

INSPIRING CREATIVE AND INNOVATIVE MINDS

www.utm.my

Specialized Short Course on MEMBRANE TECHNOLOGY for Water and Wastewater Treatment

27 – 28 June 2009 (4 -5 Rajab 1430 H)

Prince Khalid bin Sultan Chair for Water Research
Civil Engineering Department, Hall 1 A 36
College of Engineering, King Saud University

INSPIRING CREATIVE AND INNOVATIVE MINDS

யயய.utm.my

Membrane Applications: High Purity Water Production

Prof. Dr. Ir. Zaini Ujang

Ph.D, P.Eng. (M), C.Eng. (UK), C.Sci. (UK), C.W.E.M. (UK), MIEM, DNS, PPI

Institute of Environmental and Water Resources Management (IPASA)

Universiti Teknologi Malaysia

Presentation Menu

www.utm.my

Part 1: Introduction

Part 2: Membrane configurations

Part 3: Membrane systems

Part 1. Introduction

High Purity Water Production Also known as ULTRAPURE water

- Boiler feed water
- Laboratory
- Process water
- Cleaning / rinse water
 - electronic
 - pharmaceuticals

Applications of High Purity Water Production

- Boiler feed water
- Electronics
- Metal finishing
- Medical and pharmaceuticals
- Packaging
- Cleaning processes
- Painting materials
- Food industry

Boiler Feed

Steam Generator Water Quality Guidelines

Drum pressure	Silica (ppm SiO2)	Total alkalinity (ppm CaCO3)	Specific conductance (µmhos/cm)
0-300	150	350	3,500
301-450	90	300	3,000
451-650	40	250	2,500
651-750	30	200	2,000
751-900	20	150	1,500
901-1000	8	100	1,000
1001-1500	2	0	150
1501-2000	1	0	100

Electronic Industry

www.utm.my

Ultrapure water specifications for IM DRAM Manufacture

Parameters	Attainable	Acceptable
TOC (ppb)	<10	<30
Particles/liter by SEM		
0.2-0.3 μm	-	<2,000
0.3-0.5 μm	<200	<200
>0.5 μm	<1	<1
Bacteria/100 ml		
By culture	0	<6
By SEM	<1	<10
By EPI	<5	<50
Silica, dissolved (ppb)	<4	4

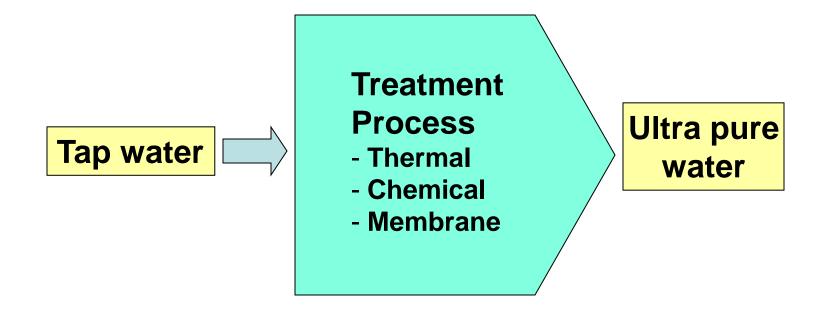
Metal Finishing Industry

- Products: doorknobs, lighting fixture, electrical relay contacts etc.
- Plating materials: gold, copper, cadmium, copper, chrome etc.
- High purity water: 1 10 megohm
- For rinsing operation

Medical & Pharmaceuticals

யயய.utm.my

- Medicinal preparations, e.g. lotions & creams
- Pharmaceutical products: eye drops, contact lens, laboratory practice etc.
- Hemodialysis machines use membrane technology (for producing high purity water and separating the blood cells)
- Medical uses: water for procedures, water for cleansing and cleaning



Ultrapure Water Production

- Feed water: Tap water
- Quality problems:
 - Residual chlorine
 - Total dissolved solids
 - Organic fractions
 - Microorganisms
- Treatment:
 - Thermal process
 - Chemical and ultraviolet process
 - Membrane

Treatment Flow Scheme of Ultrapure Water Production

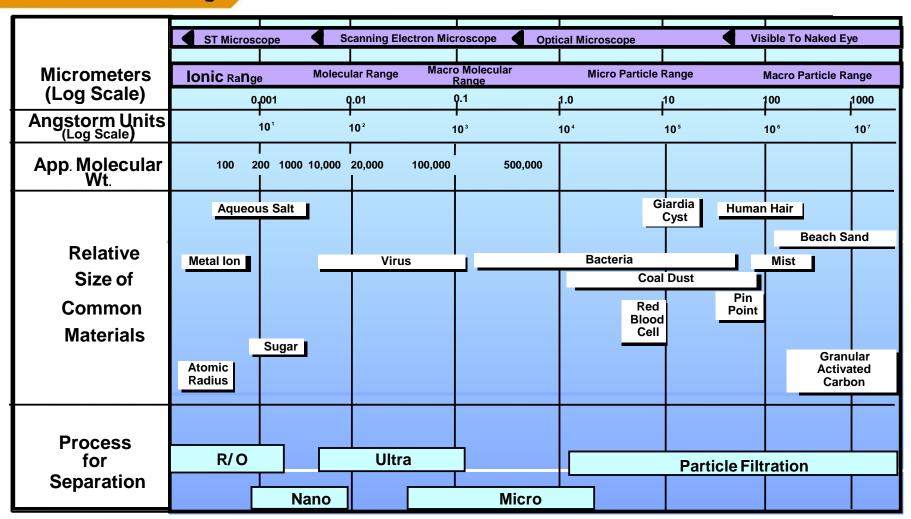
Advanced Water Treatment

www.utm.my

Coagulation

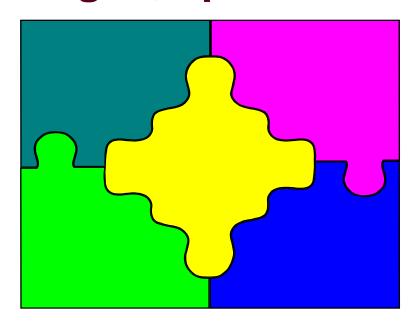
Solid/liquid separation

RO

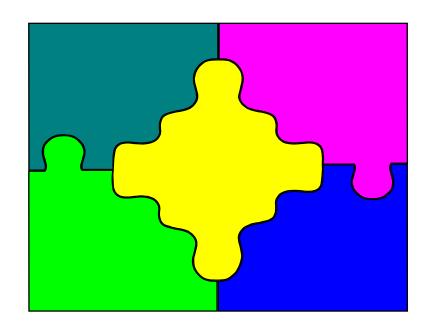

Solid/liquid separation
Organic, taste & odor removal
NOM removal

Disinfection (UV)

Bacterial removal



Filtration Spectrum

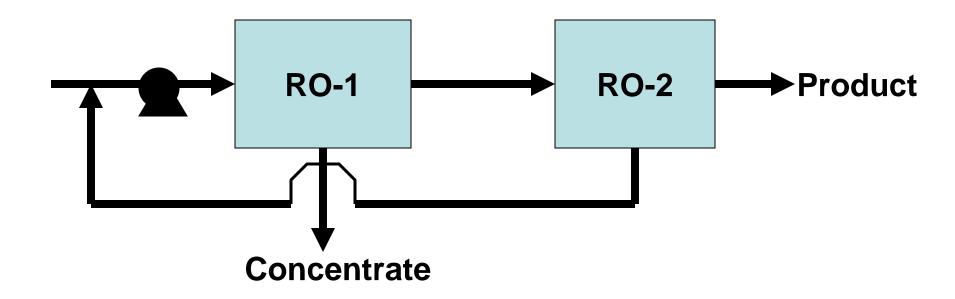


Part 2. Membrane configurations, designs, operations

Part 3. Membrane Systems

Reverse Osmosis

- Normally used for high purity water in many industries at the moment, coupled with UV
- Purposes:
 - Ionic removal
 - Organic removal
 - Silica removal
 - Particles and bacteria



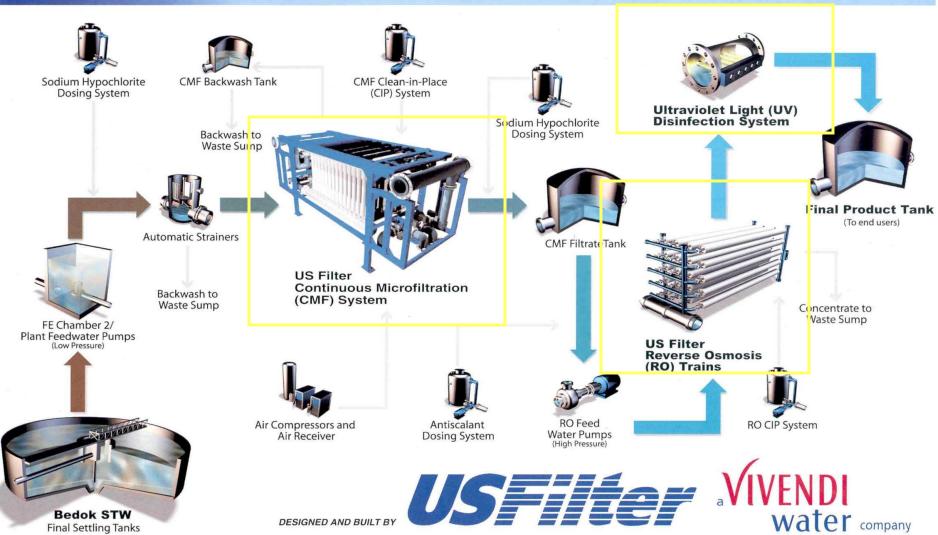
Problems in High Purity Water Systems

- Post treatment contamination
- Membrane bypass
- Differential passage of silica and carbon dioxide

Double-pass Reverse Osmosis Increase Rejection Level

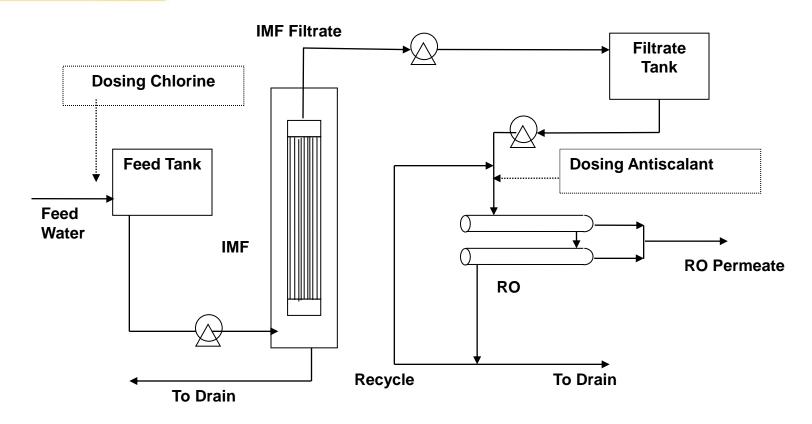
Pre-Treatment and Post-Treatment

- Particle stabilization
- Ionic stabilization
- Biological control
- Polishing treatment


Market Size and Projections

- 2.5% annual growth (global)
- RO is replacing ion exchange
- The more industrial growth in electronic, medical & pharmaceutical industries – the more market for membrane technology

BEDOK NEWATER FACTORY


Water Reclamation Demonstration Plant

NEWater Factory - PROCESS FLOW SCHEMATIC

The Pilot Plant

Membrane Specifications

யயய.utm.my

Manufacturer	-	Memcor
Commercial Designation	-	1S10X CMF-s
Active Membrane Area (outside)	m ²	31.3
Flow Direction	-	outside-in
Nominal Membrane Pore size	μm	0.2
Membrane Material/Construction	-	polypropylene, hollow fiber
Membrane Charge	-	slightly negative
Design Flux	L/hr.m ²	31.1

Specifications for the IMF

Specifications for the RO

Manufacturer	-	Hydranautics
Commercial Designation	-	LFC1-4040
Active Membrane Area (outside)	m²	7.9 per module
Memrane Material	-	Polyamide (thin film composite)
Operating pH Range	-	2.0-10.0
Maximum Operating Temperature	deg C	45
Free Chlorine Resistance	mg/L	<0.2

IMF Operating Conditions

Parameters	Value
IMF Unit	
Filtrate flow rate	0.8 m ³ /hr
Backwash interval setting	18 minutes/2 minutes
Filterate temperature	30 − 35 °C
Backwash liquid flow	2.20-2.25 m ³ /hr
Feed chlorine level	0.5-1.0 ppm

RO Operating Conditions

Parameters	Value	
RO Units		
Feed flowrate	28 L/min	
Permeate flowrate	4.5 L/min	
Rejection flowrate	5.0 L/min	
Recycle flowrate	15.5 L/min	
Feed pressure	8 – 9 bar	
Permeate & rejection pressure	1 bar	
Silt density index	3.7 – 5.5	

The Pilot Plant

The Components

யயய.utm.my

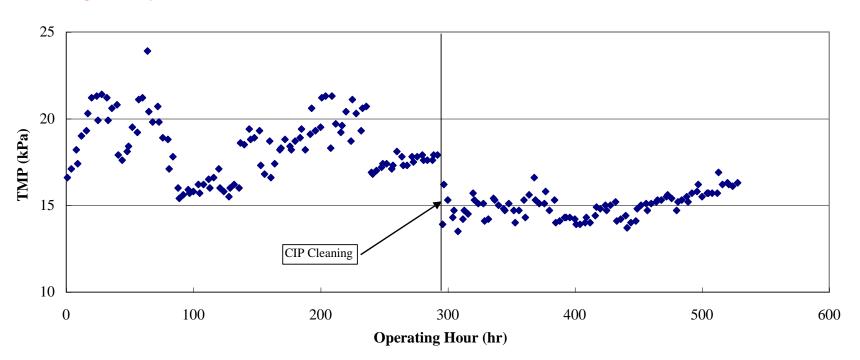
The Components

யயய்.utm.my

The Experimental Results

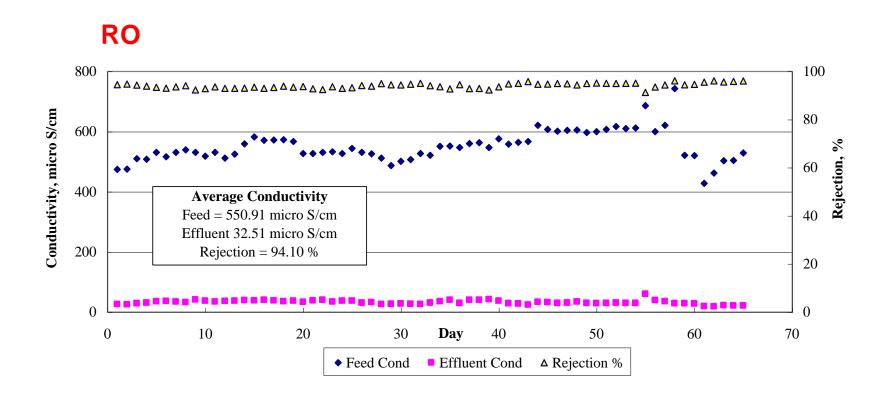
www.utm.my

Parameters	Feed	Effluent	% Rejection
BOD, mg/l	25	1	95
COD, mg/l	70	14	80
Suspended solids, mg/l	20	1	95
Hardness	998	12	88
TOC	20	1	95
Ammoniacal Nitrogen	33	<3	92
Nitrate, mg/l	0.3	0.1	>66
Total Phosphorus, mg/l	5.18	0.46	>90
Iron	0.47	0.03	93
Manganese, mg/l	0.08	0.02	75
Silica, mg/l	8.29	0.54	94
Total plate count	775 x 10 ³ cfu/100mL	291 x 10 ³ cfu/100mL	>62


INSPIRING CREATIVE AND INNOVATIVE MINDS

Experimental Results - TMP

www.utm.my


CMF-s

Experimental Results - Conductivity

யயய.utm.my

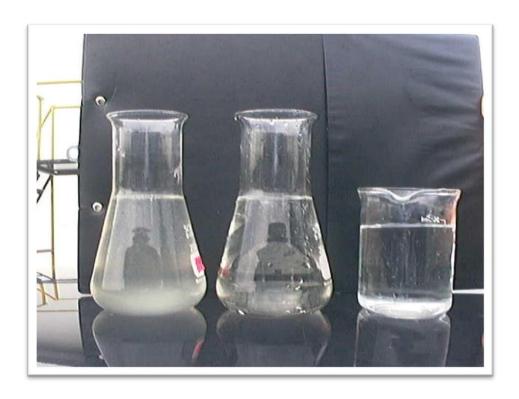
Discussions

யயய.utm.my

- pH of reclaimed water slightly acidic (pH 6 6.5)
- permeate of RO always slightly acidic (drop by ~0.5) vs influent due to:
 - the removal of silica
 - the usage of acid as RO anti-scalant.
- Ammonical nitrogen in reclaimed water averaging 2.5 mg/L (WHO guideline at 1.5 mg/L)
- Unexpected high ammonical nitrogen in the influent (with 32 mg/L).
- STP should produced effluent with ammoniacal nitrogen down to 5 10 mg/L.
- Excellent removal rate of ammonical nitrogen with RO have been achieved (average 90 93 %)

Discussions

www.utm.my


High plate count in reclaimed water

Theoretically, RO would remove all bacteria and virus. However, the pilot plant is running only 8 hr/day and as such substantial bacteria growth in the post RO piping system as the pilot plant is not equipped with disinfection (UV, chlorination)

The Overall Results

யயய.utm.my

Meeting the requirements of both effluent Standard A and drinking water

Rockefeller Foundation Team Residency

www.utm.my

Exploration of the potential of membrane technology for sustainable sanitation

- Politecnico di Milano, Milan, Italy
- April 23-26, 2003
- Only 14 participants representing various global fractions!

