

#### **INSPIRING CREATIVE AND INNOVATIVE MINDS**

www.utm.my

# Specialized Short Course on MEMBRANE TECHNOLOGY for Water and Wastewater Treatment

27 – 28 June 2009 (4 -5 Rajab 1430 H)

Prince Khalid bin Sultan Chair for Water Research
Civil Engineering Department, Hall 1 A 36
College of Engineering, King Saud University



#### **INSPIRING CREATIVE AND INNOVATIVE MINDS**

www.utm.my

# Lecture 5 Membrane Applications: Drinking Water Production

Prof. Dr. Ir. Zaini Ujang

Ph.D, P.Eng. (M), C.Eng. (UK), C.Sci. (UK), C.W.E.M. (UK), MIEM, DNS, PPI

Institute of Environmental and Water Resources Management (IPASA)

Universiti Teknologi Malaysia



#### **Presentation Menu**

www.utm.my

Part 1: Introduction

Part 2: Membrane configurations

Part 3: Membrane systems

Part 4: Microfiltration

Part 5: Ultrafiltration

Part 6: Reverse osmosis





# Part 1. Introduction



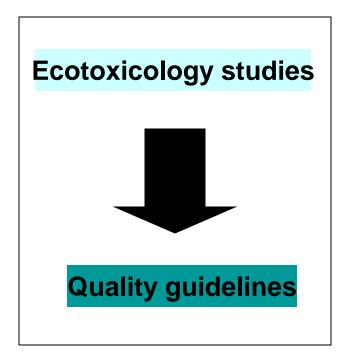
### Drinking Water Production Sources of Water

- Seawater & brackish water
- Ground water
- Surface water
  - Rivers
  - Lakes
- Rainwater
- Treated <u>used</u> water





## Drinking Water Production Design Considerations


- Depends on raw water quality
- Design objectives set by health authority
- Quality → public health:
  - Chemical aspects
  - Microbiological aspects
  - Physical aspects



### Drinking Water Production WHO Guidelines, Food Act

#### Quality → public health:

- Chemical aspects
- Microbiological aspects
- Physical aspects





### Drinking Water Production WHO Guidelines (1984)

- Microbiological aspects
- Biological aspects
- Chemical and physical aspects
- Radioactive materials



WHO Guidelines – Microbiological aspects (1984)

www.utm.my

#### Treated Water Entering the Distribution System

■ Feacal coliforms 0/100 ml

■ Coliform microorganisms 0/100 ml

#### Water in Distribution System

■ Feacal coliforms 0/100 ml

■ Coliform microorganisms 0/100 ml

■ Coliform microorganisms 3/100 ml (Occasional)

#### **Bottled Drinking Water**

■ Feacal coliforms 0/100 ml

■ Coliform microorganisms 0/100 ml



யயய.utm.my

#### **Drinking Water Production**

WHO Guidelines – Chemical aspects (1984)

| Compounds                         | Guidelines values (μg/L) | ADI (mg/kg body weight) |
|-----------------------------------|--------------------------|-------------------------|
| DDT (total isomers)               | 1                        | 0.005                   |
| Aldrin & dieldrin                 | 0.03                     | 0.0001                  |
| Chlordane (total isomers)         | 0.3                      | 0.001                   |
| Hexachlorobenzene                 | 0.01                     | -                       |
| Heptachlor and heptachlor epoxide | 0.1                      | 0.0005                  |
| Gamma-HCH (lindane)               | 3                        | 0.01                    |
| Methhoxychlor                     | 30                       | 0.1                     |



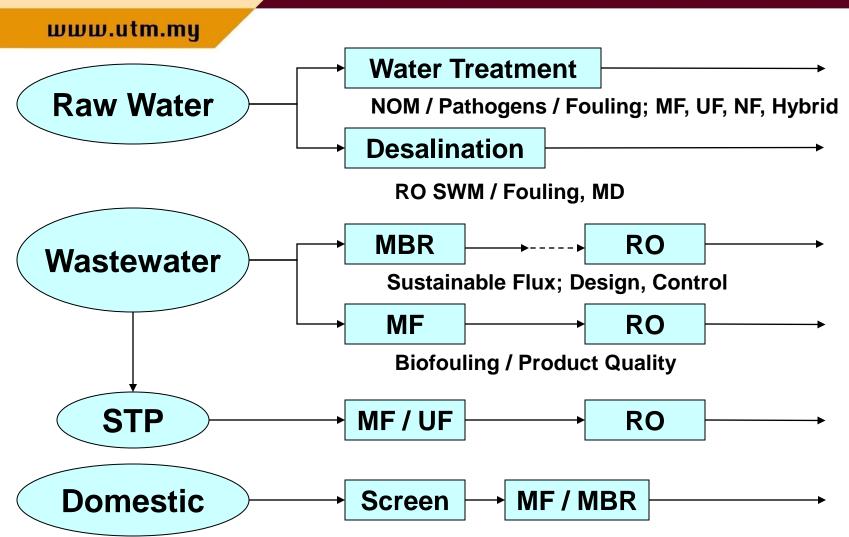
Food Act 1983 (Malaysia)

- Almost similar to WHO guidelines
- Higher requirements in a few parameters
- Being updated several times



Food Act 1983 (Malaysia)

| Compounds | Standard   |
|-----------|------------|
| Colour    | 15 Hazen   |
| Turbidity | 5 NTU      |
| Aluminium | 0.2 mg/L   |
| Arsenic   | 0.05 mg/L  |
| Cadmium   | 0.005 mg/L |
| Chloride  | 250 mg/L   |
| Chromium  | 1 mg/L     |
| Phenol    | 0.002 mg/L |
| Mercury   | 0.001 mg/L |




Food Act 1983 (Malaysia)

| Compounds         | Standard   |
|-------------------|------------|
| Ferum             | 0.3 mg/L   |
| Plumbum           | 0.05 mg/L  |
| Magnesium         | 150 mg/L   |
| Manganese         | 0.001 mg/L |
| Sodium            | 200 mg/L   |
| Sulfat            | 400 mg/L   |
| Zinc              | 5 mg/L     |
| Residual chlorine | 0.1 mg/L   |
| Argentum          | 0.05 mg/L  |



#### **Membrane Technology**





### **Conventional Water Treatment Processes**

**Aeration** 

Gasses, Fe, Mn, odor & taste removal

Coagulation

**Solid/liquid separation** 

**Flocculation** 

**Solid/liquid separation** 

**Sedimentation** 

**Solid/liquid separation** 

**Filtration** 

**Solid/liquid separation** 

**Disinfection** 



# Advanced Water Treatment (1)

**Oxidation** 

Organic, gasses, Fe, Mn, odor & taste removal

Coagulation

**Solid/liquid separation** 

**Flocculation** 

**Solid/liquid separation** 

**Sedimentation** 

Solid/liquid separation

**Sand Filtration** 

**Solid/liquid separation** 

**Enhanced Oxidation** 

**Organic removal** 

**Activated Carbon** 

**Taste & odor** 

**Disinfection** 

**Bacterial removal** 

**INSPIRING CREATIVE AND INNOVATIVE MINDS** 



# Advanced Water Treatment (2)

**Coagulation & PAC** 

Solid/liquid separation

**Sedimentation** 

**Solid/liquid separation** 

**Ozonation** 

Organic, taste & odor removal

**Sand filtration** 

Solid/liquid separation

**Nanofiltration** 

Solid/liquid separation & NOM removal

**Disinfection** 



# Advanced Water Treatment (3)

**Coagulation & PAC** 

**Solid/liquid separation** 

**Sedimentation** 

Solid/liquid separation

**Microfiltration** 

Organic, taste & odor removal

**Nanofiltration** 

Solid/liquid separation & NOM removal

**Disinfection** 

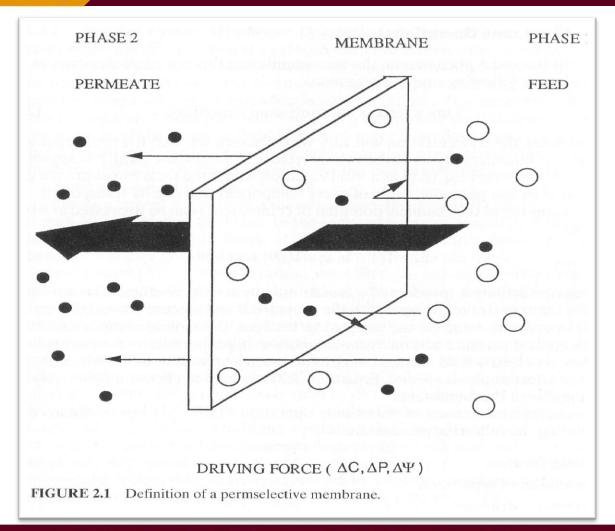


# Advanced Water Treatment (4)

Coagulation

**Solid/liquid separation** 

**IMF-PAC** 


Solid/liquid separation

Organic, taste & odor removal NOM removal

**Disinfection** 



## Treatment Principles: Selective Barrier



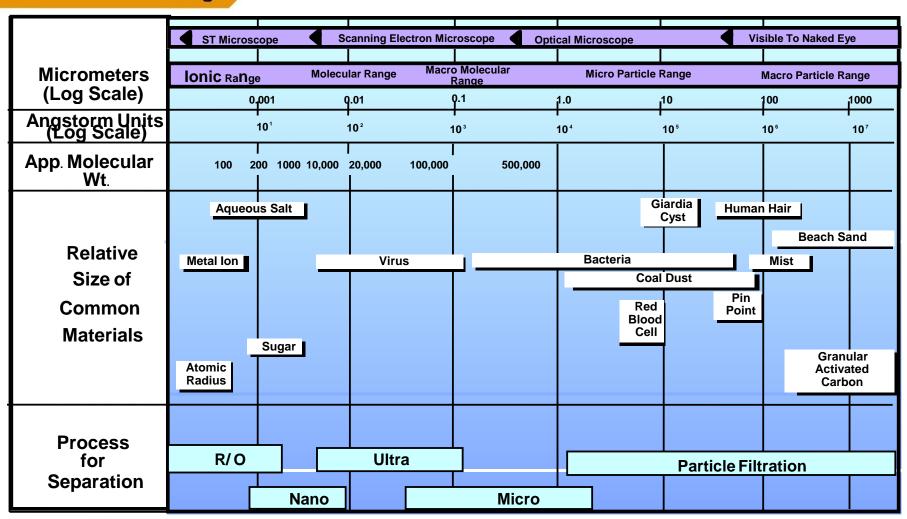


# Target Water Pollutants & Technology Options

| Era   | Pollutants                                                                                    | Solutions                                                 |
|-------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| 1800s | Pathogenic bacteria                                                                           | Sewer system                                              |
| 1900s | BOD, COD                                                                                      | Biological wastewater plants                              |
| 1950s | Heavy metals, biodegradable substances                                                        | Treatment at source                                       |
| 1970s | Eutrophication                                                                                | N and P control                                           |
| 1980s | Trace substances, carcinogens, flavor, taste                                                  | Activated carbon, membrane technology                     |
| 1990s | CO <sub>2</sub> , NH <sub>4</sub> , N <sub>2</sub> O, CFCs, NO <sub>x</sub> , SO <sub>x</sub> | Energy saving, photosyntetic bacteria, biotechnology, MBR |
| 2000s | Endocrine disrupting chemicals (EDCs), eco-hazard                                             | Membrane technology                                       |



## Overcoming Cryptosporidium Outbreak


www.utm.my



Membrane plant for water treatment, Ogose Town, Japan



#### **Filtration Spectrum**





யயய்.utm.my




# Part 2. Membrane Configurations

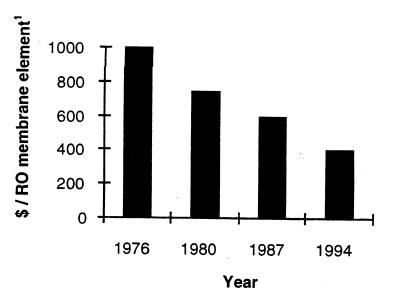


#### The Trend of the Past

www.utm.my

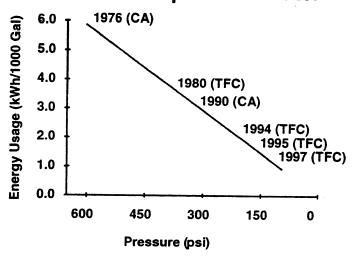


Installation of Desalination Technology, 1990-2000, by size (ref; IDA inventory)




### **Reality on Membrane Cost**

www.utm.my


Spiral-wound module trends (20 years)
Cost/Element down to 40%, Productivity up 200%

#### Declining cost of membrane elements



Source: Water Factory 21 municipal wastewater reclamation plant

### Declining energy requirements for desalting municipal wastewater<sup>1</sup>



Source: Water Factory 21 municipal wastewater Adapted by C.Gabelich MWD

<sup>1. 8-</sup>inch spiral wound cellulose acetate membrane elements

Membranes operating at a nominal flux of 10.4 gfd at 20 °C on lime treated secondary effluent



#### **Module Configurations**

www.utm.my

- Flat sheet membrane
- Tubular
- Hollow fibre
- Sprial wound

Based on specifications by manufacturers, consultants, system integrators



### Module Configuration Considerations

- Treatment objectives
- Manufacturers' specifications
- Size of operation
- Operating cost estimation (low OPEX?, high CAPEX?)
- Capital expenditure (low CAPEX, high OPEX?)

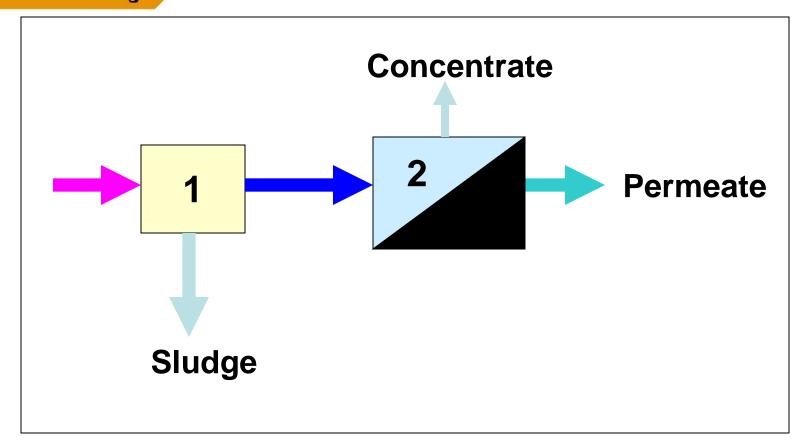




# Part 3. Membrane Systems



### **Physical Separation**

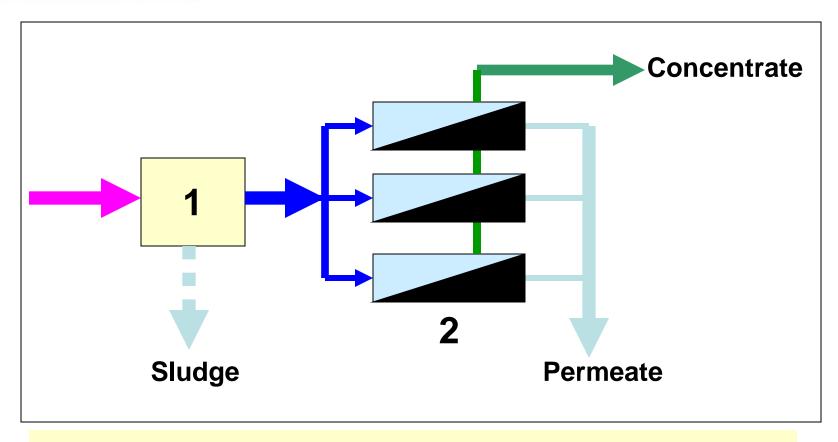

யயய.utm.my

- Single membrane operation
- Multiple membrane operations
- Hybrid conventional treatment system + membrane operation



### Single Membrane Operation

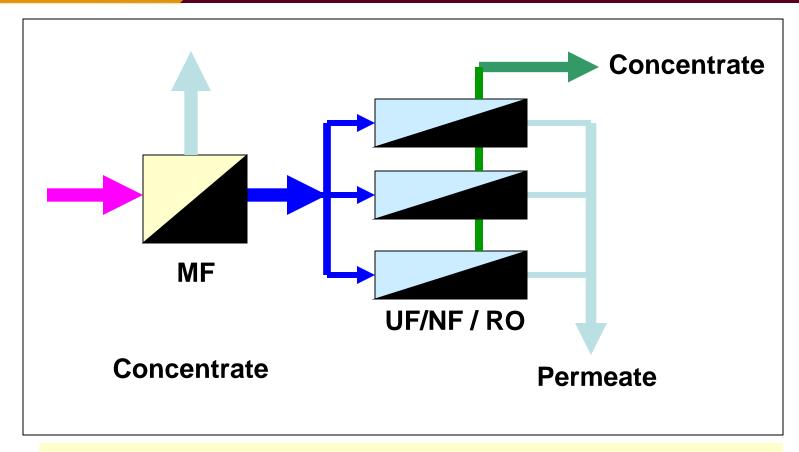
www.utm.my




(1) Pretreatment unit (2) Membrane unit (s)



### Single Membrane Operation

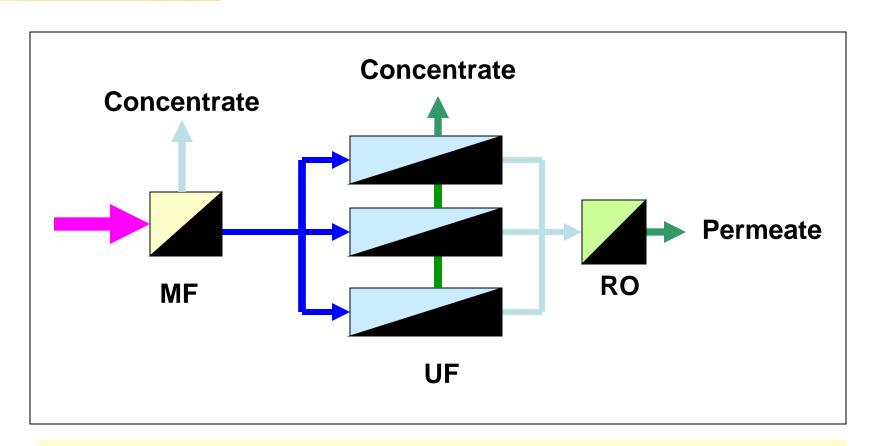

www.utm.my



(1) Pretreatment unit (2) Membrane unit (s)

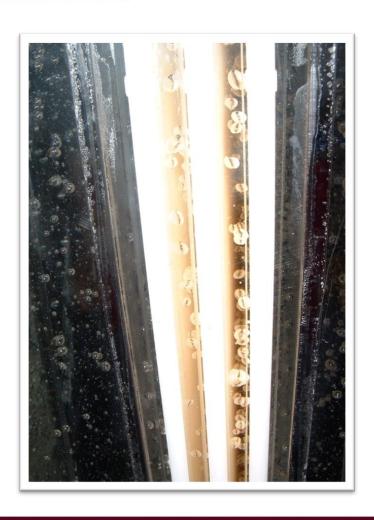


# Multiple Membranes Operation




Normally, first with UF, followed by UF, NF and RO




# Multiple Membranes Operation

www.utm.my

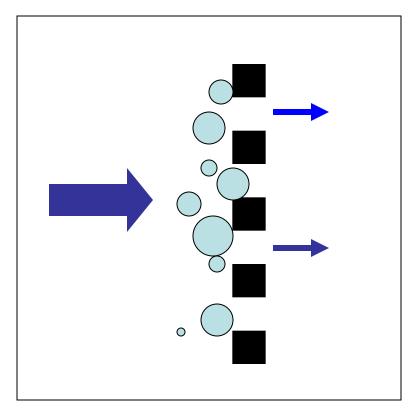


Normally, first with UF, followed by UF, NF and RO

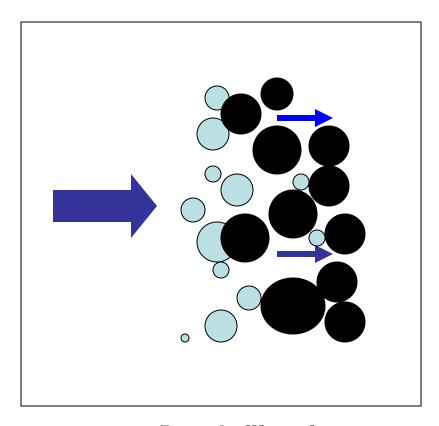




### Part 4. Microfiltration




#### **Microfiltration**

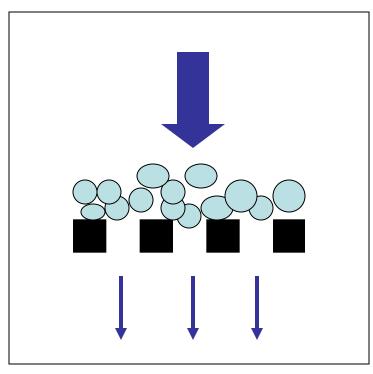

- Exact pore size is a matter of debate
- Generally filterable of 0.02-10 micron
- Particles, colloids, microorganisms (incl. bacteria and virus)
- Larger flux compared to UF, NF or RO
- Separation based on sieving process (or also known as surface filtration)
- Opposite to surface is depth filtration
- Operation pressure: 50 to 500 KPa



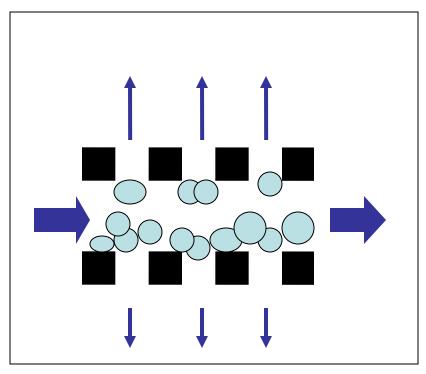
## Microfiltration Surface filtration vs Depth Filtration



**Surface filtration** 



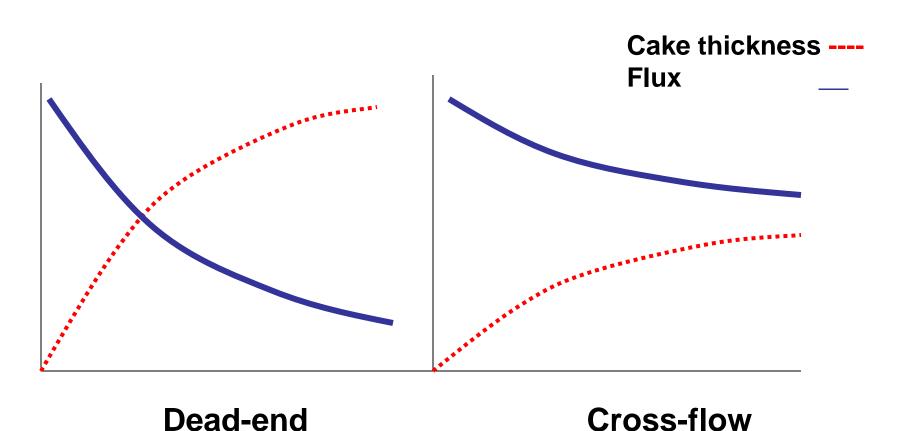

**Depth filtration** 




## Microfiltration Deadend vs Crossflow Filtration

யயய.utm.my




**Deadend filtration** 



**Crossflow filtration** 



## Microfiltration Deadend vs Crossflow Filtration





# Microfiltration Fouling and Flux Decline

www.utm.my

Internal membrane fouling

Attachment of materials within the internal pore structure of membrane, or directly to membrane surface due to adsorption, precipitation, pore plugging, particulate adhesion etc.

**External cake fouling** 

Formation of stagnant cake layer on the membrane surface

due to concentration-polarization as the material being filtered

is carried to the membrane by permeate flow and is then rejected by membrane



### **Membrane Permeability**

www.utm.my

Permeability = (filtration rate ÷ area) × pressure difference

- Testing before design stage
- Benchmarking procedures
- Testing before commissioning
- Testing before fouling studies



# Microfiltration System Components

- Piping systems
- Pumps
- MF modules
- Pressure gauges
- Feeding and permeate tanks
- Control systems
- Pretreatment facilities



### Process Parameters for Design

#### Fluid to be filtered

- State-liquid or gas? Composition
- Quantity, viscosity, temperature etc.

### Suspended materials to be retained

- Composition, liquid or solid? Concentration

### System considerations

- Specifications of process and materials
- Constancy / variability of feed
- Need for sterile conditions?
- Time for processing?
- Batch or continuous processes?



### Applications of Microfiltration

- Potable water production (colloid & bacteria removal)
- Mineral processing
- Enhanced contacting (ion exchange, Clarification activated carbon)
- Bioseparation
- Syringe filters



Membrane Plant Ogose Town, Japan

| Design criteria | Values / specifications          |
|-----------------|----------------------------------|
| Design flow     | 4000 m <sup>3</sup> /day         |
| Membrane        | 4UF, 2 MF                        |
| Recovery rate   | 99%                              |
| Pretreatment    | Coagulation, rapid sand filter   |
| Backwash        | Pressurize water & air scrubbing |

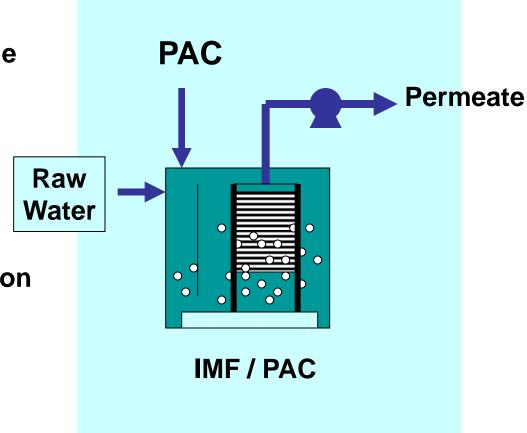


# Immersed Membrane Filtration Microfiltration/PAC System

- Similar membrane used in MBR
- Reaction zone for
  - ▶ adsorption
  - biodegradation
  - coagulation
- Flexibility in operation
  - operation at high SS concentration
  - ▶ adapt type & age of suspension as required
  - **▶** Single-step process



## Immersed Membrane Filtration Microfiltration/PAC System

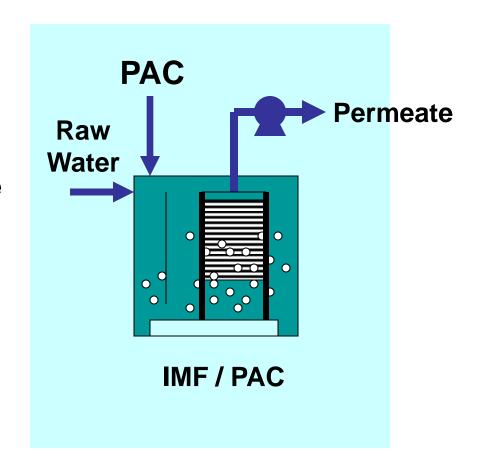

- NOM & SOCs removal
- Biological removal of BDOC
- Reduced sludge volumes (0.1% of treated water flow rate)
- Absolute containment of PAC within the system independent of process conditions



**Operating Principle** 

Microfiltration/PAC System

- Hollow fiber or plate & frame
- **Outside-in mode**
- 2 reaction basins:
  - (a) Reaction zone
  - (b) Permeate side
- Aeration is used to:
  - (a) Creating turbulence
  - (b) Avoid PAC sedimentation






யயய.utm.my

## Operating Principle Microfiltration/PAC System

- Optimal & cost-effective utilization of PAC by allowing PAC aging inside the completely mixed reaction zone
- Optimal mixing & contact between water & PAC for maximum effectiveness





## **Operating Principle**Microfiltration/PAC System

www.utm.my

- PAC replacement is adaptable to the feed water quality with batch replenishment following procedure:
  - ► One a day a fraction of PAC slurry is purged to keep PAC slurry concentration stable in reactor.
- A replacement rate > AGE
- Age = average residence time of particles inside reaction zone

$$Age = \frac{V_d}{V_R}$$

V<sub>d</sub> = daily purge volume V<sub>R</sub> = reaction zone volume

$$D = \frac{M}{age \times Q_D}$$

D = PAC dosage rate M = PAC in slurry Q<sub>D</sub> = daily flow rate



**Immersed Microfiltration** 

Newater Plant, Kranji, Singapore

யயய.utm.my





## Part 5. Ultrafiltration



### Introduction to Ultrafiltration

யயய.utm.my

- Sieving process for separation (similar to MF)
- Almost similar pressure range as MF
- Major difference with MF: pore size (MF > 0.1μm)
- For water treatment, UF is used as clarification and disinfection operation, MF as treatment
- Remove all types of bacteria and virus
- Operating pressure: 50 to 500 KPa





### Part 6. Reverse Osmosis



### **Reverse Osmosis**

- RO is a pressure-driven operation in which the solvent of the solution is transferred through a dense membrane tailored to retain salts ad lowmolecular-weight solutes.
- If a concentrated saline solution is separated from pure water by RO, the difference in chemical potential tends to promote the diffusion of water from the diluted compartment to the concentrated compartment in order to equalize the concentrations.



### **Reverse Osmosis**

- At equilibrium, the difference in the levels between the 2 compartments corresponds to the osmostic pressure of the saline solution.
- To get economical and viable flow, at least twice the osmotic pressure must be exerted
- For sea water, pressures of 5 to 8 MPa are used

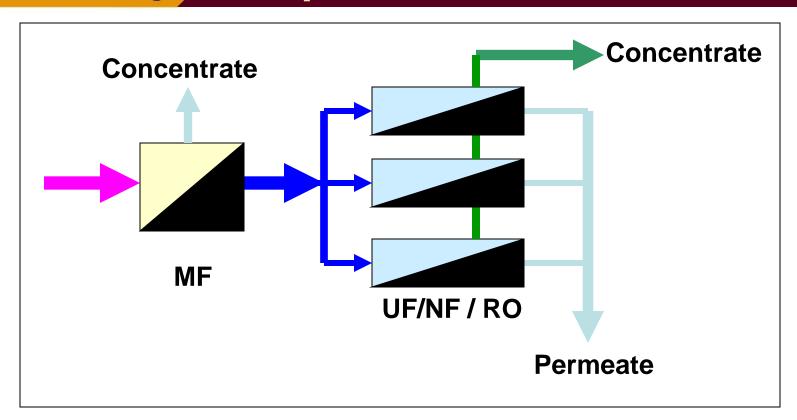


# Nanofiltration Also known as low-pressure RO

- Lies between RO and UF in terms of selectivity
- Removal of multivalent ions and organics
- Monovalent are poorly rejected (requires RO)
- NF leads to osmotic backpressure which is much lower than RO
- Pressure: 0.5 to 1.5 MPa



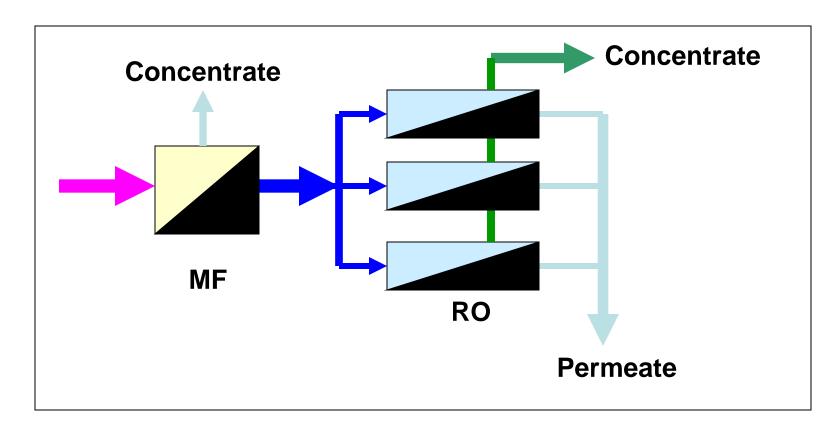
## **Nanofiltration Applications**


Also known as low-pressure RO

- Water softening
- Removal of organic matters, esp. NOM
- Removal of multivalent ions
- **Desalting of organic reaction products**
- Removal of arsenic and other metals
- Removal of endocrine disrupting chemicals

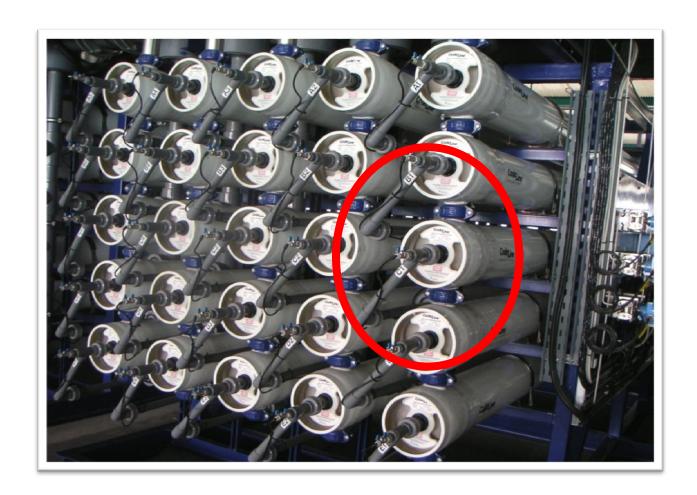


# Multiple Membrane Operations for Surface Water


www.utm.my



Normally, first with MF, followed by UF, NF and RO (depends on the treatment objectives and quality of feed water)




# Multiple Membrane Operations for Seawater



Normally, first with MF, followed RO





#### **INSPIRING CREATIVE AND INNOVATIVE MINDS**



### **Conclusions**

யயய.utm.my

- Membrane technology is well accepted in high quality of drinking water production
- Membrane technology is growing fast and very instrumental for the protection of public health and consumers' needs



### **Future Directions**

யயய.utm.my

- Membrane technology will be central in public water production – EDC, heavy metals etc.
- Membrane is to be a household technology in many industries for process water treatment, waste recycling and cleaner production
- Membrane vs Pollution??
- Membrane to be <u>the</u> option for upgrading of the existing water treatment facilities