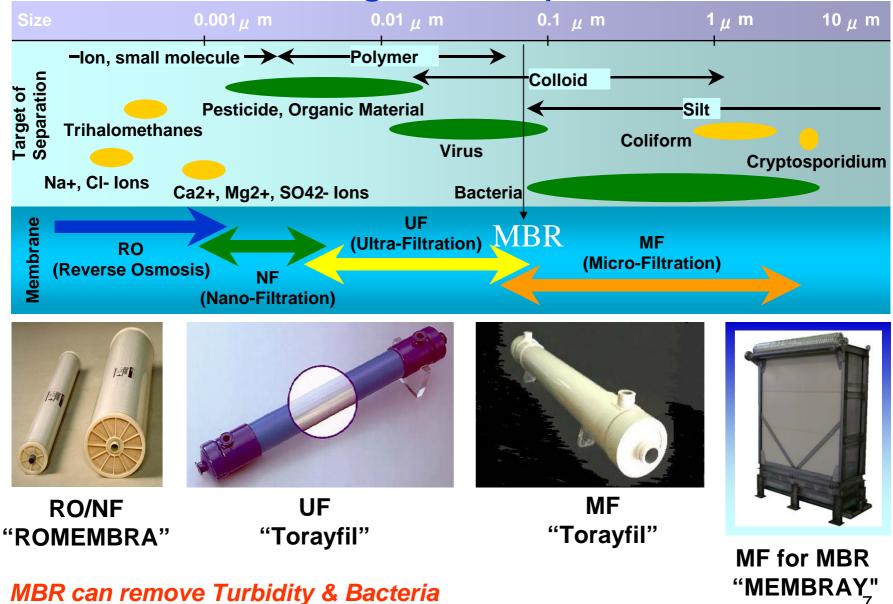
Conventional system is the following;


MBR system can

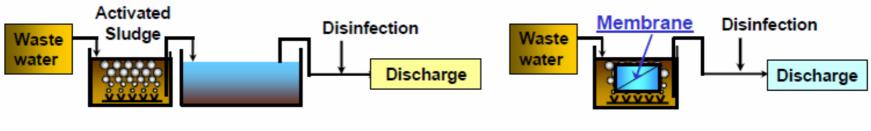
- * reduce space
- * easy to control effluent water quality


Flat Sheet Submerged Membrane System for MBR


MBR (Membrane Bioreactor)


Good Water quality, Small Footprint, Reduce Excess Sludge,
Dawning of the Market

Flat Sheet Membrane Bioreactor


MBR target of separation

MBR can remove Turbidity & Bacteria

Merit of Membrane Bio-reactor

- 1. Good permeate quality
 - 1) Low COD concentration
 - 2) Low total nitrogen and total phosphorous
 - 3) No suspended solid
 - 4) Removal of bacteria
- 2. Very space efficient design
- 3. Considerable reduction of excess sludge
- 4. Reclamation of wastewater Integrated system with RO membrane

Conventional Wastewater Treatment

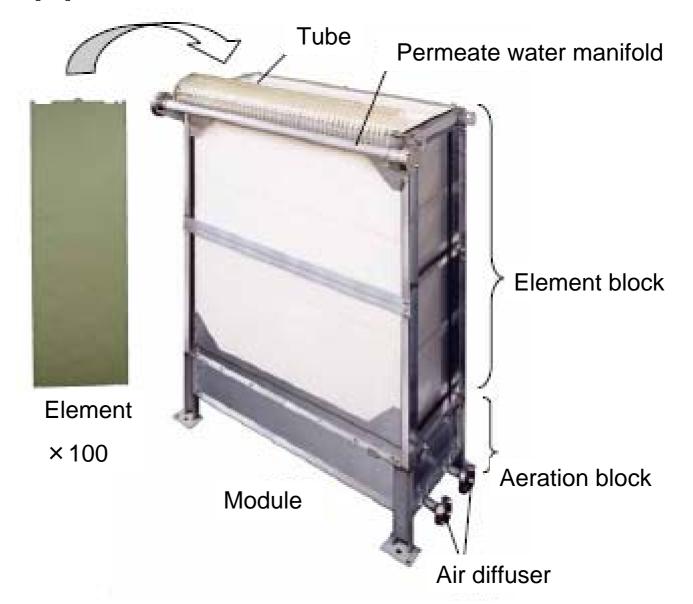
MBR

Flat Sheet Submerged Membrane

New Type Module TMR140 Series

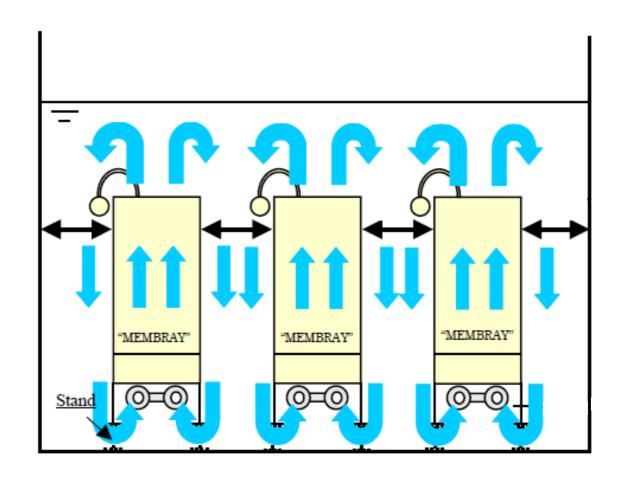
	100S	
Numbe	100	
Tota	140	
Housing Size	Width (mm)	810
	Length (mm)	1,620
	Height (mm)	2,100
Material	Housing	304SS
	Permeate Water Manifold	304SS
	Aeration Diffuser	304SS

Membrane Element


Type No.	TSP-50150
Membrane Area (m²)	1.40
Width (mm)	515
Height (mm)	1608
Thickness (mm)	13.5
Scouring Air (NL/min/EL)	13 - 18

1608

515



Appearance of MEMBRAY

Flow diagram of MBR system **Chemical Cleaning** CIP 2 to 4 times a year Screen (1 to 3 mm) To remove screenings **Treated** water **Suction pump** Interval operation **Aeration Tank** MLSS is 10,000 to 15,000 mg/l **MBR** module To remove SS Raw water В Sludge discharge valve For control MLSS **Aeration system** For activated sludge and **Excess Sludge** membrane washing

Layout example & circulation

The features of Our Flat Sheet membrane

- Flat sheet type is easier maintenance than Hollow fiber type. Hollow fiber type is possible to cut the membrane by itself because it is easy to catch hair and clog.
- PVDF can endure the repeated chemical washing.
- The smallest pore size $(0.08 \, \mu \, \text{m})$. That means treated water quality is better than others.
- Off line washing is NOT needed.

Actual MBR Plant for Municipal WWT in Europe

Actual MBR Plant for Industrial WWT in Japan

Increase Capacity of Existing WWTP

MBR Applications to STP

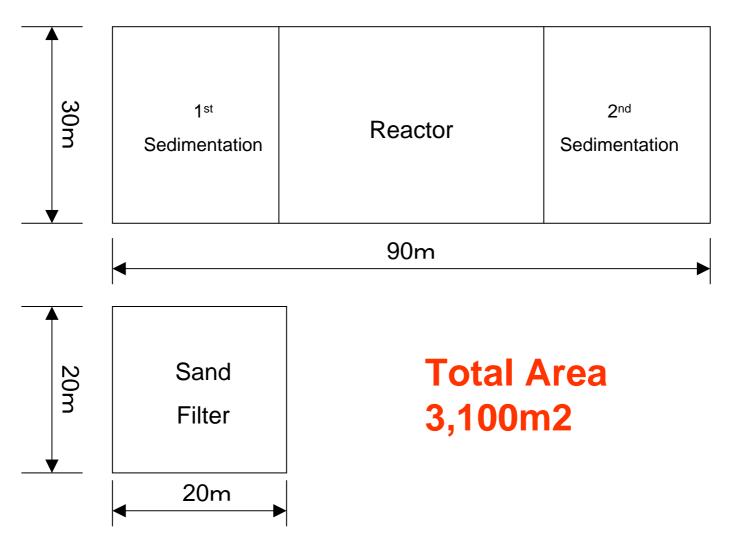
Comparison of STP system 1/3

System	ASM+SF	OD+SF	MBR
BOD SS Load (kg/kg/day)	0.2~0.4	0.05~0.3	0.1~0.15
BOD Capacity Load (kg/m³/day)	0.32~0.64	0.08~0.48	0.8~1.5
MLSS (mg/l)	1500~2000	3000~6000	10000 ~ 18000
Return Sludge Ratio (%)	25~100	75 ~ 150	

Comparison of STP system 2/3

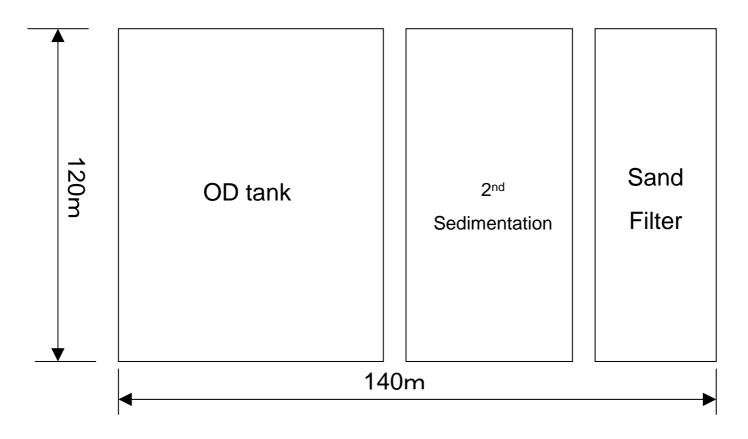
System	ASM+SF	OD+SF	MBR	
Aeration Tank (hr)	4 ~ 8	8~36	3 ~ 6	
1 st Sediment. Surface Load (m³/m²/day)	35~50			
2 nd Sediment Surface Load (m³/m²/day)	20~25	8~12		
Load change	Balancing Tank (If needed)	Aeration Tank absorbed change	Balancing Tank (If needed)	

Comparison of STP system 3/3


System	ASM+SF	OD+SF	MBR	
Maintain- ance	Difficult	Easy	Easy	
Slurry Volume	1.0 per SS	1.3 per SS	0.8 per SS	
Area ^{(*1}	0	×	©	
Cost	0	×	©	

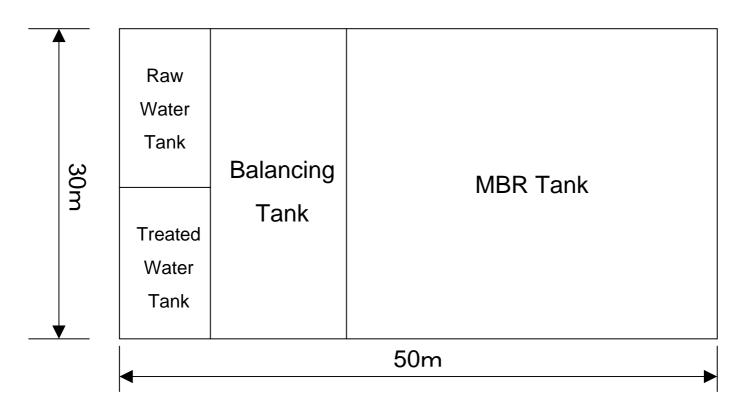
©:very good O:good ×:not good

Case study1: Comparison of New STP


 Evaluation of construction area by 3 STP systems (Q = 10,000 CMD)

Construction area for ASM+SF

Note: Volume of each tank depends on raw water quality and condition of flow rate of raw water 22


Construction area for OD+SF

Total Area 16,800m2

Note: Volume of each tank depends on raw water quality and condition of flow rate of raw wate 23

Construction area for MBR

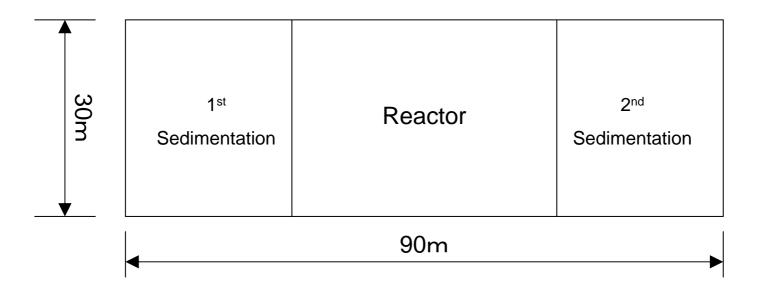
Total Area 1,500m2

Note: Volume of each tank depends on raw water quality and condition of flow rate of raw water 24

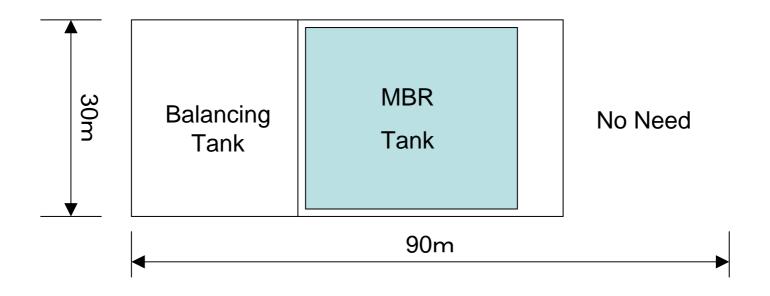
Result

System	ASM+SF	OD+SF	MBR
Area(m²) 3100		16800	1500
	0	×	©

MBR system can reduce space


- Half as ASM method
- 1 / 10 as OD method

Case study2: Expansion existing STP


 Evaluation of construction area to expand the treatment capacity to double by MBR.

 $(Q = 10,000 \text{ CMD}) \rightarrow 20,000 \text{ CMD})$

Expansion by MBR (Before)

Expansion by MBR (After)

Capacity Up 10000CMD to 20000CMD Even smaller space than 10000CMD

MBR Other Applications

- Food factory waste (Dairy, Sugar ...)
- Pharmaceutical
- Carwash
- Laundry waste
- Paper processing
- Others

Reuse water quality

Water quality and Usage for Reuse

	Raw Water	ASM and OD Treatment Water	After SF Treatment Water	MBR Treatment Water	MBR+RO Treatment Water
рН	7.0	7.0	7.0	7.0	6.5
BOD	200	20	2.0	1.0	<1.0
COD _{Mn}	120	35	20	8.0	<1.0
SS	250	30	2.0	<0.5	<0.5
TDS					50
NH4-N	20.0	03	03	03	<0.1
Coliform	3.50E+05	1500	ND	ND	ND
Usage –		_	Irrigation Toilet		Semiconductor and Liquid crystal washing Boiler &
					Process water
					(Drinking)