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Abstract

The work presented in this thesis leads to the formulation of a dynamic mathematical
model of an immersed membrane bioreactor (iMBR) for wastewater treatment. This
thesis is organised into three parts, each one describing a different set of tasks associated
with model development and simulation.

In the first part, the Author qualitatively and quantitatively compares various
published activated sludge models, i.e. models of biochemical processes associated with
bacterial growth, decay, lysis and substrate utilisation in activated sludge systems. As
the thesis is focused on modelling membrane bioreactors (MBRs) which are known to
experience membrane fouling as a result of adsorption of biopolymers present in the
bulk liquid onto and within the membrane, all activated sludge models considered in
this thesis are able to predict, with various levels of accuracy, the concentrations of
biopolymeric substances, namely soluble microbial products (SMP) and extracellular
polymeric substances (EPS). Some of the published activated sludge models dedicated
to modelling SMP and EPS kinetics in MBR systems were unable to predict the SMP
and EPS concentrations with adequate levels of accuracy, without compromising the
predictions of other sludge and wastewater constituents. In other cases, the model
equations and the assumptions made by their authors were questionable. Hence, two
new activated sludge models with SMP and EPS as additional components have been
formulated, described, and simulated. The first model is based on the Activated Sludge
Model No. 1 (ASM1) whereas the second model is based on the Activated Sludge
Model No. 3 (ASM3). Both models are calibrated on two sets of data obtained from a
laboratory-scale system and a full-scale system and prove to be in very good agreement
with the measurements.

The second part of this thesis explains the development of two membrane fouling
models. These models are set to describe the loss of membrane permeability during
filtration of various solutions and suspensions. The main emphasis is placed on filtra-
tion of activated sludge mixtures, however the models are designed to be as general
as feasibly possible. As fouling is found to be caused by a large number of often very
complex processes which occur at different spatial as well as temporal scales, the two
fouling models developed here have to consider a number of significant simplifications
and assumptions. These simplifications are required to balance the model’s accuracy,
generality and completeness with its usability in terms of execution times, identifiability
of parameters and ease of implementation in general purpose simulators. These require-
ments are necessary to ascertain that long term simulations as well as optimisation and
sensitivity studies performed in this thesis either individually on fouling models or on
the complete model of a MBR can be carried out within realistic time-scales. The first
fouling model is based on an idea that fouling can be subdivided into just two processes:
short-term reversible fouling and long-term irreversible fouling. These two processes are
described with two first order ordinary differential equations (ODEs). Whilst the first
model characterises the membrane filtration process from an observer’s input-output
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point of view without any rigorous deterministic description of the underlying mecha-
nisms of membrane fouling, the second model provides a more theoretical and in-depth
description of membrane fouling by incorporating and combining three classical macro-
scopic mechanistic fouling equations within a single simulation framework. Both models
are calibrated on a number of experimental data and show good levels of accuracy for
their designated applications and within the intended ranges of operating conditions.

In the third part, the first developed biological model (CES-ASM1) is combined
with the behavioural fouling model and the links between these two models are formu-
lated to allow complete simulation of a hollow fibre (HF) immersed membrane biore-
actor (iMBR). It is assumed that biological processes affect the membrane through
production of mixed liquor suspended solids (MLSS), SMP and EPS which cause pore
blockage, cake formation, pore diameter constriction, and affect the specific cake re-
sistance (SCR). The membrane, on the other hand, has a direct effect on the bulk
liquid SMP concentration due to its SMP rejection properties. SMP is assumed to be
solely responsible for irreversible fouling, MLSS is directly linked to the amount of cake
depositing on the membrane surface, whereas EPS content in activated sludge affects
the cake’s SCR. Other links provided in the integrated MBR model include the effects
of air scouring on the rate of particle back-transport from the membrane surface and
the effects of MLSS concentration on oxygen mass transfer. Although backwashing is
not described in great detail, its effects are represented in the model by resetting the
initial condition in the cake deposition equation after each backwash period.

The MBR model was implemented in Simulink® using the plant layout adopted in
the MBR benchmark model of Maere et al. [160]. The model was then simulated with
the inputs and operational parameters defined in [36, 160]. The results were compared
against the MBR benchmark model of Maere et al. [160] which, contrary to this work,
does not take into account the production of biopolymers, the membrane fouling, nor
any interactions between the biological and the membrane parts of an MBR system.
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1.1 Introduction

Work documented in this thesis represents the first step towards the development of

a thoroughly calibrated and validated dynamic mathematical model of an immersed

membrane bioreactor (iMBR) for wastewater treatment. Although the membrane biore-

actor (MBR) model created in this thesis and described in Chapter 7 represents an

immersed outside-in hollow fibre (HF) system with air-sparging, backwashing and re-

laxation as cake control mechanisms, the fouling models developed and explained in

Chapter 6 are able to describe both immersed and side-stream configurations. It is

thus possible to reconfigure the MBR model presented here using different models de-

veloped in this thesis in order to represent other MBR systems such as an immersed flat

sheet (FS) system or various side-stream configurations with crossflow as a cake control

mechanism.

Until now only a handful of MBR models have been developed and described in the

scientific literature. These models are additionally found to provide a rather simplistic

description of, either, activated sludge kinetics, membrane fouling, or both. They are

also unable to represent the main synergic interactions that occur between various

parts of a MBR system, such as the links between soluble microbial products (SMP)

and extracellular polymeric substances (EPS) kinetics and fouling, the links between

1
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the bioreactor’s operating conditions and SMP rejection, etc. Whilst a multitude of

modelling studies on selected subsystems of MBR reactors have been performed and

described in literature, it seems that adaptation and modification of these models and

linking them together in order to create an integrated MBR model capable of describing

the major synergic effects between the activated sludge biocenosis and the membrane

has either been a very challenging task or has not yet been a focus of the research teams

working in this area.

The MBR models created up to date are either grey-box, i.e. part mechanistic part

empirical and hence restricted to specific reactor configurations and field conditions, or

predominantly mechanistic but lacking the description of all components of the system

and/or of functional interconnections between these components. Fully comprehensive,

generic, mechanistic MBR models ready for application in industrial projects are not yet

available due to a highly complex nature of MBR systems where some of the processes

are not yet fully understood and thus very difficult to model. Therefore, modellers

usually choose simpler data-driven models which can be synthesised from the available

pieces of information without the necessity of understanding all mechanistic principles

governing the system.

The first major component of a MBR model is the model of the activated sludge

bioreactor. Although several scientist proved that it was possible to predict some be-

haviour of a MBR system using one of the standard IAWQ activated sludge mod-

els (ASMs) combined with a membrane filtration model [41], such models are unable to

calculate two important quantities characteristic of a MBR, namely soluble microbial

products (SMP) and extracellular polymeric substances (EPS). These two groups of or-

ganic substances are produced as by-products of microbial activity and are found to lead

to membrane fouling, i.e. reduction of its permeability with time. They are also partially

retained in the system by the membrane. Many researchers, e.g. [247, 266, 167, 253, 262]

found that SMP is adsorbed inside membrane pores leading to reduction of pore diam-

eters and thus an increase of the membrane’s total resistance. Although EPS cannot

penetrate into membrane pores alike SMP, they bridge the gaps between flocs within

the cake structure leading to an increase in the cake’s specific cake resistance (SCR)

and hence, cause higher trans-membrane pressures (TMPs).

In order to describe membrane fouling as a function of bulk liquid SMP and EPS

concentrations, the implemented activated sludge model needs to be able to predict

the formation and degradation kinetics of these two main biofoulants. This task can

be accomplished through a development of a brand-new biological model or through

an extension of the existing one, the latter being a preferred option. The new outputs

of this extended biological model, i.e. mixed liquor SMP and EPS concentrations are

then to be used as arguments in the equations of membrane fouling thus linking the

biological model to the membrane fouling model. Development of the new ASMs with

SMP and EPS as new state variables, creation of new fouling models and formulation of

bi-lateral links between these two subsystems are the three main tasks that are carried

out in this thesis. These three tasks are described in more detail later in this chapter

2
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and in the subsequent chapters dedicated specifically to each individual task.

Dynamic simulation has proved itself over the years to be an efficient and handy

tool for analysis, optimisation, decision support, controller design and process design of

many individual wastewater treatment processes as well as complete wastewater treat-

ment plants (WWTPs). Dynamic simulation has many advantages over traditional

‘static’ design and analysis methods due to addition of time dimension which allows the

user to assess the system’s behaviour under explicitly defined time-dependent inputs, pa-

rameters and disturbances. Although simulation methods with dynamic mathematical

models are significantly more computationally demanding than solving static, algebraic

model equations, the computational power of modern personal computer is high enough

to carry out complex and detailed simulation studies. An ever increasing performance

of personal computers allowed the development of several commercial WWTP simula-

tion packages which are now widely used by engineering consultants, plant operators,

regulatory bodies and contracting firms. The software packages such as, in alphabetical

order: Asim (Holinger AG), Biowin (EnviroSim Associates Ltd), GPS-X (Hydro-

mantis Inc.), SassPro V2 (HTI Systems), Simba (Ifak System GmbH), Stoat (WRc

plc) and West (Hemmis) are not used solely for ’advanced’ tasks specifically requiring

the dynamic mathematical models, i.e. controller design, on-line and off-line decision

support, model based control, etc. but recently also begin to gradually replace the

traditional static design methods for WWTP design.

Wastewater treatment plants are inherently very complex physical systems ac-

commodating many interdependent and time-varying biological, chemical, and physical

processes with large number of time-varying inputs and parameters. Additionally, the

inputs (i.e. wastewater quantity and composition), model parameters (e.g. bacterial

growth rates, biomass yields, settling velocities, etc.), and disturbances (e.g. run-off

intensities, toxicity in the influent, etc.) are often highly uncertain. Nevertheless plant

design calculations are usually carried out with simple static equations obtained from

time-dependent equations, often in the form of ordinary differential equations (ODEs)

and sometimes partial differential equations (PDEs) through removal of time dimension

and further subsequent simplifications. This process of simplification however neces-

sitates that the effects of variability and uncertainty of all inputs, parameters, and

disturbances are accounted for by introduction of single peaking and safety factors.

This means that in static design methods final results are multiplied by factors larger

than one, leading to an addition of extra reactor volumes and an increase of pipe diam-

eters, pump sizes, etc. the temporal variability and uncertainty is therefore not directly

modelled and thus, their effects on the plant’s performance and its outputs, e.g. effluent

quality, cannot be accurately predicted and accounted for in the final design. The choice

of these safety and peaking factors is additionally often based on the engineers’ expe-

rience and intuition and is seldom backed up with prior measurements, thus it rarely

reflects the local environmental conditions. A bespoke, accurate design of a WWTP

with traditional static design methods is therefore rather difficult.

Despite of all of the above described shortcomings, simple static design methods

3



T. Janus 1.1. INTRODUCTION

have been successfully applied for the design of new and refurbishment of the existing

WWTPs over many years. Gradually though, these static methods have been replaced

by simulation methods. This change of approach to WWTP design is mainly driven

by legislation which puts more stringent constraints on effluent quality, what in turn

demands from the investors to use more technologically complex processes equipped

with more accurate and robust control systems. As the modern treatment plants be-

come more advanced and the discharge consent limits are being gradually lowered, the

required robustness and efficiency of final designs can only be ascertained by employing

accurate dynamic models. Dynamic simulation allows the process engineers to test the

plant’s behaviour under many different operational scenarios with bespoke, user-defined

time-varying inputs, disturbances and parameters, which may additionally be based on

on-site measurements.

Apart from the above mentioned clear advantages of simulation methods over static

design procedures, dynamic models also have several other useful practical applications.

Once a dynamic model of a WWTP is calibrated and used for process design, it can

later be reused for further process optimisation, assistance in plant start-up and com-

missioning, training of plant operators, development and testing of automatic control

strategies, synthesis and tuning of controllers, diagnosis, risk analysis, fault detection

and decision support. A few out of hundreds of such application on large-scale objects

are mentioned below. Ladiges and Günner [132] used a dynamic model of wastewater

and sludge process trains to choose the most economical plant extension option after

further 250,000 PE had been connected to a 1,860,000 PE municipal WWTP. The sim-

ulation results suggested that only a sludge process train needed to be upgraded with

additional storage volume and no changes to the wastewater processing units needed

to be made, contrary to what the initial non-simulation based feasibility studies had

suggested. The proposed solution was then implemented and proved satisfactory after

3 years of operation [131]. The author of this thesis during his professional experience

as a process engineer used a calibrated dynamic model of an activated sludge process

to integrate process design and control strategy design within a single step and then

test the robustness of this approach through analysis of the simulated effluent concen-

trations over an extended time period [112]. The process design was also supplemented

with Computational Fluid Dynamics (CFD) analysis of final settlement tanks (FSTs).

Dynamic process simulation allowed to obtain a bespoke near-optimum design based

on the available information of local conditions, operators’ preferences and acceptable

levels of risk. CFD in turn allowed to optimise the geometry of the existing assets

and to maximise their reuse. Both design and simulation exercises led to reduced op-

erational expenditures (OPEX) and capital expenditures (CAPEX) in comparison to

the initial solution obtained in the earlier feasibility studies. More recently, Cierkens

et al. [33] successfully used an ASM2d-based model of Eindhoven WWTP together with

its catchment and river models in order to synthesise better control strategies for the

integrated catchment system based on the available on-line sensor data and historical

influent data (e.g. storm events). This model was intended to serve as an important

future decision support tool for WWTP and sewer system operators. Rodriguez-Roda
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et al. [211] applied a deterministic WWTP model created in a commercial software

package GPS-X as a tool for diagnosis, supervisory control and prediction within a

multi-layer hybrid knowledge-based/deterministic decision support system (DSS). This

DSS was then installed at a full-scale WWTP in Granollers, Spain. The work showed

that mechanistic process models can be successfully integrated into supervisory control

and data acquisition (SCADA) systems and used as on-line tools for prediction, high

level (supervisory) control and decision support.

Although mathematical models of the, so called, ‘conventional’ process units such

as activated sludge and biofilm bioreactors, final settlement tanks, sludge thickeners,

trickling and sand filters, anaerobic digestion units etc., are available off-the-shelf in

all commercial simulation packages, mathematical models of MBR units, whether im-

mersed or sidestream, are not readily available or the ones that are on offer are very

simplistic. Currently, predefined MBR models are included in process unit libraries of

most recent releases of the three popular process simulation packages: Biowin, GPS-X

and West. However, none of the above models is able to predict the concentrations

of the most dominant biofoulants, i.e. SMP and EPS inside the bioreactor and, what

is required for the integration of the biological and filtration models, link these con-

centrations to the rates of different membrane fouling mechanisms, such as pore con-

striction, pore blockage, cake filtration, etc. Additionally, these models do not provide

any detailed mechanistic description of the membrane fouling and the fouling control

mechanisms. Hence, simulation-based process design, process and energy optimisation,

troubleshooting, etc. which can be easily performed with commercial simulation pack-

ages on conventional treatment processes such as activated sludge process or anaerobic

digestion cannot be carried out to a similar degree on MBR systems.

The gap between the availability of general-purpose mathematical models for the,

so-called, ‘conventional’ processes and MBRs is apparent and needs to be bridged to al-

low MBR systems to be integrated into larger mixed-process WWTP simulation studies.

Development of a mechanistic MBR model will allow to carry out similar simulation-

based studies on MBR systems to what is already possible on other wastewater treat-

ment processes. Process unit manufacturers, system integrators and various engineering

companies will have a tool which may allow them to improve their designs, derive bet-

ter process control strategies and, at a later stage, use the mathematical models on-line

to assist with the decision making or to act as a tool for training the operators. A

mechanistic MBR model may therefore help to improve the designs of existing MBR

systems, improve their energy-efficiency, robustness and control algorithms. As a result

of these improvements the MBR systems may be given a more competitive edge over

‘conventional’ treatment processes.

The MBR model developed in this thesis is based on the system of ordinary dif-

ferential equations (ODEs) and algebraic equations (AEs) which allow it to be imple-

mented and simulated in general purpose commercial simulation environments such as

Simulink® or their free-software alternatives such as Scicos, OpenModelica or JModel-

ica. The main intention of the author was to create a model that, first and foremost, can
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be used by the scientific and the engineering community to address various day-to-day

problems facing process engineers and scientists working on MBR systems. The model

presents itself as a more complete mechanistic alternative to less extensive mathemati-

cal models of MBR units that have been created up to date, such as the models of Lee

et al. [140], Busch et al. [19], Saroj et al. [217], Mannina et al. [163] and Maere et al.

[160].

At the same time the new model aims to answer some of many still unanswered

questions about various mechanisms and processes occurring in MBR reactors or where

the findings are conflicting. These questions together with the proposed answers and

suggestions supported by the knowledge gained during the course of this research project

will be described in the latter chapters of this thesis. It is still unknown what exactly

causes fouling and how fouling is linked to the concentrations of various types of biopoly-

mers. The mechanisms of fouling are still not completely understood and what is even

less understood are the mechanisms of membrane clogging. With regards to activated

sludge kinetics, it is still unknown how the biopolymers are produced under highly time-

varying conditions and in a response to, e.g. toxicity, salinity, low and high dissolved

oxygen (DO) concentrations, temperatures or shear. The movement of air-bubbles in

the vicinity of the membrane surface during air-scouring and the shear rates on the

membrane surface caused by the movement of air bubbles are also not yet well under-

stood. A detailed description of all these processes is currently either impossible due to

the lack of available knowledge or is infeasible as the produced models would have been

very complex, slow, and contain large numbers of unidentifiable or difficult to identify

parameters. They would therefore require very elaborate experimental procedures for

parameter identification and high computing power for simulation. The main intention

of the author is thus to strike a practical balance between the complexity and the accu-

racy of the MBR model and its ease of use, i.e. to provide a detailed enough description

of the processes to allow the user to perform process optimisation studies but, at the

same time, to produce a model which will not require vast amounts of effort to set-up,

calibrate, validate and execute the model.

In addition to strictly scientific and practical value, the developments described in

this thesis are also of economic significance as the global MBR market continues to grow

with its total value forecasted by Global Industry Analysts [73] to reach $888 million

by 2017. MBR market was valued by BCC market research analysts at an estimated

$337 million in 2010. It is rising at a compound annual growth rate (CAGR) of 13.2%

and is expected to reach $627 million by 2015, as shown in Figure 1.1. MBRs gradually

become a preferred solution over the, so-called, ‘conventional’ processes, e.g. traditional

bioreactor/final settlement tank configurations due to increasingly stringent effluent dis-

charge norms, rising water scarcity and enhanced emphasis on water reuse and recycling

for freshwater conservation. Additionally, small footprint of these systems makes this

technology suitable for refurbishment of old plants [73]. A comprehensive mathematical

model of a MBR may generate higher sales of this technology, help to integrate it with

the existing WWTP processes in plant refurbishment designs, optimise final designs,
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allow bespoke developments of control strategies, allow integrated catchment modelling

studies to be carried out with MBR models connected to sewer and river water quality

models and can be used to train future plant operators.

Figure 1.1: Membrane bioreactor market, 1990-2015 ($ millions), BCC Research 2012.

A more detailed introduction to the MBR technology in wastewater treatment

where MBR systems are explained from the practical and research perspective is pro-

vided in Chapter 2. Meanwhile, Section 1.2 of this chapter lists and explains the aims

and objectives of this thesis, while Section 1.4 provides a general overview of the devel-

oped MBR model and lists the addressed topics.

As some of the work reported in this thesis was carried out as part of a collab-

orative Department of Trade and Industry (DTI) project No. TP/3/DSM/6/I/15123

entitled ‘Improving the design and efficiency of membrane bioreactor (MBR) plant by

using modelling, simulation and laboratory methods’, it has to be noted that some of

the elements of research described here were influenced by collaboration with other re-

searchers and research students participating in this project. The main contributions

claimed in this thesis are however solely the work of the author. Portions of the work

that were due to other individuals participating in the project and had to be included

in this thesis for the sake of completeness, are clearly marked throughout this document

including the names of the contributors.

1.2 Aims and Objectives

This thesis intends to:

1. Systematise the knowledge on modelling membrane bioreactors (MBRs) for wastew-

ater treatment.

2. Analyse and compare the existing theories and models of biopolymer production

in activated sludge systems.

3. Develop two new activated sludge models with SMP and EPS kinetics, based

respectively on IAWQ Activated Sludge Model No. 1 (ASM1) and Activated

Sludge Model No. 3 (ASM3).

4. Investigate different fouling mechanisms and mathematical fouling models for mi-

crofiltration (MF) and ultrafiltration (UF) membranes.
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5. Develop two new fouling models in which the fouling mechanisms are dependent

on the selected activated sludge properties such as mixed liquor suspended solids

(MLSS), SMP and EPS, and thus can be linked to the outputs of the activated

sludge models. Moreover, the fouling models shall be applicable to simulate full-

scale MBR systems, what in turn requires the description of cake buildup control

mechanisms such as backwashing, relaxation, air scouring and provision of cross-

flow. The first model is intended for use in long-term simulation studies and

in practical applications where the effort spent on model set-up, calibration and

execution should be reduced to minimum. The second model shall provide a

detailed mechanistic description of membrane fouling mechanisms and serve as a

tool for increasing our understanding and for interpretation of membrane fouling.

6. Provide bi-lateral links between the developed activated sludge and fouling models,

i.e. allow the modelled fouling processes to depend on the conditions present inside

the bioreactor and, vice-versa, the mixed liquor composition to be influenced by

the time-varying rejection properties of the membrane.

7. Create a dynamic mathematical model of an immersed MBR as a combination

of one of the newly developed activated sludge models with one of the developed

fouling models and investigate the properties and behaviour of this MBR model

through numerous simulations under different inputs and operating conditions.

The developed MBR model is intended to serve the following purposes:

1. Capture the knowledge on modelling MBR systems in a single mathematical model

ready to be used in purpose-built WWTP simulation software and in general

purpose simulators.

2. Advance the knowledge on modelling biopolymer kinetics in activated sludge sys-

tems through the development and validation of two new biopolymer activated

sludge models.

3. Advance the knowledge on modelling fouling of semi-permeable membranes through

the development of two comprehensive fouling models.

The MBR model is developed for process engineers as a tool for process design,

process optimisation, energy optimisation, controller design, training of operators and

on-line and off-line decision support at MBR-based WWTPs. It can also assist re-

searchers with practical experiments carried out on lab-scale MBR systems and on

MBR pilot plants.

1.3 Problem statement, outline and analysis

Whilst the previous sections of this chapter provide a brief introduction to this thesis

and, in particular Section 1.2 familiarises the reader with the main aims and objectives,

the main purpose of the text so far has been to raise the reader’s understanding of

mathematical modelling of MBR systems solely from a practical perspective, i.e. to

8
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describe the subjects covered in this work as would have been done by a practitioner.

The purpose of this section is somewhat different as it states and outlines the problem

from a strictly scientific, not a practitioner’s point of view.

MBR reactors, as was described in the previous sections of this chapter, are very

complex systems hosting a myriad of processes of different nature from biological, chem-

ical to physical. Additionally, these processes occur over a large range of spatial and

temporal scales. For instance, whereas time constant of the oxygen uptake process in

the bioreactor is in the range of seconds to minutes, the process of hydrolysis may hap-

pen over the period of minutes to hours, biomass decay processes take, depending on

the environmental conditions, between hours and days. Motion of a liquid phase in a

3 phase liquid-solid-gas multiphase flow problem inside a bioreactor and an immersed

membrane tank (if separate from the bioreactor) can itself be characterised with a large

range of spatial and temporal scales. Whereas large whirls have characteristic length

scales comparable to the length scales of the domain (e.g. metres in full-scale applica-

tions) and characteristic frequencies of less than 1 Hz, the smallest eddies are of the

size of Kolmogorov microscales, i.e. micrometres and have characteristic frequencies

of kHz [242]. Membrane fouling, whose mathematical description forms the backbone

of all membrane filtration models in MBR systems, shall in fact be considered as a

combined effect of a number of processes which all attribute to the loss of membrane

permeability at different temporal and spatial scales. Fouling processes leading to the

so-called irreversible fouling occur on molecular and microparticle scales and are rather

slow with time constants of hours to days. Cake buildup on the membrane surface on

the other hand is a rather quick process which tends to occur within minutes and is

caused by deposition of relatively large particles of the size of fractions of millimetres

to millimetres depending on local conditions such as mean crossflow velocity (CFV) or

mean air-bubble rise velocity and frequency.

A graphical representation of a generic MBR modelling task not limited to any

specific process configuration is shown in Figure 1.2 which visualises the key compo-

nents of a MBR model and the interconnections between these components in order

to show the model’s functional structure and complexity. As it usually happens with

mathematical modelling of any complex system, the model developer is faced not just

with the tasks strictly related to model formulation, implementation and validation but,

first and foremost, with model selection, i.e. needs to determine at an early stage of the

process which phenomena are dominant and shall be be included in the model and which

ones are less significant and can thus be omitted. The modeller often needs to draw the

line between model accuracy and complexity versus simplicity and the ease of use. As

can be seen in Figure 1.2, the number of processes, factors, parameters, properties etc.

describing a MBR system is already large and this list could easily be extended even

further. By taking a pragmatic approach only the most dominant processes, properties

and variables of a MBR model are shown in Figure 1.2. Otherwise the resulting graph

would have been cluttered and very difficult to read. Although the choice of blocks

used to produce Figure 1.2 is very subjective and definitely not exhaustive, the figure
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can hopefully allow to demonstrate the complexity of any MBR modelling task and

the challenges facing the modeller who embarks upon the development of a complete

mechanistic mathematical model of a MBR.

Figure 1.2 displays the causal and non-causal relationships between the blocks rep-

resenting respectively: the main system (dark grey), subsystems (light grey), subsystem

components (salmon), operating conditions (lilac), invariant properties (light blue), in-

puts and disturbances (cyan), controlled variables (light green), dependent variables

(ivory), effects (khaki) and final outputs (light brown). The non-causal relationships

are represented with dark grey straight lines whereas the causal relationships are shown

with arrow lines in which the arrows point from the cause to the effect. The arrows of

blue colour represent positive causal relationships, i.e. increase in the magnitude of the

cause leads to an increase in the quantity of the product, the red arrows represent a neg-

ative causal relationship, whereas the dark green arrows represent causal relationships

which are either unknown, or the findings so far are conflicting, or the relationship is

non-linear exhibiting local maximum (maxima) or minimum (minima). The blocks and

the connecting lines that are drawn with solid lines represent the parts which are chosen

for the MBR model described later in this thesis, while the objects and relationships

which are not included in the MBR model are drawn with dotted lines.

Components shown in Figure 1.2 describe the fundamental macroscopic quantities

of a MBR system, such as: effluent composition, sludge production, oxygen demand,

process aeration air-flow rates, membrane fouling rates, TMP, air scouring and/or CFVs

and membrane permeation rates. Other quantities such as condition of the components,

e.g. membrane ageing, air-diffuser fouling, etc. as well as capital expenditures (CAPEX)

and operational expenditures (OPEX) are not included in the description of a MBR

model shown here. CAPEX and OPEX can however be calculated at a later stage

from the model outputs, such as daily sludge production, process aeration rates, per-

meate pumping rates, TMP, air-scouring rates, CFVs, chemical cleaning and backwash

regimes, etc. provided that the required plant design information, i.e. process volumes,

equipment, instrumentation, etc. had been provided.

Figure 1.2 shows that a MBR model requires a rather large number of building

blocks which are often interlinked with one another forming complex mathematical

relationships. These mathematical relationships as well as the mathematical models

themselves are frequently unknown or their parameters are difficult to identify. The task

of encapsulating all available knowledge and all important properties and characteristics

of a MBR and its processes within a single mathematical model is thus very difficult.

The reasons for this state of affairs are summarised below.

1. The number of subsystems, i.e. equations, state variables and parameters to be

included in the MBR model is vast leading to a mathematically complicated and

computationally demanding model.

2. The number of connections between the subsystems is very high, i.e. many bio-

logical and physico-chemical processes described in the model depend on a large

11
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number of other processes. This leads to a situation where one parameter drives

not only one but many processes and where one output depends on a combined

effect of several simultaneously occurring processes.

3. Due to the above, identification of the model parameters and states is very dif-

ficult, if not impossible. Large number of processes being modelled (and thus

mathematical equations) necessitates the introduction of many state variables,

some of which cannot even be measured and identified.

4. Many of the processes cannot be represented in the model either because of the

lack of available information required to properly describe these processes in math-

ematical terms, the lack of available experimental data for parameter identification

or motivated by the need of keeping the model within practical levels of complex-

ity.

For all of the above reasons, building a MBR model from all the blocks shown in

Figure 1.2 would be rather impossible and if we imagined that all processes and links

could be mathematically described in mechanistic terms, the resulting model would

have become impractical due to its number of equations and parameters leading to long

execution times during simulation. The author thus adopted a pragmatic approach

where one has to compromise between the completeness of the mathematical description

and the complexity of the model structure. The blocks and links shown in Figure 1.2

with dotted lines were eliminated and the model structure was consequently reduced to

one presented in Figure 1.3. This model structure was adopted during the development

of the MBR model presented in this thesis.
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1.4 Model overview

1.4.1 Topics addressed in the MBR model

The MBR model developed in this thesis addresses the following:

1. The biological part of the model describes all activated sludge state and composite

variables characteristic of the International Association on Water Quality (IAWQ)

family ASM models. The model predicts the concentrations of various wastewater

constituents in the bioreactor and in the effluent on top of the fundamental process

variables such as oxygen demand and excess sludge production. Additionally, the

model is able to predict the bulk liquid SMP and EPS concentrations which shall

be used as inputs to the fouling model equations.

2. The fouling part of the model describes various fouling mechanisms such as pore

constriction, pore blockage and cake formation in case of the three-mechanism

classical fouling model or, in case of the simpler behavioural model, irreversible

and reversible fouling, which collectively attribute to the loss of membrane per-

meability over time.

3. The modelled fouling prevention and control mechanisms include cake detachment

due to CFV and air scouring and cake removal by back-flushing and relaxation.

Back-flushing is assumed to cause an instantaneous and complete removal of cake

deposits from the membrane surface. The time-dependent back-flow of water and

detachment of solid particles due to velocity field are not explicitly modelled,

therefore the model is not able to predict the effects of back-flush flow rates and

back-flush duration times on the efficiency of cake removal nor the pressure loss

during back-washing.

4. The bulk liquid SMP and EPS concentrations are linked to the relevant fouling

equations as later described in Chapter 6 and Chapter 7.

The bi-lateral links between the bioreactor and the membrane connecting the foul-

ing rates to the biopolymer concentrations, cake deposition to coarse bubble aeration,

and biopolymer concentrations in the bioreactor to the retentive properties of the mem-

brane, are formulated as follows:

1. SMP is considered to be the main foulant causing pore constriction / irreversible

fouling. SMP is assumed to deposit inside membrane pores causing the reduction

of pore diameters and thus, the increase in membrane resistance.

2. EPS is assumed to promote cake formation / reversible membrane fouling by filling

the voids between activated sludge flocs and thus lowering the cake’s porosity,

hence increasing its specific cake resistance (SCR).

3. SMP concentrations in the bulk liquid depend mostly on the SMP rejection prop-

erties of the membrane which are found to influence the bulk liquid SMP concen-

trations more than the biological processes inside the bioreactor themselves. EPS

is assumed to adhere to activated sludge flocs and is therefore fully retained in
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the bioreactor.

4. Cake deposition control by air scouring is modelled with a one-dimensional (1D)

multiphase air-liquid flow model of Zaisha and Dukler [268] under an assumption

that the air-liquid flow regime inside the membrane module resembles slug flow.

The deposited cake particles are assumed to detach from the membrane surface

once the shear stresses caused by an upward motion of air bubbles and liquid slugs

exceed the inter-particle forces keeping the particles on the membrane surface.

These forces are represented for simplicity with a single static friction coefficient

[176].

1.4.2 Topics not addressed in the MBR model

The following topics are not be addressed in the MBR model due to, either, lack of

sufficient amount of knowledge required for the development of the required models,

difficulties with the identification of model parameters, or the need to keep the com-

plexity and the size of the complete MBR model at feasible levels.

1. The membrane rejection properties are not explicitly modelled. Rejection of solid

particles and EPS is assumed to be 100% whereas rejection of SMP maintains a

constant value between 0% and 100%. Although it was found that SMP rejection

may depend on sludge retention time (SRT) [226], the relationship between SMP

rejection and SRT is likely to be characteristic of just one MBR process and thus

not general. Additionally the membrane rejection properties are also likely to

change with filtration time as the membrane gets progressively fouled. However,

there is no data currently available to derive any form of mathematical model of

this process as well as to support the findings and the model of [226]. It is assumed

that rejection of SMP on the membrane is caused by sieving. The effects caused

by formation of a dynamic layer on the membrane surface, which is believed to

act as a prefilter for the incoming liquids creating an effect as if the membrane

had smaller pore diameters, are also not included in the model.

2. The biological model considers the influent wastewater to be characterised by

fractions of chemical oxygen demand (COD), nitrogen (N) and phosphorus (P).

Information about the molecular nature and the chemical composition of the in-

fluent is not captured anywhere inside the biological model. Hence, any changes

that chemical composition of the substrates might have on the substrate utilisation

rates cannot be predicted. The model thus demands a recalibration once the na-

ture and the composition of the influent changes. As a result of this simplification,

toxicity effects caused by the presence of some specific components detrimental to

the biocenosis cannot be explicitly modelled and would require an introduction

of new state variables, parameters, and possibly complete new equations into the

biological model.

3. Membrane properties such as the membrane type, hydrophobicity, pore structure

and pore size distribution are not explicitly included in the fouling model equa-
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tions. The effects that all these properties have on the membrane characteristics

are all lumped into single individual fouling equation parameters which need to

be adjusted in the model on the case by case basis.

4. Activated sludge properties such as the floc size distribution, fraction of colloidal

matter, floc shape, zeta potential or filament amount are not modelled nor used

as the inputs to the MBR model. Similarly to the membrane properties, these

parameters are implicitly included in the fouling model within specific fouling

rate constants which are adjusted during calibration in order to match the model

outputs to the experimental data.

5. The MBR model cannot predict the recovery of irreversible fouling during in-

line or off-line chemical cleaning. It is expected that the simulation horizons will

not exceed the time in which it is necessary to perform a chemical clean on the

membrane. Although the model for in-line chemical cleaning could have been

helpful during testing of long-term fouling control strategies, the mechanisms of

chemical cleaning are not yet fully understood and hence very hard to describe in

mathematical terms.

6. Although membrane module clogging has equally detrimental effects on membrane

performance as the membrane fouling, clogging mechanisms are not yet fully un-

derstood and are thus not included in the MBR model. Clogging models are of

significant importance for the description of immersed membrane configurations,

especially in HF systems where hair and other solid materials which manage to

pass through the primary treatment stage deposit within the fibre bundles. How-

ever, as the description of clogging would necessitate the development of a complex

CFD hydrodynamic model and a complex characterisation of the bulk liquid, this

task is left for future investigations.

7. The model cannot describe fouling due to biofilm growth on the membrane surface.

The biological processes taking place near the membrane ans inside the forming

biofilms are therefore also not included in the model.

8. Scaling is not modelled here as it is found to occur in MBRs only under specific

conditions and for influents with high levels of hardness. Scaling is more dominant

in UF, nanofiltration (NF) and reverse osmosis (RO) membranes where concentra-

tion polarisation is more prominent due to higher retention of salt molecules on the

membrane, causing local salt concentrations to exceed their maximum solubility

and precipitate on the membrane surface.

9. The model also cannot predict how the membrane properties deteriorate due to

ageing. The MBR model is however only intended for shorter term simulations

where the membrane deterioration effects are insignificant and have no effect on

the outputs.

10. The biological model, although capable of predicting the bulk liquid SMP and EPS

concentrations, is unable to differentiate between different groups of these biopoly-

meric substances with regards to their chemical composition or molecular weight

distribution (MWD). Whilst various researchers found that different chemical
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compounds making up SMP have different fouling strengths, e.g. polysaccharides

were found to be four times stronger foulants than proteins [267], the biochemi-

cal pathways of different components forming SMP and EPS in activated sludge

systems are still unknown.

11. The model is unable to predict the removal of trace organics such as emerging

contaminants which MBR systems are found to exhibit an improved capability of,

over the conventional activated sludge processs (ASPs).

12. The impacts of shear caused by mixing, CFV and air sparging on break-up and

agglomeration of flocs are not described. The model is thus unable to predict the

activated sludge floc size distribution (FSD) or an increased release of SMP and

EPS from flocs observed in practice under elevated shear rates.

13. The fouling model provides no description of the so-called conditional fouling

where, due to various interactions between the membrane and the mixed liquor,

various soluble components present in the wastewater get adsorbed on the mem-

brane surface leading to irreversible fouling, even at zero fluxes. The effects of

conditional fouling are partially accounted for by assigning appropriate initial

conditions for membrane resistance at the beginning of each simulation.

14. The so-called TMP jump which has been found to occur in long-term constant

flux membrane filtration at permeation fluxes even below the critical flux [266]

cannot be predicted in the simpler one of the two developed fouling models whilst

the more complex fouling model is able to predict such behaviour but has not

been thoroughly validated.

15. Last but not least the MBR model cannot describe the effects on any additives

such as flocculants, coagulants or adsorbent reagents such as powdered activated

carbon (PAC) on the membrane fouling.

1.4.3 MBR model structure

Figure 1.4 describes the MBR model block diagram which represents a high level model

structure whilst indicating its main subsystems and signals.

Figure 1.4: Generalised structure of the MBR model.

The model in Figure 1.4 is subdivided into three subsystems: the Bioreactor (Sub-

system 1), the Membrane (Subsystem 2) and the Interface (Subsystem 3). Subsys-
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tem 1 receives an input vector u1ptq associated with the influent flow and composition

plus an output vector y4ptq associated with the retentate outflow from the membrane

and produces an output vector y1ptq. Some of the flow is diverted from the reten-

tate recirculation loop y4ptq forming an output vector y5ptq associated with the surplus

activated sludge (SAS) wastage stream. The subvector ỹ1ptq Ă y1ptq is composed of

the selected state variables of Subsystem 1 which are found to cause membrane foul-

ing: ỹ1ptq “ pSSMP XEPS XMLSSqT , where SSMP denotes the concentration of soluble

microbial products (SMP) (g m´3), XEPS denotes the concentration of extracellular

polymeric substances (EPS) (g m´3) and XMLSS is the concentration of mixed liquor

suspended solids (MLSS) (g m´3). T denotes a matrix transpose operator and is not to

be confused with the bulk liquid temperature which has been assigned the same sym-

bol. Subsystem 3 receives a signal ỹ1ptq and and input vector u2ptq. For an immersed

‘backwashable’ membrane configuration u2 “ pqair tfilt tbackqT , where qair denotes the

coarse bubble aeration rate (m3 h´1), tfilt denotes the filtration time (s), and tback is

the backwash time (s). Subsystem 3 converts the signals ỹ1ptq and u2ptq into the fouling

rates and the parameters which form an output signal y2ptq. Outputs from the bioreac-

tor y1ptq and the interface y2ptq become the inputs to Subsystem 2 which produces two

output vectors: y3ptq associated with the permeate stream and y4ptq associated with

the retentate stream. Subsystem 1 and Subsystem 2 receive two external disturbance

vectors, w1ptq and w2ptq which, in this case, consist of just two signals - the liquid tem-

perature, T and the air temperature, Tair. The membrane is affected by the processes

occurring upstream in the bioreactor through two forward loops: the direct forward

loop y1ptq and the indirect forward loop through Subsystem 3. The membrane, in turn,

has an effect on the behaviour of the upstream-placed bioreactor through a feedback

loop y3ptq representing the retentate stream.

All biological activated sludge models (ASMs) as well as the complete benchmark

model of a MBR are implemented in a wastewater modelling package Simba® from

iFak GmbH, Germany running under MATLAB®. The membrane fouling models are

implemented in MATLAB® and Simulink®.

1.5 Organisation of this thesis

The thesis is structured into three parts as illustrated in Figure 1.5.

Part I is preceded with Chapter 1 and Chapter 2 which are intended to provide an

introduction to MBR technology and to help put the developments brought about in

this thesis into practical context. In addition to providing a brief and concise overview of

the membrane technology in wastewater treatment applications, Chapter 2 also outlines

the most challenging issues currently facing a further development of MBR systems and

describes current research priorities within the field. The aims and tasks set out within

this research programme are broken down into smaller portions of work which are then

outlined followed by a brief description of the research problems they attempt to address.
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Figure 1.5: Schematic representation of the structure of the overall thesis.

Part I comprises Chapters 3 and 4 and is primarily devoted to the analysis of the

existing activated sludge models extended with SMP and EPS kinetics and to the devel-

opment of the new extended activated sludge models. The work documented in Part I

is built on the findings of Leuderkind and Piret who identified SMP production kinetics

in bacterial cultures and the work of Laspidou and Rittmann [135; 136] who linked the

SMP and EPS kinetics in bacterial cultures within a single theory of biopolymer pro-

duction and degradation. The SMP and EPS production and degradation kinetics of

Laspidou and Rittmann [135; 136] were then adapted and incorporated within the acti-

vated sludge model (ASM) framework leading to the formulation of two new activated

sludge models. The first model is based on the Activated Sludge Model No. 1 (ASM1)

and the second is formed on the basis of the Activated Sludge Model No. 3 (ASM3).

Chapter 3 reviews the existing SMP and EPS ASM models through analysis of their

strengths and weaknesses. Attention is placed on two areas: (a) the added SMP and EPS

kinetic equations and (b) the links between the added SMP and EPS kinetic equations

and the original kinetic equations of the underlying ASM models. The first area is

investigated by analysing the structure and the parameters of the biopolymer kinetic

equations and examining their behaviour in simulation studies under selected operating

conditions. The links between SMP and EPS kinetic equations and the original process

equations of the underlying ASM models exist in the model as a consequence of the

addition of new stoichiometric parameters and modification of the original stoichiometric

parameters in order to ascertain the closure of mass and charge balance equations. The

newly added stoichiometric parameters associated with SMP and EPS kinetics appear

in the stoichiometric relationships of the original ASM state variables, thus creating the

links between the new kinetic equations and the original ASM model kinetics. These

effects are analysed through investigation of the model structure, sensitivity analysis

studies for the newly introduced kinetic parameters and comparison of the new and the

original ASM model outputs from various simulation studies under different operating
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conditions. The outputs being compared were: unit sludge production, unit oxygen

demand, and effluent COD, total nitrogen (TN), ammoniacal nitrogen (NH`
4
-N), nitrate

nitrogen (NO´
3
-N), SMP and EPS concentrations.

Following unsatisfactory results of the analysis of the published ASM-based biopoly-

mer models described in Chapter 3, Chapter 4 focusses on the development of two new,

combined SMP and EPS activated sludge models. The new models are intended to

eliminate the deficiencies of the current biopolymer ASMs, i.e. ensure the closure of

carbon (C), N, charge and, where applicable, total suspended solids (TSS) mass bal-

ances, improve the accuracy of SMP and EPS predictions, and eliminate the negative

effects that the added biopolymer kinetic and stoichiometric parameters have on the

prediction accuracies of the original ASM state variables. The SMP kinetics of Leud-

erkind and Piret and the integrated SMP and EPS metabolic model of Laspidou and

Rittmann [135; 136] are incorporated into two IAWQ models: ASM1 and ASM3. The

kinetic and stoichiometric parameters identified in two different calibration studies are

combined with literature values to create a set of default parameters for both models.

The most sensitive kinetic and stoichiometric parameters are identified via local sensi-

tivity analysis at different operating points. The complexity of both models is assessed

through analysis of the number of parameters, equations and state variables followed

by parameter sensitivity study. The new SMP and EPS ASM1-based model is used to

formulate the integrated MBR benchmark model described in Chapter 7.

Part II comprises Chapters 5 and 6 and is primarily concerned with the second

aspect of modelling MBR reactors, namely mathematical description of membrane foul-

ing. The work described here is carried out in three steps. The first step is to review

and analyse various theories of fouling found in literature and assess their applicability

to describe fouling in MBRs for wastewater treatment. In the second step, theoreti-

cal principles of attachment and detachment of macromolecules and particles to/from

membrane leading to irreversible and reversible fouling are analysed on a microscopic,

particle scale. SMP transport across the membrane is also investigated through sim-

ulation of a 1D advection-diffusion equation for solute transport in a porous medium.

In the third step, two fouling models are formulated. The first model builds on the

work of Liang et al. [149] and expands this model with new equations describing flux

dependent SMP deposition mechanisms, cake detachment due to presence of shear and

back-flushing. The second model is formulated on the idea of Duclos-Orsello et al. [50]

who expressed flux decline in a constant-TMP dead-end filtration process with an ana-

lytically derived equation obtained by integrating and combining three classical fouling

equations: pore constriction, pore blockage, and cake formation. The model proposed

here follows the same idea but presents the model in a differential form, where all three

equations are solved simultaneously whilst cake formation occurs in sequence after pore

blockage. The model is not restricted to constant-TMP filtration and can be used to

simulate filtration where both TMP and flux vary in time.

Chapter 5 looks at various processes occurring during filtration of solutions and

suspensions through UF and MF rejection membranes. Different theories and mathe-
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matical models of membrane fouling and reversible and irreversible fouling control are

analysed and their applicability for modelling membrane filtration of wastewater mix-

tures are assessed. This Chapter is therefore intended to be used as a road map and

a reference guide for modelling fouling in MBR systems. The main emphasis is placed

on selection of the most dominant fouling mechanisms. Dead-end as well as cross-flow

filtration regimes are addressed and various processes associated with these two dif-

ferent modes of operation are described in mathematical terms on a macroscopic as

well as microscopic scale. At the end of this chapter, several published fouling models

are reviewed and assessed based on a number of criteria such as complexity, accuracy,

identifiability of parameters, extensibility and applicability to modelling MBR systems.

Whilst the list of publications describing fouling models is very long, the Author decided

to choose only those models for further analysis which seemed to be most applicable

for the purpose of this thesis, i.e. for integration with biological models. The study

presented in this chapter served as a basis for the development of the two fouling models

described in Chapter 6.

The second chapter of Part II, namely Chapter 6 describes the formulation of two

new fouling models. Whilst the first model describes just the ‘observable’ behaviour

of the membrane, i.e. the TMP and total membrane resistance as a function of time

and permeate flux, the second model takes a more detailed, ‘first principle’ approach

where the underlying fouling mechanisms are described with theoretically derived equa-

tions. The first, ‘behavioural’ model is based on the concept of Liang et al. [149] who

subdivided fouling into two parts: the long-term irreversible fouling and the short-

term reversible fouling. The model proposed in Chapter 6 adopts the same concept

but extends the model of Liang et al. [149] through an introduction of flux dependent

SMP deposition, addition of different cake control mechanisms, and addition of a back-

flushing mechanism. Whilst the fouling equations adopted in the first fouling model

differ from the widely accepted theoretical fouling equations, the model was proven to

predict the behaviour of rejection membranes during filtration of wastewater mixtures

at a technical scale with very good levels of accuracy. We shouldn’t however forget that

this model is a significant simplification of the fouling phenomena and is created for

the purpose of quick deployment and easy parameter identification, and is only valid

within a limited operational range, i.e. limited range of permeate fluxes and simulation

time horizons. The model is unable to predict certain phenomena observed during fil-

tration through semipermeable membranes such as e.g. two-stage TMP profiles [266].

The second proposed fouling model is able to represent these phenomena by adopting a

more detailed mechanistic approach. Classical filtration laws are combined and solved

simultaneously in a single three mechanism fouling model. The model assumes that all

three fouling processes: pore constriction, pore blockage and cake formation take place

on the membrane during filtration of polydisperse suspensions, however cake formation

occurs in sequence after pore blockage. The model follows the idea originally proposed

by Duclos-Orsello et al. [50]. The published model of Duclos-Orsello et al. [50] is mod-

ified as follows: an additional state variable which represents the resistance under the

blocked area is introduced; pore constriction parameter is flux-dependent; particle back-
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transport mechanisms are added. The model is found to exhibit very good agreement

with the measurements as explained in detail in Chapter 6.

Part III comprises Chapters 7 and 8 and builds on the developments presented in

Part I and Part II. Chapter 7 describes the formulation of an integrated MBR model

where the ASM3-based SMP and EPS biological model developed in Chapter 4 is com-

bined with the behavioural fouling model developed in Chapter 6. The MBR model

layout is built using the plant layout featured in the paper of Maere et al. [160] who cre-

ated a simple MBR benchmark model in a similar fashion to what had earlier been done

for a conventional ASP/FST process [37, 36]. However, whilst the model of Maere et al.

[160] does not consider membrane fouling or production of biopolymers in the bioreac-

tor, the integrated MBR model described in Chapter 7 describes both of these aspects

and additionally considers bi-lateral links that occur between the biological and the

fouling parts of the model. Chapter 8 describes the results of the simulations performed

on the newly developed integrated MBR model with inputs and operating parameters

defined in COST624 [37], Copp [36] and Maere et al. [160]. Model outputs include ef-

fluent concentrations of the selected state variables as well as composite variables such

as COD and TN as well as various quality indices and energy consumption indicators.

Outputs from this integrated MBR model are then compared with the outputs of the

MBR benchmark model of Maere et al. [160].

The combined EPS and SMP production ASM1-based model (CES-ASM1) biolog-

ical model adopted in the MBR system described in Chapter 7 contains three new state

variables compared to the Activated Sludge Model No. 1 (ASM1) originally used in

Maere et al. [160]. This difference in the number of state variables necessitated that the

model inputs and quality and energy performance indicators had to be reformulated in

CES-ASM1. Care was taken to ascertain that the new biological model and the original

model of Maere et al. [160] receive the same influent loads and composition and there-

fore, the outputs from these two models can be quantitatively compared. CES-ASM1

is combined with the behavioural fouling model described in Chapter 6 using the plant

layout adopted from Maere et al. [160]. The biological and the fouling model are in-

terfaced and linked together using the following relationships: (a) Irreversible fouling

depends on the SMP concentrations which are predicted in the biological model, whilst

the rate of SMP deposition depends on flux; (b) The specific cake resistance (SCR) used

in the reversible fouling equation depends on the EPS content in the activated sludge

which, again, is predicted in the biological model; (c) SMP retention on the membrane

affects SMP concentration in the bioreactor, which in turn has an effect on the rates

of other activated sludge process kinetics; (d) Cake detachment from the membrane is

linked to coarse-bubble aeration rates. This functional link is obtained from the 1D

quasi steady-state slug-flow simulation in a staggered grid representing a HF outside-in

membrane module.

Chapter 8 describes the simulation results obtained from the integrated MBR

model simulated with the inputs and simulation scenarios defined in COST624 [37],

Copp [36] and later adopted in Maere et al. [160]. The outputs obtained from the new
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MBR model are then compared with the results of the MBR benchmark of Maere et al.

[160]. The quantities being compared include state variables, composite variables, and

different environmental quality and energy consumption indicators described in Chap-

ter 7. The simulation results show that the CES-ASM1 model predicts lower sludge

yields and lower denitrification rates to ASM1. Such behaviour is a direct result of the

alteration of the organic substrate pathways caused by introduction of the SMP and

EPS kinetics. The results also indicate that the variations of the SMP and EPS content

in MLSS in response to diurnal variations in the influent flow and loading rates are too

small to have a significant impact on the membrane fouling whilst the fouling rates are

highly dependent on fluctuations of solids concentration in the membrane tank and the

flow rates. It has to be noted that the biological model used in the study does not

describe how biopolymer production changes in response to environmental stress, such

as low/high salinity, temperature, oxygen concentration, toxicity, shear, etc. The model

has only been calibrated on the systems which either operated under steady-state condi-

tions or in a batch mode. In order to ascertain that the model can correctly predict the

biopolymer concentrations also under diurnal flow and load patterns, the model needs

to be first validated under dynamic conditions.

Finally, Chapter 9 provides the overall conclusions of the original Author’s work

presented in Chapters 3-8 and outlines the areas for further research.

1.6 Contributions

During duration of this research project a number of contributions have been made to

the field of modelling and simulation of MBR systems. Three major contributions have

been identified - one for Part I and two for Part II of this thesis. A number of less

significant contributions have also been identified and listed below.

Part I

Major contribution

• The major contribution of Part I is the development of two new activated sludge

models which extend the ‘standard’ IAWQ ASM models with SMP and EPS kinet-

ics. The new models are considered to represent a higher level of complexity and

sophistication from the previous activated sludge models found in literature. The

new models are able to reproduce the bulk liquid SMP and EPS concentrations

in the activated sludge systems without compromising the prediction accuracy of

other parameters characterising the state of the activated sludge. See Chapter 4.

Subsidiary contribution

• An extensive and systematic review of the existing activated sludge models with

biopolymer production kinetics has been carried out. The models have been qual-
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itatively and quantitatively evaluated and then compared, followed by an assess-

ment of their practical application to simulation of MBR systems. See Chapter 3.

Part II

Major contributions

• The first major contribution of Part II has been the development of a behavioural

fouling model. The model is based on the concept of Liang et al. [149] who subdi-

vided fouling into two parts: the long-term irreversible fouling and the short-term

reversible fouling. The new model proposed in this thesis adopts the same concept

and extends the old model by introducing flux dependent SMP deposition, various

cake detachment mechanisms and a back-flushing mechanism. The new model is

able to predict TMP over a broad range of permeate fluxes and hydrodynamic

conditions. This constitutes a significant improvement to the old model which

was only valid over a rather narrow range of operating conditions. See Chapter 6.

• The second major contribution of Part II has been the generalisation and com-

bination of the classical filtration laws to form a single three mechanism fouling

model. Similarly to the earlier publications of Duclos-Orsello et al. [50] it is

assumed that the three following fouling processes: pore constriction, pore block-

age and cake formation, occur simultaneously. The proposed model expands the

existing models through introduction of the following changes: additional state

variable representing the resistance under the blocked area is introduced; pore

constriction parameter is flux-dependent; particle back-transport mechanisms are

added to the cake formation equation. See Chapter 6.

Subsidiary contributions

• A brief, structured description of various fouling mechanisms and theories, sup-

plemented with mathematical equations, is provided in Chapter 5 to provide the

reader with a broader understanding of membrane filtration and fouling in MBRs.

The reader is provided with a review of different fouling mechanisms and fouling

models accompanied with a critical review of their strengths and weaknesses.

• Particle back-transport is analysed on a particle level by breaking down the forces

acting on a single particle and a subsequent investigation of the particle deposition

criteria. See Chapter 5.

Part III

Subsidiary contributions

• The ASM1-based activated sludge model described in Chapter 4 has been in-

tegrated with the behavioural fouling model illustrated in Chapter 6 to form a

comprehensive description of a hollow-fibre immersed MBR reactor. The result-
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ing model of a MBR contains bidirectional links between the biological and the

filtration part of the system. It is assumed that SMP in the bioreactor directly

affect pore constriction/irreversible fouling whereas EPS have an influence on cake

formation/reversible fouling as they affect the specific cake resistance (SCR). The

retentive properties of the filtration membrane affect the bulk liquid SMP con-

centrations as the membrane retains the SMP particles inside the bioreactor. The

back-transport of particles from the membrane surface to the bulk liquid, i.e.

cake detachment, is linked to coarse-bubble aeration rate using a mathematical

expression derived from the 1D slug-flow hydraulic model. See Chapter 7.

• The bioreactor and the membrane models are connected and arranged in such

a manner as to represent the MBR benchmark simulation model (BSM-MBR)

plant layout of Maere et al. [160]. As a result, a de-facto new benchmark model

is created. This model offers a higher level of sophistication than BSM-MBR by

describing the interactions between both parts of the system and thus producing

more realistic results. See Chapter 7.

• An extensive simulation study using the new MBR benchmark model has been

conducted to evaluate the model’s performance and compare its results against

the benchmark model of Maere et al. [160]. The MBR model has been simulated

under various dynamic inputs to evaluate its behaviour over a range of operating

points. See Chapter 8.
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MBR technology in wastewater

treatment
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2.1 Brief technology overview

Definition 1. A membrane bioreactor (MBR) is a type of an activated sludge pro-

cess for wastewater treatment in which the biomass is retained in the bioreactor by

microporous semipermeable pressure-driven rejection membranes, usually operating in

the microfiltration (MF) and ultrafiltration (UF) range. The membranes are used for

biomass separation and effluent clarification and therefore serve as a replacement for

final settlement tanks (FSTs) traditionally used in a conventional activated sludge pro-

cess (CASP).

Replacement of sedimentation with micro- or ultra- filtration allows in MBR sys-

tems to maintain significantly higher mixed liquor suspended solids (MLSS) concentra-

tions compared to conventional activated sludge processs (ASPs) whilst obtaining al-

most complete clarification with „99.9% removal of solids. Whilst MLSS concentrations

in MBR systems are only capped from the practical reasons at around „20,000 mg/L

in a trade-off between capital expenditures (CAPEX) associated with reactor’s volume
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and operational expenditures (OPEX) associated with process aeration costs, mixing

costs and fouling control, the maximum allowed MLSS in CASP is in practice around

just 4,500 mg/L due to the existence of the, so called, maximum permissible solids flux

as explained in the Kynch’s theory of sedimentation [130]. Membranes used in MBR

systems are driven by pressure difference called trans-membrane pressure (TMP) which

creates energy potential allowing water with soluble components to pass through the

membrane whilst all particulate matter on are retained on the membrane surface. Other

types of membrane applications are extractive and diffusive systems which are used to

either extract or introduce a specific component through a selective membrane. These

two types of membranes however serve a different purpose and whilst such applications

are still in a research stage they will not be discussed further in this thesis. Semiperme-

able membranes are used in MBRs not only to retain the particulate matter inside the

bioreactor but also to provide a barrier for much smaller particles such as colloids and

individual bacterial cells. Hirani et al. [94] recorded 5-7 log removals of coliform bac-

teria whereas Simmons et al. [223] observed 2-5 log removals of human enteric viruses

for a range of different membranes and membrane bioreactors. Retention efficiencies

for bacteria, viruses and various colloidal substances depend on the membrane mate-

rial, membrane type, membrane pore size distribution (PSD) as well as the operating

conditions which may promote or hinder such processes as e.g. formation of a gel layer

which is found to act as a secondary barrier to impurities in the feed stream ultimately

causing higher rejection efficiencies [251, 252].

Definition 2. Membrane is a thin film-like porous structure separating two fluids. It

acts as a selective barrier between these two phases, allowing some specific particles,

molecules, or substances through when exposed to the action of a driving force while

blocking the passage of others. According to International Union of Pure and Applied

Chemistry (IUPAC), porous membranes can be divided into three categories based on

their pore diameters: microporous (d̄p ă 2nm), mesoporous (2nm ă d̄p ă 50nm), and

macroporous (d̄p ą 50nm), where d̄p denotes the mean pore diameter.

For a given membrane, the driving force applied on one side of the membrane

controls the rate of passage of the permeating components. This driving force results

either from the pressure (∆P ), concentration (∆c), temperature (∆T ) or electric poten-

tial (∆E) difference across the membrane. Classification of major membrane separation

techniques is provided in Table 2.1.

Selectivity of a membrane can be exploited to achieve one of the three goals:

1. Retain suspended and/or solute components whilst removing the solvent phase

(rejection membranes).

2. Selectively extract constituents (extractive membranes).

3. Introduce some components in a molecular form (diffusive membranes).

As briefly noted in the beginning of this section, MBRs employ pressure-driven rejection

membranes of the MF or UF type. Hence, only these two types of membranes will be

considered throughout this thesis.
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Table 2.1: Classification of major membrane separation techniques - Narȩbska [177].

Driving
force

Process Applied membrane Separation mechanism

∆P Microfiltration (MF) Porous Pore flow
∆P Ultrafiltration (UF) Porous asymmetric Pore flow
∆P Nanofiltration (NF) Porous, asymmetric with

ions on surface
Pore flow + Donnan effect

∆P Reverse osmosis (RO) Porous, asymmetric Solution-diffusive (or
sorption-capillary solvent
flow)

∆c Gas separation (Gs) Asymmetric with non-
porous dense skin

Sorption-diffusive

∆c Pervaporation (Pv) Asymmetric, nonporous Sorption-diffusive
∆c Vapour permeation (VP) Asymmetric, nonporous Sorption-diffusive
∆c Dialysis (D) Polymeric, strong hydrated Capillary transport
∆c Membrane extraction (ME) Porous Diffusion
∆c Liquid membranes (LM) Liquid Solution-diffusive

∆T Membrane distillation
(MD)

Porous, lyophobic Diffusion

∆E Electrodialysis (ED) Gel, ionic Ion migration

∆P = Pressure difference, ∆c = Concentration difference, ∆T = Temperature difference, ∆E = Electric

potential difference

2.1.1 Membranes in MBR systems for wastewater treatment

Pressure-driven rejection membranes are composed of inorganic compounds, e.g. ceram-

ics, metals, glass and graphite, or organic compounds such as different types of poly-

mers. With regards to membrane structure, the membrane with pores of significant sizes

making up a large area compared to the total membrane area is termed porous, while

one with no discernible pores in the macroscopic sense is termed a nonporous or dense

membrane. Membrane with reasonably cylindrical pores where the aerial porosity on

both sides of the membrane is identical is termed a symmetrical isotropic membrane,

while one with conical pores where porosity in the surface layer is lowest and grows

perpendicular to the surface, is called a porous asymmetrical anisotropic membrane.

Asymmetric membranes can also be dense.

One of the biggest problems facing MBR operators is the loss of membrane’s per-

meability due combined effects of fouling and clogging.

Definition 3. Membrane fouling is a combined effect of a number of physical, chemical

and biological processes which all lead to the decrease of membrane’s permeability and

thus increase of its resistance. As a result, the membrane creates a higher pressure

drop during filtration and requires higher TMPs in order to maintain the required flux

values.

Fouling leads to an increase in capital expenditures (CAPEX) as well as operational

expenditures (OPEX) in MBR plants. CAPEX are associated with periodic purchasing

of new membrane modules once the detrimental effects of fouling can no longer be

reversed. OPEX are due to permeate pumping, control of reversible fouling (such as air-
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scouring, backwashing and provision of crossflow velocity (CFV)), and use of chemicals

for removal of irreversible fouling.

Extent of membrane fouling depends on the membrane characteristics and interac-

tion with the feed and biomass as well as on the operational procedures. In particular,

membrane fouling is believed to be affected by several different factors, mostly soluble

microbial products (SMP) and bound extracellular polymeric substances (EPS) concen-

trations in the bulk liquid, membrane type, floc size distribution and sludge morphology,

and can be controlled by maintaining appropriate hydrodynamic and bioprocess con-

ditions in the bioreactor and application of periodic cleaning procedures (backwashing,

relaxation and chemical cleaning). Membrane fouling needs to be kept under control and

at economical levels as it leads to reduced productivity, shortened membrane lifetime

and increased operational costs.

Fouling can be classified into the following three categories, based on the following:

• Permeability recovery. Reversible fouling is the type of fouling that can be

recovered by physical means such as backwashing or relaxation. irreversible fouling

is the type of fouling that cannot be removed by physical means, but can be

recovered with chemical reagents, such as caustics, oxidants, acids or various other

chemical substances such biocide agents, chelating agents such as EDTA, and

enzymatic detergents. Chemical clean can be performed either on-line or off-

line. Irrecoverable fouling is the type of fouling which cannot be removed with

any known methods and ultimately leads to the loss of productivity and finally

necessitates the replacement of the membrane modules.

• Inorganic/organic type of the foulants. Inorganic fouling is caused by ad-

sorption and precipitation (scaling) of dissolved inorganic solutes out of solution

onto the membrane surface. Organic fouling is caused by formation of biofilms on

the membrane surface due to biological activity in the feed and by attachment of

various colloidal and particulate substances of biological origins, such as bacteria,

SMP, EPS, etc.

• Mechanistic fouling mechanism. Fouling can be approximated with one of

the five mechanistic models for membrane fouling such as: pore constriction, pore

blocking, cake formation, biofilm growth and gel-layer formation.

Definition 4. Clogging results from obstruction of membrane module channel pas-

sages by various solid materials leading to restriction of flow in the vicinity of the mem-

brane surface (sludging) and blocking of membrane channel inlets (matting). Clogging

can be reduced through application of appropriate upstream screening and provision of

adequate turbulent conditions within the membrane modules.

2.1.2 Process configurations

Membrane bioreactors can be configured either as a sidestream process in which the

membranes are placed outside the bioreactor or as an immersed process where the
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membranes are submerged in the bulk liquid. In the sidestream process mixed liquor is

pumped at velocities of around 2 ´ 5 m s´1 through an externally located membrane

module. During its passage a fraction of the liquid’s volume is filtered and leaves on

the other side of the membrane as permeate. The remaining volume of slightly con-

centrated liquid called retentate is rejected by the membrane and flows out on the

other end of the membrane module and back into the bioreactor. In immersed process,

pumping and recirculation is avoided as the membrane is directly immersed in the bulk

liquid. Whereas in sidestream systems the driving force is provided by recirculation

pumps creating high flow and pressure conditions inside the membrane module, im-

mersed membranes are operated with suction pumps creating vacuum on the permeate

side of the membrane. Both configurations are represented in a schematic diagram in

Figure 2.1.

Figure 2.1: Membrane placement and flow routing in sidestream (a) and immersed (b)
MBR configurations.

The underlying mechanisms of filtration, the operating conditions and the types of

membranes used in both configurations are fundamentally different what necessitates

adoption of different control and operating strategies, especially in the area of fouling

control. Both systems differ significantly and have different associated capital expen-

ditures (CAPEX) and operational expenditures (OPEX). The mode of filtration in

sidestream systems is called cross-flow because the liquid runs parallel to the mem-

brane surface and perpendicular to the permeate flow across the membrane. On the

other hand, immersed systems operate in the, so called dead-end filtration, where the

feed flow is in the same direction as the permeate flow. Whilst cross-flow mode of

operation simultaneously combines filtration and prevention of cake buildup, dead-end

filtration requires additional mechanisms to counter-affect particle deposition. In order

to create shear conditions on membrane surface, air bubbles are injected at the bottom

and parallel to the membrane, what is known as air scouring.

In sidestream MBRs the main method of reversible fouling control is by creating

crossflow velocity (CFV) near the membrane surface. Originally, the permeate flow

rate was solely dependent on the recirculation flow rate which was proportional to the

pressure difference across the length of the module. Such process was very expensive

to operate as the CFV had to be unnecessarily higher than required from the point of
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view fouling control in order to generate the required TMP across the membrane. In

order to detach the permeate and fouling control mechanisms and, at the same time,

increase the operational flexibility of the sidestream systems, some designs now include

a permeate suction pump which assists in permeate withdrawal and allows the operators

to increase the pressure difference across the membrane without necessarily increasing

the recirculation. Some of the newer sidestream MBRs also allow air to be injected into

the module to generate more turbulent conditions on the feed side of the membrane and

hence intensify cake detachment, thus further reducing the requirement for high CFVs.

As a consequence of large shear rates produced by high CFVs, sidestream systems can

operate under relatively high sustainable permeate fluxes of around 50´100 L m´2 h´1

whilst immersed system are only able to achieve fluxes of about 15 ´ 50 L m´2 h´1.

Operation under high flux rates in sidestream systems comes at the cost of higher

required energy inputs which may vary between 3 ´ 15 kWh m´3 - significantly larger

than 0.3 ´ 0.6 kWh m´3 characteristic of the immersed systems. The actual energy

consumption in a MBR unit will however greatly depend on its configuration and the

manner in which the unit is operated.

In the absence of the recirculation stream, TMP in immersed MBRs is generated

solely by the suction pump installed on the permeate side of the membrane. In some

systems equipped with flat sheet (FS) membranes and operating at low permeate fluxes,

the required flux rate can sometimes be achieved solely under hydrostatic head. The

suction pump is only used for assistance and to allow a greater operational flexibility.

Cake deposition is usually prevented, as described in the previous paragraph, by provi-

sion of coarse air bubbles which induce shear on the membrane surface and cause the

deposited particles to detach and return back to the bulk liquid or even prevent the

particles of certain sizes to reach the membrane. The so-called selective deposition is

described in greater detail Chapter 5 in Section 5.4. Although immersed MBRs operate

under lower fluxes which implies lower energy demand for pumping and amelioration

of reversible fouling compared to sidestream MBRs, this comes at the cost of higher

required CAPEX for purchasing of additional membrane surface area.

Membranes in both MBR configurations have to be periodically subjected to chem-

ical cleaning in order to remove the effects of the, so-called irreversible fouling and, at

the same time, to get rid of other larger deposited materials which clog the channels in

the membrane modules. Chemical cleaning of membrane modules can be carried out

inside the membrane unit housing, which is called cleaning in place (CiP) or off-line

after they have been removed from the whole unit.

Immersed MBRs are usually equipped with flat sheet (FS) or hollow fibre (HF)

membranes whereas sidestream configurations most often use multi-tube (MT) mem-

branes. Since immersed systems operate at lower fluxes and therefore require more

membrane area per flow but are less energy intensive and operate at smaller TMPs

they are usually used in municipal and large scale wastewater treatment applications.

As the side-stream configurations are more energy intensive but operate at higher fluxes

and are therefore more compact whilst also offering higher operational flexibility they

31



T. Janus 2.1. BRIEF TECHNOLOGY OVERVIEW

are usually used in industrial applications.

Comparison of various properties of the sidestream and immersed MBRs against a

CASP are summarised in Table 2.2.

Table 2.2: Comparison of sidestream and immersed MBR configurations against con-
ventional activated sludge processs (CASPs).

CASP Sidestream MBR Immersed MBR

Typical configuration1q ASP + FST T, PF HF, FS
Mode of operation Crossflow Moderate crossflow
Packing density High Low
CAPEX

Footprint Normal ą 10 times smaller
Clarifier Yes No
Tertiary treatment Sand filtration No
Process stability Susceptible to

bulking and
toxicity

Susceptible to toxicity and high flows

OPEX

MLSS (mg L´3) ă 4, 500 8, 000 ´ 20, 000

HRT (h) 6 ´ 24 2 ´ 6

SRT (d) ă 20 15 ´ 100

Sludge yield (gSS g´1BOD5) ą 0.75 ă 0.8

Bioreactor volume (m3) Normal 4-5 times smaller 4 times smaller
TMP (bar) N/A 3 ´ 6 0.05 ´ 0.5 (vacuum)
α factor 0.6 ´ 0.8 0.3 ´ 0.7 0.3 ´ 0.7

Permeate flux rates (L m´2 h´1) N/A 50 ´ 100 15 ´ 50

Permeability (L m´2 h´1 kPa´1) N/A 0.07 ´ 0.3 0.5 ´ 5

Recycle ratio (m3 feed m´3 effluent) 1.5 ´ 2.5 25 ´ 75 N/A

Sup. velocity (m s´1) N/A 2 ´ 6 0.2 ´ 0.3 2q

Sup. velocity (m3 air m´3 permeate) N/A N/A 7 ´ 30

Energy consumption (kWh m´3) 0.15 ´ 0.25 3q 4 ´ 12 4q 0.2 ´ 1 4q

Fouling control methods N/A CFV, backwash-
ing, chemical
cleaning

aeration, backwash-
ing, backpulse, re-
laxation, chemical
cleaning

1q T - tubular, PF - plate and frame, HF - hollow fibre, FS - flat sheet

2q Calculated from gas superficial velocity - Yamanoi and Kageyama [263]

3q Based on Europe’s larger plants - inversely proportional to scale

4q Depending on size

MBRs gradually become more popular on the industrial as well as municipal

wastewater treatment markets. Their success can be mainly attributed to their su-

perior effluent quality and a much smaller physical footprint compared to CASP. As

the effluent quality requirements get more stringent and water unit prices become higher

making water recycling options more viable, while membrane unit prices continue to fall,

the MBR technology is becoming more cost-effective against conventional wastewater

treatment solutions. Recent market indicate that the market value of the MBR tech-

nology was approximately $217 million in 2005 and rising at an average annual growth

rate of 10.9% - significantly faster than other competitive processes such as aerated

filters or sequencing batch reactors (SBRs) [116]. As shown in Figure 1 on page 7 BCC

research shows that the global market for membrane bioreactor technology is expected

to grow at a compound annual growth rate (CAGR) of 13.2% increasing in value from
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an estimated $150 million in 2002 to a forecasted $627 million by 2015.

2.1.3 Types and classification of semipermeable membranes

The most common membrane processes in water and wastewater treatment are, re-

spectively, reverse osmosis (RO), nanofiltration (NF), ultrafiltration (UF) and micro-

filtration (MF). Each filtration process is characterised with its filtration spectrum,

i.e. range of particle/molecule diameters which are rejected by the filtration medium.

In membrane filtration, filtration spectrum depends on the membrane PSD and on its

surrogate parameter, molecular weight cut-offs (MWCOs) - see Figure 2.2.

Traditional particle filtration in the far right of the filtration spectrum is usually

used for effluent polishing (tertiary treatment) to remove larger solid particles after

final sedimentation. RO and NF are normally used in water treatment and are seldom

installed on wastewater treatment plants (WWTPs). Nevertheless RO and NF can

be installed after MF and UF as a so-called ‘toilet to tap’ solution where wastewater

is completely treated and converted to drinking water. Whilst full-scale municipal

WWTPs of this kind are still rare, NF and RO applications in industrial wastewater

treatment are increasingly more common.

RO is the finest level of filtration available and forms a barrier to all dissolved

salts and inorganic molecules and organic molecules with molecular weights (MWs)

over 100 Da. Rejection of dissolved salts is typically from 95% to over 99% what allows

production of fresh drinking water from saline and brackish waters. The effluent is

completely devoid of bacterial cells and viruses. NF rejects particles of the size over

1 nm (10 Å) and has a MWCO of 100-20,000 Da. NF can remove virtually all cysts,

bacteria, viruses and humic substances. Dissolved salts are rejected at the ratios of

20-98%. Salts with monovalent anions have rejections of 20-80% whereas salts with

divalent anions have higher rejections of 90-98%.

MBR reactors are equipped either with UF or MF membranes. UF filtration pro-

vides a barrier for macro-molecular particles in the range between 20 to 1,000 Å, i.e.

up to 0.1 µm. Most of the colloids, proteins, microbiological contaminants and large

organic molecules are rejected whereas all dissolved salts and smaller molecules pass

through the membrane and end up in the permeate. Most UF membranes have MWCO

values between 10,000 and 200,000 Da. MF membranes remove particles in the size of

approximately 0.1 to 1 µm. Suspended particles and large colloids are rejected while

macromolecules and dissolved solids pass through the membrane.

Semipermeable rejection membranes, regardless of their type, whether MF, UF,

NF or RO, are characterised with the following parameters which determine their per-

meability characteristics, susceptibility to fouling, mechanical resistance, resistance to

environmental conditions and influence the membrane module design:

1. Material;

2. Porosity;
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Figure 2.2: Membrane filtration spectrums, molecular weight cutoffs, and types of re-
tained substances for different membrane filtration processes © Copyright 1990, 1984 Osmonics

Inc. Minnetonka, Minnesota, USA .
1q Approximate molecular weight is measured in Daltons (Da)

3. Pore size distribution (PSD);

4. Hydrophobicity (measured as a contact angle);

5. Surface roughness (measured with atomic force microscopy);

6. Surface charge (measured as ζ potential);

7. Clean membrane permeability;

8. Packing density;

2.1.4 Advantages of MBR technology

Advantages of MBR systems versus conventional treatment processes are listed below:

1. High quality, completely clarified (i.e. near zero effluent suspended solids) and,

to a large degree, disinfected effluent produced in a single treatment process. The

level of disinfection depends on the membrane pore size distribution (PSD) as

well as the operating conditions. Whilst MF membranes are capable of removing

most of bacterial cells, the UF membrane modules can remove bacteria and some

viruses - see Figure 2.2 for details.

2. Independent control of sludge retention time (SRT) and hydraulic retention time

(HRT). In CASP, the maximum obtainable MLSS concentration and therefore

SRT within a given reactor volume, depends on sludge separation and thickening

in a FST. Clarification and thickening processes in turn depend on the hydraulic

conditions inside the FST and decrease with the upflow velocity (UFV), recircu-

lated activated sludge (RAS) and influent flow rates. They are also dependent on

sludge floc size distribution (FSD) and morphology which vary with the bioreac-
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tor’s HRT. As a consequence, SRT cannot be controlled independently of HRT as

the maximum attainable MLSS concentration is highly dependent on the influent

flow rate to the plant. Conversely, in MBRs sludge separation efficiency is affected

neither by MLSS nor influent flow rates. Hence, no risk of biomass washout other

than through foaming exists. It is thus theoretically possible to maintain a wide

range of MLSS concentrations and SRTs irrespectively of the flow rate through

the plant.

3. Higher MLSS concentrations and higher SRTs compared to CASP process lead

to an improved removal of trace organics through establishment of specialist mi-

croorganisms in sludge biocenosis [203]. MLSS concentrations in CASP reactors

are limited to around 2,000-4,500 mg L´1 depending on sludge settleability, as

higher sludge concentrations would lead to the violation of the critical permissible

mass flux in the FSTs [130]. MBRs, on the other hand, can operate with poor

settling, non-flocculent and filamentous sludges at MLSS concentrations of around

8,000-20,000 mg L´1. This allows the bioreactor’s volume to be reduced by 200%

to 500% compared to CASP. Higher MLSS concentrations are also possible but

at the cost of increased OPEX due to cake buildup on the membrane surface and

reduction of oxygen transfer.

4. Smaller land footprint compared to CASP as a result of elimination of FSTs and

tertiary processes such as e.g. biological aerated filters (BAFs) or sand filters

and reduction of the bioreactor’s volume as mentioned above. The reduction in

footprint can be as high as 70% depending on initial CASP design, i.e. treatment

process complexity, amount and type of tertiary treatment units, etc. Lower land

requirements make MBRs an attractive option for construction in developed urban

areas as part of a decentralised wastewater treatment system, grey-water recycling

within buildings and when retrofitting older WWTPs on congested sites.

5. Reduced waste activated sludge (WAS) production as a result of longer SRTs

promoting sludge lysis and stabilisation. Operation at longer SRTs also leads

to higher and more stable removal of organic matter and ammoniacal nitrogen

(NH`
4
-N), thus higher effluent quality.

6. Ease of operation due to elimination of complicated recycling streams and FSTs

and combination of biological and sludge separation processes in a single tank.

This point is however debatable due to additional required maintenance proce-

dures for periodic membrane cleaning and ultimately replacement as well as oc-

casional suppression of foaming in MBRs caused by accumulation of biopolymers,

especially EPS, [116].

In summary, the above characteristics of MBR systems enable them to be cost-

effective in applications where either land is scarce, high effluent quality is required or

where treated effluent needs to be reused at source.
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2.1.5 Disadvantages of MBR technology

MBR systems also possess a number of disadvantages over CASP systems. These dis-

advantages are outlined below:

1. Larger operational expenditures (OPEX) associated with purchasing membrane

cleaning chemicals and energy consumption for process aeration and sustained

operation of the membranes. The energy costs in membrane filtration result from

permeate pumping, backwashing, and provision of CFV and/or aeration for re-

versible fouling control. The chemicals are used to partly recover the membrane’s

permeability lost due to irreversible fouling. Higher process aeration costs of a

MBR compared to a conventional activated sludge process (CASP) result from

lower O2 transfer rates. O2 transfer rates are found to be hindered by the pres-

ence of suspended solids and diminish exponentially with MLSS as described in

Equation 7.21 on page 225. Due to lower O2 transfer rates, higher volumetric

air-flows in diffused air aeration systems are required to supply the same amounts

of oxygen to aerobic microorganisms in activated sludge. A break-down of energy

usage for different activities in an immersed HF MBR equipped with ZeeWeed

membranes is shown in Figure 2.3. Figure 2.3 shows that membrane aeration is

the second largest consumer of energy after process aeration.

2. Higher CAPEX incurred mainly by installation and replacements of relatively ex-

pensive membrane modules. MBR systems also require better upstream screening,

typically with 1-3 mm spacings to prevent the clogging of the membrane chan-

nels, especially by fibrous materials such as hair. These capital costs can often

be partly offset by lower costs of construction due to smaller process volumes and

lower land requirements.

3. Higher risk of foaming promoted by larger air flows and accumulation of EPS.

4. Greater sensitivity to shock loads as a consequence of lower HRT, thus smaller

volumes and hence lesser attenuation. Although MBR systems are less prone to

biomass washouts at high flow rates than conventional systems equipped with

FSTs which can only thicken and return a certain flux of solids depending on

floc shape, surface area and sludge volume index (SVI), MBRs are still prone

to high flow rates. Once the permeate flux exceeds the so-called critical-flux,

severe fouling of the membrane begins. This implies higher operating costs for

subsequent chemical cleaning and pumping under higher TMPs, which ultimately

leads to lower productivity as a result of the decline in the permeate flow.

5. Lower dewaterability of the surplus activated sludge resulting from the presence

of the so called pin-point flocs, i.e. flocs with diameters below 1 mm. The pin-

point flocs are produced in MBR systems by shear forces caused by cross-flow (in

side-stream systems) and mixing and aeration (in immersed systems). The shear

forces acting on the flocs lead to collisions which in turn cause the flocs to rupture

ultimately leading to a decrease in floc diameters. Sludge of poor dewaterabil-

ity requires larger sludge processing facilities and higher doses of coagulants and
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flocculants, therefore increasing both CAPEX and OPEX of WWTPs.

6. Although MBRs combine several otherwise separate processes such as bioreactor,

FST and various tertiary treatment units within a single tank, hence they are less

complex than CASPs, they often require more complex control and automation

equipment as well as specialised staff to enable smooth and robust operation of

the membranes.

7. Due to relatively high although gradually decreasing CAPEX and OPEX, MBRs

are still less competitive than CASP systems on large municipal wastewater treat-

ment plants (WWTPs) where only intermediate effluent quality is usually required

and the land availability is usually not an issue.

8. Most of the above deficiencies are related to membrane fouling and membrane

channel clogging which have been defined earlier - see Definition 3 on page 28 and

Definition 4 on page 29.
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Figure 2.3: Energy consumption in a Zenon ZeeWeed immersed MBR Chris Jeffery, Zenon

Environmental Inc., SAWEA Workshop 2005 .

In summary, large treatment efficiencies and high effluent quality achievable within

small process volumes, i.e. process intensification comes at a cost of higher OPEX and

often also CAPEX. MBR systems are thus viable under certain circumstances e.g.

where land availability is an issue and high effluent quality, water reuse and/or robust

and maintenance-free operation are required and play a crucial factor in the selection of

an appropriate treatment process. Where land availability and water scarcity are not an

issue and effluent consents can be met without extensive tertiary treatment (i.e. in cases

of large scale municipal WWTPs discharging to large non-sensitive water bodies) MBRs

lose their competitive edge over conventional processes due to higher OPEX. Although

most of research and development in this area is currently focussing on reducing this gap

and, as a result of this research, MBRs are gradually becoming more energy efficient,

the difference in treatment economies of MBR and CASP systems (see Table 2.2 for

reference) still has a limiting effect on the growth of the MBR market.
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2.1.6 Applications of MBR technology

Thanks to their advantages, as listed above in Section 2.1.4, MBRs are applied in many

different wastewater (WW) treatment schemes. The list presented below is by no means

exhaustive, although shows a variety of uses for the MBR technology.

1. Municipal WW treatment where high effluent quality is required (i.e. effluent is

discharged to a sensitive water body or is further treated on NF or RO membranes;

2. Municipal WWTP refurbishments where process capacity needs to be increased

but the available land is limited;

3. Industrial WW treatment with process water recycling, e.g. in the water intensive

food industry;

4. Industrial WW treatment where sludge bulking is likely or where removal of spe-

cific contaminants such as e.g. endocrine disruptors is required;

5. Packaged MBR plants which require small footprint, very low maintenance and

modular design;

6. Black-water / grey-water / rainwater recycling plants;

2.2 Research trends in MBR reactors

As a substantial part of OPEX of a MBR reactor is required to counter the negative ef-

fects of membrane fouling, most of the research projects on MBRs are either directly or

indirectly focused on minimisation of fouling. Most of the research is focussed on seek-

ing optimal operating conditions, development of membranes less prone to fouling, more

energy-efficient reactor designs, influent pretreatment and dosing of various additives.

This thesis is focused on the first task, i.e. development of a mathematical model of an

immersed membrane bioreactor (iMBR) which can be used for model-based process op-

timisation, minimisation of energy consumption and development of energy-conserving

operational and control strategies.

Selection of optimal operating conditions is not straightforward because the same

process outputs are affected by more than one control variable. For example, increasing

air-scouring will raise the energy costs for aeration but at the same time, lower the

reversible fouling rates and thus, decrease the energy costs for permeate pumping. It is

however also possible that raising the air-scouring rate may increase rather than decrease

fouling by promoting the formation of denser cakes of higher specific cake resistance

(SCR). Process engineers usually need to find a compromise between CAPEX and

OPEX. Higher capital investments for larger bioreactor volumes or total membrane area

will lead to lower MLSS concentrations and lower operating fluxes and hence decrease

the reversible and irreversible fouling rates. By increasing the MLSS concentration

and therefore the SRT, on the other hand, cake accumulation will also increase but

irreversible fouling and often also reversible fouling may become smaller due to lower

SMP and EPS contents in the bulk liquid. Too much of an increase in MLSS will
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however substantially decrease the oxygen transfer efficiency leading to higher required

airflow rates for process aeration and will increase the rates of clogging and reversible

fouling.

Such complex operational issues facing MBR plant operators led to heavy research

and development in the area of process control and optimisation, development of cheaper

and less prone to fouling membranes, influent pretreatment, development of anti-fouling

additives and optimisation of membrane modules designs. Some of the research areas

associated with MBR systems are listed below.

1. Better understanding of membrane fouling and clogging mechanisms;

2. Interactions between biological and membrane parts of the process;

3. New membrane processes and applications, e.g. forward osmosis in sewer-mining;

4. Cheaper and more resistant membranes;

5. Less fouling membranes (surface modification, new membrane materials);

6. Additives;

7. Influent pretreatment;

8. Mitigation/reduction of fouling through new control strategies and fouling control

devices;

9. Membrane module design optimisation;

10. Bioreactor design;

11. Integrated systems, such as activated sludge (AS)-MBR, biofilm-MBR, anaerobic

MBR, etc.

2.3 Research questions addressed in this thesis

Since, as described earlier, MBRs are often criticised for relatively high OPEX due to

their high energy demands and consumption of chemicals, this research is focused on

creating an immersed MBR model which can be used by plant designers and operators

for energy and process optimisation. This model is validated on a number of experimen-

tal data and can be integrated with other process models for the purpose of plant-wide

design, control-strategy design, optimisation, decision support and education. The re-

search first explores the existing theories and empirical evidence on polymer production

in activated sludge systems and fouling of MF and UF membranes. As most of the

existing models were found to be either incapable or not thorough enough to be used

in an integrated MBR model, new models were developed for both parts of the system,

leading to new knowledge. Selected new models are linked together through specific

interface models and share the same state variables - see Figure 1.4. These models

relate the reversible and irreversible fouling rates to the SMP and EPS concentrations

predicted by the activated sludge model (ASM), link cake detachment to coarse bubble

aeration rates and permeate fluxes, define SMP deposition as a function of permeate

flux, and describe SMP retention on the membrane as a function of SRT. The integrated
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MBR model is built using the plant layout used in the MBR benchmark publication of

Maere et al. [160] and simulated with the inputs and under the operating parameters

defined in COST624 [37], Copp [36] and Maere et al. [160].

The aims of this research can be broken down into answering the following specific

research questions:

1. Can a combined SMP and EPS kinetic model of Laspidou and Rittmann [135] be

integrated into ASM1 and ASM3 activated sludge models and used to successfully

predict the SMP and EPS production in a real wastewater treatment system.

2. Can a simple behavioural fouling model be used for the description of a full scale

MF or UF filtration system.

3. Is it possible to predict a two-stage TMP profile with a three mechanism mecha-

nistic fouling model.

4. What functional relationship exists between the superficial air velocity in coarse

bubble aeration and shear stresses on the surface of immersed hollow-fibre mem-

branes.

5. Can a developed MBR benchmark model allow more comprehensive and realistic

simulation and optimisation studies of MBR systems.

2.4 Summary

To summarise, MBR is an intensified activated sludge process offering superior treat-

ment efficiency in a much smaller reactor volume compared to a CASP process. The

apparent benefits of MBRs come at a cost of higher operational and often capital ex-

penses, thus limiting the use of membrane reactors to applications where either superior

effluent quality or small footprint are required. The applications of MBRs are many in

water-intensive industries where it becomes cost-effective to recycle wastewater into pro-

cess water. As membrane modules get progressively cheaper, requirements for treated

effluent quality become more stringent, and operation of MBRs gradually becomes more

cost-effective, the market for MBRs, both in industrial as well as municipal WW treat-

ment applications, grows in size.

Fouling and clogging of membranes are however still a major concern. Thus, sig-

nificant research and development efforts are made to limit the extents of fouling and

clogging either through a development of lesser fouling membranes, more energy ef-

ficient module designs, process modification, invention of fouling reduction additives,

and process optimisation. The last task can be achieved either on a physical system,

which is likely to be very time-consuming and costly, or with the help of dynamic math-

ematical models. Since at present no such models are available for MBR systems, work

presented in this thesis describes the development of a dynamic mathematical MBR

model for process optimisation and simulation.
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3.1 Principles of modelling activated sludge systems

Activated sludge bioreactors are very complex systems with regards to hydraulics, bio-

chemical reactions and variability of influent wastewater composition. Activated sludge
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bioreactors are thus very difficult to model and one has to make a significant number

of simplifications before constructing a feasible activated sludge bioreactor model that

can be simulated within realistic time-scales.

Activated sludge bioreactors come in different shapes, sizes and configurations,

although in this thesis, only a small subset of them, namely aerated continuously fed

immersed membrane bioreactors (MBRs) are considered. For more information about

these as well as other types of activated sludge bioreactors the reader is referred to

Tchobanoglous et al. [236]. A brief overview of MBR reactors and the MBR technology

has been provided in Chapter 2.

3.1.1 Bioreactor hydraulics

Flow patterns through continuous flow bioreactors are very complex in nature due to

often complicated tank geometries as well as positioning and construction of inlets,

outlets, mixers, baffles and aeration devices. Depending on these features as well as

various operating conditions, such as e.g. liquid and air flow rates and mixing intensi-

ties, reactors may exhibit a number of usually unwanted hydraulic conditions such as

internal recirculation loops, density currents, short-circuits and dead-zones [123]. These

hydraulic conditions affect the residence time distributions (RTDs) of the liquid, solid

and gaseous phases in the mixed liquor.

To represent all of the above mentioned hydrodynamic effects in a mathematical

model one has to discretise the bioreactor’s geometry into usually very large number

of ‘elements’ or ‘volumes’ and solve the discretised Navier-Stokes equations of mass,

momentum, and energy conservation on the resulting grid of points called a mesh.

The model takes shape of a, usually, large set of algebraic equations which tend to

require significant processing power and memory resources for solving. The number

of equations and thus, the required computational effort additionally become higher if

reactive flows with biochemical reactions are to be considered. Although Computational

Fluid Dynamics (CFD) has been applied to simulate a number of various processes for

wastewater treatment, e.g. [42, 14, 112, 71], a fully dynamic three-dimensional (3D)

flow simulation coupled with biochemical activated sludge model is not likely to be

realistic on a desktop computer in the near future due to very long expected simulation

times, possibility of poor convergence and the time it takes to formulate and set-up such

a model for a physical unit. Although attempts are being made to simulate activated

sludge bioreactors with CFD models coupled with activated sludge models [198], most

of the times, hydrodynamics of the bioreactor are neglected and reactors are assumed

to exhibit ideal plug flow or completely-mixed flow patterns.

However, as full scale bioreactors seldom exhibit a fully mixed or ideal plug-flow

behaviour, the internal flow pattern will usually fall somewhere in between these two

extremes. These intermediate, not fully-mixed nor plug-flow conditions are usually

modelled with a cascade of reactors as shown in Figure 3.1. As the number of reactors

(N) in the cascade increases, the residence time distribution (RTD) in the cascade
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tends to resemble one of a plug-flow and ultimately reaches one of ideal plug-flow when

N Ñ 8. The structure of the cascade of bioreactors can be adjusted by varying the

number, volumes and sequence of completely stirred tank reactors (CSTRs), recycle

rates, addition of sidestream tanks to represent dead-zones, introduction of by-passes

to represent short-circuits, etc.

Identification of the ‘tank-in-series’ model topology is usually carried out first by

identifying recirculation zones, dead-zones and short-circuits in the physical system

through tracer tests, i.e. the analysis of time response to pulse or step change in

the concentration of an introduced substance to the influent, and then by fitting the

response curve of the mathematical ‘tanks-in-series’ model to the measurements [193].

Practical experiences with identification of the structures of wastewater treatment plant

models using the ‘tanks-in-series’ approach often show that the structure of connections

between reactors changes with operating conditions (influent flow rate, aeration rate,

mixing, etc.) [3]. As tracer tests are usually carried out at just a single operating point,

the modelled RTD is very likely to differ from the RTD of the physical system upon

the change of the operating conditions. Despite of its limitations, this approach is at

present the only viable option for process engineers due to high computational demand

posed by hydrodynamic models, as already mentioned above.

Figure 3.1: Graphical representation of a cascade of N CSTRs.

Figure 3.2: Graphical representation of a variable (a) and constant (b) volume CSTRs.

Each bioreactor in Figure 3.1 and Figure 3.2 is described with a general mass

balance equation of the following form.

d

dt
pCV q “

ÿ
sources ´

ÿ
sinks (3.1)

where C denotes the vector of concentrations of various components in the bioreactor

and V is the liquid phase volume.
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Concentration C P C of each component inside the bioreactor is diminished by

sinks and increased by sources. In the bioreactors described in this thesis, these sinks

and sources are attributed to the mass flow of liquid with main outflow and inflow,

mass flow of air (e.g. aeration), secondary inflows and outflows (e.g. chemical dosing or

waste activated sludge (WAS) withdrawal) and biochemical reactions in the bulk liquid.

If aeration and chemical dosing are disregarded, mass balance equation for any CSTR

can be written as follows:

d

dt
pCV q “ qinf Cinf ´ qeff Ceff ` rV (3.2)

where Cinf , C and Ceff denote the vectors of concentrations of all considered wastewater

constituents respectively in the influent, bulk liquid and effluent; r is the vector of

reaction rates and dimprq “ dimpCq; V is the reactor’s active volume and qinf ; and

qeff are the influent and effluent flow rates.

After differentiating Equation 3.2 with respect to t and bearing in mind that in

a completely stirred tank reactor (CSTR) Ceff “ C, the mass balance of a variable

volume CSTR can be expressed with a set of two following ordinary differential equations

(ODEs).

dC

dt
“ qinf

V
pCinf ´ Cq ` r (3.3)

dV

dt
“ qinf ´ qeff (3.4)

with I.C. Cp0q “ C0 and V p0q “ V0

The ratio
qinf

V
in Equation 3.3 defines the dilution rate D, i.e. a reciprocal of the

hydraulic retention time (HRT).

As the active volume of a constant volume CSTR is time invariant, the left hand

side of Equation 3.4 becomes zero and the mass balance model of the CSTR reduces to

just a single equation.

The reaction term r in Equation 3.3 can be calculated using different models and

modelling approaches as described in Section 3.1.2 below.

3.1.2 Principles of modelling biochemical reactions

Biochemical process kinetics can be modelled on a macroscopic and on a microscopic

level. The macroscopic models, which are used in this thesis, describe the biochemical

processes with mass balance equations for elementary elements C, N, and P using

gross formulae for the biomass, substrates and products. Substrates are assumed to

be converted into products and biomass in a single step without any consideration

of complex reactions occurring on a single cellular level. Macroscopic models do not

consider any variations in composition and activity of individual cells and often lump

various bacterial species into one biomass type characterised by its concentration: X

(g m´3), maximum growth rate: µ̂ (d´1), decay rate kD (d´1), yield coefficient Y (–)
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and other kinetic and stoichiometric parameters such as, e.g. Monod constants K for

different substrates. On the contrary, microscopic models describe complex metabolic

reactions taking place on a cellular level and take into account the cell composition,

availability of enzymes, cell history, storage of metabolic intermediates, etc.

Kinetic models, whether macroscopic or microscopic can be deterministic or stochas-

tic. Deterministic models assume that biochemical reaction pathways and their stoichio-

metric and kinetic parameters can be determined and, given the same initial conditions,

the reactions will each time lead to the same evolution of model states (i.e. concen-

trations of substrates, by-products, products and biomass) over time. The stochastic

approach assumes that all or some quantities in the model are random or stochastic.

These quantities are modelled using probabilities and frequency distributions rather

than ’crisp’ values. Stochasticity and probability may be applied to microscopic as well

as macroscopic models. In the microscopic approach, a stochastic model may, for exam-

ple, consider the probability of a cell dividing under certain environmental conditions

or the probability that the energy input to a reaction inside a cell exceeds the required

activation energy.

Although most real-life biochemical reactions exhibit some stochastic behaviour,

stochastic effects become more apparent in pure bacterial cultures rather than large

mixed bacterial cultures. In mixed cultures, stochastic effects are averaged due to

bacterial diversity where more than one species are responsible for the same processes

whilst being in direct competition over e.g. substrates. If, randomly, one bacterial

species dies off, other similar species take over their role thus making the effect of

elimination of one bacterial species on the process outputs negligible. This behaviour of

mixed bacterial cultures allows us to model the kinetics of the activated sludge systems

using strictly deterministic models such as these described in Section 3.2 below.

For more information about different types of reactors and standard kinetics the

reader is referred to The encyclopedia of bioprocess technology [64]. If the reader wishes

to find out more about the state of the art in modelling and simulation of activated

sludge WWTP using various mathematical approaches a very good review of this subject

was published by Gernaey et al. [70].

3.2 Activated Sludge Models

Activated sludge systems can be described with various types of mathematical models

from simple empirical ones, different forms of artificial intelligence (AI), to detailed

mechanistic multi-species models of deterministic and stochastic nature. The approach

generally accepted in the engineering and scientific community is to use a system of

ordinary differential equations (ODEs) for macroscopic description of bacterial growth,

decay and biochemical reactions in mixed cultures of activated sludge biocenosis, later

referred to as activated sludge models (ASMs). Such models are described in Sec-

tion 3.2.3, whilst the basic principles of activated sludge modelling are outlined in
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Section 3.2.1 below.

3.2.1 Structure of activated sludge models

Vector of reaction rates, r P R
n in Equation 3.2 and Equation 3.3 takes the form:

r “

¨
˚̊
˚̋

r1

´
pC1 Ď C,u

¯

...

rn

´
pCn Ď C,u

¯

˛
‹‹‹‚ (3.5)

rj where j “ 1 : n represents the rate of change of the concentration of the j-th compo-

nent Cj due to biological and chemical reactions occurring inside the bioreactor. C is

the vector of concentrations of soluble, colloidal and particulate components, including

bacterial biomass. pCj is the vector of concentrations which are used as arguments in

the rate equation rj . u is the vector of external inputs such as e.g. temperature T . The

number of reaction rates n is equal to the number of unknown concentrations in order

to form a closed system of equations mandatory to ascertain the existence of a unique

solution to a system of ODEs. Each component Cj is a substrate or a product of one or

more biological or chemical processes, such as nitrification, hydrolysis, ammonification,

etc. These processes p P R
m can be represented in the following vector form:

p “

¨
˚̊
˚̋

p1

´
qC1 Ď C,u

¯

...

pm

´
qCm Ď C,u

¯

˛
‹‹‹‚ (3.6)

where m denotes the number of processes. Each reaction rate rj for component j can

be expressed as a linear combination of several process rates pi

@ j P x1, ny : rj “
mÿ

i“1

ai,j pi (3.7)

Equation 3.7 can also be written in the more popular matrix form as follows:

r “ AT p (3.8)

where A P R
mˆn is the matrix of stoichiometric parameters, also called the Petersen

Matrix.

A “

¨
˚̊
˝

a1,1 ¨ ¨ ¨ a1,n
...

. . .
...

am,1 ¨ ¨ ¨ am,n

˛
‹‹‚

Each stoichiometric parameter ai,j in matrix A represents the link between the rate of

the i-th process pi and the rate of change of the concentration of the j-th component

Cj due to that process. If ai,j ą 0 then the component Cj is a product, if ai,j ă 0 then

the component Cj is a substrate, and if ai,j “ 0 the component Cj does not take part in

47



T. Janus 3.2. ACTIVATED SLUDGE MODELS

that process. In simulations of continuous flow and constant volume CSTRs, the vector

of state variables x P R
n is equal to the vector of concentrations in the bulk liquid,

x “ C. Thus, if we replace C with x, then 9x “ r and Equation 3.8 can be written as:

9x “ AT p (3.9)

Each and every process p P p must satisfy two main laws of chemistry: the Law of

Conservation of Mass also known as the Law of Conservation of Matter and the Law of

Conservation of Energy. The first law states that during an ordinary chemical reaction

the mass of products equals the mass of reactants. Matter can be neither created nor

destroyed, though it can be rearranged. The second law states that energy cannot

be created or destroyed, but can change its form. In the context of activated sludge

models (ASMs), conservation of these two fundamental laws necessitates that, in the

most general form, each process p conserves the mass of carbon (C), nitrogen (N),

phosphorus (P) and net electrical charge. The amounts of C, N, P and electrical charge

in all components are written in a mass and charge conservation matrix:

I4ˆn “

¨
˚̊
˝

I1,1 ¨ ¨ ¨ I1,n
...

. . .
...

I4,1 ¨ ¨ ¨ I4,n

˛
‹‹‚ (3.10)

where Ii,j denotes the amount of C if i “ 1, N if i “ 2, P if i “ 3 and electrical

charge if i “ 4 for the j-th component. Each reaction r P r must satisfy all four

balance equations, what imposes restrictions on the choice of stoichiometric parameters

ai,j P Amˆn. In order to satisfy all balance equations the following matrix equation

needs to be true.

Amˆn pI4ˆnqT “ 0mˆ4 (3.11)

In order to satisfy the above equation, out of k non-zero stoichiometric parameters in

the Petersen matrix A, k ´ 4m parameters are manually selected and the rest, i.e. 4m

parameters need to be calculated by solving Equation 3.11 to ensure the conservation

of mass and charge.

3.2.2 Reaction kinetics

The processes p P p in Equation 3.6 represent various biochemical enzymatic reactions

carried out by different types of bacteria in the activated sludge process. These reactions

are associated with consumption of substrates, production of products, consumption or

release of energy and growth or decay of biomass. In a general form, the rate of a

process with one substrate and one bacterial biomass can be written as:

kpX,Sq “ k̂ τpX,Sq θpT q (3.12)

where kpX,Sq (kg m´3 d´1) denotes the process rate under field conditions, k̂ (d´1)

is the process rate under no substrate limitation and at usually 20˝C, τpX,Sq is the
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process rate dependency function on substrate pSq and biomass pXq concentrations and

θpT q is a non-dimensional temperature dependency coefficient.

In the ASM models the process rates kpX,Sq are usually proportional to the

biomass concentration X (kg m´3) and thus τpX,Sq “ τpSqX. Equation 3.12 then

takes the following form:

kpX,Sq “ k̂ τpSq θpT q X (3.13)

The value of kpX,Sq is lower than the maximum process rate rate k̂ due to substrate

limitation effects, diffusion effects, inhibition, competition for the same substrate by

different types of bacteria, etc. These effects are accounted for in a non-dimensional

function τpSq ă 1, which may take one of the following forms as shown in Table 3.1.

Table 3.1: Reaction kinetics dependent on single substrate concentration.

Model Kinetics expression, τ pSq

1 1st order kinetics S

2 2nd order kinetics S 2

3 nth order kinetics S n

4 Blackman minp1,KB Sq

5 Teissier 1 ´ expp´KT Sq

6 Monod
S

KM ` S

7 Moser
SR

K1
M

R ` SR

KB , KT , KM ,and K1
M denote rate constants respectively for the Blackman, Teissier, Monod and

Moser equations. Monod kinetics is a specific case of Moser kinetics where R “ 1.

If the modelled process is additionally dependent on e.g. diffusion of substrate

from bulk liquid to the bacterial cell or is inhibited by biomass or toxic effects, kinetic

equations presented in Table 3.2 may be used for mathematical description of the process

kinetics. In case of inhibition by single substrate S, product P or biomass X several

kinetic equations developed by various researchers as these listed in Table 3.3 may

be used. The population dynamics of bacterial species in ASM models consider two

opposite mechanisms: growth and decay. The net growth of a bacterial species which

considers biomass growth, maintenance, decay, and lysis is calculated as superposition

of these two opposing mechanisms as shown in Equation 3.14.

µpX,Sq “ µ̂ τpSq θpT q X ´ kD θpT q X (3.14)

where µpX,Sq (d´1) denotes the net bacterial growth rate under field conditions, µ̂

(d´1) denotes the maximum bacterial growth rate under no substrate limitation and kD
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Table 3.2: Reaction kinetics dependent on single substrate concentration with additional
effects.

Model Kinetic expression, τ pSq

1 Inhibition by biomass and diffusion effects limiting
growth (Contois)

S

KC X ` S

2 Reduction of substrate concentration in the proximity of
bacterial cells due to diffusion resistance (Powell)

S ´ KL τ pSq

KM ` S ´ KL τ pSq

3 Additional diffusive stream of substrate to bacterial cells
(Mason and Milles)

S

KM ` S
` KD S

4 Influence of toxic substances included in substrates (Vav-
ilin)

SR

KR´P
M SP

0
` SR

KC , KM , KL, KD are the model parameters and S0 (g m3) denotes initial substrate concentration.

Equation 3 is provided in an implicit form. R and P are adjustable constants.

(d´1) is the bacterial decay coefficient and is most often assumed to be independent of

milieu conditions other than the temperature T . Whilst bacterial growth processes are

modelled with often complex kinetic expressions, biomass decay, lysis and maintenance

processes are traditionally lumped in ASM models into a single expression with 1st order

kinetics with respect to the biomass concentration X and the decay coefficient kD (d´1).

Whilst Equations 3.12-3.14 describe the dynamics of biochemical processes in a

single culture - single substrate scenario, ASM models are multi-substrate and mixed-

culture. Individual bacterial culture dynamics are dealt with by introducing new equa-

tions for every process and every bacterial species. As bacteria often require more than

one substrate for their growth whilst being inhibited by the presence or absence of other

substrates, their dynamics depend on a number of substances S. In a non-interactive

model it is assumed that the overall process rate is dependent only on the most limiting

substrate, which can be expressed with the following equation:

k pS1, S2, . . . , SN q “ k̂ ¨ min tτ1pS1q, τ2pS2q, ¨ ¨ ¨ , τN pSN qu (3.15)

where τipSiq is the process rate limiting function for substance Si. Activated sludge

models introduced in the next Section 3.2.3 and used throughout the rest of this thesis

follow an interactive model approach where the process rate is dependent on all rate

limiting substances:

µ pS1, S2, . . . , SN q “ µ̂ ¨ τ1pS1q ¨ τ2pS2q ¨ . . . ¨ τN pSN q “ µ̂ ¨
i“Nź

i“1

τipSiq (3.16)

For more information about modelling of bioprocesses, including process kinetics and

material transport, the reader is referred to Flickinger and Drew [64].
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Table 3.3: Inhibition kinetics for a single inhibitor.

Model Kinetic expression, τ pSq

1 Competitive inhibition (Haldane)
S

KM ` S `
S2

KI

2 Non-competitive inhibition (Yeruzal-
imsky)

S

KM ` S

1

1 `
CI

KI

3 Edwards
S

KM ` S
exp

˜
´

CI

KI

¸

4 Generalised equation of non-
competitive inhibition (Yano and
Koya)

S

KM ` S

1

1 `

˜
CI

KI

¸N

5 Teissier type expression exp

˜
´
CI

KI

¸
´ exp pKT Sq

6 Ghose and Tyagi

˜
1 ´

CI

KI

¸
S

KM ` S

7 Levenspiel

˜
1 ´

CI

KI

¸N
S

KM ` S

8 Han and Levenspiel

˜
1 ´

CI

KI

¸M
S

KM

˜
1 ´

CI

KI

¸M

` S

KI is an inhibition constant for either a substrate S, product P or biomass X. CI is a concentration

of a substrate, product or biomass (depending on what is inhibiting the reaction) and M and N are

adjustable constants.

3.2.3 Overview of IAWQ activated sludge models

The most popular and widely accepted activated sludge models, e.g. Activated Sludge

Model No. 1 (ASM1), Activated Sludge Model No. 2 (ASM2). Activated Sludge Model

No. 2d (ASM2d), and Activated Sludge Model No. 3 (ASM3) were developed by the

Task Group on Mathematical Modelling for Design and Operation of Biological Wastew-

ater Treatment formed by International Association on Water Quality (IAWQ). These

models are intended to be able to predict the performance of single-sludge activated

sludge systems and to serve as a tool for engineers for process design and optimisa-

tion of activated sludge wastewater treatment plants (WWTPs). Although the above

mentioned models are the most well known ASMs within the engineering and scien-

tific communities, other activated sludge models were published and successfully used

in a number of studies. The model of Barker and Dold [9, 10] proved itself capable

of describing full-scale activated sludge reactors and is incorporated in a commercial

WWTP simulator BIOWIN® [52]. Similarly, another commercial software GPS-X®

by Hydromantis Inc. contains their own model called Mantis [108]. The list of acti-

vated sludge models that have been developed since the publication of ASM1 in 1987

is too extensive to cover in this brief overview. We will therefore concentrate only on

the four major IAWQ models, which will later form the basis for the development of
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MBR-specific models ASMs described in Chapter 4.

Activated Sludge Model No. 1 (ASM1)

The first of the IAWQ family models, ASM1 was published in 1987 by Henze et al.

[85; 86]. The goal was to create a simple mathematical model able to predict the per-

formance of single-sludge activated sludge systems carrying out aerobic carbon removal,

nitrification and denitrification. The model does not describe any phosphorus (P) re-

moval mechanisms. ASM1 uses 8 process equations: Aerobic growth of heterotrophs,

Anoxic growth of heterotrophs, Aerobic growth of autotrophs, Decay of heterotrophs, De-

cay of autotrophs, Ammonification of soluble organic nitrogen, Hydrolysis of entrapped

organics and Hydrolysis of entrapped organic nitrogen. These process equations use 13

state variables which denote the fractions of chemical oxygen demand (COD) - soluble

readily biodegradable: SS, soluble inert: SI , particulate slowly biodegradable: XS , par-

ticulate inert: XI , particulate inert from biomass decay: XP , heterotrophic biomass:

XH and autotrophic biomass: XA; fractions of N - soluble organic: SND, ammoniacal:

SNH . particulate organic: XND, nitrates and nitrites: SNO; and two other state vari-

ables - oxygen: SO and alkalinity: SALK . The model contains 19 stoichiometric and

kinetic constants used as parameters for the process rate equations. ASM1 was orig-

inally designed to predict sludge production and oxygen demand in activated sludge

systems. Accuracy of effluent quality prediction was given less of a weight. Although

ASM1 has proved itself to perform very well in a large range of applications with regards

to oxygen demands, sludge yields, sludge retention times (SRTs) and effluent quality,

the model has a number of restrictions:

1. In its original form the model assumed constant temperature, i.e. temperature

dependency functions for kinetic parameters were not included. Since its publi-

cation the model was however expanded with Arrhenius equations to account for

the variability of process rates with bulk liquid temperature.

2. The model does not describe the limiting effects of alkalinity as well as N, P and

other inorganic nutrients on biomass growth.

3. The ammonification kinetics cannot be practically identified.

4. ASM1 differentiates between inert particulate organic material originating from

the influent (XI) and biomass decay (XP ). However, in reality, these two COD

fractions cannot be distinguished from each other.

5. Hydrolysis which kinetic parameters are hard to identify has a significant effect

on the predicted oxygen demand and denitrification rates.

6. The effects of death, predation, biomass lysis, endogenous respiration of storage

products are not individually modelled but instead they are described as a com-

bined effect of lysis, hydrolysis and growth mechanisms.

7. Hydrolysis of organic matter and hydrolysis of organic nitrogen are modelled as

one process. Hence, it is assumed that these two processes occur simultaneously
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and with equal rates.

8. The model does not describe the processes of intermediate cell storage of poly-

hydroxyalkanoates (PHA) and glycogen by microbial cells at elevated substrate

concentrations under aerobic and anoxic conditions.

9. It is assumed that the entrapment of particulate organic matter in the biomass is

instantaneous.

10. The biomass yields and the decay rates are assumed to be independent of the type

of electron acceptor, i.e. aerobic, anoxic and anaerobic decay rates and yields are

assumed equal. As anoxic and anaerobic yields and decay rates are found to

be lower than those under the aerobic conditions, ASM1 tends to give erroneous

predictions of various state variables, especially Ammoniacal N, at high SRTs and

large anoxic fractions.

11. ASM1 is unable to predict directly observable mixed liquor suspended solids

(MLSS). This limitation is usually overcome through introduction of an addi-

tional state variable representing inert solids [108].

12. The model assumes that biomass dies-off accordingly to the death-regeneration

concept instead of the endogenous decay model. The death-regeneration concept

assumes that the products of biomass decay go back to the respiratory cycle and

are used as substrates for biomass growth. At high SRTs this ‘recycling loop’ of

organic substrates becomes more dominant leading to over-prediction of oxygen

demands and denitrification rates. Hence, ASM1 may be difficult to calibrate on

long SRT systems such as e.g. MBRs or biofilm reactors.

Although the model was introduced over 20 years ago and despite of its drawbacks

and limitations, it is still considered ‘state of the art’ when the plant model does not

require P removal. This popularity of ASM1 is owed to the simplicity of its structure,

large number of available publications dealing with model calibration, identification,

simplification, etc. [225, 114, 230, 56] and large number of available full scale WWTP

case-studies. Due to the extensive amount of knowledge on the use of ASM1, it is not

only a preferred choice for the of-the-shelf use but also as a base-model for various

extensions as later described in Section 3.2.4.

Activated Sludge Model No. 2 (ASM2)

Activated Sludge Model No. 2 (ASM2) was developed and published 7 years after

ASM1 in order to allow simulation of activated sludge systems with excess biological

phosphorus removal (EBPR) [87]. In order to account for new biological processes, the

model introduces phosphorus accumulating organisms (PAO) which are able to carry

out EBPR. PAO are modelled with consideration of internal cell structure (structured

biomass) in order to represent the amount of stored poly-phosphates and PHA. The

model contains 17 state variables composed of fractions of COD - fermentation products:

SA, fermentable, readily biodegradable COD: SF , inert soluble: SI , inert particulate:

XI , slowly biodegradable: XS , cell internal storage products: XPHA, autotrophic or-
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ganisms: XA, heterotrophic organisms: XH , and phosphorus accumulating organisms:

XPAO; fractions of N - dinitrogen: SN2
, ammonium and ammoniacal nitrogen: SNH ,

nitrates and nitrites: SNO; fractions of P - inorganic soluble phosphorus: SPO4
and

polyphosphates: XPP ; as well as: alkalinity: SALK, dissolved oxygen: SO, and total

suspended solids: XTSS . ASM2 uses 17 process rate equations: Aerobic hydrolysis,

Anoxic hydrolysis, Anaerobic hydrolysis, Aerobic growth on SF , Aerobic growth on SA,

Anoxic growth on SF , Anoxic growth on SA, Fermentation, Lysis of XH , Storage of

XPHA, Storage of XPP , Aerobic growth of XPAO on XPHA, Lysis of XPAO, Lysis of

XPP , Lysis of XPHA, Growth of XA, and Lysis of XA. The process rate equations con-

tain a total number of 61 parameters (21 stoichiometric and 40 kinetic). The number

of parameters for the amount of state variables is significant which impairs the model’s

identifiability [18]. The model’s limitations are listed below:

1. Valid for municipal wastewater only.

2. Unable to model processes with ingress of SA into the aeration tank.

3. Wastewater must contain sufficient amounts of Mg2` and K`.

4. Valid only for pH close to neutrality and temperatures in the range of 10-20˝C.

5. Suffers from identifiability problems due to large amount of parameters, processes

and unobservable state variables.

6. The model does not account for a denitrifying activity of PAO, i.e. that PAO can

uptake ortho-phosphates not only under aerobic but also under anoxic conditions.

Activated Sludge Model No. 2d (ASM2d)

Activated Sludge Model No. 2d (ASM2d) extends the Activated Sludge Model No.

2 (ASM2) by providing the description of the anoxic uptake of ortho-phosphates, hence

solving one of the ASM2’s limitations. This extension was published by Henze et al.

[88] 4 years after the original publication of ASM2 instigated by the findings of Kerrn-

Jespersen and Henze [119], Mino et al. [170], Meinhold et al. [165] who demonstrated

that PAO consist of two fractions, one of which is capable of carrying out denitrifi-

cation. In order to describe the activity of denitrifying phosphorus accumulating or-

ganisms (DPAO) ASM2d introduces two new processes for PAO: Anoxic storage of

XPP and Anoxic growth on XPHA. The model additionally adds two processes for pre-

cipitation of phosphorus with Fe(OH)3, namely Precipitation and Redissolution, thus

bringing the total number of processes to 21. Addition of these two last processes ne-

cessitates introduction of two additional state variables representing the concentrations

of metal hydroxides, e.g. Fe(OH)3: XMeOH and metal phosphates: XMeP , i.e. insol-

uble compounds of phosphates and metal ions. ASM2d contains 19 state variables, 22

stoichiometric parameters and 45 kinetic parameters, many of which are unidentifiable

[18]. The model suffers from the same limitations as its predecessor ASM2 except the

last limitation, which has been remediated by modelling PAO respiration under anoxic

conditions.

54



T. Janus 3.2. ACTIVATED SLUDGE MODELS

Activated Sludge Model No. 3 (ASM3)

Activated Sludge Model No. 3 (ASM3) was published in 1999 by Gujer et al. [79] to cor-

rect some of the earlier mentioned defects of ASM1. The main alterations included: (a)

an introduction of a storage mechanism for organic substrates prior to their utilisation,

(b) substitution of death-regeneration model with cell lysis and decay with endogenous

respiration process, (c) removal of soluble and particulate organic nitrogen from the

list of state variables, (d) elimination of the ammonification process, (e) differentiation

between aerobic and anoxic decay rates and biomass yields, and (d) explicit calculation

of MLSS. Compared to ASM1, ASM3 provides a more detailed description of internal

cell processes (storage) and a more accurate model of cell decay and lysis over a wide

range of operating conditions. The impact of hydrolysis on other processes such as

denitrification is reduced and degradation of soluble and particulate organic nitrogen is

accounted for in hydrolysis, decay and growth processes [79].

Whereas in the original formulation of ASM1 [85] temperature dependency func-

tions for the kinetic expressions were not included, the kinetic rates in ASM3 are tem-

perature dependent. ASM3 introduces 14 state variables - 7 soluble and 7 particulate.

The soluble state variables are: dissolved oxygen SO, inert soluble organics SI , readily

biodegradable organic substrates SS, ammonium plus ammonia nitrogen SNH , dinitro-

gen SN2
, nitrate plus nitrite nitrogen SNO, and alkalinity SALK. The particulate state

variables are: inert particulate organics XI , slowly biodegradable organics substrates

XS , heterotrophic biomass XH , cell internal storage products of heterotrophic biomass,

XSTO, autotrophic biomass XA, and total suspended solids (TSS) XTSS . ASM3 con-

siders 9 following processes: Hydrolysis, Aerobic storage of SS, Anoxic storage of SS ,

Aerobic growth of heterotrophs, Anoxic growth of heterotrophs, Aerobic endogenous res-

piration, Anoxic endogenous respiration, Aerobic respiration of storage products, and

Anoxic respiration of storage products. These processes are parametrised with 21 ki-

netic and 15 stoichiometric parameters. ASM3 eliminates some of the limitations of

ASM1 whilst maintaining similar levels of complexity. Identifiability of model parame-

ters is improved by reducing the dependency of the heterotrophic activity on hydrolysis

and by breaking up the substrate flow circle originally present in the death-regeneration

process through substitution with endogenous respiration. This modification has a sig-

nificant effect on modelling MBR systems which operate at high SRTs usually over 20d

and up to 100d [116]. In such systems, the processes of bacterial decay, cell lysis and

maintenance play a more important role in the overall process performance than in e.g.

conventional activated sludge processs (ASPs). Due to a more realistic description of

decay processes in ASM3 this model is more suited for modelling MBR plants. From

personal experiences of the author, modelling high SRT systems with ASM1 using the

default kinetic and stoichiometric parameters results in over-prediction of denitrifica-

tion rates and oxygen consumption whereas predictions obtained from ASM3 are much

closer to the observed values.
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3.2.4 Modified activated sludge models

All of the above described IAWQ models have common limitations as a consequence

of the adopted model structure and the assumptions made by the authors in order to

balance realism with model complexity, usability and computational demand. In all

the models mentioned above no consideration was given to how changes in the nature

of the influent composition affect the bacterial growth rates, decay rates and yields.

Instead, all organic components in the influent, effluent and mixed liquor are described

with a surrogate parameter COD and its fractions. The pH factor is assumed to remain

constant and near neutrality. The only indication of a likely change in pH can be

deduced through observation of the changes in the bulk liquid alkalinity. The biomass is

considered homogeneous and does not undergo any changes in species diversity. Soluble

effluent COD is not calculated. Instead it is assumed that the amount of soluble chemical

oxygen demand (SCOD) in the effluent is equal to the influent soluble inert COD (SI)

which is assumed to pass through the system untreated. In fully nitrifying systems

where complete biodegradation of the ‘biodegradable’ forms of carbon takes place, the

above assumption is not true, because soluble COD is also ‘created’ in the system

as a consequence of biopolymer production during biomass growth and decay. ASM

models also do not account for the uncertainty of model parameters and the influent

composition.

Despite of these limitations different ASM models have been successfully applied

to describe a multitude of wastewater treatment processes and became the standard in

dynamic modelling of WWTPs. A comprehensive description of all IAWQ activated

sludge models (ASMs) can be found in Henze et al. [89]. General information about

the state of the art activated sludge WWTP modelling and simulation with various

white-box and black-box modelling approaches can be found in Gernaey et al. [70].

A technical report by Melcer et al. [166] provides more thorough information about

activated sludge models with respect to calibration, identification of parameters and

influent characterisation.

In an attempt to reduce some of the models’ limitations, original ASM models have

been modified to suit the specific needs of their authors. Some of these models are now

implemented in commercial WWTP modelling packages. A quick overview presented

below is neither comprehensive nor complete. It only serves a purpose of demonstrating

that various alterations to ASM models are possible and allow us to solve a vast range

of problems encountered in practice.

Iacopozzi et al. [110] and Kaelin et al. [117] extended ASM3 with two-step nitrifi-

cation and two-step denitrification. In a similar approach, nitrite and nitrate variations

were simulated with two-stage nitrification, multi-stage denitrification, and phosphorus

removal by Pai et al. [196] using a modified ASM2d model. Two-stage denitrification

was also modelled by Ni and Yu [180] with a modification of ASM3. Lubello et al. [158]

developed a modified version of ASM1 to improve the prediction accuracy of sludge pro-

duction over a wide range of SRTs. Predictions of sludge production and some biomass
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kinetics were also improved in ASM2d by Hao et al. [83] through the introduction of the

processes of predation and viral infection. The main purpose of their publication was

to evaluate the contributions of predation and viral infection to minimisation of sludge

production in a sequencing batch reactor (SBR). Modification of a similar fashion was

also made to ASM1 in order to enable the simulation of endogenous maintenance, cell

death and predation processes [183]. ASM1 was also expanded by Wang et al. [249] to

include the effects of oxygen diffusion into bacterial flocs in order to simulate simultane-

ous nitrification and denitrification (SND) at low dissolved oxygen (DO) concentrations.

Due to identifiability issues and complexity of ASM2d [18], Rieger et al. [208] devel-

oped and validated a biological phosphorus removal (Bio-P) module for ASM3, thus

allowing the ASM3 model to be used for the simulations of WWTPs with excess bi-

ological phosphorus removal (EBPR). Takacs [234] provided a theoretical description

of pH kinetics and precipitation of various salts in activated systems, which can be

implemented in different ASM models. At present, at least two commercial WWTP

simulation packages incorporate pH calculation in their biological models allowing the

users to investigate inhibition effects caused by low and high pH. The activated sludge

and digestion model (ASDM) implemented in BioWin® [9, 10, 43] is based on an inte-

grated activated sludge - anaerobic digestion model that has been extended with water

chemistry, simulation of pH, and various chemical reactions. A comprehensive activated

sludge model (MANTIS2) which includes a pH model was also developed on another

commercial WWTP simulation platform GPS-X®. In MANTIS each biological, phys-

ical and chemical reaction is dependent on concentrations of inorganic state variables

contributing to charge (pH) balance [74].

3.3 Special model considerations for MBRs

Although the original activated sludge models (ASMs) described in Section 3.2.3 have

been successfully implemented in a multitude of WWTP modelling, design and simu-

lation projects, the applicability of standard activated sludge models such as ASM1,

ASM2, ASM2d, ASM3 or Barker and Dold [9, 10] to modelling membrane bioreac-

tors (MBRs) is limited for three following reasons. Due to elevated MLSS concentrations

and higher SRTs compared to conventional activated sludge (CAS) processes, activated

sludge flocs in MBRs tend to be smaller [258], have smaller zone settling velocity, higher

sludge volume index (SVI), lower filterability, and different water content [67]. Reduc-

tion of floc diameters compared to CASP systems leads to faster mass transfer rates

between the bulk liquid and the flocs, hence different overall process kinetics. Higher

SRTs mean that cell maintenance, decay and lysis play a more dominant role in the ac-

tivated sludge kinetics. These processes are however not very well described in standard

ASM models. Standard ASM models cannot predict the four main properties of acti-

vated sludge which affect membrane fouling, namely: floc size distribution (FSD), sludge

morphology, bulk liquid soluble microbial products (SMP) and extracellular polymeric

substances (EPS).
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Despite the differences between MBR and CAS process kinetics, in majority of

cases it is still possible to achieve a satisfactory level of calibration of a MBR process

with a standard ASM model [57]. The downside of this approach however still lies in the

inability of the original ASMs to predict the concentrations of main membrane foulants,

as well as the sludge FSD and morphology. Modelling the FSD requires elaborate and

mathematically complex descriptions of flocculation and deflocculation processes and

accurate assessment or description of turbulence levels inside the bioreactor. In order

to model the sludge morphology, one has to introduce new bacterial species, such as

filamentous bacteria and define their growth and respiration kinetics. Whilst modelling

and simulation of sludge morphology and FSD are too complex to consider in this thesis,

the developments will focus on an easier task of modelling the SMP and EPS kinetics

and introduction of these kinetic equations to ASM models.

Other characteristic properties of MBRs (excluding sludge FSD and morphology)

are lower oxygen transfer rates and higher bulk liquid viscosities due to elevated con-

centrations of solids. The MBR-specific properties listed below need to be included in

a mathematical model of a MBR to ensure a proper description of the process.

1. SMP.

2. EPS.

3. Hindered oxygen transfer.

4. Higher bulk liquid viscosity.

5. Long SRT thus significant share of cell maintenance, decay and lysis.

SMP and EPS contents in the mixed liquor are found to correlate with floc strength

and resistance to shear and to influence various activated sludge properties such as floc

size distribution (FSD), dewaterability, settleability and compressibility, non-settleable

solids (NSS) fraction, stirred sludge volume index (SSVI), cake filtration properties such

as capillary suction time (CST) and filtration resistance, hydrophobicity, viscosity, and

surface charge.

In MBR systems, bound EPS co-deposit together with bacterial cells on filtration

membranes filling the voids between the cells and forming potentially compressible

cakes with high hydraulic resistance [266, 146], thus causing membrane fouling. SMP

are found to lead to a decrease in the overall membrane filterability [175, 121, 214] and

cause the so-called ‘irreversible fouling’, although not under all operating conditions

[44]. SMP are also found to comprise the majority of soluble organic material in the

effluents from biological WWTPs and their presence is, therefore, of particular interest

in terms of achieving effluent biological oxygen demand (BOD) and COD standards [8].

As bound and free EPS and SMP have been reported in numerous publications to

constitute the two major fouling components in MBRs they are given a particular level

of attention in the next sections of this chapter and then later on throughout this thesis.

Specifically, Chapter 4 introduces two new ASM models with SMP and EPS kinetics.

One of these two models is later combined in Chapter 7 with a fouling model to allow
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simulation of a complete MBR process.

3.4 Definition and overview of SMP and EPS

EPS and SMP are, in broad terms, by-products of the metabolic activity of bacterial

cultures and are excreted by these microorganisms during their growth, decay, or in a

response to changing environmental conditions [185, 256, 35].

Although a precise definition of SMP has not yet been agreed in the scientific

community, here we will adopt the definition proposed by Noguera et al. [185]:

Definition 5. Soluble microbial products (SMP) are the pool of organic compounds

that result from substrate metabolism (usually with biomass growth) and biomass decay

during complete mineralisation of simple substrates, which are released by microorgan-

isms and then diffuse through the cell membrane into the outer environment, are lost

during synthesis or are extracted for some purpose.

This definition excludes intermediate products of bacterial metabolism such as

volatile fatty acids (VFA) in anaerobic systems, because these products are formed

through metabolism of substrates entering the system with the influent and therefore

are not of a purely microbial origin in the strict sense of Definition 5. SMP are made of

different organic compounds, such as humic and fulvic acids, polysaccharides, proteins,

nucleic acids, organic acids, amino acids, antibiotics, steroids, exocellular enzymes,

siderophores, structural components of cells and products of energy metabolism [8].

It is clear that the term SMP applies to quite a large pool of different chemical

compounds and thus SMP are likely to exhibit quite different physico-chemical and

biological properties including two most important ones in the context of this thesis,

i.e. fouling strength and biodegradability, depending on the system configuration, influ-

ent composition, operating conditions, and others. SMP can be classified into many

categories based on their: (a) biological origin, (b) molecular weight (MW), (c) chemi-

cal composition (d) inhibitory and metal chelating properties, (e) effects on membrane

fouling, (d) biodegradability.

From the biological (metabolic) point of view, SMP can be classified into three

categories, (Chudoba [32]).

1. Compounds produced as a result of substrate metabolism and bacterial growth.

These compounds are denoted in many kinetic models as utilisation associated

products (UAP).

2. Compounds released during the lysis and degradation of microorganisms. These

compounds are in turn denoted as biomass associated products (BAP).

3. Compounds excreted by microorganisms during their interaction with the envi-

ronment. These compounds are released by bacteria in response to changing

environmental conditions such as toxicity, shock temperature changes, changes

in the composition of the organic substrates in the influent, shear, etc. These
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mechanisms of SMP production are not very well understood and are usually not

modelled. Thus, most SMP kinetic models consider just the first two of the above

SMP categories, UAP and BAP.

A detailed explanation of the origins of SMP is provided in Kuo [129] and later

quoted in the most comprehensive, up to this date, review of SMP by Barker and Stuckey

[8]. Kuo [129] cited the following factors as the main causes of SMP production in bacte-

rial cultures: (1) maintenance of concentration equilibrium, (2) starvation, (3) presence

of energy source, (4) substrate-accelerated death, (5) low availability of required nutri-

ents, (6) relieving environmental stress (to e.g. extreme temperature changes or osmotic

shocks), (7) normal bacterial growth and metabolism.

Chemical composition of SMP in the bulk liquid depends mainly on the type and

the composition of the influent but also on the type of the activated sludge process and

the operating conditions. Depending on its chemical composition, SMP will exhibit

different biodegradability, molecular weight distribution (MWD), toxicity, and chelating

properties. Most of the biological effluents are found to be biodegradable to a certain

degree and ranging, in one particular study of Owen et al. [195] carried out on an effluent

of an anaerobic baffled reactor (ABR), between 65% and 82%. Thus, only 18% to 35% of

SMP entering the receiving body will not be biodegraded. Toxicity of SMP is however

of a bigger concern. Many researchers have found that the effluents from biological

treatment may exhibit higher toxicity than the influents and this toxicity is mostly

attributed to SMP. In particular, Rappaport et al. [204] showed a greater mutagenic

response in secondary effluents than in primary effluents. Additionally Chudoba [31]

found that SMP can be inhibitory to nitrification.

These findings are of great significance for those working with MBR systems, be-

cause MBRs, due to the presence of microfiltration (MF) or ultrafiltration (UF) mem-

branes retaining some of SMP inside the bioreactor, exhibit higher bulk liquid SMP

concentrations than conventional activated sludge systems. This in turn means that

activated sludge in MBRs is potentially subject to higher levels of toxicity which can

negatively affect some processes such as, e.g. nitrification.

The molecular weight (MW) distribution of SMP is affected by substrate type

and operating conditions, and generally exhibits a bimodal distribution with MWs of

either À 1 kDa or Á 10 kDa. Depending on the shape of the molecular weight dis-

tribution (MWD) and the type of the membrane, certain MBRs are found to exhibit

greater or lesser fouling propensities. Other researchers attribute the differences in the

fouling properties of various SMP to their their chemical composition instead of their

MWDs. Yigit et al. [267] found that the carbohydrate fractions of both SMP and EPS

contributed to fouling more than the protein fractions. Similarly, Grelier et al. [78]

identified the concentration of the colloidal and soluble polysaccharides of the liquid

phase as the predominant parameter causing membrane fouling. In a review paper on

fouling in membrane bioreactors Le-Clech et al. [138] summarised that the carbohydrate

fraction from the soluble microbial product is the main factor causing fouling in MBRs,

although the role of the protein compounds in the development of fouling is still to be
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clarified.

Whilst SMP are made of substances that are mostly dissolved in water, EPS are

considered to be formed from a pool of compounds of similar composition and the same

origin as SMP but which are bound to bacterial cells. The definition of EPS adopted

and used throughout this thesis is as follows:

Definition 6. EPS are a complex mixture of high molecular-weight polymers produced

by bacteria and other microorganisms through active secretion, shredding of cell surface

material and cell lysis. EPS forms a three-dimensional highly hydrated gel matrix which

immediately surrounds bacterial cells and protects them against environmental stress

and toxicity, thus contributing to the cell adaptability, resiliency, and its functional roles

in the environment [151, 240, 216, 138].

EPS are, similarly to SMP, composed of different classes of macromolecules such

as polysaccharides, proteins, nucleic acids, phosphor-lipids, humic substances and other

polymeric compounds [256]. However, proteins and carbohydrates are the most domi-

nant fractions [154]. From a morphological point of view these different organic com-

pounds are found in a number of physical states such as sheaths, capsular polymers,

condensed gel and loosely bound polymers. EPS together with SMP form construction

materials for microbial aggregates such as biofilms and flocs, and play an important role

in their formation and maintenance of their cohesion [256, 151, 240, 216].

Understanding SMP and EPS production mechanisms in activated sludge systems

is important for a number of reasons, some of which have already been mentioned or can

be inferred from the definitions and short descriptions provided above. First of all, EPS

and SMP form a majority of the secondary treatment effluent COD while SCOD of most

of these effluents can be, in fact, attributed entirely to SMP. Therefore, information

about SMP and EPS in an activated sludge system allows us to estimate the effluent

soluble and total COD concentrations, especially in the systems such as MBRs which

operate at long SRTs. EPS and SMP, as mentioned earlier, allow bacteria to aggregate

and form flocs and biofilms. They affect the activated sludge FSD by increasing the

flocs’ resistance to breakage under shear and thus promoting larger flocs or, on contrary,

creating large and loose flocs which break under shear.

SMP and EPS in the bulk liquid therefore have an effect on such macroscopic

sludge properties as non-settleable fraction, SVI and SSVI, CST, and specific cake

resistance (SCR). These macroscopic properties affect, respectively, clarification, set-

tleability/thickening, dewatering and pressure drop across the membrane due to cake

formation.

SMP are found to adsorb inside the pores and on the membrane surface leading

to constriction of pores and formation of a gel layer. Additionally EPS and, to a lesser

degree, SMP are found to fill the void spaces between flocs and bacterial cells leading

to increased resistance to filtration and thus pressure drop across the cake.

As briefly described in this section, production of SMP and EPS in the bioreac-
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tor depends on influent composition, various operating and environmental conditions,

and changes of these environmental conditions posing additional stress on the microor-

ganisms. Whilst SMP and EPS are traditionally assumed to originate from ‘normal’

bacterial growth and bacterial decay under stable environmental conditions, production

of biopolymers in response to environmental stress, i.e. changing environmental condi-

tions is not well understood and hence not modelled. Whilst various researchers pointed

out accelerated production of biopolymers under extreme temperatures, osmotic shocks,

presence of toxic substances, i.e. conditions associated mainly with influent character-

istics, it is hypothesised that also operational conditions such as levels of turbulence

and hence shear on the surface of bacterial flocs caused by mixing in immersed MBR

systems and pumping in sidestream MBRs are likely to affect biopolymer production

and/or release from bacterial cells. Different types of behaviour of microorganisms in

response to high levels of shear may be hypothesised. Under higher levels of turbulence

EPS attached to bacterial cells may detach and find themselves in the bulk liquid while

the bacteria will try to produce more EPS to accommodate for the loss of cell-bound

EPS. While the amount of turbulence is increased and higher shear stresses are applied

to bacterial flocs, bacterial colonies may sense the need to protect themselves from the

rupturing forces by releasing more EPS and forming denser, stronger flocs. It may also

possible that under conditions where only a fraction of biomass is exposed to highly

turbulent conditions these organisms may release some enzymes to the environment

communicating to other bacteria of the same species through ‘quorum sensing’ to pre-

pare for changing conditions. Hence, local changes in environmental conditions such as

e.g. shear may have a more global impact in the system. Under more ‘extreme’ con-

ditions bacterial cells exposed to high shear forces may rupture releasing the internally

stored biopolymers to the liquid phase, hence leading to an increase in SMP concentra-

tion. It is also possible that in a response to a sufficiently large change in a particular

environmental parameter or a number of parameters, bacteria will initially start to pro-

duce significantly larger amounts of biopolymers but this production may decrease over

time as the bacteria gradually adapt to a new state of the system. These are only

hypothetical scenarios for biopolymer production in response to high shear which need

to be experimentally tested and shall be left for further research. Although biopolymer

production in response to environmental stress may be significant under certain condi-

tions, e.g. when high crossflow velocities CFVs are applied in tubular membranes to

control cake formation which can result in increased irreversible fouling, modelling of

such biopolymer production mechanisms is beyond the scope of this thesis. Hence we

will limit our focus to biopolymer production under steady environmental conditions.

Overview of such models is provided in Section 3.5.

More information, although possibly a bit outdated, about various factors affecting

SMP production, properties of SMP and their origins, supported with experimental

findings, can be found in an extensive review of SMP by Barker and Stuckey [8].
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3.5 Overview of SMP and EPS kinetic models

3.5.1 SMP kinetic models

It is generally accepted that production of SMP in activated sludge systems obeys the

Leudeking-Piret equation [144] shown below.

rSMP “ dSSMP

dt
“ α

dX

dtloomoon
dSUAP

dt

` β Xloomoon
dSBAP

dt

(3.17)

where rSMP denotes the SMP production/utilisation rate (g COD m´3 d´1),

SSMP , SUAP , SBAP and X denote, respectively the concentrations of SMP, UAP,

BAP and biomass in the bulk liquid (g COD m´3), α is the UAP formation coefficient

(–) and β is the BAP formation coefficient (d´1).

Depending on the type of the system being modelled, the coefficients α and β may

be assigned different values or form different functional relationships with e.g. various

substrate concentrations as arguments. In mixed bacterial cultures, different bacteria

may have different SMP kinetics as shall be shown in Section 3.6. These differences can

be reflected in the values of parameters α and β.

Whilst Equation 3.17 assumes that SMP originate from active metabolism (UAP)

and decay (BAP) of various microorganisms in the microbial biocenosis, SMP may also

be produced, as was mentioned earlier, in response to changes in various environmen-

tal conditions and during hydrolysis/dissolution of undissolved polymers (EPS) and

are consumed as substrates by heterotrophic microorganisms. All these processes are

represented in Equation 3.18 below.

rSMP “ dSSMP

dt
“ α

dX

dtloomoon
dSUAP

dt

` β Xloomoon
dSBAP

dt

` khyd XEPSlooooomooooon
dSBAP

dt

´
ÿ

i

εi pi

loomoon
sinks

` γ f

ˆ
c ,

dc

dt

˙

loooooomoooooon
dSEAP

dt

(3.18)

where SSMP denotes the bulk SMP concentration (g COD m´3), khyd denotes the

EPS hydrolysis rate (d´1), and pi denotes the ith process rate (usually expressed in

g m´3 d´1) where SMP are used as a substrate.

The last term in Equation 3.18 represents the increase/decrease in SMP concen-

tration in response to the changes in environmental conditions. The rate of change of

the concentration of environment associated products (EAP) cannot be assigned any

equation at the moment due to the lack of knowledge about these processes and the

lack of supporting data. Hence, the term was assigned a hypothetical function f which

is assumed to depend on the quantity of an environmental parameter c such as, e.g.
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temperature, concentration of a toxic substance, pH value, etc., its rate of change
dc

dt
,

and a stoichiometric coefficient γ. It’s a hypothetical assumption and the function is

likely to have a much more complex form, e.g. depend on enzyme levels inside the

bacterial cells, etc.

3.5.2 EPS kinetic models

Whilst modelling of SMP kinetics received a lot of attention over the years, only a

few researchers attempted to model EPS formation kinetics in microbial populations

in general and even fewer studies are related specifically to activated sludge systems.

EPS and SMP production in a single bacterial culture was measured by Hsieh et al.

[102; 101] and used for the development of a simple biokinetic mathematical model.

Their experimental data was later used by Laspidou and Rittmann [135; 136] in order

to test the validity and applicability of their combined SMP and EPS mathematical

model and their unified theory of SMP and EPS formation in microbial systems [135].

A good fit between their mathematical model and the data was later demonstrated on

an activated sludge system in a laboratory-scale glucose fed MBR by Chae and Shin

[21]. The model of Laspidou and Rittmann [136] is later incorporated into ASM1 and

ASM3 models leading to the development of two new models - the combined EPS and

SMP production ASM1-based model (CES-ASM1) and the combined EPS and SMP

production ASM3-based model (CES-ASM3), as described in Chapter 4.

The kinetic model of Laspidou and Rittmann [136] assumes that EPS in microbial

systems are produced as by-products of active microbial activity (i.e. growth) and lost

through hydrolysis/dissolution leading to formation of BAP as shown in Equation 3.19.

rEPS “ dXEPS

dt
“ α1 dX

dtloomoon
growth-associated

´ khyd XEPSlooooomooooon
hydrolysis to BAP

(3.19)

where rEPS denotes the EPS production/utilisation rate (g COD m´3 d´1), XEPS

denotes the bulk EPS concentration (g COD m´3), α1 is the growth associated EPS

formation coefficient (–) and khyd (d´1) is the EPS hydrolysis rate introduced in Equa-

tion 3.18.

3.6 ASM models with SMP and EPS kinetics

In order to describe the production of biopolymers in activated sludge rather than

single culture systems, equations introduced in Section 3.5 were added to different ASM

models. The approaches and assumptions used for the formulation of such models,

such as the types of biopolymers used in the model and how the biopolymer kinetics

are related to original ASM model processes, were often quite different. Hence, the

published ASM models with biopolymer kinetics exhibit often very different properties
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and behaviours. The differences between different published models together with the

apparent strengths and weaknesses of each one of them are highlighted in the subsequent

sections. Four of the described models are later selected for simulations on a fictitious

WWTP layout. The results of these simulations are then analysed and compared, as

explained in detail in Section 3.7.

3.6.1 Extended ASM1 model of Lu et al. [157]

Lu et al. [157] incorporated SMP production and utilisation kinetics within the Acti-

vated Sludge Model No. 1 (ASM1). SMP was assumed to originate as a by-product

of biomass growth and biomass decay. The first type of SMP is called UAP whereas

the latter type is termed BAP. Additionally, BAP instead of SS , as initially specified

in ASM1, was assumed to be the sole product of hydrolysis. Both types of SMP were

assumed to biodegrade at equal rates. SMP kinetics adopted in the model of Lu et al.

[157] are described with the following two equations.

dSUAP

dt
“ γUAP,H pp2a ` p2b ` p3a ` p3bqlooooooooooooooooooomooooooooooooooooooon

heterotrophic growth

` γUAP,A p8loooomoooon
autotrophic growth

(3.20)

dSBAP

dt
“ p1 ´ fBq pp5 ` p10qlooooooooooomooooooooooon

bacterial decay

` p6loomoon
XS hydrolysis

´ 1

YSMP
pp2b ` p3bq

loooooooooomoooooooooon
utilisation

(3.21)

p2a, p2b, p3, etc. denote the rates of processes contributing to production and

utilisation of SMP and are defined in the original article of Lu et al. [157] together with

all state variables, Petersen matrix, and kinetic and stoichiometric parameters.

The model of Lu et al. [157], although quoted in many thematically related pub-

lications, contains several fundamental errors which pose questions about its usability

in real life applications. The model is not structurally correct as it violates the COD,

N and charge balance equations defined in Equation 3.11 in Section 3.2.1. Addition-

ally, the UAP formation constant for autotrophic biomass growth γUAP,A is equal to

1.56, which means that 56% more SMP than biomass is produced during autotrophic

growth. This value seems to be significantly overestimated as it is hard to believe that

the amount of SMP produced under normal operating conditions could be higher than

the yield of bacterial biomass. Finally, the model assumes that BAP, apart from be-

ing produced during biomass decay, is also the sole product of XS hydrolysis. This

assumption is dubious as, by definition, SMP are the products of strictly biological ori-

gin, not of enzymatic hydrolysis of the substrates coming into the system with the feed

stream. Additionally, the model only describes SMP kinetics whilst EPS kinetics are

not included.

Lack of closure in the balance equations was rectified by the Author by adjusting the

selected stoichiometric parameters in the Petersen matrix in order to satisfy constraints

given in Equation 3.11. The adjusted model with the modified stoichiometric parameters
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is given the name ‘Lu closed’ as opposed to ’Lu original’ which denotes the original

model of Lu et al. [157]. The Petersen matrix of the modified model of Lu is given in

the Appendix in Section ??.

The model of Lu et al. [157] extends ASM1 by 2 state variables, 4 processes and 9

stoichiometric and kinetic equations bringing the numbers up to, respectively, 16 states

(including molecular nitrogen N2 and alkalinity), 12 processes and 29 parameters.

3.6.2 Extended ASM3 model of Oliveira-Esquerre et al. [192]

Oliveira-Esquerre et al. [192] extended the ASM3 model with the biopolymer model of

a simpler structure to the one implemented by Lu et al. [157]. The model of Oliveira-

Esquerre et al. [192] adds only one state variable SMP which lumps the growth-related

UAP and decay-related BAP into one term simply called microbial products (MP). The

model extends ASM3 by two new processes (aerobic and anoxic storage of MP) thus

increasing the total amount of processes to 12 and adds 5 new kinetic and stoichiometric

parameters bringing the total number of parameters to 40.

The biopolymer kinetics of Oliveira-Esquerre et al. [192] are provided in Equa-

tion 3.22. Information about individual process equations pi, where i is the process

number, as well as the added kinetic and stoichiometric coefficients can be found in the

original research paper of Oliveira-Esquerre et al. [192].

dSMP

dt
“ γMP,H pp4 ` p5qlooooooooomooooooooon

heterotrophic growth

` γMP,A p10loooomoooon
autotrophic growth

` (3.22)

` fB pp6 ` p7 ` p11 ` p12qloooooooooooooomoooooooooooooon
endogenous respiration

´ pp2b ` p3bqlooooomooooon
internal storage

In a similar fashion to other published biopolymer ASM models, SMP (or using this

model’s terminology, MP) originate from biomass growth and biomass decay (modelled

in ASM3 as endogenous respiration) and are consumed as a substrate in aerobic and

anoxic bacterial respiration. Contrary to the model of Lu et al. [157] SMP do not

originate from hydrolysis of XS .

The model of Oliveira-Esquerre et al. [192], as shall be later shown in Section 3.7,

substantially under-predicts bulk liquid SMP concentrations, compared to other SMP

models and the experimental data. This behaviour is a result of the assumption that

SMP storage occurs at the same maximum rate as the storage of readily biodegradable

substrates SS . Bearing in mind that a default maximum storage rate ksto,20 for XS in

ASM3 is equal to 12.5 d´1 whilst the maximum process rates of growth and endogenous

respiration processes, e.g. maximum heterotrophic growth rate µH,20 or heterotrophic

lysis and decay rate bH,20, are significantly lower, respectively 3.0 d´1 and 0.3 d´1, SMP

utilisation in Oliveira-Esquerre et al. [192] dominates over SMP production, causing low

bulk liquid SMP concentrations.
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In order to increase the output SMP concentrations in the Oliveira model, one could

introduce a new kinetic constant ksto,MP for aerobic and anoxic MP storage processes

and assign to it a lower numerical value to ksto,20, thus reducing SMP storage and

utilisation rates in the system. Another possibility could be to increase the values of

either the heterotrophic growth-related MP formation constant γMP,H or the fraction

of MP generated in biomass lysis fB.

However, as will be shown in Section 3.7, SMP kinetics in Oliveira-Esquerre et al.

[192] are strongly inter-connected with other process kinetics through SMP-related sto-

ichiometric parameters. In order to maintain the fundamental COD, N and charge

balances in the model, these parameters need to appear not only in the SMP rate

Equation 3.22 but also in the rate equations of other state variables in the model, re-

spectively: dissolved oxygen SO, ammoniacal nitrogen SNH , dinitrogen SN2
, nitrites

and nitrates SNO, alkalinity SHCO, and total suspended solids XTSS. Relatively minor

changes in the SMP-related stoichiometric parameters are thus found to affect not just

the output SMP concentrations but also the values of the above mentioned, non-SMP-

related state variables, hence making identification of SMP-related model parameters

difficult.

3.6.3 Extended ASM1 model of Ahn et al. [2]

Ahn et al. [2] developed an extension of ASM1 with 3 new components UAP, BAP and

EPS, 5 new processes and 8 new stoichiometric and kinetic parameters. The metabolic

pathways of SMP and EPS in Ahn et al. [2] follow the model structure of Laspidou and

Rittmann [136], where, as shall be described later, UAP are released during bacterial

growth and, at the same time, taken up by bacteria as substrates, BAP originate as by-

products of bacterial decay and products of EPS hydrolysis and are used as substrates

by heterotrophic bacteria together with UAP, whereas EPS originate as by-products of

bacterial growth (together with UAP) and are lost during hydrolysis to BAP.

Although the SMP and EPS pathways adopted by Ahn et al. [2] seem conceptually

valid in the light of available evidence [135], the model was not given sufficient descrip-

tion to allow the reader to judge its structural correctness or implement it on a computer

to carry out further studies if required. Specifically, the publication lacks a complete

description of the model structure, i.e. the Petersen matrix, the mathematical formu-

lation of the five additional processes and the values of the kinetic and stoichiometric

parameters in the SMP and EPS related processes. Finally, the model was calibrated

on a very limited amount of data (three steady-state SMP and EPS concentrations for

three different SRTs), and therefore, a) dynamic behaviour of the model could not be

identified b) the accuracy of the estimated parameters is questionable.

3.6.4 SMP and EPS model of Ni et al. [182]

Ni et al. [182] developed a model for SMP and EPS kinetics in activated sludge systems
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based on their previous work from a year earlier [181]. SMP and EPS kinetics adopted

in the model are given in Equations 3.23-3.25.

dSUAP

dt
“ kUAP

YH,S
p1

looomooon
growth on SS

´ 1

YUAP
p3

looomooon
UAP utilisation

(3.23)

dSBAP

dt
“ p5loomoon

EPS hydrolysis

´ 1

YBAP
p4

looomooon
BAP utilisation

(3.24)

dXEPS

dt
“ kEPS

YH,S
p1

looomooon
growth on SS

´ p5loomoon
EPS hydrolysis

(3.25)

where p1, p3 and p4 denote, respectively, the growth rates on SS , SUAP and SBAP ,

and p5 denotes the XEPS hydrolysis rate. The values of stoichiometric parameters in

Equations 3.23-3.25 can be found in the original publication of Ni et al. [182]. These pa-

rameters as well other kinetic and stoichiometric constants in the model were calibrated

with good results on the data obtained from a lab-scale SBR.

Although the model of Ni et al. [182] was proven to give good SMP and EPS pre-

dictions, the model contains just 8 state variables (oxygen SO, (readily-biodegradable)

substrate S, inert particulate COD XI , heterotrophic biomass XH , internally stored

products XSTO, and SUAP , SBAP and XEPS) and is therefore not a full ASM model.

The model of Ni et al. [182] is not considered for further investigations but the find-

ings presented in the original paper of the authors were taken into account during the

development of the new ASM models described in Chapter 4.

3.6.5 Extended ASM2d model of Jiang et al. [115]

Jiang et al. [115] argued that the existing SMP models were too complex and over-

parametrised and therefore very difficult to calibrate due to lack of available measure-

ments and the difficulties with obtaining appropriate measurements for the calibration

of, often complex, biopolymer production and utilisation kinetics. Their work was thus

focused on minimisation of the additional model complexity caused by incorporation

of biopolymer kinetics into the base ASM model and on minimisation or, if possible,

reduction of correlations which often exist between various SMP-related parameters in

other biopolymer kinetic models.

Jiang et al. [115] introduced 4 additional stoichiometric and kinetic SMP-related

parameters and 2 stoichiometric parameters for N and P contents in SMP thus bringing

the total number of parameters from 69 to 75. The first four SMP-related parameters

were identified in three dynamic batch experiments carried out under different scenarios

in order to isolate certain processes and identify the characteristic parameters of each

individual process. Jiang et al. [115] also introduced 2 new state variables (SUAP and

SBAP ) thus increasing the total number of variables to 21 and 6 new processes leading
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to 27 processes in total.

UAP and BAP process kinetics of Jiang et al. [115] are shown in Equations 3.26

and 3.27. Descriptions of process rate equations pi and all the kinetic and stoichiometric

parameters can be found in the original research article of Jiang et al. [115].

dSUAP

dt
“ fUAP

YH

i“7ÿ

i“4

pi

loooooomoooooon
heterotrophic growth

` fUAP

YH

i“14ÿ

i“13

pi

loooooomoooooon
PAO growth

` fUAP

YA
p18

loooomoooon
autotrophic growth

´
i“27ÿ

i“25

pi

loomoon
SMP hydrolysis

(3.26)

dSBAP

dt
“ fBAP

ÿ

i“t9,15,19u

pi

loooooooooomoooooooooon
lysis

´
i“24ÿ

i“22

pi

loomoon
SMP hydrolysis

(3.27)

Whilst in the previous models SMP was used directly as a substrate for storage

and bacterial growth, BAP and UAP in the model of Jiang et al. [115] need to undergo

hydrolysis to fermentable products SF prior to their utilisation. The rationale for this

approach is supported by observations that the majority of SMP have MWs>20 kDa.

Such large molecules are unlikely to pass through cell membranes before prior hydrolysis.

As UAP are found to have smaller MWs from BAP, they are assumed to be more readily

biodegradable than BAP. The difference between the biodegradability of UAP and BAP

is accounted for in the model by assigning a higher value to the UAP hydrolysis constant

kh,UAP compared to kh,BAP . Degradation of BAP and UAP is associated with the same

biomass yield (YH) as degradation of readily biodegradable substrates - SS and SF but

occurs at a lower rate.

The model of Jiang et al. [115] seems to be conceptually appropriate and is struc-

turally correct (except small N and P imbalances in the added 6 processes due to a

difference in the N and P contents in soluble inert organics SI and fermentable prod-

ucts SF ) whilst striking a good balance between the complexity of biopolymer kinetics

and simplicity of the adopted mathematical equations. The SMP-related kinetic and

stoichiometric parameters were identified using experimental data from the batch test

experiments whilst other non-SMP-related parameters were obtained from a lab-scale

MBR reactor. The measurements obtained from the MBR system did not include SMP,

thus the SMP-related kinetic parameters could not be validated. Although the adopted

SMP model has a simple structure with identifiable parameters, ASM2d itself suffers

from over-parametrisation and thus, poor parameter identifiability, as described in de-

tail in Brun et al. [18]. The model of Jiang et al. [115] is not able to predict EPS

concentrations which constitutes its main disadvantage in the context of this thesis.

3.6.6 Other ASM-based biopolymer models

A number of other ASM models with biopolymer kinetics can be found in the scien-

tific literature. However as these models were either not sufficiently documented, the
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biopolymer kinetic models were too simplistic or identification procedures employed for

model calibration were not sufficient to assure confidence in the model parameters, they

were not considered for further study. One of such models was published by Lee et al.

[140] and used ASM1 as the base model. The model however was not fully described

in the paper, SMP were assumed to originate only from biomass decay and addition-

ally, all SMP-related parameters were taken from literature, i.e. were not identified

empirically. Saroj et al. [217] published a short paper with simulation results from their

modified ASM3 model incorporating simultaneous substrate utilisation and storage, and

simple biomass-associated EPS production kinetics. Polymer kinetics were assumed to

depend on hydrodynamic conditions, temperature and concentration/potential of toxic

substances. The model was however not well described in the publication nor was it

calibrated and EPS kinetics were not described in a mathematical form in the publica-

tion.

3.6.7 CES-ASM1 and CES-ASM3

Two new ASM models were developed by the author of this thesis to fill the gap in

modelling activated sludge dynamics with SMP and EPS kinetics. These models are de-

scribed, analysed, and simulated in Chapter 4. The first model is an extension of ASM1

and is called the combined EPS and SMP production ASM1-based model (CES-ASM1)

whereas the second model extends the ASM3 model an is called the combined EPS and

SMP production ASM3-based model (CES-ASM3). As described above, the existing

models, except the model of Ahn et al. [2], which is not well documented and the model

of Ni et al. [182], which does not constitute a full ASM model, only take SMP kinetics

into account whilst EPS kinetics are not considered at all. Furthermore, many of the

existing ASM models with SMP kinetics are found to be either structurally incorrect or

to provide possibly erroneous results.

The models developed in Chapter 4 are based on the ‘unified theory for extracellu-

lar polymeric substances, soluble microbial products, and active and inert biomass’ of

Laspidou and Rittmann [135], thus consider both SMP and EPS kinetics. The metabolic

pathways of SMP and EPS in CES-ASM1 and CES-ASM3 are visualised in Chapter 4,

respectively in Figure 4.1 on page 84 and Figure 4.2 on page 85. Both models are

calibrated on experimental data obtained from a batch and a continuous-flow lab scale

bioreactor and a full-scale continuous-flow bioreactor. CES-ASM1 adds 7 new processes

to 15 original processes of ASM1 and 20 kinetic and stoichiometric parameters raising

the total number of parameters to 39. The model has 17 states. CES-ASM3 adds 6 new

processes to 12 original ASM3 processes and 22 parameters making the total number

of parameters in the model equal to 58 and calculates 16 state variables. Both models

assume that UAP and BAP are biodegradable, but the degradation kinetics of BAP are

slower from the degradation kinetics of UAP and of readily biodegradable substrates SS

[28]. The models also include the process of slow hydrolysis of inert particulate organic

compounds, however it has been switched off in the simulations presented in Section 3.7

of this chapter.
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Both models proved to provide good predictions of biopolymer concentrations but

appear to be over-parametrised. CES-ASM3 also assumes that all substrates have to

be stored before utilisation and CES-ASM1 does not consider any intermediate storage,

whilst it has been demonstrated that some part of the substrates is directly used by the

cell while the remaining part is internally stored within the cell [224]. These seem to

be two most significant weaknesses of CES-ASM1 and CES-ASM3.

3.6.8 Recent developments in modelling biopolymer kinetics

Since the development of CES-ASM1 and CES-ASM3, several other biopolymer models

have been published in the literature. Mannina et al. [163] incorporated the SMP kinetic

model structure of Jiang et al. [115] and linked it with a fouling model to describe a

hollow fibre (HF) immersed membrane bioreactor (iMBR). Tian et al. [238] modified

the ASM3 model through adoption of the concept of simultaneous growth and storage

of organic substrates by heterotrophic bacteria and introduction of the SMP formation

and degradation kinetics. The SMP kinetics were identified in batch experiments in a

similar way to what was described in Jiang et al. [115]. The model was then validated on

the results form a lab-scale MBR. Chen et al. [25] used the extended Fourier amplitude

sensitivity test for evaluation of the sensitivity and uncertainty associated with the

model of Tian et al. [238].

Although the new models offer a significant improvements over the earlier published

models, they do not address the issue of simultaneous modelling of SMP and EPS within

a ASM model framework.

3.7 Comparison of ASM-biopolymer models

The verbal comparison of biopolymer ASM-based models is followed by a numerical

comparison through simulations of a fictitious plant shown in Figure 3.3. Six models

are selected for the simulations: (1) the model of Lu et al. [157], (2) the model of

Oliveira-Esquerre et al. [192], (3) the model of Jiang et al. [115], (4) CES-ASM1, (5)

CES-ASM3. The sixth (6) model is the model of Lu et al. [157] which has been modified

by the author of this thesis in order to fix (close) the mass and charge imbalances present

in the original Lu model. This model is later referred to as Lu closed. The mass and

charge imbalances in the original Lu model were corrected by changing the appropriate

stoichiometric coefficients in the Petersen matrix in order to satisfy Equation 3.11. In

addition to numerical analysis all of the considered biopolymer models were compared

with regards to the number of biopolymer state variables, total number of state variables,

number of biopolymer kinetic equations, total number of kinetic equations, number of

biopolymer-related parameters, and total number of parameters. All this information

has been collated in Table 3.4.

The fictitious plant shown in Figure 3.3 is based on three CSTRs - an anoxic

tank Vanox and two aerobic tanks Vaer,1 and Vaer,2 equipped with diffused air bubble
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Table 3.4: Comparison of ASM models with biopolymer components with regards to number of state variables, processes, and model parameters.

Model name Base ASM
model

Biopolymer states No. of new
processes

Number of
new parame-
ters

Tot. no. of
states

Tot. no. of
processes

Tot. no. of
parameters

Comments

Lu et al. [157] ASM1 SUAP ,SBAP 4 9 16* 12 29 * Including N2 and SALK ,
Unbalanced

Lu closed ASM1 SUAP ,SBAP 4 9 16* 12 29 * Including N2 and SALK ,
Closed balances

Oliveira-Esquerre
et al. [192]

ASM3 MP 2 5 14 12 40 Low effluent SMP concen-
trations

Ahn et al. [2] ASM1 SUAP ,SBAP ,XEPS 5 8 17* 13 28 * Including N2 and
SALK , Not well docu-
mented, hence not used
for simulations

Jiang et al. [115] ASM2d SUAP ,SBAP 6 6 21 27 75

CES-ASM1* ASM1 SUAP ,SBAP ,XEPS 7 20 17 15 39 * Including slow hydroly-
sis and N2 and SALK

CES-ASM3* ASM3 SUAP ,SBAP ,XEPS 6 22 16 18 58 * Including slow hydroly-
sis
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Figure 3.3: Flow diagram of a fictitious plant layout used for comparison of biological
models.

aeration. Each tank has an active volume of 200 m3. The airflow rates qair.1 and qair,2

are individually adjusted with two separate proportional integral (PI) controllers set to

maintain a constant DO setpoint SO,set “ 1.5 mgO2/L. An ultrafiltration membrane

with mean pore diameter of 0.03 µm and SMP rejection of 92% [115] is modelled as

an ideal clarifier. The parameter fnr,SMP “ 0.08 defines the proportion of SMP which

passes through the membrane and ends up in the permeate. The internal recirculation

rate and external recirculation rate are in proportion to the influent flow rate qinf ,

respectively: qrec “ 3 ˆ qinf , qras “ 0.05 ˆ qinf . The sludge wastage rate qwas is

adjusted by a PI MLSS controller in order to maintain the MLSS concentration in the

second aeration tank at a required setpoint.

The simulations are performed for a number of operating conditions defined, re-

spectively by different combinations of MLSS setpoints, DO setpoints, Temperatures,

and HRTs. Ranges of the above parameters are defined below: MLSSset “ t3, 000 :

3, 000 : 30, 000u mg/L, DOset “ t0.5 : 1.0 : 4.5u mgO2/L, T “ t9.0 : 3.0 : 21u ˝C,

HRT “ t2, 6, 10, 15, 20u hrs. In each of the four sensitivity studies, each parameter

is varied within its specified range whilst the other parameters remain at their default

values, i.e. MLSS
default
set = 12,000 mg/L, DO

default
set = 1.5 mgO2/L, T default

set = 14 ˝C,

Q
default
inf = 2000 m3/d which gives a default HRT, HRT default “ 7.2 h. In each simula-

tion run, the influent concentrations are kept at constant levels: TKNinf = 30 mgN/L,

TPinf = 4 mgP/L, SMPinf=0 mgO2/L. Influent COD is kept at a constant value of

COD
default
inf = 300 mgO2/L except in the sensitivity study to HRT, where HRT is ad-

justed in the system by manipulating the influent flow rate Qinf whilst, for each Qinf ,

CODinf is adjusted using Equation 3.28 in order to maintain the same influent organic

load to the plant.

CODinf “
Q

default
inf COD

default
inf

Qinf
(3.28)

Each simulation in all four sensitivity studies is run for tsimu = 400 d in order to allow

sufficient time for convergence to steady-state. Results of the steady-state sensitivity

studies for MLSSset, DOset, T , and HRT are shown, respectively in Figure 3.4, Fig-

ure 3.5, Figure 3.6, and Figure 3.7. Each figure shows changes in the selected outputs:

O2 demand, Sludge yield, SRT, and bulk liquid concentrations in the second aerobic

tank: SNH , SNO, TN , SALS, SSMP , XEPS in response to changes in the selected set-
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points: MLSSset, DOset, as well as T and HRT . Outputs obtained from the original

ASM models, i.e. ASM1, ASM2d, and ASM3 are included in the plots to provide the

points of reference for comparative analysis of the biopolymer models .

The figures show that the models of Lu and Oliveira respectively overpredict and

underpredict the oxygen demand in the system with an error margin up to ˘50%. Ad-

ditionally the model of Oliveira is found to significantly overestimate sludge yield in the

system and underpredict bulk liquid SNO concentrations. The model of Lu and its mod-

ified version ‘Lu closed’ are found to produce very low concentrations of SNH compared

to their base model ASM1. Whilst SMP concentrations predicted from the original Lu

model are relatively high compared to the outputs from other biopolymer models, SMP

predictions in ’Lu closed’ are very low. SMP concentrations produced by the Oliveira

model are even lower than these in ’Lu closed’ and reach the values as low as 0.1 mg/L.

Although by adjusting the SMP production related kinetic and stoichiometric param-

eters in the Oliveira model it is possible to increase the output SMP concentrations,

however still to very low levels of around 10 ´ 30 mg/L, this procedure leads to deteri-

oration of the prediction accuracy of other model state variables such as, e.g. SNH and

SNO. The model of Jiang et al. [115], as well as CES-ASM1 and CES-ASM3 exhibit

very similar behaviour to their base models, respectively ASM2d, ASM1, and ASM3.

CES-ASM3 and the model of Jiang et al. [115] predict very similar SMP concentrations

whilst SMP concentrations in CES-ASM1 are 60% higher. The only models including

the EPS kinetics are CES-ASM1 and CES-ASM3. EPS concentrations produced by

these two models are similar, although CES-ASM1 predicted higher bulk liquid EPS

concentrations to CES-ASM3. Higher values of SMP and EPS in CES-ASM1 com-

pared to CES-ASM3 are a direct result of giving the heterotrophic growth rate on BAP

µBAP a zero value and assigning a low value to the EPS hydrolysis rate khyd,EPS in

the CES-ASM1 model - see Table 3.5. Table 3.5 lists all biopolymer-related kinetic and

stoichiometric parameters for both models as well as some original ASM1 and ASM3

parameters if their values are not default. Under equivalent sets of biopolymer-related

kinetic and stoichiometric parameters CES-ASM1 and CES-ASM3 predict very similar

concentrations of SMP and EPS as shown in Section 4.5 of Chapter 4.

In order to assess the performance of the biopolymer models, the outputs from

each biopolymer model have been compared to the outputs of its base ASM model.

The closer the biopolymer model’s behaviour is to its base ASM model, the lower are

the effects of additional biopolymer kinetics on the overall model behaviour, hence eas-

ier model calibration. Since the models are required to offer good prediction accuracy

of all state variables, not just biopolymer related ones, an introduction of biopolymer

kinetics cannot jeopardise the model’s accuracy in other areas. Since the original ASM

models have been extensively validated and are found to offer good ‘off-the-shelf’ pre-

dictions with default parameters, the closer the new model is to its base model, the

easier will be its application in the modelling studies of different sorts. It is also more

plausible from a scientific point of view that biopolymer kinetics, which are felt to be

of secondary importance, do not dominate over other, more significant processes, such
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Table 3.5: Kinetic and stoichiometric parameters for SMP and EPS kinetics in
CES-ASM1 and CES-ASM3 used in the model comparison study.

Parameter Symbol Unit CES-ASM1 CES-ASM3

ASM1 and ASM3 parameters

Yield of heterotrophic biomass YH gXH g´1 XSTO 0.6 –

Half sat. coefficient for incorporation of NH`
4

/NO´
3

by het-
erotrophs KNHNO

gN m´3 0 –

Aerobic yield of heterotrophic biomass Y
O2

H
gXH g´1 XSTO – 0.8{γH

Anoxic yield of heterotrophic biomass Y NO
H gXH g´1 XSTO – 0.65{γH

Aerobic yield of stored product per SS Y
O2

STO
gXSTO g´1 SS – 0.8{γH

Anoxic yield of stored product per SS Y NO
STO gXSTO g´1 SS – 0.7{γH

CES-ASM1 and CES-ASM3 kinetic parameters

Max. spec. heterotrophic growth rate on SUAP µUAP,20 d´1 0.45 –

Max. spec. heterotrophic growth rate on SBAP µBAP,20 d´1 0.00 –

Max. XI hydrolysis rate kh,XI,20 d´1 0.00 0.00

Max. XP hydrolysis rate kh,XP ,20 d´1 0.00 –

SBAP storage rate constant kBAP
STO gSBAP g´1 XH d´1 – 0.1

SUAP storage rate constant kUAP
STO gSUAP g´1 XH d´1 – 0.1

Max. XEPS hydrolysis rate kh,EPS,20 d´1 0.055 0.17

CES-ASM1 and CES-ASM3 stoichiometric parameters

Fraction of SUAP produced during heterotrophic growth γH gSUAP g´1 XH 0.0924 0.0193

Fraction of SUAP produced during autotrophic growth γA gSUAP g´1 XA 0.00 0.00

Half saturation constant for SBAP KBAP gSBAP m´3 85 85

Half saturation constant for SUAP KUAP gSUAP m´3 100 100

Yield coefficient for heterotrophic growth on SMP YSMP gXH g´1SMP 0.45 –

Fraction of SBAP produced from biomass decay fBAP gSBAP g´1(XH or XA) 0.017 0.0215

Fraction of XEPS produced during XH cell growth fEPS,h gXEPS g´1 XH 0.045 0.12

Fraction of XEPS produced during XA cell growth fEPS,a gXEPS g´1 XA 0.00 0.00

Fraction of XEPS produced from XH decay fEPS,dh gXEPS g´1 XH 0.015 0.05

Fraction of XEPS produced from XA decay fEPS,da gXEPS g´1 XA 0.00 0.00

Fraction of XEPS produced during storage of internal sub-
strates

fEPS,STO gXEPS g´1 XH – 0.12

Fraction of SS produced from XEPS hydrolysis fS gSS g´1 XEPS 0.4 0.4

N content of SBAP iXBAP gN g´1 SBAP 0.06 0.07

N content of XEPS iXEPS gN g´1 XEPS 0.06 0.07

Fraction of N released in XI hydrolysis fN,XI
gN g´1 XI 0.02 0.02

Fraction of N released in XP hydrolysis fN,XP
gN g´1 XP 0.086 –

Aerobic yield of stored product per SBAP and SUAP (SMP) Y
O2

STO,SMP
gXSTO g´1SMP – 0.80

Anoxic yield of stored product per SBAP and SUAP (SMP) Y NO
STO,SMP gXSTO g´1SMP – 0.70

as e.g. nitrification or denitrification.

The models are assessed by calculating the average relative deviation (ARD) be-

tween the outputs of the biopolymer models
`
xbiosim

˘
and the outputs of the base ASM

models
`
xASM
sim

˘
- see Equation 3.29.

ARD “ 1

n

nÿ

i“1

˜ˇ̌
xASM
sim ´ xbiosim

ˇ̌

xASM
sim

¸
¨ 100% (3.29)

The overall results are presented with a bar plot in Figure 3.8. The model of Oliveira-

Esquerre et al. [192] deviates the most from its base ASM3 model with ARDs up to

15%. The ‘Lu’ and ‘Lu closed’ models also produce significantly different outputs to

their base ASM1 model, especially with regards to nitrification, denitrification and

oxygen demand. The model of Jiang et al. [115] is characterised with ARDs up to only

2%, while CES-ASM1 and CES-ASM3 have ARDs below 1%.
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Figure 3.8: Average relative deviations between the biopolymer models and the original
ASM models in all four sensitivity studies.

The results show that the models of Lu et al. [157] and Oliveira-Esquerre et al.

[192] are inappropriate, because they deviate too much from their base ASM models as

a result of the influence that the biopolymer-related stoichiometric parameters have on

the original reaction terms such as the heterotrophic growth or autotrophic growth. The

model of Jiang et al. [115] is conceptually correct but it does describe the EPS kinetics

and additionally it is based on a very large and complex ASM2d model which has a

large number of unidentifiable parameters [18]. These findings justify the development

of CES-ASM1 and CES-ASM3, which shall be described in Chapter 4.

1
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Chapter 4

Development of new activated

sludge models
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4.4.1 Calibration on the data set of Hsieh et al. [102; 101] . . . . . . 95

4.4.2 Calibration on the data set from Yigit et al. [267] . . . . . . . . 100

4.4.3 Default parameter set for CES-ASM1 and CES-ASM3 . . . . . 101

4.5 Final simulation results . . . . . . . . . . . . . . . . . . . . . . . 105

4.6 Steady-state simulation results . . . . . . . . . . . . . . . . . . 107

4.6.1 Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.6.2 Self organisizng map (SOM) projections . . . . . . . . . . . . . 109

4.7 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.7.1 Dynamic sensitivity analysis . . . . . . . . . . . . . . . . . . . . 117

4.7.2 Static steady-state sensitivity analysis . . . . . . . . . . . . . . . 124

4.1 Introduction

This chapter presents two new dynamic activated sludge models which, apart from

describing, so called, standard activated sludge processes, also predict the formation

and degradation kinetics of bacterial biopolymers: soluble microbial products (SMP)

and extracellular polymeric substances (EPS). The first model, later referred to as

combined EPS and SMP production ASM1-based model (CES-ASM1) is based on Ac-

tivated Sludge Model No. 1 (ASM1) by Henze et al. [86], while the second model, later

referred to as combined EPS and SMP production ASM3-based model (CES-ASM3) is

based on Activated Sludge Model No. 3 (ASM3) [79]. Both models have been briefly
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T. Janus 4.1. INTRODUCTION

outlined in Chapter 3 in Section 3.6.7. CES-ASM3 presented in this chapter is a slight

modification of the model published in Janus and Ulanicki [111]. CES-ASM3 as well

as CES-ASM1 described here feature an additional process of slow hydrolysis of un-

biodegradable particulate substrates as suggested by Spérandio and Espinoza [227] and

Lubello et al. [158]. Additionally, the kinetic and stoichiometric parameters for nitrifi-

cation, namely maximum autotrophic growth rate µA, autotrophic decay rate bA and

Monod half-saturation constant for ammoniacal nitrogen KNH have been adjusted ac-

cordingly to the published observations of Spérandio and Espinoza [227] - see Section 4.2

for further reference.

CES-ASM1 and CES-ASM3 add an extended unified theory of production and

degradation of SMP and EPS developed by Laspidou and Rittmann [135; 136] into,

respectively ASM1 and ASM3, although with one significant conceptual correction.

Whilst Laspidou and Rittmann [135; 136] assume that all biomass associated products

(BAP) in the system originate from hydrolysis of EPS, researchers such as Aquino and

Stuckey [7] postulate that BAP is produced during EPS hydrolysis as well as bacterial

cell lysis and decay. In fact, BAP had already been earlier defined as SMP fraction

strictly originating from biomass decay by Lu et al. [157]. The lack of direct active

cell decay-related SMP production in Laspidou and Rittmann [136] was found to be the

main cause of discrepancies between model predictions and measurements of SMP [169].

Hence, CES-ASM1 and CES-ASM3 incorporate both pathways of BAP formation as

shown in Figures 4.1 and 4.2.

Both models were calibrated on published experimental results from batch and

continuous flow laboratory and pilot plant experiments [102, 101, 267] and proved to be

in good agreement with the measurements. Standard sets of parameters were chosen

for both models as a combination of calibrated parameter values and values obtained

form literature. CES-ASM1 and CES-ASM3 were then used to predict SMP and EPS

production in an activated sludge system under various operating conditions. The

simulation results are shown in Section 4.5 and indicate increased production of SMP

and EPS at higher mixed liquor suspended solids (MLSS), lower temperatures and lower

sludge retention times (SRTs). The models also predict a slight increase in SMP and

EPS concentrations with increasing dissolved oxygen (DO).

From the modelling perspective SMP can be subdivided into two groups, based

either on their origin or chemical composition. In most models, as mentioned in Chap-

ter 3, SMP are subdivided into utilisation associated products (UAP) which are pro-

duced during substrate metabolism and into biomass associated products (BAP) which

originate directly from biomass as products of decay, lysis and cell maintenance. If

we look into chemical composition of SMP which determines such properties of SMP

as molecular weight (MW) size distribution or hydrophobicity, we can subdivide and

quantify different types of chemical compounds constituting SMP and EPS such as, e.g.

proteins (PP) and polysaccharides (PS). SMP and EPS have already been found to

exhibit different fouling properties depending on their chemical composition [78, 207].

Most of the models developed to date have not looked into chemical composition of
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SMP and CES-ASM1 and CES-ASM3 are no different in this respect. The reason for

this state of matters is that the metabolic pathways leading to production of individ-

ual groups of chemicals in SMP are not yet understood. The Author however believes

that development of a mathematical model which will be capable of predicting (some)

chemical composition of SMP and EPS such as, e.g. the PS and PP fractions, might

be helpful in furthering our understanding of SMP and EPS production in microbial

systems and might allow us to develop better functional links between biological and

fouling models.

ASM1 and ASM3 were chosen to form the basis for, respectively CES-ASM1 and

CES-ASM3. ASM1 was selected for its simplicity and its widespread use in the engi-

neering community. Additionally, ASM1 is used as a biological model in the COST sim-

ulation benchmark [36] as well as the recently developed membrane bioreactor (MBR)

benchmark model of Maere et al. [160]. Thus, using a ASM1-based biopolymer model

will allow easier comparison of benchmark results with the results of the integrated

MBR model. ASM3 was chosen as the base for the second model because, from the

Author’s experience, ASM3 is easier to calibrate for long sludge age systems as a result

of replacing the ‘death-regeneration’ concept with endogenous respiration and introduc-

tion of substrate storage mechanism [89]. ASM3 solves several well-known limitations

of ASM1 as reported in Gujer et al. [79] and, with additional equations, can be used

to simulate, for example, a two-stage nitrification process [110, 117] or excess biological

phosphorus removal (EBPR) [208]. More information about ASM1 and ASM3 can be

found in, respectively, Sections 3.2.3 and 3.2.3.

The new biopolymer-related state variables of CES-ASM1 and CES-ASM3 are

listed below.

1. SUAP (gCOD m´3): Utilisation associated products UAP. This is a fraction of

SMP which is produced as a by-product of substrate utilisation and cell growth.

2. SBAP (gCOD m´3): Biomass associated products BAP. This is a fraction of SMP

which is independent of cell growth rate and is a by-product of cell lysis and decay

as well as EPS hydrolysis/dissolution.

3. XEPS (gCOD m´3): Extracellular polymeric substrates EPS.

In most experimental studies, EPS and SMP are assumed to be composed of only

two fractions: proteins (PP) and polysaccharides (PS). As activated sludge models

represent biopolymer concentrations in the units of mg COD/L whilst the measurements

of PP and PS are given in, respectively mg of bovine serum albumen (BSA) per litre

and mg C6H12O6 per litre in accordance to the methods of Lowry et al. [156] and

Dubois et al. [49], PP and PS measurements need to be converted to chemical oxygen

demand (COD) for model calibration purposes. In order to achieve such conversion

Equation 4.1 first introduced in [115] can be used.

SCOD “ p1.5 SPT ` 1.07 SPSq{0.65 (4.1)
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CES-ASM1 and CES-ASM3 assume that production of EPS in activated sludge systems

obeys the Leudeking-Piret equation [144] with a reformulated non-growth associated

term and an additional reaction term for EPS hydrolysis/dissolution:

rEPS “ fEPS µ X ` fEPS,d b X ´ kh,EPS XEPS (4.2)

where µ (d´1) denotes the microbial growth rate, X (gCOD m´3) denotes the biomass

concentration, XEPS (gCOD m´3) is the EPS concentration, fEPS (–) is a nondi-

mensional growth associated EPS formation coefficient, fEPS,d (–) is the non-growth

associated EPS formation coefficient, b (d´1) is the microbial decay rate, and kh,EPS

(d´1) is the rate of EPS hydrolysis/dissolution.

Production of utilisation associated products (UAP) is associated with biomass

growth and substrate utilisation and can be expressed with a reformulated equation of

Rittmann and McCarty [209]:

rUAP “ pγUAP {Y q µ X (4.3)

where γUAP (–) is the UAP formation coefficient, and Y (–) denotes the biomass yield.

BAP are assumed to originate from biomass decay and hydrolysis/dissolution of

EPS and their production kinetics follow can be expressed with Equation 4.4:

rBAP “ fBAP b X ` p1 ´ fSq kh,EPS XEPS YBAP (4.4)

where fBAP (–) is the BAP formation coefficient, fS (–) is the fraction of SS produced

from EPS hydrolysis/dissolution and YBAP (–) is the unit conversion between EPS

and SMP. YBAP is equal to 1 as all modelled carbonaceous substrate concentrations

including EPS and SMP have the same unit of mg COD/L.

Accordingly to Equation 4.4 part of BAP is biomass associated SMP whereas the

rest can be regarded as soluble EPS since they originate from hydrolysis/dissolution

of extracellular polymeric substances (EPS). Kinetic pathways of SMP and EPS in

CES-ASM1 and CES-ASM3 are presented, respectively, in Figure 4.1 and Figure 4.2.

Figure 4.1: EPS and SMP formation and utilisation pathways in CES-ASM1.

UAP as well as BAP are taken up by heterotrophic biomass XH for growth and res-
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Figure 4.2: EPS and SMP formation and utilisation pathways in CES-ASM3.

piration (in CES-ASM1) and growth and respiration with prior storage (in CES-ASM3).

UAP are produced during the growth of XH and XA, whilst BAP originate from XH

and XA decay and XEPS hydrolysis. XEPS are produced during both, growth and

decay of XH and XA in CES-ASM1 and during storage, growth, and decay of XH and

XA in CES-ASM3.

4.2 Nitrification and slow hydrolysis kinetics

Spérandio and Espinoza [227] reported that ASM1 and ASM3 with default kinetic

and stoichiometric parameters overestimate sludge production at high SRTs (over 50

days) whilst giving correct predictions (ASM1) or slightly underestimating the sludge

production (ASM3) under lower SRTs up to 30 days. Differences in predicted sludge

yields between ASM1 and ASM3 for lower SRTs result from different treatments of

death and decay processes in these two models. As a result, ASM1 tends to predict

higher amounts of unbiodegradable organic matter in the sludge, due to overestimation

of decay processes in the death-regeneration model [227].

It was postulated that organic compounds which are inert at moderate SRTs be-

come biodegradable under elevated SRTs such as these observed in MBR systems.

Biodegradability of these ‘unbiodegradable’ particulate components can be introduced

into activated sludge model (ASM) models through provision of a mechanism of slow

hydrolysis of ‘unbiodegradable’ particulates. This process leads to reduction of the

amounts of particulate inert products of biomass decay XP and particulate inert or-

ganic matter XI in the system and thus, reduction of mixed liquor volatile suspended

solids (MLVSS).

Lubello et al. [158] extended the ASM1 model with slow hydrolysis of XP and XI ,

swapped death-regeneration with a simple decay process and validated their model on

two separate sets of data from two different MBR pilot plants. The authors attributed

poor predictions of MLVSS in ASM1 and ASM3 to a false assumption that inert prod-

ucts of biomass decay cannot be biodegraded. This assumption is only valid for limited

values of SRTs. For higher SRTs this unbiodegradable material undergoes slow hy-

drolysis to soluble substances, thus leading to lower sludge yields. Moreover, sludge
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production is hard to determine for high SRT systems due to the fact that respiro-

metric techniques are short-term. Hence, otherwise hydrolysable fraction is identified

in the tests as inert particulate [158]. Following the approach of Lubello et al. [158]

CES-ASM1 and CES-ASM3 incorporate slow hydrolysis kinetics of XP (CES-ASM1),

and XI (CES-ASM1 and CES-ASM3). Both hydrolysis rates are expressed with first

order kinetics as shown in Equations 4.6 and 4.5.

dXP

dt
“ ´kP XP (4.5)

dXI

dt
“ ´kI XI (4.6)

where kP and kI denote XP and XI hydrolysis rates respectively, and both are assigned

the value of 0.013 d´1.

The nitrogen contents in XI and XP (fN,I and fN,P ) are given the values origi-

nally proposed by Lubello et al. [158], which are, respectively 0.020 gN gCOD´1

XI
and

0.086 gN gCOD´1

cell.

Both inert particulate fractions are hydrolysed into soluble inert organic matter

(SI) and readily biodegradable substrates (SS). Fractions of SI produced in XI and

XP hydrolysis are denoted with stoichiometric parameters fI,I and fI,P , respectively.

The rest of the products of XI and XP hydrolysis form readily biodegradable soluble

substrates (SS). fI,I and fI,P have been assigned null values in accordance with the

observations of Lubello et al. [158].

Spérandio and Espinoza [227] postulate that MBRs have different nitrification ki-

netics to conventional ASMs and therefore MBRs should be modelled using different

autotrophic biomass growth and decay rates to the default rates used in ASM1 and

ASM3. They proposed µA “ 0.45 d´1 and bA “ 0.04 d´1 as the values more character-

istic of MBR systems. The half-saturation constant for nitrification is found to be higher

in MBRs than in conventional activated sludge (CAS) systems [228] and additionally

increases with SRT. The values of this half-saturation constant found by Spérandio and

Espinoza [227] in batch test experiments for an unknown mathematical model (most

likely ASM1 or ASM3) ranged from 0.25 mgN/L at MLSS of around 1.5 g/L to 0.65

mgN/L at MLSS of 7.5 g/L.

4.3 CES-ASM1 and CES-ASM3 model structure

Each ASM model is defined by the Petersen matrix, the vector of process rate equations,

and the table of values of the kinetic and stoichiometric parameters. Additionally,

each model is supplemented with a table of stoichiometric parameters for calculation

of composite variables. Composite variables are the variables which are not explicitly

calculated in the model, but can be derived as a linear combination of the state variables.

Whilst only a few state variables can be directly measured in the system, composite

variables are usually measurable with simple wet chemistry methods. The stoichiometric
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parameters for calculation of composite variables in CES-ASM1 and CES-ASM3 are

given in Table 4.4 and Table 4.6, respectively.

The vector of composite variables c in both models is given in Equation 4.7.

cT “ rSBOD8 XBOD8 BOD8 SBOD5 XBOD5 BOD5 SCOD XCOD . . . (4.7)

COD STKN XTKN TKN TN VSS TSSs

The vectors of state variables for CES-ASM1 (x1) and CES-ASM3 (x2) are given below.

x1
T “

“
SI SS XI XS XH XEPS SUAP SBAP XA XP SO SNO SN2

SNH SND XND SALK

‰

x2
T “

“
SO SI SS SNH SN2

SNO SHCO SBAP SUAP XI XS XH XSTO XA XEPS XTSS

‰

The values of composite variables in each model are calculated with Equation 4.8

c “ CT x (4.8)

where C denotes the matrix of stoichiometric parameters for composite variables given

in Table 4.4 and Table 4.6. For CES-ASM1 x “ x1 whereas for CES-ASM3 x “ x2.

The following two sections list the composite variable calculation tables, Petersen

matrices and SMP, EPS, and slow hydrolysis kinetics for both models, whilst entire

descriptions of CES-ASM1 and CES-ASM3, i.e. Petersen matrices, all process rate

equations, and all kinetic and stoichiometric parameter values are given in the Appendix.

4.3.1 Combined SMP and EPS Activated Sludge Model No.1

Model structure

UAP, BAP, and EPS kinetics in CES-ASM1 follow the pathways shown in Figure 4.1.

Their kinetics equations together with the kinetic equations of slow hydrolysis of XI

and XP are listed in Table ??. Petersen matrix for CES-ASM1 is presented in Table 4.3.

Values of the kinetic and stoichiometric parameters used in the kinetic equations and

in the Petersen matrix can be found in the Appendix.

Aerobic growth rates on SBAP and SUAP are proportional to maximum specific

growth rates on, respectively, SBAP (µBAP ) and SBAP (µBAP ) and heterotrophic biomass

concentration XH . They additionally depend on the substrate concentration (SBAP and

SUAP respectively), oxygen concentration (SO) and alkalinity (SALK). Anoxic growth

occurs at a lower rate to aerobic growth. This rate reduction is modelled with an

anoxic reduction factor ηg. Anoxic growth depends on substrate concentration (SBAP

and SUAP ), alkalinity (SALK) and nitrate concentration (SNO), and is inhibited by

oxygen. Hydrolysis of EPS is modelled with first order kinetics with respect to the EPS

concentration (XEPS).
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Table 4.1: Process rate expressions for SMP and EPS kinetics and slow hydrolysis in
CES-ASM1.

No. Process Process rate equation

p1,b Aerobic growth on SBAP µBAP
SBAP

KBAP ` SBAP

SO

KOH ` SO

SALK

KALKH ` SALK

XH

p1,c Aerobic growth on SUAP µUAP
SUAP

KUAP ` SUAP

SO

KOH ` SO

SALK

KALKH ` SALK

XH

p2,b Anoxic growth on SBAP µBAP ηg
SBAP

KBAP ` SBAP

KOH

KOH ` SO

SNO

KNO ` SNO

SALK

KALKH ` SALK

XH

p2,c Anoxic growth on SUAP µUAP ηg
SUAP

KUAP ` SUAP

KOH

KOH ` SO

SNO

KNO ` SNO

SALK

KALKH ` SALK

XH

p7 Hydrolysis of XEPS kh,EPS XEPS

p8 Hydrolysis of XI kh,XI
XI

p9 Hydrolysis of XP kh,XP
XP

µBAP “ e
´0.069 p20´T q

µBAP,20 , µUAP “ e
´0.069 p20´T q

µUAP,20 , kh,EPS “ e
´0.11 p20´T q

kh,EPS,20 ,

kh,XI
“ e

´0.11 p20´T q
kh,XI ,20 , kh,XP

“ e
´0.11 p20´T q

kh,XP ,20

Table 4.2: Process rate expressions for SMP and EPS kinetics and slow hydrolysis in
CES-ASM3.

No. Process Process rate equation

p2,b Aerobic storage of SBAP k
BAP
sto

SBAP

KBAP ` SBAP

SO

KO ` SO

XH

p2,c Aerobic storage of SUAP k
UAP
sto

SUAP

KUAP ` SUAP

SO

KO ` SO

XH

p3,b Anoxic storage of SBAP k
BAP
sto ηNO

SBAP

KBAP ` SBAP

KO

KO ` SO

SNO

KNO ` SNO

XH

p3,c Anoxic storage of SUAP k
UAP
sto ηNO

SUAP

KUAP ` SUAP

KO

KO ` SO

SNO

KNO ` SNO

XH

p13 Hydrolysis of XEPS k
EPS
h XEPS

p14 Hydrolysis of XI kh,XI
XI

k
BAP
sto “ e

´0.07 p20´T q
ksto,BAP,20 , kUAP

sto “ e
´0.07 p20´T q

ksto,UAP,20 , kEPS
h “ e

´0.04 p20´T q ¨ kh.EPS,20 ,

kh,XI
“ e

´0.04 p20´T q ¨ kh,XI ,20
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Table 4.3: Stoichiometric (Petersen) and composition matrix for CES-ASM1, j : process, i : component.

Model components i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

j Processes SI SS XI XS XH XEPS SUAP SBAP XA XP SO SNO SN2
SNH SND XND SALK

Heterotrophic organisms

p1 Ammonification 1 ´1
1

14

p2a Aer. growth on SS ´
1

YH

1 ´
fEPS,h

fEPS,h
γH

YH

x2a y2a ´
iXB

14

p2b Aer. growth on
SBAP

1 ´
fEPS,h

fEPS,h ´
1

YSMP

x2b y2b ´
iXB

14

p2c Aer. growth on
SUAP

1 ´
fEPS,h

fEPS,h ´
1

YSMP

x2c y2c ´
iXB

14

p3a Anox. growth on SS ´
1

YH

1 ´
fEPS,h

fEPS,h
γH

YH

x3a ´x3a y3a
1 ´ YH

40 YH

´
iXB

14

p3b Anox. growth on
SBAP

1 ´
fEPS,h

fEPS,h ´
1

YSMP

x3b ´x3b y3b
1 ´ YH

40 YH

´
iXB

14

p3c Anox. growth on
SUAP

1 ´
fEPS,h

fEPS,h ´
1

YSMP

x3c ´x3c y3c
1 ´ YH

40 YH

´
iXB

14

p4 Decay of het-
erotrophs

1 ´ fP ´

fEPS,dh ´ fBAP

´1 fEPS.dh fBAP fP iXP ´
fP iXP

p5 Hydrolysis of org.
compounds

1 ´1

p6 Hydrolysis of org. N 1 ´1

p7 Hydrolysis of XEPS fS ´1 1 ´ fS
iXEPS´

iXBAP p1 ´ fSq

p8 Hydrolysis of XI fI,I 1 ´ fI,I ´1 fN,I

p9 Hydrolysis of XP fI,P 1 ´ fI,P ´1 fN,P

Autotrophic organisms

p10 Aerobic growth of au-
totrophs

fEPS,a
γA

YA

1 ´ fEPS,a ´

64

14
´ YA

YA

1

YA

´iXB ´
1

YA

´
iXB

14
´

1

7YA

p11 Decay of autotrophs
1 ´ fP ´

fEPS,da ´ fBAP

fEPS,da fBAP ´1 fP iXP ´
fP iXP

Composition matrix

1 ThOD (g ThOD) 1 1 1 1 1 1 1 1 1 1 -1 ´
64

14
´
24

14

2 Nitrogen (g N) iXB iXEPS iXBAP iXB iXP 1 1 1 1 1

3 Ionic charge (Mole`) ´
1

14

1

14
-1

This model assumes that ThOD is identical to the measured COD. 1 gSO = -1 gThOD, 1 gSNH = 0 gThOD, 1gSNO = -64/14 gThOD, 1 gSN2
= -24/14 gThOD.
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Calculation of composite variables

The matrix of stoichiometric parameters used for calculation of composite variables

in CES-ASM1 is shown in Table 4.4. It is assumed that SUAP does not contain any

nitrogen and that SI , XI , and XP do not count towards biological oxygen demand

(BOD). Particulate inert materials (XII) are not considered in CES-ASM1, therefore

the model does not explicitly calculate the inert suspended solids (ISS) and thus is

unable to predict the total suspended solids (TSS). TSS concentrations can be inferred

from the calculated volatile suspended solids (VSS) concentrations using the parameter

ivt “ V SS

TSS
. Parameter fBOD, where fBOD “ BOD5

BOD8
is used to calculate BOD5

from BOD8. VSS are obtained from particulate chemical oxygen demand (XCOD) by

multiplying XCOD by a reciprocal of icv where icv “ XCOD

V SS
and is either assumed,

calculated from theoretical equations, or measured.

4.3.2 Combined SMP and EPS Activated Sludge Model No.3

Model structure

UAP, BAP, and EPS kinetic pathways in CES-ASM3 are presented in Figure 4.2. Their

production and degradation pathways are the same as in CES-ASM1 with one major

difference. Whilst UAP and BAP in CES-ASM1 are directly used as a substrate, the

same components in CES-ASM3 need to be first stored inside the bacterial cells prior

to being used as a substrate. These storage mechanisms are one of the main features of

ASM3. Kinetics of UAP and BAP storage processes and slow hydrolysis of XI are listed

in Table ??. Petersen matrix for CES-ASM3 is presented in Table 4.5. The values of

kinetic and stoichiometric parameters used in the kinetic equations and in the Petersen

matrix can be found in Appendix IV.

SBAP and SUAP are taken up for storage by heterotrophic microorganisms under

aerobic and anoxic conditions together with readily biodegradable substrates (SS). The

rates of SBAP and SUAP storage are proportional to maximum storage rates kUAP
sto

and kBAP
sto and heterotrophic biomass concentration (XH). The rates of storage are

also dependent on substrate concentration (SBAP and SUAP respectively) and oxygen

concentration (SO). Storage under anoxic conditions occurs at a lower rate to aerobic

storage. This rate reduction is modelled by introducing an anoxic reduction factor

ηNO. Anoxic storage depends on substrate concentration (SBAP and SUAP ) and nitrate

concentration (SNO) whilst being inhibited by oxygen (SO). EPS hydrolysis is modelled

with first order kinetics with respect to XEPS.

Calculation of composite variables

Matrix of stoichiometric parameters for calculation of composite variables in CES-ASM3

is shown in Table 4.6. Similarly to CES-ASM1, SUAP is assumed not to contain any

nitrogen and SI , XI do not count towards BOD. Contrary to CES-ASM1, CES-ASM3
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Table 4.4: Composite variable calculation table for CES-ASM1.

SBOD8 XBOD8 BOD8 SBOD5 XBOD5 BOD5 SCOD XCOD COD STKN XTKN TKN TN VSS TSS

SI 1 1

SS 1 1 fBOD fBOD 1 1

XI 1 1 icv
´1 icv

´1 ivt
´1

XS 1 1 fBOD fBOD 1 1 icv
´1 icv

´1 ivt
´1

XH 1 1 fBOD fBOD 1 1 iXB iXB iXB icv
´1 icv

´1 ivt
´1

XEPS 1 fBOD fBOD 1 1 iXEPS iXEPS iXEPS icv
´1 icv

´1 ivt
´1

SUAP 1 1 fBOD fBOD 1 1

SBAP 1 1 fBOD fBOD 1 1 iXBAP iXBAP iXBAP

XA 1 1 fBOD fBOD 1 1 iXB iXB iXB icv
´1 icv

´1 ivt
´1

XP 1 1 iXP iXP iXP icv
´1 icv

´1 ivt
´1

SO

SNO 1

SN2

SNH 1 1 1

SND 1 1 1

XND 1 1 1

SALK
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Table 4.5: Stoichiometric (Petersen) and composition matrix for CES-ASM3, j : process, i : component.

Model components i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

j Processes SO SI SS SNH SN2 SNO SHCO SBAP SUAP XI XS XH XSTO XA XEPS XTSS

Heterotrophic organisms

p1 Hydrolysis fSI
1 ´ fSI

y1 z1 -1 t1

p2,a Aerobic storage of SS x2a -1 y2a z2a
YSTO,O2

´

fEPS,STO

fEPS,STO t2a

p2,b Aerobic storage of SBAP x2b y2b z2b -1
YSTO,SMP,O2

´

fEPS,STO

fEPS,STO t2b

p2,c Aerobic storage of SUAP x2c y2c z2c -1
YSTO,SMP,O2

´

fEPS,STO

fEPS,STO t2c

p3,a Anoxic storage of SS -1 y3a ´x3a x3a z3a
YSTO,NO´

fEPS,STO

fEPS,STO t3a

p3,b Anoxic storage of SBAP y3b ´x3b x3b z3b -1
YSTO,SMP,NO´

fEPS,STO

fEPS,STO t3b

p3,b Anoxic storage of SUAP y3c ´x3c x3c z3c -1
YSTO,SMP,NO´

fEPS,STO

fEPS,STO t3c

p4 Aerobic growth x4 y4 z4 γH {YH,O2
1 ´ fEPS,h ´1{YH,O2

fEPS,h t4

p5 Anoxic growth y5 ´x5 x5 z5 γH {YH,NO 1 ´ fEPS,h ´1{YH,NO fEPS,h t5

p6 Aerobic endogenous respiration x6 y6 z6 fBAP fXI
-1 fEPS,dh t6

p7 Anoxic endogenous respiration y7 ´x7 x7 z7 fBAP fXI
-1 fEPS,dh t7

p8 Aerobic respiration of XSTO x8 -1 t8

p9 Anoxic respiration of XSTO ´x9 x9 z9 -1 t9

Autotrophic organisms

p10 Nitrification x10 y10 1{YA z10 γA{YA 1 ´ fEPS,a fEPS,a t10

p11 Aerobic endogenous respiration x11 y11 z11 fBAP fXI
-1 fEPS,da t11

p12 Anoxic endogenous respiration y12 ´x12 x12 z12 fBAP fXI
-1 fEPS,da t12

EPS and XI hydrolysis

p13 Hydrolysis of XEPS fS 1 ´ fS -1 t13

p14 Hydrolysis of XI fI,I 1 ´ fI,I fN,I ´1 t14

1 ThOD (g ThOD) -1 1 1 ´24{14 ´64{14 1 1 1 1 1 1 1 1

2 Nitrogen (g N) iN,SI
iN,SS

1 1 1 iN,SBAP
iN,XI

iN,XS
iN,BM iN,BM iN,XEPS

3 Ionic charge (Mole`) 1{14 ´1{14 -1

4 TSS (g TSS) iTSS,XI
iTSS,XS

iTSS,BM iTSS,STO iTSS,BM iTSS,EPS 1

This model assumes that ThOD is identical to the measured COD. 1 gSO = -1 gThOD, 1 gSNH = 0 gThOD, 1gSNO = -64/14 gThOD, 1 gSN2
= -24/14 gThOD.

Stoichiometric parameters xi yi zi and ti were calculated from mass and electric charge conservation equations and are given in the Appendix in Table 9.9.
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calculates TSS concentrations explicitly as a state variable.
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Table 4.6: Composite variables calculation table for CES-ASM3.

SBOD8 XBOD8 BOD8 SBOD5 XBOD5 BOD5 SCOD XCOD COD STKN XTKN TKN TN VSS TSS

SO

SI 1 1 iN,SI
iN,SI

iN,SI

SS 1 1 fBOD fBOD 1 1 iN,SS
iN,SS

iN,SS

SNH 1 1 1

SN2

SNO 1

SALK

SBAP 1 1 fBOD fBOD 1 1

SUAP 1 1 fBOD fBOD 1 1 iN,SBAP
iN,SBAP

iN,SBAP

XI 1 1 iN,XI
iN,XI

iN,XI

XS 1 1 fBOD fBOD 1 1 iN,XS
iN,XS

iN,XS

XH 1 1 fBOD fBOD 1 1 iN,BM iN,BM iN,BM

XSTO 1 1

XA 1 1 fBOD fBOD 1 1 iN,BM iN,BM iN,BM

XEPS 1 1 fBOD fBOD 1 1 iN,EPS iN,EPS iN,EPS

XTSS ivt 1
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4.4 CES-ASM1 and CES-ASM3 model calibration

Kinetic and stoichiometric parameters of both models were identified on two sets of

measurements from two different experiments. The first set of data was obtained from

the experiments of Hsieh et al. [101] who investigated the SMP and EPS production

in a pure bacterial culture of Pseudomonas atlantica cultivated in a glucose medium in

a batch as well as a continuous flow lab scale bioreactor. The second set of data was

taken from Yigit et al. [267] who measured the SMP and EPS levels in a bulk liquid

of a submerged MBR pilot plant fed with raw domestic sewage and operating at five

different MLSS concentrations.

Whilst the first set of data allowed identification of model parameters governing the

model dynamics, the obtained parameters are characteristic of a single bacterial culture

which is likely to have quite different properties from the mixed bacterial population of

activated sludge. The second experiment, although did not provide the necessary mea-

surements required for identification of model dynamics, allowed for the identification

of a subset of kinetic and stoichiometric parameters in an activated sludge system fed

with real wastewater. The parameter values obtained from both experiments were then

combined with the findings of various researchers and published in literature in order to

derive a set of initial parameter values for use in simulations of MBR systems. Further

description of the experimental data, manual procedures and automatic algorithms used

in the calibration and the obtained parameter values are provided in Sections 4.4.1 and

4.4.2 below.

4.4.1 Calibration on the data set of Hsieh et al. [102; 101]

In order to identify the biopolymer-related model parameters in both models on the set

of data obtained from the continuous flow and batch bioreactors (Hsieh et al. [101]),

both experimental setups were modelled in the MATLABr environment. Both math-

ematical models were then simulated with CES-ASM1 and CES-ASM3 under the op-

erating and initial conditions conforming to the physical setup. The kinetic and sto-

ichiometric parameters selected for calibration were manipulated by the optimisation

procedure fminsearchbnd implemented under MATLABr. fminsearchbnd computes a

Nelder-Mead non-linear simplex algorithm [178] with constraints, such that the adopted

measure of error between the measurements and the model outputs is minimal. The

objective function used in this calibration procedure is described in detail later in this

section. The parameters were calibrated on continuous flow and batch reactor data un-

der one optimisation procedure resulting a single parameter set describing the behaviour

of both reactors.

The experiments were carried out by Hsieh et al. [102] on a single strain of bacteria

Pseudomonas atlantica NCMB 301. The batch as well as the continuously fed bioreactor

were fed with artificial seawater medium with 2 g L´1 of glucose added as a carbon

source and 0.5 g L´1 NH4Cl, 0.1 g L´1 KH2PO4 and 1.22 ˆ 10´4 g L´1 FeCl3 ¨ 6H2O.
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The reactor used in the study had a total volume of 2.0 L and a working volume

between 500 to 1500 mL. Aeration was provided by sparging with filter-sterilised air at

a volumetric flow rate of 2 L min´1. pH was maintained at 7.0 by automatic addition

of 1M solution of NaOH. Temperature was maintained at 25 ˘ 2 oC. In the continuous-

flow experiment, steady-state conditions were defined by consecutive observations of at

least three stable measurements of selected parameters, i.e. concentration of biomass,

glucose, EPS and SMP after operation for a minimum period of 3 times the hydraulic

retention time (HRT) [101].

The working volume of the bioreactor in the continuous-flow mode was equal 1420

mL. Although the reactor was not equipped with a mechanical mixer, recirculation

provided with the peristaltic pump at ratios over 1300:1 allowed to model the reactor

as a completely stirred tank reactor (CSTR). The recycle flow rate was typically set

at 8 L min´1 although was sometimes reaching values as high as 50 L min´1. The

medium feed rates were always below 6 mL min´1. Batch experiments were carried

out on the same bioreactor at the same volume and recirculation rates but with zero

feed flow. Bacterial dry weight (i.e. the sum of active biomass and polymers) was

measured by weighing a centrifuged and sedimented sludge after drying it at 105oC for

24 hours. Glucose concentration was determined with the Calbiochem glucose test kit

(EMD Bioscience La Jolla, CA). Biopolymers were measured with the method explained

in Platt et al. [199]. More information about the experimental setup, experimental

procedures and obtained experimental results can be found in the original publications

of Hsieh et al. [102; 101].

Bacterial culture in the experiment of Hsieh et al. [101] was cultivated in a 2.0 g L´1

glucose medium. As the theoretical chemical oxygen demand (ThCOD) of glucose is

equal to 1.067 mg O2 (mg C6H12O6)´1 and glucose is soluble and entirely biodegrad-

able, the influent COD is assumed to be composed only of soluble readily biodegradable

matter (SS) at concentration of 2,133 mgO2 L´1. Influent SNH concetration was set

to 125 mg N L´1 which corresponds to 0.5 g L´1 NH4Cl used by Hsieh et al. [101].

Based on other pieces of information provided in Hsieh et al. [101] the influent (contin-

uous flow reactor) and initial (batch experiment) XEPS concentrations were set to 10

mg COD L´1. All other COD an nitrogen (N) fractions in the influent were set to zero.

DO concentration in the mixed liquor was set to 1.5 mg O2 L´1. Reactor volumes and

flow-rates were taken from the original article.

As the reactors were inoculated with a pure heterotrophic bacterial culture of

Pseudomonas atlantica, autotrophic biomass activity in CES-ASM1 and CES-ASM3

had to be switched off by setting the autotrophic growth rate µA to zero. As the

autotrophic activity was not considered here, parameters governing the SMP and EPS

kinetics in the autotrophic biomass were not estimated. It was then assumed that the

unidentified SMP and EPS kinetic and stoichiometric parameters for the autotrophic

biomass are equal to these of the heterotrophic biomass. Although this is very likely

to be a false assumption, the relative error it may cause on the calculated mixed liquor

EPS an SMP concentrations is very small as the autotrophic mass fraction in activated
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sludge systems is found to be between 2% and 5% depending on operating conditions

and influent characteristics. This very low influence of autotrophic activity on mixed

liquor SMP and EPS concentrations was later confirmed in the parameter sensitivity

study described in Section 4.7. Outputs from the calibrated CES-ASM1 and CES-ASM3

models are presented alongside relevant measurements respectively in Figure 4.3 and

Figure 4.4. SMP concentrations shown on the plots correspond to the sum of SUAP an

SBAP , total biomass is the sum of XH and XEPS and S denotes the concentration of

readily biodegradable substrates (SS). The estimated parameter values for CES-ASM1

are shown in Table 4.7 whereas the estimated parameters for CES-ASM3 are given in

Table 4.8.

The objective function used for parameter identification has been defined as follows:

RMSPE “ 100%

gfffffffe

mÿ

j“1

nÿ

i“1

ˆ
yi,j ´ ˆyi,j

yi,j

˙2

mÿ

j“1

nj

(4.9)

where m “ 4 denotes the number of measurement series, nj denotes the number of

measurement points in the j-th series, yi,j denotes the i-th measurement in the in the

j-th series, and ŷpi, jq denotes the i-th model prediction in the j-th series.

The root mean square percentage error (RMSPE) was chosen in order to assign

the same weights to all four measurements (biomass (X); substrate (S); SMP (SSMP );

and EPS (XEPS)) despite the differences in their magnitudes. Thus, once the model

is calibrated, it will provide predictions of all four quantities with similar relative ac-

curacies. RMSPE was chosen as an objective function over mean absolute percentage

error (MAPE) in order to penalise larger errors, whilst allowing small errors to continue

over larger number of points.
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Figure 4.3: Results of CES-ASM1 calibration on the batch reactor data (a) and contin-
uous flow reactor data (b) from Hsieh et al. [102; 101].

Figures 4.3 and 4.4 show good qualities of fit for both mathematical models with

small differences between CES-ASM1 and CES-ASM3 resulting from different growth
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Figure 4.4: Results of CES-ASM3 calibration on the batch reactor data (a) and contin-
uous flow reactor data (b) from Hsieh et al. [102; 101].

and decay formulations in the underlying models. As already described in Section 3.2.3

the death regeneration concept in ASM1 has been replaced in ASM3 with endogenous

respiration, resulting in a very different description of bacterial decay. This altered the

flow of organic substrates, affected the substrate utilisation kinetics and necessitated

slightly different mathematical formulations of SMP and EPS kinetic equations in both

models.

Since CES-ASM1 and CES-ASM3 attempt to describe many different SMP and

EPS metabolic pathways as identified by various researchers, the models add quite a

bit of complexity to the already complicated and over-parametrised ASM1 and ASM3

models. A rather significant number of parameters and equations are introduced to

describe different SMP and EPS production mechanisms. Whilst some of these param-

eters vary with the type of wastewater and operating conditions and also significantly

influence the model outputs, thus need to be easily identifiable, the other might either

be universal for a wide range of influents and processes or may not significantly affect

the model outputs. In the latter case it is not required that these parameters are iden-

tified in every simulation project and, as it is a common practice in activated sludge

modelling, are usually left at their default values. Nevertheless, for the purpose of defin-

ing default parameter sets for both activated sludge models, all new parameters need to

be identified somehow. Numerous simulations with different sets of parameters showed

that SMP, EPS, substrate and biomass concentrations data provided by Hsieh et al.

[101] was not sufficient to identify all new parameters in CES-ASM1 and CES-ASM3.

It was observed that it is possible to obtain different combinations of parameters which

would lead to the same or very similar SMP and EPS concentration profiles, especially

when parameters of the opposing processes such as, e.g. SMP or EPS production and

utilisation are considered. Wherever possible, literature values of the stoichiometric and

kinetic parameters governing SMP and EPS production were adopted, thus reducing

the number of parameters to be identified from the experimental data. Identification

of all model parameters would require a large number of separate and appropriately

designed batch test experiments. Such experiments were not performed here. For the
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time being, a combination of the parameters adopted from the literature and identified

on the experimental data of Hsieh et al. [101] are proposed as a default parameter set

which can serve as a starting point for various simulations. All these parameters for

CES-ASM1 and CES-ASM3 are listed, respectively in Table 4.7 and Table 4.8.

It was difficult to obtain a good model fit for SMP concentrations in both bioreac-

tors. Whilst increasing fBAP (stoichiometric parameter governing BAP production

in bacterial lysis) and lowering the heterotrophic growth rate on BAP (µBAP,20 in

CES-ASM1 and kSTO,BAP,20 in CES-ASM3) allows us to raise effluent SMP concen-

trations in the continuous flow process up to the required levels, such a combination

of parameters causes increased BAP release under starvation conditions and leads to

gradual increase of SMP at the end of the cycle in the batch process. Such behaviour

is not supported by the experiments where SMP concentrations tend to decay and ul-

timately achieve a constant final value as the times goes by. Unsure of the accuracy of

the measurements and the methodology used, the model was calibrated in such a way

as to provide a compromise between the levels of fit between the SMP measurements

and model outputs in the continuous flow reactor and the batch reactor. Results of the

calibrations are presented in Figure 4.3 for CES-ASM1 and Figure 4.4 for CES-ASM3.

During the fitting process of substrate pSq and biomass pXq curves to the data,

three original ASM3 parameters in CES-ASM3: µH , kSTO, and bH,O2 had to be in-

creased and YH,O2 had to be lowered with regards to default ASM3 values. Similarly in

CES-ASM1 the maximum heterotrophic growth rate was increased from a default value

of 6.0 d´1 to 9.35 d´1. Also, the heterotrophic yield parameter YH was decreased from

0.67 to 0.34 gCOD g´1 COD and the Monod constant KS was lowered from default

20 to 5 gCOD m´3. These changes were necessary to describe the kinetics of Pseu-

domonas atlantica which differ significantly from the kinetics of a mixed population

biocenosis of activated sludge. Additionally, it was assumed that the decay rate under

anoxic conditions in CES-ASM3 is, similarly to ASM3, half of the decay rate under

aerobic conditions and that the respiration rate of XSTO is equal to the respiration rate

of XH . YH,NO was therefore adjusted along with YH,O2 to obtain the same anoxic to

aerobic sludge yield ratio as in the original ASM3 model. Since ASM1 does not dif-

ferentiate between biomass yields under aerobic and anoxic conditions, this procedure

was unnecessary for CES-ASM1. This adjustment was only of a cosmetic relevance as

the experiments were performed under completely aerobic conditions and therefore the

value of the anoxic yield had absolutely no impact on final calibration results. Both

models assume that N fractions in SBAP and XEPS are equal to those of the biomass

(i.e. 0.07) and adopt the Monod constants for storage (in CES-ASM3) and utilisation

(in CES-ASM1 of SBAP and SUAP from the growth kinetics on SMP as a substrate

published by Noguera et al. [185]. CES-ASM3 additionally assumes that storage yields

for SMP in CES-ASM3 are equal to the storage yields for SS , and that production of

XEPS by heterotrophic biomass happens during growth and during storage of internal

substrates. The same yield coefficient are used for both processes (growth and storage).

All other SMP and EPS kinetic and stoichiometric parameters have been obtained
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through parameter estimation as indicated in Tables 4.7 and 4.8.

4.4.2 Calibration on the data set from Yigit et al. [267]

Both mathematical models were additionally calibrated on a second set of experimental

data obtained by Yigit et al. [267] in an immersed MBR pilot plant fed with raw domestic

sewage and operated at five different MLSS concentrations {4,600; 6,600; 8,600; 10,100

and 12,600 mg L´1}. The purpose of this study was to identify the model parameters in a

real wastewater treatment scenario, because the previous calibration was performed on a

pure culture of a marine bacterium Pseudomonas atlantica which is very likely to exhibit

very different kinetics to a mixed-culture biocenosis of activated sludge. Pseudomonas

atlantica acts as a primary producer of biofilms and secretes relatively large quantities

of extracellular products, therefore the kinetic and stoichiometric parameters governing

SMP and EPS production characteristic of this bacterial species are probably higher

than those of the activated sludge.

The experiment performed by Yigit et al. [267] was accurately replicated in the

simulation. First, steady state was attained by executing the simulation for 200 days at

the MLSS setpoint of 4,600 mg L´1. The next four MLSS levels in the bioreactor were

achieved by setting the biomass wastage rate to zero and allowing the biomass concen-

tration reach another setpoint. The kinetic and stoichiometric parameters selected for

calibration were calculated with constrained Nelder-Mead algorithm [178] implemented

in a function fminsearchbnd running under MATLAB®. Similarly to previous cali-

bration, root mean square percentage error (RMSPE) between the measurements and

model predictions was chosen as an objective function for minimisation. The objective

function considers both SMP and EPS, i.e. 10 data points. Calibration results for both

models are shown in Figure 4.5. Values of the calibrated parameters for CES-ASM1 are

listed in Table 4.7, whereas the calibrated parameter values for CES-ASM3 are shown

in Table 4.8.

Figure 4.5 shows that measured SMP and EPS concentrations are in a linear rela-

tionship with MLSS, whereas the models exhibit a slightly non-linear character despite

of eliminating several processes causing the non-linearity by setting the appropriate ki-

netic parameters to zero - see Tables 4.7 and 4.8. Notwithstanding this slight non-linear

characteristics of the model outputs against the linear shape of the data, the models

were able to reproduce the EPS concentrations precisely, whereas the SMP predictions

were less accurate. Both models predict a smaller increase of the bulk liquid SMP con-

centration with MLSS than the measurements suggest. All parameters of the underlying

ASM1 and ASM3 models were left at their default values except heterotrophic biomass

yield (YH) in CES-ASM1 and aerobic and anoxic yields in CES-ASM3 which were al-

tered accordingly to the formulae shown in Table 4.7 and Table 4.8. These yields were

modified in order to account for extra biomass loss due to SMP and EPS production.

Both models tend to underestimate biomass-associated SMP production whilst

possibly overestimating SMP uptake rates by the biomass. A linear relationship between
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bulk liquid SMP and EPS concentrations and MLSS means that, in this particular

experiment, production of biopolymers is proportional only to the amount of biomass,

whereas in CES-ASM1 and CES-ASM3 biopolymer production is proportional to the

biomass concentration as well as the biomass growth rate. In order to adjust both

models to fit the data, especially with regards to SMP concentrations, the storage

constants for SUAP and SBAP in CES-ASM3 (kBAP
STO and kUAP

STO ) were set to zero. The

same procedure was carried out in CES-ASM1 for the maximum specific growth rate

on BAP (µBAP,20) and the maximum specific growth rate on UAP (µUAP,20). In other

words it was assumed that BAP and UAP are non-biodegradable.

In a similar fashion to the SMP related parameters, the EPS production constants:

fH
EPS, fA

EPS, and fSTO
EPS in CES-ASM3 were also set to zero, which means that EPS is

no longer a product of substrate utilisation and originates only from biomass decay. In

CES-ASM1 the same effect was accomplished by setting fEPS,h and fEPS,a to zero.

Other SMP and EPS kinetic and stoichiometric parameters identified in this cal-

ibration task are shown in Table 4.7 for CES-ASM1, whereas for CES-ASM3 these

parameters are presented in Table 4.8.
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Figure 4.5: Results of CES-ASM1 and CES-ASM3 calibration on the experimental data
published in Yigit et al. [267]

4.4.3 Default parameter set for CES-ASM1 and CES-ASM3

For the purpose of undertaking further simulation studies with a complete model of an

immersed MBR as described in Chapter 7 and Chapter 8 default parameter sets for each

of the two new biological models were established. Default parameters for CES-ASM1

are shown in Table 4.7 whereas the default parameter set for CES-ASM3 is presented

in Table 4.8.

All original parameter values in ASM3 were adopted in CES-ASM3 except yield

coefficients for heterotrophic biomass which were changed in order to reflect the effects

of biopolymer production on biomass growth. SUAP and SBAP storage constants were
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assumed to be equal to 0.1 d´1 while XEPS hydrolysis constant kh,EPS was set to

0.17 d´1 in order to be in accordance with the findings of Laspidou and Rittmann [136].

Similarly to the second calibration study and based on the results of the sensitivity

analysis described later in Section 4.7, stoichiometric parameters for SMP and EPS

kinetics in the autotrophic biomass were set to zero. The stoichiometric parameters for

EPS: fEPS,h, fEPS,STO, and fEPS,d were assigned values obtained in the first calibration

exercise. The values of γH and fBAP were carried forward from the second calibration

study.

Similarly to CES-ASM3, yield coefficient in CES-ASM1 was adjusted in order to

model the effects of biopolymer production in the system. All other ASM1 parameters

were left at their default values. µUAP,20 and kh,EPS,20 were chosen after Laspidou and

Rittmann [136] while µBAP,20 was given an assumed value. All but two stoichiometric

parameters have been adopted from the results of the second calibration exercise, except

fBAP which was adopted from Jiang et al. [115] and fEPS,h which was adopted form

Laspidou and Rittmann [136].
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Table 4.7: Kinetic and stoichiometric parameters for SMP and EPS kinetics of the CES-ASM1 model identified in two calibration studies and reported
in literature.

Calibration 1 Calibration 2
Parameter Symbol Unit Value Method Value Method Data set for simulations Reported values/range References

ASM1 parameters
Max. spec. heterotrophic growth rate µH,20 d´1 9.35 Fitted 6 Default 6 Default [89]
Max. spec. autotrophic growth rate µA,20 d´1 0 Assumed 0.8 Default 0.8 Default [89]
Yield coefficient for heterotrophic biomass YH gXH g´1 SS 0.34 Literature * 0.67{p1 ` γH q Literature 0.67{p1 ` γH q Default [89]
Half sat. coeff. for SS in het. growth KS gCOD m´3 5 ***** 20 Default 20 Default [89]

CES-ASM1 kinetic parameters
Max. spec. heterotrophic growth rate on
SUAP

µUAP,20 d´1 0.57 Fitted 0*** Assumed 0.45 0.45-0.50 [136, 157]

Max. spec. heterotrophic growth rate on
SBAP

µBAP,20 d´1 0.135 Fitted 0.0*** Assumed 0.05

Maximum XEPS hydrolysis rate kh,EPS,20 d´1 0.14 Fitted 0.055 Fitted 0.17 0.03 (anaerobic) - 0.17 [6, 136]

CES-ASM1 stoichiometric parameters
Fraction of SUAP produced during het-
erotrophic growth

γH gSUAP g´1 XH 0.096 YH Fitted 0.092 Fitted 0.092 0.017-0.096 [136, 115]

Fraction of SUAP produced during au-
totrophic growth

γA gSUAP g´1 XA 0.096 YA Assumed 0** Assumed 0 **

Half saturation constant for SBAP KBAP gSBAP m´3 85 Literature 85 Literature 85 30-85-500 (anaerobic) [157, 185, 6]
Half saturation constant for SUAP KUAP gSUAP m´3 100 Literature 100 Literature 100 30-100-500 (anaerobic) [157, 185, 6]
Yield coefficient for heterotrophic growth on
SMP

YSMP gXH g´1SMP 0.45 Literature 0.45 Literature 0.45 [136]

Fraction of SBAP produced from biomass de-
cay

fBAP gSBAP g´1(XH or XA) 0.068 Fitted 0.017 Fitted 0.0215 0.0215 [115]

Fraction of XEPS produced during XH cell
growth

fEPS,h gXEPS g´1 XH 0.35 Fitted 0 Assumed 0.18 0.03 (anaerobic) - 0.18 [6, 136]

Fraction of XEPS produced during XA cell
growth

fEPS,a gXEPS g´1 XA 0.35 Assumed 0 Assumed 0**

Fraction of XEPS produced from XH decay fEPS,dh gXEPS g´1 XH 0.05 Fitted 0.045 Fitted 0.045
Fraction of XEPS produced from XA decay fEPS,da gXEPS g´1 XA 0.05 Assumed 0** Assumed 0**
Fraction of SS produced from XEPS hydroly-
sis

fS gSS g´1 XEPS 0.4 Fitted 0.4 Assumed 0.4

N content of SBAP iXBAP gN g´1 SBAP 0.07 Literature 0.07 Literature 0.07 0.07 [115]
N content of XEPS iXEPS gN g´1 XEPS 0.07**** Literature 0.07 Literature 0.07

* Laspidou and Rittmann [136].
** EPS and SMP formation kinetic parameters for autotrophic biomass are set to zero as they have been found not to affect SMP and EPS concentrations.
*** UAP and BAP are assumed to be unbiodegradable.
**** N content in EPS is assumed to be the same as in BAP.
***** Reduced from a default value of 20 to 5 in order to eliminate overshoot of substrate profile near a 10 hour mark in the batch stepping experiment (although the choice was subjective
and hence the reduced value was not incorporated in the default parameter set)
Parameter fitting was performed manually (parameters adjusted by hand) during the two described calibration exercises. Some of the parameters have been calculated as a function of other
parameters which had been fitted, assumed or taken from the literature.
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Table 4.8: Kinetic and stoichiometric parameters for SMP and EPS kinetics of the CES-ASM3 model identified in two calibration studies and reported
in literature.

Calibration 1 Calibration 2
Parameter Symbol Unit Value Method Value Method Data set for simulations Reported values/range References

ASM3 parameters
Heterotrophic maximum growth rate µH d´1 12 Fitted 2.0 Literature 2.0 2.0 [79]
Autotrophic maximum growth rate µA d´1 0 Assumed 1.0 Literature 1.0 1.0 [79]
Storage rate constant kSTO gSS g´1 XH d´1 30 Fitted 5 Literature 5 5 [79]
Aerobic endogenous respiration rate of XH bH,O2

d´1 0.60 Fitted 0.2 Literature 0.2 0.2-0.74 [79, 102]
Anoxic endogenous respiration rate of XH bH,NO d´1 0.30 Assumed 0.1 Literature 0.1 0.1 [79]
Aerobic respiration rate of XSTO bSTO,O2

d´1 0.60 Assumed 0.2 Literature 0.2 0.2 [79]
Anoxic respiration rate of XSTO bSTO,NO d´1 0.30 Assumed 0.1 Literature 0.1 0.1 [79]
Aerobic yield of heterotrophic biomass YH,O2

gXH g´1 XSTO 0.43 Fitted * 0.80{p1 ` γH q Calculated 0.80{p1 ` γH q 0.63 [79]
Anoxic yield of heterotrophic biomass YH,NO gXH g´1 XSTO 0.40 Assumed 0.65{p1 ` γH q Calculated 0.65{p1 ` γH q 0.54 [79]
Aerobic yield of stored product per SS YSTO,O2

gXSTO g´1 SS 0.80 Literature 0.80{p1 ` γH q Calculated 0.80{p1 ` γH q 0.85 [79]
Anoxic yield of stored product per SS YSTO,NO gXSTO g´1 SS 0.70 Literature 0.70{p1 ` γH q Calculated 0.70{p1 ` γH q 0.80 [79]

CES-ASM3 kinetic parameters
SBAP storage rate constant kSTO,BAP gSBAP g´1 XH d´1 1 Fitted 0 Fitted 0.1
SUAP storage rate constant kSTO,UAP gSUAP g´1 XH d´1 0.1 Fitted 0 Fitted 0.1
XEPS hydrolysis rate constant kH,EPS gXEPS g´1 XH d´1 0.4 Fitted 0.055 Fitted 0.17 0.03 (anaerobic) - 0.17 [6, 136]

CES-ASM3 stoichiometric parameters
Fraction of SUAP produced during het-
erotrophic cell growth

γH gSUAP g´1 XH 0.04 Fitted ** 0.0193 Fitted 0.0193 0.017-0.096 [136, 115]

Fraction of SUAP produced during au-
totrophic cell growth

γA gSUAP g´1 XA 0.04 Assumed 0 Assumed 0 ***

Saturation constant for SBAP KBAP gSBAP m´3 85 Literature 85 Literature 85 30-85-500 (anaerobic) [157, 185, 6]
Saturation constant for SUAP KUAP gSUAP m´3 100 Literature 100 Literature 100 30-100-500 (anaerobic) [157, 185, 6]
Aerobic yield of stored product per SBAP and
SUAP (SMP)

Y
O2

STO,SMP gXSTO g´1SMP 0.80 Assumed 0.80 Assumed 0.80

Anoxic yield of stored product per SBAP and
SUAP (SMP)

Y NO
STO,SMP gXSTO g´1SMP 0.70 Assumed 0.70 Assumed 0.70

Fraction of SBAP produced during cell lysis fBAP gSBAP g´1(XH or XA) 0.05 Fitted 0.0215 Literature 0.0215 0.0215 [115]
Fraction of XEPS produced during cell growth
of XH

fEPS,H gXEPS g´1 XH 0.12 Fitted 0 Fitted 0.12 0.03 (anaerobic) - 0.18 [6, 136]

Fraction of XEPS produced during cell growth
of XA

fEPS,A gXEPS g´1 XA 0.12 Assumed 0 Assumed 0 ***

Fraction of XEPS produced during storage of
internal substrates

fEPS,STO gXEPS g´1 XH 0.12 Assumed 0 Fitted 0.12

Fraction of XEPS produced during cell decay
of XH

fEPS,dh gXEPS g´1 XH 0.05 Fitted 0.175 Fitted 0.05

Fraction of XEPS produced during cell decay
of XA

fEPS,da gXEPS g´1 XA 0.05 Assumed 0.175 Assumed 0 ***

Fraction of SS produced during XEPS hydrol-
ysis

fS gSS g´1 XEPS 0.4 Fitted 0.4 Assumed 0.4

N content of SBAP iNSBAP
gN g´1 SBAP 0.07 Literature 0.07 Literature 0.07 0.07 [115]

N content of XEPS iNXEPS gN g´1 XEPS 0.07 Literature 0.07 Literature 0.07

* Biomass net yield: YH,O2 ¨ YSTO,O2 “ 0.43 ¨ 0.85 “ 0.37. Laspidou and Rittmann [136] - 0.34.
** γH{pYH,O2 ¨ YSTO,O2 “ 0.04{0.43 “ 0.093

*** EPS and SMP formation kinetic parameters for autotrophic biomass are set to zero as they have been found not to affect SMP and EPS concentrations. Parameter fitting was performed
manually (parameters adjusted by hand) during the two described calibration exercises. Some of the parameters have been calculated as a function of other parameters which had been fitted,
assumed or taken from the literature.
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4.5 Final simulation results

CES-ASM1 and CES-ASM3 were simulated with default parameters on a treatment

plant layout shown in Figure 4.6 in which separation membrane is substituted with

an ideal clarifier. The model is simulated at different operating conditions in order to

investigate SMP and EPS production under different DO setpoints, MLSS setpoints,

SRTs, and temperatures. The results are recorded once the model has been simulated for

a sufficiently long amount of time required to reach steady-state in the system. Ranges

of variability of the operational parameters are as follows: DO: 0.5–6.0 mgO2/L, SRT:

12–250 d, MLSS: 3,000–30,000 mg/L, and temperature: 8–26 oC. DO concentrations in

the system are maintained by a proportional integral (PI) controller which manipulates

the amount of airflow provided to the tank. MLSS setpoints are maintained by a second

PI controller which adjusts the sludge wastage rate qwas. Different SRTs are obtained

in the system for a given MLSS by changing the influent organic load and hence, the

food to mass ratio (F:M).

Figure 4.6: Plant layout used in final simulations with CES-ASM1 and CES-ASM3
models.

The simulation results with CES-ASM1 and CES-ASM3 biological models are com-

pared against the model outputs of Jiang et al. [115] as shown in Figure 4.7 and Fig-

ure 4.8. SMP concentrations produced by CES-ASM1 and CES-ASM3 are higher from

those predicted by the Jiang model. These differences are due to different default pa-

rameter combinations used in all three models.

SMP in all models increases with MLSS and decreases with SRT. The first relation

is supported by the experimental results of Yigit et al. [267] who showed a linear upward

relationship between the bulk liquid SMP concentration and MLSS. If we agree with

the wide-spread and well supported hypothesis that SMP is one of the major foulants in

MBR system then the second relationship is presumably correct as most of the authors

claim that fouling propensity decreases with increasing SRT [44].

Jiang model tends to predict an increase in SMP concentration with temperature

whereas in CES-ASM1 and CES-ASM3 this trend is slightly negative, i.e. a decrease in

SMP with increasing temperature is observed. The relationship between SMP concen-

tration and temperature in CES-ASM1 and CES-ASM3 is however weaker than in the

Jiang’s model. The observations presented in Drews et al. [47], Huang et al. [103] tend to

at least qualitatively agree with the results obtained from CES-ASM1 and CES-ASM3.
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Higher ambient temperatures lead to higher bacterial metabolism and thus higher SMP

elimination rates. Temperature effects on SMP have been found to be higher during

temperature transients than under steady-state conditions [47]. As already mentioned,

the simulations described here were performed under steady state conditions, thus the

relationship between SMP concentration and temperature is weak.

The models also differ in terms of predictions of SMP concentrations vs. DO.

CES-ASM1 and CES-ASM3 show increased SMP production under higher DO concen-

trations whereas the Jiang model predicts a slight decrease. It was reported in some

literature that higher DO concentrations lead to lower eliminations of SMP in MBR

systems [47], but at the same time the results of other experimental studies show that

mixed liquor SMP concentrations increase with DO, [100]. It is generally accepted that

higher DO concentrations lead to reduced amounts of fouling but these effects can be

attributed as well to better sludge filterability which depends not only on the SMP

concentrations but can also be related to floc size distribution and floc shape.

CES-ASM1 and CES-ASM3 predict that EPS concentrations increase with MLSS,

although the content of EPS in sludge decreases, just as observed in Yigit et al. [267].

EPS was also found to be in negative proportion to SRT and temperature. For inter-

mediate sludge ages, EPS was found to be unrelated to SRT, [150], however the Author

is of an opinion that EPS concentrations will decrease for systems with older sludges

where endogenous respiration plays a bigger role in the system, [80, 150]. Relationship

between EPS concentrations and temperature is controlled by the EPS hydrolysis tem-

perature dependency coefficient which has been initially set equal to the temperature

dependency coefficient for hydrolysis of XS . Due to lack of good quality literature data

which could determine the exact character of the relationship between EPS and tem-

perature, these two coefficients have been set to an equal value of θ “ 1.0408. A slight

increase in the concentration of EPS with DO can be observed in the model but this

relationship is much weaker than for SMP.

Generally, SMP and EPS are produced in the system during metabolic activity of

the microorganisms and in lysis while being taken up by heterotrophic microorganisms

together with other organic substrates. Depending on the choice of kinetic and stoichio-

metric parameters for each of these processes the model will be able to show different

trends in SMP and EPS versus MLSS, SRT, DO, and temperature. Additionally, the

results will be different at steady state and under transient dynamic conditions. Com-

parisons of SMP and EPS concentrations vs. SRT may be ambiguous because SRT can

be attained in the system either by changing the sludge inventory or influent load. In the

first case, SRT correlates with the amount of solids in the tank. Thus, the total amount

of organics in the system increases and so does the amount of EPS and usually SMP.

In the second case, the amount of solids remains the same or decreasse slightly while

the amount of organics coming with the influent decreases. Thus, the total amount of

organic substrates in the system is reduced while the biomass growth-associated SMP

and EPS decreases.
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Figure 4.7: CES-ASM1 predictions of SMP and EPS at different DO, MLSS, SRT, and
temperature setpoints.
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Figure 4.8: CES-ASM3 predictions of SMP and EPS at different DO, MLSS, SRT, and
temperature setpoints.

4.6 Steady-state simulation results

The model layout previously used for comparison of all biopolymer ASM models as

described in Section 3.7 of Chapter 3 is used to analyse the steady-state outputs (x),

their derivatives ( 9x), and process rates (r) of CES-ASM1 and CES-ASM3 at differ-

ent operating points which are defined as combinations of MLSS, DO, temperature

and HRT - see Section 3.7 for more details. The plant layout is shown in Figure 3.3

on page 73. Additionally, the eigenvalues of both models were calculated at selected

operating points.
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4.6.1 Eigenvalues

A wastewater treatment plant (WWTP) can be described with the following system of

differential equations:

9x “ f px,u,p, tq (4.10)

where x denotes the vector of state variables, u denotes the vector of inputs and p is

the vector of model parameters. State variables in a single CSTR follow the following

differential equation:

9x “ q

V
pxinf ´ xq ` Ap

T r (4.11)

where q denotes the influent rate, V is the reactor volume, xinf denotes the vector of

state variables in the influent stream, r “ f px,pq denotes the vector of reaction rates,

where r is a vector of process rates, and Ap is a time-invariant Petersen matrix. The

above equation can be expanded into the following form:

9x “ Ap
T r ´ q

V
x ` q

V
xinf (4.12)

where 9x is in a linear relationship with the inputs xinf and in a non-linear function

fpx,p, tq with respect to x due to the nonlinearity of r with respect to x. Once Equa-

tion 4.12 is analytically linearised it takes the following form:

9x “ A x ` B xinf (4.13)

where B “ q

V
. Matrix A is obtained through Taylor expansion around the equilibrium

point xeq.

A “ Ap
T Br

Bx

ˇ̌
ˇ̌
x“xeq

´ q

V
I (4.14)

Matrix A is calculated for each operating point at an equilibrium point with Equa-

tion 4.14. The eigenvalues λ of each A matrix are then determined with the MATLAB

function eig such that Equation 4.15 is satisfied.

det pλ I ´ Aq “ 0 (4.15)

Eigenvalues of CES-ASM1 and CES-ASM3 for the selected operating points are dis-

played respectively in Figure 4.9 and Figure 4.10.

All eigenvalues of the system are real and negative indicating stable equilibria at all

operating points. The eigenvalues range between „ 10´4´104 d´1 showing a large span

of time constant between p„ 1minq ´ p„ 2.5 yearsq. Both models have zero eigenvalues

(albeit not shown in Figure 4.9 and Figure 4.10) corresponding to a pure integration

term in the transfer function and referring in this application to heterotrophic and

autotrophic growth processes.
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Figure 4.9: Eigenvalues of CES-ASM1 for six selected operating conditions.
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Figure 4.10: Eigenvalues of CES-ASM3 for six selected operating conditions.

4.6.2 Self organisizng map (SOM) projections

Sensitivity studies of ASM models which, as we know, contain large number of equa-

tions with many state variables and parameters, generate large amounts of multidimen-

sional data which are hard to data-mine and visualise. In order to find correlations

between either various process variables and model outputs or between outputs and

model parameters we need to, first, develop an understanding of the data using various

data-mining and visualisation methods, then extract the relevant information and, sub-

sequently, present it in various formats of choice. Whilst the above steps can be realised

using many different methods, the approach that the author adopted in this study is

to use self organising maps (SOMs) [125]. Self organising maps are a type of artificial

neural networks (ANNs) which are trained using unsupervised learning, i.e. they look

for hidden structures present in the input data. The outcome of this learning process

is a projection of a multidimensional input data onto a discretised, low-dimensional,

usually two-dimensional (2D) space, called a map. This mapping of multidimensional

space onto a lower dimensional space facilitates dimensionality reduction in a similar
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fashion to singular value decomposition of a data matrix or an eigenvalue decomposition

of a data covariance matrix as applied in principal component analysis (PCA) whilst

preserving the topology, i.e. relative distances between the data points.

During the, so-called, batch learning, each of the M nodes (or neurons) in the

map are initially assigned random weight vectors wi where i “ 1 . . .M . Each weight

vector wi “ rwi,1, wi,2, . . . , wi,dsT is d-dimensional, where d is also the dimension of

every input vector x. In other words, the element with index i in the weight vector

w corresponds to the element with the same index i in the input vector x. The input

data are first normalised to a zero mean value and a variance σ2 “ 1 thus allowing all

considered inputs and outputs to fall within the same range of variability and therefore

are implicitly assigned the same weights during the training process. The map in each

time epoch is sequentially fed with N input vectors xk where k “ 1 . . . N . For each input

vector xk, the learning algorithm calculates the, usually Euclidean, distance between

the weight vector of each node and that input vector. The best matching unit (BMU)

denoted as c is selected as the node which is closest to the input vector: dpx,wcq “
min
i

‖x´wi‖. The algorithm then saves the position of the BMU in the map as well as

the values of the so-called neighbourhood function values for all nodes in the map hcpxkqi.

This neighbourhood function determines how close the node is to BMU and therefore

how much its weight vector will be adjusted during the learning process. The winning

nodes are adjusted the most and the nodes next to this node are ’pulled’ along while

the nodes further away are affected to a smaller degree. Once all N input vectors have

been fed into the map, all weight vector of all nodes are adjusted using the following

formula:

wi “

Nÿ

k“1

xkhcpxkqi

Nÿ

k“1

hcpxkqi

(4.16)

Then the process is iteratively repeated until a STOP criterion is reached. Although

the learning algorithms may be assigned different STOP criteria and the neighbourhood

function hcpxkqi may be calculated with different algorithms, the general method of batch

learning of a SOM remains as explained above.

During this learning process, the nodes which best match certain input patterns

are pulled towards these input data points whereas the nodes which match other input

patterns are pulled towards those other inputs. After the learning has been completed,

we are given a two-dimensional projection of a N dimensional data which is then easy

to analyse for the presence of clusters and correlations.

Correlations between different elements of the input vectors, i.e. different input

variables, are visualised using the, so called, component planes. These component planes

represent the weights in all nodes associated with one given input variable. In other

words, each component plane represents activation of all nodes in the map to one input

variable. The correlations between different input variables are assessed by looking at

activation of the same nodes across two (or more) component planes. High activation of
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the same nodes in both component planes indicate positive correlation whereas if high

activation of the nodes in one component plane is associated with low activation of the

same nodes in the second component plane, this indicates a negative correlation. The

degree of correlation can be judged by the similarity of the node patterns in different

component planes, however a clearer visual understanding of the relationships between

different variables can only be gained through analysis of the correlation plots.

SOM calculations presented in this study were carried out using the SOM Toolbox

for Matlab 5 developed by Juha Vesanto, Johan Himberg, Esa Alhoniemi, and Juha

Parhankangas. Introduction to this SOM toolbox can be found in Vesanto et al. [243].
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Figure 4.11: Component planes of the self organising map (SOM) trained on the inputs
and outputs of the CES-ASM1 model - 1 out of 3.

Looking at the component planes of SOM trained on the outputs (state variables,

derivatives of the state variables and process rates) of CES-ASM1, the following obser-

vations about SMP and EPS kinetics and the slow hydrolysis kinetics can be made:

1. SMP correlate with soluble chemical oxygen demand (SCOD), which means that

the majority of SCOD in the system is composed of SMP,

2. EPS are associated with MLSS,

3. Highest rate of EPS production occurs under highest HRTs,

4. SMP coincide with aerobic heterotrophic growth rate on SS , which means that

SMP in the system is mostly related to biomass growth, not biomass decay,

5. Hydrolysis of XEPS, XI , and XP depend more strongly on the SRT, and less

strongly on MLSS, which suggests that the rates of these processes depend on the
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Figure 4.12: Component planes of the self organising map (SOM) trained on the inputs
and outputs of the CES-ASM1 model - 2 out of 3.

age of the sludge, not on its mass. As the sludge gets older, hydrolysis of these

substrates begins to dominate in the system,

6. Hydrolysis of EPS does not correlate well with the EPS concentration because

EPS concentrations are governed by both EPS hydrolysis to BAP and biomass

growth associated EPS release. None of these processes dominates over the other.

Similar findings are found by analysing the component planes of the SOM network

trained on CES-ASM3 model outputs.

1. SMP correlate with SCOD,

2. EPS concentrations are proportional to MLSS,

3.
dXEPS

dt
„ dXH

dt
which means that the majority of EPS production in the system

is growth related,

4. SMP concentrations attain highest values at highest SRTs which coincide with

the highest MLSS and temperature levels,

5. XEPS and XI hydrolysis coincide both with high MLSS levels as well as high

SRTs.

112



T. Janus 4.6. STEADY-STATE SIMULATION RESULTS

 

 dXI/dt

 

 

d 
−60.5

−31.8

−3.01
dXS/dt

 

 

d 
−843

−626

−409
dXBH/dt

 

 

d 
15.4

273

531

dXBA/dt

 

 

d 
0.861

30.3

59.8
dXEPS/dt

 

 

d 
24.2

43.3

62.3
dSUAP /dt

 

 

d 
−40.2

−15.4

9.35
dSBAP /dt

 

 

d 
−157

−83.9

−10.6

dXP /dt

 

 

d 
39.2

58

76.9
dSO/dt

 

 

d 
−2790

−1690

−593
dSNO/dt

 

 

d 
3.24

218

433
dSNH/dt

 

 

d 
−449

−242

−34.6

dSND/dt

 

 

d 
−145

−101

−56.7
dXND/dt

 

 

d 
40.6

79.9

119
dSALK/dt

 

 

d 
−63.4

−33.1

−2.78

Figure 4.13: Component planes of the self organising map (SOM) trained on the inputs
and outputs of the CES-ASM1 model - 3 out of 3.
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Figure 4.15: Component planes of the self organising map (SOM) trained on the inputs
and outputs of the CES-ASM3 model - 2 out of 3.
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Figure 4.16: Component planes of the self organising map (SOM) trained on the inputs
and outputs of the CES-ASM3 model - 3 out of 3.
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4.7 Sensitivity analysis

Sensitivity analysis offers an additional source of information about the mathematical

model through quantification of the dependence of model outputs y or model states x on

model parameters p. The study of sensitivity helps to identify those parameters which

have the most influence on the model outputs and capture the essential characteristics

of the system. Information about sensitivity coefficients δ, which are defined as partial

derivatives of the model states with respect to model parameters δi,j “ Bxi
Bpj

, where

xi denotes the i-th state and pj denotes the j-th parameter, may be used for various

purposes such as the ones defined below:

1. Selection of most sensitive parameters for model calibration,

2. Evaluation of model uncertainty in any variable according to the linear error

propagation formula, [206],

3. Model discrimination and reduction,

4. Evaluation of model identifiability through analysis of the correlations between

parameters,

In this study we are particularly interested in 1 and 4 although, as shall be shown later in

this section, findings of this sensitivity study may also be used for further model analysis

and perhaps even model reduction. As ASM models are generally over-parametrised, it

is necessary to select just a few most-sensitive parameters for calibration whilst other,

less-sensitive parameters are usually left at their default values. Establishing correla-

tions between parameters is important for the assessment of the model’s structural iden-

tifiability which manifests itself when each set of parameter values yields unique output

trajectories. If two or more parameters in the model are correlated, the model will not

be structurally identifiable as it will be possible to obtain multiple combinations of pa-

rameters which produce the same output trajectories. Although identifiability analysis

is not performed in this study, results of the sensitivity analysis studies described in this

Section form a preliminary step for such analysis and can identify possible identifiability

issues in the model.

Sensitivity analysis presented in this section is linked and complement model cali-

bration described earlier in Section 4.4. Although sensitivity of both models to model

parameters is presented and analysed in this thesis after model calibration, these two

studies were in fact carried out in parallel. First, behaviour of the model was anal-

ysed through observation of model outputs in response to manual changes in model

parameters, i.e. manual sensitivity analysis. The model parameters identified as ‘most

sensitive’ were then adjusted manually in order to obtain reasonable quality of fit be-

tween the measurements and the model outputs. Subsequently, dynamic sensitivity

analysis was carried out in order to identify the most sensitive parameters and how

their sensitivities change throughout the calibration experiment. Information gained

from the dynamic sensitivity study was then used to identify the subset of parameters

and create an appropriate objective function used in an automatic optimisation-based

115



T. Janus 4.7. SENSITIVITY ANALYSIS

model identification. The sensitivity study presented here was carried out after com-

pletion of the calibration study, i.e. on the model with identified parameters in order

to provide the reader with more information on the sensitivity of model parameters.

This information can be used to further assess the model structure, help with further

calibrations and development of similar models.

Sensitivity analysis can be classified into two main categories: (1) local sensitivity

which provides information on the effects of small changes in each parameter individ-

ually, and (2) global sensitivity which describe the effects of simultaneous ‘arbitrary’

variations of multiple parameters on the model outputs. Additionally, local sensitivity

can be performed either under static or dynamic conditions. Static sensitivity analyses

steady-state model response to the changes in model parameters. Dynamic sensitivity

investigates variations in the model outputs to parameter changes under dynamic time-

varying conditions such as response to step or impulse change in the input(s). In this

Section we will investigate static as well as dynamic sensitivities.

Local sensitivity can be expressed in four different forms: (a) Absolute-absolute

sensitivity function which quantifies absolute change in model output y per unit of

change in the parameter p.

δa,a “ By
Bp (4.17)

(b) Relative-absolute sensitivity function which quantifies the relative change in y per

unit of change of p.

δr,a “ 1

y

By
Bp (4.18)

(c) Absolute-relative sensitivity function quantifying the absolute change in y for a

relative change in p

δa,r “ p
By
Bp (4.19)

(d) Relative-relative sensitivity function which computes the relative change in y for a

relative change in p

δr,r “ p

y

By
Bp (4.20)

The derivatives used are usually calculated using first order finite difference scheme:

By
Bpi

« y ppi ` ∆piq ´ y ppiq
∆pi

(4.21)

where ∆pi is chosen arbitrarily or calculated from a specific formula such as, e.g. Equa-

tion 4.24.

Whilst comparison of more than one of the above sensitivity functions, may help

to extract more information about the nature of the model and its parameters, the

relative-relative sensitivity function quantifies the ‘significance’ of each model parameter

relative to its value hence identifies the most sensitive parameters whilst also providing

the information about possible correlations between them. Dynamic relative-relative

sensitivity functions for both models (CES-ASM1 and CES-ASM3 are calculated in
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Section 4.7.1 below.

4.7.1 Dynamic sensitivity analysis

Dynamic relative-relative sensitivity functions presented here were calculated for CES-ASM1

and CES-ASM3 during final simulations of the batch and continuous flow experiments

of Hsieh et al. [101] described in Section 4.4.1. Although, as already noted previously

in Section 4.7 they have also been carried out at earlier stages of the calibration study

in order to identify the most sensitive model parameters for calibration.

The sensitivity functions were calculated with function SENS_SYS written in MAT-

LAB 5.3 by V.M. García Mollá and R. Gómez Padilla. SENS_SYS uses an iterative

approximation method based on directional derivatives, similar to one described in

Maly and Petzold [161]. In practical terms the function SENS_SYS is a wrapper function

for MATLAB’s stiff ordinary differential equation (ODE) solver ODE15s. The principle

of the calculation method is outlined below:

For a system of ODE/DAE given in Equation 4.22

F pt, y, y1, pq “ 0 (4.22)

sensitivity functions are obtained through differentiation of Equation 4.22 with respect

to each parameter. Hence, a second system of ODE/DAE is produced. This new

system representing sensitivity is then approximated through a directional derivative

finite difference approximation, as described in more detail in Maly and Petzold [161].

F pt, y ` dpi si, y
1 ` dpi s

1
i, p ` dpi eiq ´ F pt, y, y1, pq
dpi

“ 0, i “ 1, . . . , n (4.23)

where n denotes the number of parameters, dpi denotes the increment of the i-th varied

parameter (pi), ei is the i-th unit vector, and si “ dy

dpi
denotes the sensitivity of output

y to the i-th parameter (pi).

The calculated increment for the varied parameter pi is based on the magnitude of

the parameter and the accuracy of the ODE solver used (εi).

dpi “ ?
εi p|pi| ` 0.1q (4.24)

The relative-relative sensitivity functions for most sensitive parameters in the batch

experiment are shown for CES-ASM1 model in Figure 4.17.

Consumption of readily biodegradable substrates SS is dominated by maximum

heterotrophic growth rate µH20 and, to a lesser degree, heterotrophic yield coefficient

YH . The third most dominant parameter, which is almost as sensitive as YH , is the

fraction of EPS produced during heterotrophic biomass growth (fepsh). Since the yield

coefficient for the heterotrophic biomass during heterotrophic growth is equal to 1´fepsh,

increasing fepsh leads to lower production of XH at the cost of EPS which then undergo
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Figure 4.17: Dynamic relative-relative sensitivity functions for four model outputs: SS ,
SSMP , XEPS and XBIO, and six most sensitive model parameters in CES-ASM1 in the
batch experiment of Hsieh et al. [101].

hydrolysis to SBAP and SS . Hence it is clear that EPS kinetics influence the fate

of readily biodegradable organics in the system. After approximately 10 hours the

concentration of SS in the reactor is reduced to zero and thus all sensitivity functions

are also zero or very close to zero.

In the course of calibration the half-saturation constant for readily biodegradable

substrates (KS) was reduced from a default value of 20mg COD/L to 5mg COD/L

which resulted in a sharp break in the biomass profile in the batch experiment where the

concentration of substrate reduces to near zero (see Figure 4.3). Although identification

of KS on this data set is not possible and hence a default value of KS was used in the

final parameter set for CES-ASM1 (see Table 4.7) lower value of KS was still used in

the final simulations and thus also in the dynamic sensitivity study. It seems that the

discontinuity in the first derivative of the concentration profiles in Figure 4.3 generates

perturbations in the used dynamic sensitivity algorithm. Thus the sensitivity outputs

between the time of 10 hours and 25 hours need to be disregarded. This does not impair

our analysis as we are still able to evaluate the sensitivities at two distinctly different

conditions: under the surplus of organic substrates and in a so-called starvation period.

Under abundance of organic substrates, SMP production is mainly associated with

biomass growth. Hence, the most sensitive parameters are on one hand µH20 and on

the other hand YH . With regards to biopolymer related parameters, sensitivity to

γH remains approximately constant during an entire exponential growth phase while
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sensitivity to fEPS,h increases as more EPS are produced in the system. In the starvation

period production of SMP is dominated by three parameters: heterotrophic biomass

decay rate (bH20), yield coefficient for heterotrophic growth on SMP (YSMP ) and fraction

of EPS produced during cell growth (fEPS,h). It is worth pointing out that despite of a

complete depletion of readily biodegradable substrates biomass is still at ‘some’ growth

in the starvation period due to biodegradability of SMP. This growth is significant

enough that the parameter for decay-related SMP production such as fBAP does not

appear as a dominant parameter in the sensitivity plot. Biodegradability of various

SMP compounds is not very well known and need to be investigated in the future.

Figure 4.17c shows that XEPS concentration in the growth period is dominated

by heterotrophic maximum growth rate (µH20) hence EPS production is proportional

to biomass growth. As more EPS is produced during the growth phase EPS hydrolysis

gains some importance although is insignificantly small compared to the heterotrophic

growth process and its rate µH20. As the substrates deplete and biomass growth stops,

EPS concentrations begin to depend more on the EPS hydrolysis rate constant kh,EPS,20.

Nevertheless, EPS are still highly dependent on growth associated parameters YH and

fepsh due to the death-regeneration concept adopted in the model in which the products

of biomass decay or biomass associated products BAP form substrates for biomass

growth, hence feeding back into the biomass growth cycle.

Biomass growth in the initial stage of the process under surplus of organic sub-

strates - see Figure 4.17d is dominated by maximum heterotrophic growth rate (µH20)

and fraction of EPS produced in heterotrophic growth (fEPS,h). As the biomass grows

part of organic substrates is used to produce EPS at the cost of biomass growth, hence

the higher the value of fEPS,h the lower the biomass production and hence its con-

centration. As the substrate depletes and the biomass enters endogenous respiration,

XBIO becomes sensitive to bH,20, i.e. heterotrophic biomass decay rate, although still

remaining sensitive to heterotrophic yield coefficient (YH) due to the above mentioned

death-regeneration model.

In the continuous flow bioreactor (see Figure 4.18) concentrations of readily biodegrad-

able substrates (SS) are almost null for low dilution rates and are rather insensitive to

any of the model parameters except the maximum heterotrophic growth rate µH20. As

dilution rates become higher and thus, contact time between the liquid phase and the

solids phase becomes insufficient for all readily biodegradable substrates to be taken up

by the biomass, effluent SS concentrations increase and so do their sensitivity functions

to kinetic and stoichiometric parameters. Similarly to the batch process SS becomes

sensitive under higher dilution rates to µH20 and, albeit to a lesser degree, fepsh.

SMP concentration is most sensitive to the fraction of SUAP produced during

heterotrophic growth (γH) and its sensitivity increases with dilution rate. However,

at low dilution rates SMP is equally sensitive to fEPS,h and bH20, i.e. fraction of

EPS produced during biomass growth and heterotrophic decay rate, respectively. This

sensitivity decreases significantly with dilution rate. Hence, at low dilution rates SMP

is produced from hydrolysis of EPS and from biomass decay, i.e. as biomass associated
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Figure 4.18: Dynamic relative-relative sensitivity functions for four model outputs: SS ,
SSMP , XEPS and XBIO, and six most sensitive model parameters in CES-ASM1 in the
continuous flow experiment of Hsieh et al. [101].

products (BAP), at higher dilution rates SMP production is growth-associated not

biomass associated.

XEPS is almost equally sensitive to two parameters for all investigated dilution

rates, namely: YH , fEPS,h, which suggests that XEPS originate from biomass growth,

not from biomass maintenance and decay.

Biomass concentration (XBIO) which is equal to XH since the autotrophic biomass

activity has been switched off, is positively related to the heterotrophic biomass yield

coefficient (YH) across an entire operating region whilst being negatively related to

fEPS,h and, to a lesser degree, bH20. An increase in fEPS,h means that more organic

substrates are used to generate EPS and less to form biomass, hence negative sensitivity

of XBIO to fEPS,h. Whilst XBIO is equally sensitive to bH20 as to fEPS,h at low dilution

rates, this sensitivity decreases in magnitude as dilution rate is increased due to the fact

that the reactor is more loaded with organic substrates and biomass decay processes

are less prominent.

Dynamic sensitivity profiles for CES-ASM3 are shown in Figure 4.19 for the batch

experiment and in Figure 4.20 for the continuous flow experiment.

Concentrations of SS , SSMP , XEPS, and XBIO in the batch experiment are all sen-

sitive to the temperature dependence coefficient for growth and decay of heterotrophic

organisms, storage of organic substrates, and hydrolysis (θ2). From the model struc-
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Figure 4.19: Dynamic relative-relative sensitivity functions for four model outputs: SS ,
SSMP , XEPS and XBIO, and six most sensitive model parameters in CES-ASM3 in the
batch experiment of Hsieh et al. [101].

ture it can be inferred that this dependence will increase as the operating temperature

diverges from the standard temperature of 20˝C. In this experiment, the temperature

was set at 25˝C. It also becomes clear during a visual inspection of the plots that

the ASM3-based model has more equally sensitive parameters and more correlated pa-

rameters than the ASM1-based model analysed previously. Moreover, the correlations

exist between the base ASM3 model parameters not between the added biopolymer-

related parameters, hence we may draw a preliminary conclusion that whilst ASM3

improves modelling of the flow of organic substrates through substitution of ASM1’s

death-regeneration concept with cell lysis and introduction of intermediate substrate

storage, this comes at the cost of impaired parameters identifiability. Some authors

postulate that bacteria simultaneously utilise and store organic substrates hence nei-

ther the ASM1’s direct utilisation concept nor the ASM3 storage concept is entirely

appropriate. Based on these findings modifications of ASM3 with simultaneous sub-

strate utilisation and storage have been developed [217, 238]. It is however feared that

introduction of two parallel substrate ‘sink’ processes will further impair the model’s

parameter identifiability. Although it is too early to give definite recommendations, it

is felt that perhaps a ASM1-based biopolymer model is a better choice for initial studies

on MBR system modelling and simulation due to less-complicated representation of the

flow of organic substrates, hence better and simpler parameter identifiability.

In addition to θ2, SS in the batch experiment is almost equally sensitive, in the
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initial growth period, to a large number of other parameters: Monod constant for storage

of organic substrates (KSTO), storage rate constant (kSTO), heterotrophic maximum

growth rate (µH), aerobic yield of heterotrophic biomass (YH,O2
), and aerobic yield of

stored product per SS (YSTO,O2
).

SMP in the batch experiment is sensitive to a number of parameters out of which

only one is specifically related to SMP production. In the biomass growth phase SMP is

sensitive to YSTO,O2
and kSTO which are additionally very highly correlated. SMP is also

positively related to the heterotrophic maximum growth rate (µH) and the temperature

dependency coefficient θ2 whilst being in negative relationship with the Monod constant

for storage of organic substrates (KSTO). Whilst sensitivity to all these parameters

decrease over time and become almost zero after 20 hours except the sensitivity to

YSTO,O2
which decreases more slowly over time, the sensitivity to γH , i.e. fraction of

UAP produced during heterotrophic cell growth, remains at a constant level of around

75% throughout the experiment in the exponential growth as well as in the cell lysis,

decay and maintenance phase.

XEPS sensitivity functions shown in Figure 4.19c indicate that EPS production in

the growth phase is most sensitive to the rate of storage of organic substrates (kSTO),

although several other growth-related parameters have a comparatively equal impact

on EPS concentration at this stage of experiment: YSTO,O2
, µH , θ2, YH,O2

, and fEPS,h.

Some of these parameters seem to be highly correlated, e.g. kSTO and YSTO,O2
, and µH

with θ2. In the second phase of the experiment production of EPS in the system is most

sensitive to fEPS,h, although YSTO,O2
and µH still play some role in EPS dynamics.

Similarly to previous measured variables, biomass concentration in the system is

initially sensitive to a large number of parameters, many of which seem to be highly

correlated. All of these parameters but one (fEPS,h) are the original parameters of the

ASM3 model. This parameter however has a much lower impact on XBIO than the most

sensitive parameters such as YSTO,O2
or kSTO, hence identification of EPS kinetics does

not impair the model calibration with respect to biomass inventory. In the starvation

period, XBIO depends mainly on two stoichiometric parameters: YSTO,O2
and YH,O2

which are approximately equally important.

Sensitivity functions for CES-ASM3 in the continuous flow system are presented

in Figure 4.20. Similarly to previously investigated figures for the batch process, it is

apparent that, compared to CES-ASM1 CES-ASM3 has more equally ‘important’ and

correlated parameters, making selection of the most dominant parameters for calibration

much harder. Although identifiability of both models has not been investigated here

it becomes apparent that future research needs to focus on assessment of the local as

well as global identifiability and related model investigation methods such as global

sensitivity. Whilst local dynamic sensitivity served as an important tool for this study

it is by no means exhaustive. It becomes especially visible that with such a high number

of parameters local sensitivity does not provide a sufficient amount of information as

different sensitivities will be obtained with different combinations of ‘fixed’ parameters.

The above mentioned problems shall be addressed in future studies.
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Figure 4.20: Dynamic relative-relative sensitivity functions for four model outputs: SS ,
SSMP , XEPS and XBIO, and six most sensitive model parameters in CES-ASM3 in the
continuous flow experiment of Hsieh et al. [101].

The fate of readily biodegradable substrates (SS) is dependent on a large number

of parameters. YH,O2
, kSTO, YSTO,O2

have a largest and negative effect on SS . µH and

θ2 have approximately twice smaller and negative effect whilst fEPS,h have a positive

effect on SS concentration over an entire range of dilution rates. All of these parameters

become more significant as dilution rate is increased.

SMP dynamics are dominated by storage yield coefficient YSTO,O2
, hence by sub-

strate storage and subsequent utilisation. Figure 4.20b shows a number of less significant

parameters although none of them are specifically related to SMP dynamics. This does

not mean that the SMP related kinetic and stoichiometric parameters do not play any

role in the model, only that under the following set of default stoichiometric and kinetic

parameters the parameters governing heterotrophic growth have a stronger influence on

SMP dynamics than the SMP-related parameters embedded in the model. This obser-

vation emphasised the fact that it is important to look into global parameter sensitivity

where several parameters are perturbed simultaneously rather than one parameter at a

time and this study is recommended for further research on this topic.

XEPS dynamics are dominated by just one parameter, namely fEPS,H, what indi-

cates that EPS are produced mainly during the biomass growth, not during the biomass

decay and maintenance.

Biomass (XBIO) dynamics are sensitive to a range of parameters which affect

the biomass growth to similar degrees. These parameters are, respectively, fEPS,H ,
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µH , YH,O2
, and YSTO,O2

. Hence, similar biomass profiles can be obtained for various

combinations of the three above mentioned parameters, hence the findings indicate

issues with the model’s parameter identifiability and signalise the need for a formal

identifiability analysis and a subsequent model-based experiment design for parameter

estimation.

4.7.2 Static steady-state sensitivity analysis

Static sensitivity profiles

Static sensitivity analysis was carried out on a single aerated CSTR plant layout which

was previously used to perform final simulations with CES-ASM1 and CES-ASM3, as

described in Section 4.5. The plant layout used for these final simulations as well as the

static sensitivity study outlined here are shown in Figure 4.6 on page 105.

The Simulink model of the plant was simulated for a number of operating conditions

defined as follows: MLSS = {5,000 ; 10,000 ; 15,000 ; 20,000} mg L´1, DO = {0.5 ;

1.0 ; 2.0 ; 3.0} mgO2 L´1, Temperature (T) = {10 ; 15 ; 20 ; 25} ˝C, HRT = {4 ;

9 ; 14 ; 19} h, fnr,SMP = {0.25 ; 0.35 ; 0.45 ; 0.55}, where fnr,SMP denotes a non-

dimensional SMP permeation factor and represents the fraction of SMP which is not

retained by the membrane. For every combination of MLSS, DO, Temperature, HRT,

and fnr,SMP the model was simulated with different values of stoichiometric and kinetic

parameters for 2000 days, which was found sufficient to reach a steady-state condition

in every simulation run. The model parameters are varied one at a time between -60%

and +60% at 10% intervals.

Static sensitivity analysis was carried out to determine which of the new kinetic

and stoichiometric parameters associated with biopolymer kinetics and slow hydrolysis

have the largest effect on output SMP, EPS, SCOD, and soluble total nitrogen (STN)

concentrations. Out of all tested combinations of operating parameters, exemplary

sensitivity profiles are obtained for a single operational point defined by: HRT=14h,

mixed liquor temperature T=16oC, MLSS=15,000 mg L´1, DO=3.0 mgO2 L´1, and

fnr,SMP=0.5. The SRT of the system with default parameter values was calculated as

52 days for CES-ASM1 and 40 days for CES-ASM3. The maximum observed deviation

of SRT was ´11% and `12% for a ˘ 60% deviation in the heterotrophic yield on SMP

(YSMP ) in CES-ASM1 model and ´9% and `9% for maximum change in YSTOSMP,aer

in CES-ASM3.

Figure 4.21 and Figure 4.22 show static sensitivity curves for the most sensitive

biopolymer-associated parameters in respectively, CES-ASM1 and CES-ASM3. The

most sensitive parameters are defined as the parameters which cause over 10% deviation

in the selected output variable for ˘60% change of the parameter value. The monitored

output variables were respectively: SMP, EPS, SCOD, and STN.

Steady state SMP concentrations in CES-ASM1, as shown in Figure 4.21a, are

influenced by six model parameters listed here in order of significance: µUAP,20, µBAP,20,
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YSMP , γUAP,h, KUAP , and KBAP . This indicates that SMP kinetics under steady-state

conditions are governed by growth of heterotrophs in the system and therefore, SMP

are mostly utilisation-associated (UAP) rather than biomass-associated (BAP). EPS

kinetics are governed by two main parameters: EPS hydrolysis rate (kh,EPS,20) and

the fraction of EPS released during heterotrophic biomass growth (fEPS,h) which have

opposing effects on the bulk liquid EPS concentrations. The decay associated EPS

production coefficient fEPS,dh has a significantly lesser influence on EPS which indicates

that the majority of EPS produced in the system is associated with biomass growth.

SCOD (see Figure 4.21c) depends most strongly on the heterotrophic growth rate on

UAP (µUAP,20), heterotrophic yield coefficient on SMP (YSMP ), and the heterotrophic

growth rate on BAP (µBAP,20). Since the sensitivities are quite significant and up to

30% for a 60% variation in the parameter, SCOD is expected to be mainly due to the

presence of SMP. STN concentrations depend on six parameters, some of which are

very highly correlated. However, the sensitivities of these parameters are very low and

under 6% in all instances, which suggests that SMP and EPS related parameters do

not significantly affect the concentrations of soluble inorganic nitrous compounds in the

system, such as ammoniacal nitrogen (NH`
4
-N) and nitrate nitrogen (NO´

3
-N).
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Figure 4.21: Variation of the mixed liquor SSMP , XEPS , SCOD, and STN concentra-
tions in response to changes in most sensitive model parameters in CES-ASM1.

Sensitivity curves for CES-ASM3 are shown in Figure 4.22. SMP concentrations

depend on a number of parameters, such as: ksto,BAP , fs, fEPS,STO, and fM . The

make-up of the most sensitive parameters suggests that SMP in the system is composed

more of BAP than UAP which contradicts to some degree the results obtained with

CES-ASM1. Differences in the outputs from the two models are due to different choices
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of default parameters in CES-ASM1 and CES-ASM3. Both models contain a significant

amount of biopolymer-related stoichiometric and kinetic parameters allowing them to

represent different biopolymer kinetics. SMP concentrations in CES-ASM3 were also

found to depend on SMP retention coefficient on the membrane fM . fM “ 1´ fnr,SMP

where fnr,SMP denotes the fraction of SMP which permeate through the membrane.

Appearance of fM in the list of most sensitive parameters indicates that the membrane

indeed has influence on the state of the bioreactor.

EPS concentrations are found to be dominated by EPS hydrolysis rate constant

kh,EPS. The other kinetic parameters affecting the amount of EPS in the system are:

fEPS,h, fEPS,sto, and fEPS,dh, which represent the fractions of EPS released due to,

respectively, heterotrophic biomass growth, internal storage of organic substrates by

heterotrophic organisms, and heterotrophic biomass decay. This means that EPS in the

system is associated with both growth and decay of heterotrophic biomass.

SCOD in the bulk liquid is sensitive to a number of parameters, out of which the

most significant are ksto,BAP , fEPS,sto, fS, and fEPS,h. Hence, SCOD dynamics depend

not just on SMP utilisation and production kinetics but also on EPS kinetics, indicating

that EPS and SMP related kinetic processes are highly inter-related in CES-ASM3.

STN concentrations are found to depend on a number of SMP and EPS-related

stoichiometric and kinetic parameters. The sensitivity profiles of some indicate around

˘20% change in STN concentration for ˘60% change in the parameter. If we compare

Figure 4.22d with Figure 4.21d, it becomes clear that nitrogen kinetics in CES-ASM3

are linked to biopolymer kinetics more than in CES-ASM1.
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Figure 4.22: Variation of the mixed liquor SSMP , XEPS , SCOD, and STN concentra-
tions in response to changes in most sensitive model parameters in CES-ASM3.
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Most sensitive parameters

Static sensitivity profiles such as these shown in Figure 4.21 and Figure 4.22 were cal-

culated for all operating points defined in Section 4.7.2 and for a number of model

outputs defined in Table 4.9 and Table 4.9. These outputs are, respectively, bulk liq-

uid SSMP , bulk liquid XEPS, O2 demand, effluent SNH , effluent soluble total Kjeldahl

nitrogen (STKN), observed biomass yield Yobs, and effluent SCOD. At each operat-

ing point the relative-relative static sensitivity of every output to each parameter was

measured as the gradient of the line of best fit running through 5 points correspond-

ing to -20%, -10%, 0%, +10%, and +20% variation in the parameter. The minimum,

maximum and average values of these sensitivities were calculated for CES-ASM1 and

CES-ASM3 and presented, respectively, in Table 4.9 and Table 4.10.

As both tables show, some parameters exhibit large variations of sensitivity while

other parameters have fairly consistent values throughout all operating conditions. As

was already explained in Section 4.7.1 during the analysis of the dynamic sensitivities,

some parameters such as, e.g. µUAP,20 in CES-ASM1 will have a strong effect on SMP

production during intensive biomass growth periods but will have a lesser significance

in starvation periods where BAP will be a dominant fraction of SMP.

In both models, SMP rejection factor fM is found to be the most sensitive param-

eter for effluent SCOD and whilst SCOD is found to be composed mainly of SMP, fM
is the most sensitive parameter for effluent SMP as well. This finding indicates that ef-

fluent SMP concentrations and SCOD depend more on the properties of the membrane

than on the biological processes themselves.

Parameter variability

Static sensitivity analysis results for CES-ASM1 and CES-ASM3 were used to train

two separate self organising maps (SOMs) in the same way as described earlier in Sec-

tion 4.6.2. Component planes of these two maps display the inputs and the selected,

most variable, relative-relative sensitivities in CES-ASM1 and CES-ASM3 as shown,

respectively, in Figure 4.23 and Figure 4.24.

Figure 4.23 shows that the highest absolute values of the sensitivity of XEPS

to kh,EPS,20 coincide with the highest SRTs and MLSS concentrations, meaning that

EPS production/loss under high SRTs is dominated by hydrolysis, not by substrate-

associated production which occurs mainly under abundance of organic easily biodegrad-

able substrates. Sensitivity of the unoxidised forms of nitrogen (SNH and STKN) to

various polymer-related model parameters is highest where SRT in the system is low

but the bulk liquid temperature is sufficient enough to prevent the washout of nitrifying

bacteria and therefore the loss of nitrification. Since nitrification under these conditions

is at the brink of collapse, it is very sensitive to many parameters and a small change

of one of these parameters can decide whether nitrification will continue or whether it

will be lost.
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Table 4.9: Variability of relative-relative static sensitivities of the selected outputs of CES-ASM1 to six most sensitive model parameters.

Output Parameter 1 Parameter 2 Parameter 3 Parameter 4 Parameter 5 Parameter 6

Min Ave Max Min Ave Max Min Ave Max Min Ave Max Min Ave Max Min Ave Max

SSMP µUAP,20 YSMP γUAP,h KUAP µBAP,20 fM
-1.11 -0.883 -0.711 0.685 0.817 0.892 0.576 0.651 0.811 0.509 0.610 0.711 -0.398 -0.263 -0.094 0.024 0.100 0.398

XEPS kh,EPS,20 feps,h feps,dh YSMP γUAP,h fM
-0.945 -0.493 -0.109 0.583 0.607 0.660 0.158 0.206 0.237 -0.006 0.064 0.155 -0.005 0.052 0.117 -0.002 0.006 0.041

O2 demand YSMP γUAP,h feps,a feps,h fM feps,dh
-0.409 -0.079 -0.035 -0.390 -0.066 -0.025 -0.271 -0.003 0.000 -0.083 -0.022 -0.005 -0.076 0.013 0.059 -0.041 -0.011 -0.003

Effluent SNH YSMP γUAP,h ixeps feps,a feps,a fM
-1.33 0.053 0.579 -1.19 0.046 0.546 -0.697 -0.013 0.000 0.000 0.092 0.483 -0.030 0.000 0.177 -0.075 0.007 0.171

Effluent STN YSMP γUAP,h ixeps feps,a fM fbap
-1.09 -0.043 0.349 -0.989 -0.044 0.338 -0.585 -0.075 0.001 0.000 0.013 0.344 -0.183 -0.030 0.039 -0.006 0.046 0.157

Yobs YSMP γUAP,h kh,EPS,20 feps,h fM feps,dh
0.042 0.109 0.128 0.045 0.092 0.105 -0.063 -0.044 -0.005 0.007 0.034 0.049 0.003 0.011 0.038 0.006 0.019 0.024

Effluent SCOD fM YSMP µUAP,20 γUAP,h KUAP µBAP,20

-1.47 -0.498 -0.157 0.094 0.267 0.448 -0.405 -0.239 -0.080 0.071 0.208 0.397 0.072 0.197 0.319 -0.155 -0.076 -0.018
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Table 4.10: Variability of relative-relative static sensitivities of the selected outputs of CES-ASM3 to six most sensitive model parameters

Output Parameter 1 Parameter 2 Parameter 3 Parameter 4 Parameter 5 Parameter 6

Min Ave Max Min Ave Max Min Ave Max Min Ave Max Min Ave Max Min Ave Max

SSMP ksto,bap fM fS fEPS,h2 KBAP kh,EPS

-1.59 -0.760 -0.174 0.332 0.682 1.25 -1.14 -0.756 -0.513 0.347 0.537 0.761 0.144 0.385 0.563 0.103 0.282 0.540

XEPS kh,EPS fEPS,h2 fEPS,h fEPS,dh YSTOSMP,aer fM
-1.04 -0.772 -0.414 0.465 0.495 0.522 0.263 0.284 0.304 0.067 0.120 0.152 0.009 0.054 0.109 0.006 0.035 0.100

O2 demand fEPS,a kh,EPS fEPS,h2 fM kh,XI
fEPS,dh

-1.14 -0.014 0.000 0.012 0.038 0.374 -0.267 -0.063 -0.038 -0.133 0.026 0.063 0.012 0.062 0.126 -0.124 -0.025 -0.014

Effluent SNH iN,XEPS fEPS,a kh,EPS fEPS,h2 fM fNI

-1.02 -0.040 -0.012 0.000 0.228 0.968 -0.483 -0.055 0.073 -0.265 0.014 0.195 0.000 0.015 0.179 0.008 0.029 0.141

Effluent STN iN,XEPS fM fEPS,a fNI kh,XI
ksto,bap

-1.36 -0.345 -0.053 -0.971 -0.083 0.132 -0.001 0.023 0.844 0.010 0.185 0.839 -0.036 0.147 0.609 -0.546 -0.073 0.057

Yobs YSTOSMP,aer kh,XI
kh,EPS fEPS,a fEPS,h2 fM

-0.196 -0.061 -0.003 -0.165 -0.068 -0.006 -0.095 -0.079 -0.049 -0.016 0.000 0.059 0.009 0.028 0.049 0.005 0.019 0.043

Effluent SCOD fM ksto,bap fS fEPS,h2 KBAP kh,EPS

-0.732 -0.307 -0.054 -0.357 -0.225 -0.061 -0.308 -0.233 -0.129 0.118 0.198 0.254 0.052 0.135 0.174 0.039 0.096 0.158
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Similar conclusions can be drawn regarding the sensitivity of XEPS to kh,EPS,20

and the sensitivity of SNH and STKN when we investigate the SOM component planes

for CES-ASM3 presented in Figure 4.24. Additionally, Figure 4.24 shows that the

sensitivity of O2 demand to fEPS,a coincides with low SRT and low DO suggesting that

at this point autotrophic organisms are again near the point of washout. By making a

change to the fraction of EPS produced during autotrophic growth (fEPS,a) we affect

the autotrophic biomass yield and hence decide on the fate of autotrophs in the system.

Nitrification is pretty much an on/off reaction under steady-state conditions, i.e. it

will either occur or entirely disappear in the reactor. Since nitrification uses up large

amounts of oxygen, presence of nitrification in the system will imply high O2 demands,

whilst lack of it will lead to significantly lower oxygen demands. Hence, we can observe

a high sensitivity of O2 demand to model parameters affecting nitrification at the points

where nitrification is near the point of collapse.
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Figure 4.23: Component planes of SOM trained on the inputs and selected relative sensitivities of the CES-ASM1 model.
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Figure 4.24: Component planes of SOM trained on the inputs and selected relative sensitivities of the CES-ASM3 model.
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Chapter 5

Mathematical modelling of

membrane filtration and fouling
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5.1 What is membrane fouling

Fouling is a process in which permeability of a membrane diminishes in time during fil-

tration of solutes and suspensions. Membrane fouling in membrane bioreactors (MBRs)
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is attributed to the physico-chemical interactions between the fluid and the membrane

[23]. Fouling can be divided into various categories. From the point of view of its

permanency, fouling is often subdivided into three subcategories: reversible fouling, ir-

reversible fouling and irrecoverable fouling. Reversible fouling is caused by deposition

of a mixture of suspended solids, gels, and colloids leading to formation of a cake layer

on the membrane surface. Reversible fouling can be limited or even prevented if fil-

tration flux is low and crossflow velocities CFVs and/or air sparging rates are high.

The effects of reversible fouling are periodically removed by backwashing or relaxation.

Irreversible fouling is caused by constriction and blocking of membrane pores by adsorp-

tion of dissolved matter and some colloidal matter. This type of fouling is not removed

with mechanical means listed above but can be removed through chemical cleaning.

Irrecoverable fouling is the type of fouling that can be removed neither by physical nor

chemical methods and occurs over long periods. Whilst reversible fouling occurs at the

rates of 0.1 to 1 mbar/min in a time-frame of about 10 minutes, the rates of irreversible

fouling are within 10´3 to 10´1 mbar/min (6-12 month time frame), while the rates

of irrecoverable fouling are between 10´4 to 10´3 mbar/min and hence irrecoverable

fouling develops over years [45].

Fouling can also be subdivided from the point of view of the type of foulants

into biofouling, organic fouling, and inorganic fouling. Biofouling refers to deposition,

growth, and metabolism of bacterial cells or flocs on the membrane surface, [168]. Pro-

vided that the local environmental conditions are favourable, the deposited bacterial

cells can form biofilms which are denser than cake and thus create more resistance, but

can also promote further fouling by producing and releasing soluble microbial prod-

ucts (SMP) and extracellular polymeric substances (EPS). Organic fouling refers to

deposition of soluble (SMP) and bound (EPS) biopolymers on the membrane surface

and inside the membrane pores. Inorganic fouling refers to precipitation of inorganic

compounds such as different metal salts, e.g. calcium carbonate CaCO3 or struvite

(MgNH4PO4¨H2O). Precipitation of these and other inorganic compounds can occur

either chemically when local ion concentrations begin to exceed their saturation con-

centrations, or can be promoted by the presence of bacterial cells and biopolymers, called

biological precipitation. Fouling in MBRs is dominated by biofouling and organic foul-

ing while inorganic fouling occurs under specific conditions such as high alkalinity or

water hardness and on inorganic membranes.

Whilst foulants are brought into contact with the membrane mainly by convective

transport and thus, are associated with the permeate flux, conditioning fouling is not as-

sociated with the permeate flux and is caused by passive adsorption of macromolecules,

colloids and solutes before any flux-initiated deposition takes place. This initial passive

adsorption was reported to account for 20-2000% of clean membrane resistance depend-

ing on the membrane pore size and to be almost independent of tangential shear, [189].

The importance of this phenomenon in the practical context is that the membranes lose

often a significant portion of their “clean water” permeabilities right after their immer-

sion inside the bulk liquid, which has to be accounted for by process engineers when
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calculating the required membrane area for the MBR.

A comprehensive review of fouling in MBRs for wastewater treatment can be found

in Le-Clech et al. [138]. Since the publication of their paper, Meng et al. [168] published

a review of recent advances in MBRs focussing on membrane fouling and membrane

materials, while Drews [45] reviewed membrane fouling in MBRs focussing on the con-

tradictions in findings and possible cures for fouling. For further information on fouling,

the reader is referred to the three above mentioned publications which provide thorough

and comprehensive information on the subject.

Membrane permeability is also lost by membrane clogging aka. sludging which

occurs when large pieces of solid material block membrane passages leading to local

reduction of crossflow velocities and subsequent agglomeration of large solid deposits

in the voids of the membrane modules. Although membrane clogging is detrimental

to the performance of MBRs, it is not considered here due to limited amount of time

and complexity of this process. Membrane clogging can be minimised by appropriate

influent pretreatment using screens and sieves with perforations as low as 0.5 mm, [153].

5.1.1 Factors affecting membrane fouling

Membrane fouling in MBRs is caused by various types of foulants, which can be cate-

gorised based on their origin (i.e. organic molecules, inorganic molecules, living bacterial

cells) or on their size or molecular weight (i.e. solutes, colloids, and suspended solids).

As mentioned in the previous section, fouling is caused by many different mechanisms

such as adsorption, scaling, cake formation, or biofilm growth over a wide range of

temporal scales from minutes to months. Recent findings show that fouling in MBRs

is influenced by the following factors: (a) biomass characteristics, e.g. floc size dis-

tribution (FSD) and floc structure, EPS content, chemical composition of EPS, and

production and composition of SMP, [258]; (b) physico-chemical properties of the in-

fluent, e.g. temperature, viscosity, alkalinity, pH, salt concentrations, concentrations of

transparent exopolymer particles (TEP), composition of organic substrates, deficiency

of nutrients, etc.; (c) operating conditions of the bioreactor and the membrane such as

bioreactor’s hydraulic retention time (HRT) and sludge retention time (SRT), dissolved

oxygen (DO) concentrations, value of permeate flux, sequence and duration of back-

washing or relaxation, intensity of air sparging, and value of crossflow velocity (CFV),

[167]; (d) membrane characteristics, e.g. pore size distribution (PSD), thickness, and

membrane type and material which define its properties such as hydrophobicity, zeta

potential, mechanical and chemical resistance, propensity of biofouling, etc. [30].

For a given membrane type and given operating conditions, fouling is found to

depend mainly on SMP and EPS concentrations, chemical composition and molecular

weight distribution (MWD) of SMP and EPS, floc size distribution (FSD) of the acti-

vated sludge, and electrostatic properties of activated sludge flocs. Despite of the vast

amount of research carried out in the area, exact mechanisms and the impact of the

above factors on fouling are often still unknown. It is generally accepted that SMP con-
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tributes to irreversible fouling while suspended solids and bound EPS cause reversible

fouling, although many findings are contradictory, as explained in the review paper of

Drews [45]. For the purpose of modelling it was however assumed that SMP and EPS

are the main causes of fouling. EPS is assumed to fill void spaces between flocs and lead

to decrease cake permeability [186, 17]. SMP is assumed to adsorb on the membrane

surface and inside the membrane pores leading to irreversible and irrecoverable fouling.

The latest studies reveal that fouling depends on the chemical composition of SMP

and EPS and their MWDs [78]. It was found that polysaccharides cause more fouling

than proteins [143, 46] although it is uncertain whether different fouling propensities

of polysaccharides and proteins are predominantly due to different chemical properties

of these two groups of organic compounds or due to the difference in their MWDs. It

was also found that EPS may cause some irreversible fouling by facilitating irreversible

attachment of particles on the membrane surface while SMP attributes not only to irre-

versible but also to reversible fouling [98, 78]. Definitions of SMP and EPS are provided

in Section 3.4 in Chapter 3.

5.1.2 Critical flux

The concept of critical flux was first introduced by Field et al. [62]. Field et al. [62]

classified critical flux into two subcategories: the strong form and the weak form. In

the strong form, critical flux is defined as the flux below which filtration of a colloidal

suspension will yield the same flux as pure water for the same applied pressure [62,

259]. In the relaxed weak form the critical flux is defined as the flux below which

a linear relationship exists between the applied pressure and the permeate flux. The

slope of that linear relationship is allowed to differ from that of the pure water flux

[62, 259]. In practical terms, in the context of MBR reactors, critical flux is defined

as the permeate flux below which there is little of no fouling since the rate of back-

transport is sufficient to eliminate particle deposition on the membrane [97]. MBRs are

operated at filtration velocities below or slightly above the critical flux, since operation

far above the critical flux results in a rapid trans-membrane pressure (TMP) rise during

constant flux filtration and a rapid flux decline in a constant pressure filtration. Critical

flux depends on the back-transport of particles from the membrane surface due to

turbulence and crossflow and on the solute-membrane interactions which are affected

by charge and hydrophobicity [138]. This means that the membrane can be operated

with stable TMPs under higher fluxes if back-transport is increased by increasing i.e.

CFV - although only to some extents. On the other hand, in MBRs for wastewater

treatment, slow, irreversible fouling is found to occur under fluxes much smaller than

the critical flux ultimately leading to a rapid TMP rise, also known as the TMP jump

[27, 266]. The exact definition of critical flux has not been agreed to date and neither

was a protocol for determination of the critical flux. A common method for critical flux

determination is a flux-stepping method but this method was found to yield different

results depending on the height and duration of the steps [137]. A hysteresis method

was proposed by Espinasse et al. [53] in which critical flux is defined as the minimum

138



T. Janus 5.1. WHAT IS MEMBRANE FOULING

flux which creates an irreversible deposit on the membrane surface. The hysteresis

method as well as the flux stepping method were criticized for not yielding predictive

absolute permeability data for extended operation of complex fluids. For more reading

on critical flux, the reader is referred to Le-Clech et al. [137; 138].

5.1.3 Sustainable flux and threshold flux

It was found by Field and Pearce [61] that although powerful, the concept of critical flux

does not delineate all typical fouling circumstances found in membrane filtration. Two

of such exceptions have been mentioned in the paper and are, respectively, biofouling

and the slow flux decline that is observed in many industrial membrane applications also

under low fluxes which might have been considered sub-critical. The authors therefore

introduced the concept of ‘threshold flux’, which in general terms is the flux that divides

a low fouling region from a high fouling region [61]. The threshold flux can be applied to

cross-flow systems as well as dead-end systems for which the critical flux has a limited

applicability as it may not exist due to the fact that end-end systems have no back-

transport mechanisms. Threshold flux may be linked both to the critical flux concept

and to the concept of a sustainable flux although all these three terms quantify different

properties of the membrane filtration systems and carry different types of information.

For complete information and description of these two flux concepts and how they are

linked to critical flux, the reader is however advised to refer to the original paper of

Field and Pearce [61].

The paper of Field and Pearce [61] mentions the following definition of sustainable

flux which was proposed by an industrialist [237] in the informal communication with

the authors: ‘Sustainable flux is the net flux that can be maintained using mechanical

and chemical enhancing means to meet an operation cost objective over the projected

life of the membrane’. From this definition it is clear that the notion of sustainable flux

is to define operating conditions which would give optimal balance between moderate

operational expenditures (OPEX) and moderate capital expenditures (CAPEX) whilst

maintaining the required productivity level. Hence, sustainable flux is a pragmatic

concept for membrane design and operation and is only loosely related to the critical

flux family which do not take into account the operating costs of the membrane, only

the amount of fouling developing on the membrane for the given membrane and under

given influent characteristics and operating conditions. As Field and Pearce [61] indicate

sustainable flux is often higher than the critical as well as the threshold flux as it is

economical to operate the plant with moderate albeit controlled fouling. The practical

values of operating fluxes are based on the the expected productivity whilst taking

into consideration the costs of energy, costs of chemicals, capital costs as well as other

constraints such as safety factors, etc. whilst critical flux of various forms as well as the

threshold flux rather refer to just the rate of fouling in the system.

In the presence of conditional fouling and biofouling critical flux may not be present.

The same applies to dead-end filtration cells in which some level fouling is always present
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regardless of the flux rate due to absence of back-transport. It is also possible that for

certain systems under specific circumstances, the identified critical flux will have a very

small value far below economically viable levels. Under such conditions the ‘threshold

flux’ concept accordingly to Field and Pearce [61] gains merit. The authors developed

a simple model which was used to identify critical flux values on the four sets of data

from four different pilot plants treating different types of water. The identified threshold

fluxes identified with the model were falling very close to the values identified through

visual inspection of the plots.

5.1.4 Mitigation of fouling

Fouling can be mitigated, although not completely eliminated, with the following meth-

ods listed below:

1. Control of SMP production via adjustment of operating conditions in the biore-

actors,

2. Control of SMP via addition of adsorbents/coagulants,

3. Control of hydrodynamic conditions, i.e. flux rates, CFV, air scouring rates,

4. Backwashing, relaxation, and chemical cleaning,

5. Control of bulking,

6. Modification of membrane surface properties,

7. Influent pretreatment,

8. Minimisation of transient conditions, e.g. through upstream load balancing,

9. Optimisation of the tank and membrane module geometries,

10. Addition of nanomaterials,

11. Inhibition of quorum sensing

As the properties of activated sludge depend on the operating conditions inside the

bioreactor, control of the operating conditions in the bioreactor at near optimum levels

allows to minimise organic and biomass-associated fouling. It is reported that increasing

HRT leads to reduced fouling [167, 20] and increase of aeration intensity produces more

permeable cakes [239]. Also, comparison of recent literature indicates an existence of

an optimum SRT range which guarantees minimum fouling rates [168]. Existence of an

optimum SRT was also showed by Jiang et al. [115], Tian et al. [238] in two simulation

studies using the same SMP activated sludge model (ASM). These operating conditions

are mainly linked to production of SMP and EPS and to sludge FSD and morphology.

Quoting after Meng et al. [168] addition of adsorbents and coagulants to sludge sus-

pension can decrease the level of solutes and colloids or enhance the flocculation ability.

Powdered activated carbon (PAC) will adsorb biopolymers in the sludge suspensions

leading to lower soluble biopolymer concentrations. Additionally, activated sludge flocs

with added powdered activated carbon (PAC) become heavier and thus accumulate less

on the membrane surface. Coagulation can remove SMP by charge neutralisation and
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bridging [260].

Increasing permeate flux leads to increased reversible fouling due to elevated cake

accumulation promoted by higher convective velocities towards the membrane surface.

High fluxes are also found to increase irreversible fouling caused by colloids and solutes

as shown in Ye et al. [266] and corroborated in this study as shown in Figure 6.2

on page 190. Reversible fouling can be mitigated by provision of high CFVs and air

scouring rates whilst irreversible fouling is found to be independent on the hydrodynamic

conditions in the vicinity of the membrane.

Membrane surface is often modified in order to increase the membrane’s hydrophilic-

ity, produce narrower PSD, increase the membrane’s porosity, and decrease surface

roughness. Membrane surface modification is beyond the scope of work of this thesis.

For more information about recent advances in surface modification and formation of

the so called dynamic membrane, the reader is referred to the review paper of Meng

et al. [168].

Influent pretreatment is generally limited to screening and sieving with fine screens

and sieves with openings down to 0.5 mm in order to reduce the risk of clogging. In

case of specific industrial influents, pH may be adjusted prior to biological treatment as

pH was found to alter polymer aggregation, fouling and gelling propensities [45].

Dynamic changes in temperature, SRT setpoint, loading rate, and carbon source

were observed to cause an increase in the amounts of loosely bound EPS in the system

and resulted in worsened sludge volume index (SVI) and filterability [264]. Transients

due to changes in influent composition can be minimised by upstream balancing while

transients in SRT can be minimised by appropriate sludge wastage control strategies.

Optimisation of MBR’s geometry involves positioning of the membrane modules,

membrane module design, location of the coarse-bubble aeration grid, location of baffles,

and overall tank geometry design. Optimisation of MBR geometry was approached

by Prieske et al. [201], Böhm et al. [13] using Computational Fluid Dynamics (CFD)

methods in order to reduce the propensity of the system to clogging and increase air-

scouring efficiency in the system.

More information about mitigation of membrane fouling and amelioration of MBR

performance can be found in Meng et al. [168], Drews [45].

5.1.5 Mathematical modelling of membrane filtration

A model of a membrane filtration unit can be subdivided into a number of smaller and

distinct submodels.

1. membrane fouling

2. particle transport and hydrodynamics

3. membrane module clogging

4. internal membrane transport

141



T. Janus 5.1. WHAT IS MEMBRANE FOULING

5. back-flushing and relaxation

6. chemical cleaning

7. membrane ageing (degradation)

This subdivision and hierarchy is shown in Figure 5.1.
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Figure 5.1: Subdivision and hierarchy of membrane filtration models.

Each of the individual membrane filtration submodels can be described using differ-

ent modelling techniques, e.g. empirical, deterministic, stochastic, cellular automata,

artificial intelligence (AI), etc. The number of scientific papers describing models of

membrane fouling is so vast that it would be impossible and unreasonable to quote

all of them in this place. Fouling models vary greatly depending on their intended

application (i.e. design, optimisation, control, aid with understanding, etc.), the type

of the system being modelled, the number and the types of fouling processes under

consideration, the modelling approach, etc.

Often the fouling models are focused on individual aspects of filtration. For exam-

ple, Hermanowicz [90], Chang et al. [24] developed, respectively, two-dimensional (2D)

and three-dimensional (3D) biofilm models based on the concept of cellular automata.

Kim and Liu [120] focused on determination of critical flux of hard sphere suspensions

using a Monte Carlo method. Foley et al. [65] modelled the effects of particle polydisper-

sity on specific cake resistance in cross-flow filtration. Zondervan et al. [272] developed

a model able to predict the effects of irreversible fouling and chemical cleaning which

can be used to optimise chemical cleaning cycle sequence in a MBR. Ye et al. [266]
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attempted to develop a model which is able to predict the onset of a two-stage TMP

profile in a subcritical filtration of model EPS suspensions.

Membrane hydrodynamics can be described on a micro-scale or macro-scale. On a

micro-scale the model attempts to describe filtration on a particle level by considering

interactions between individual particles. On a macro-scale the suspension is treated

as a continuum where different phases are treated as inter-penetrating continua (fluids)

using the concept of a phase volume fraction. Additionally, the flow domain around

the membrane can either be considered as: (a) three-dimensional (3D) with the mem-

brane modelled as a two-dimensional (2D) surface, (b) two-dimensional (2D) with the

membrane modelled as a one-dimensional (1D) segment, or (c) one-dimensional (1D)

with the membrane modelled as a single point. In addition to dimensionality of the

flow domain around the membrane, the model can either take into consideration the

thickness and the internal structure of the membrane or assume that the membrane

has a zero thickness. If we decide to adopt one of the ‘classical’ methods of CFD

with either finite difference (FD), finite volume (FV) or finite element (FE) differencing

schemes, hydraulics of a MBR can be described with either Eulerian, Lagrangian or

Eulerian-Lagrangian methods [242]

Although internal membrane transport is usually not considered and membranes

are either treated as black-box models or as plates with ideal cylindrical pores, internal

membrane structure might play a significant role in some modelling scenarios. For ex-

ample, membranes with highly interconnected pores have a significantly higher capacity

due to reduction in flux decline arising from the fluid flow under and around any surface

blockage [275].

Although filtration, fouling, back-transport and various aspects of fluid flow within

or around the membrane are most often described with mechanistic models, modelling

of the lesser known phenomena associated with membrane filtration such as clogging,

biofilm growth, chemical cleaning, ageing and back-flushing are generally described

using much simpler empirical, behavioural, or data-driven models. Although mathe-

matical description of simple filtration processes such as lab-scale dead-end filtration is

possible with fully mechanistic approach, a thorough description of a full-scale mem-

brane operation is always accomplished with grey-box models, i.e. with a combination

of mechanistic (white-box) and black-box models.

5.1.6 Fouling models for MBR reactors

Ognier et al. [190] developed a model for sub-critical flux constant flux filtration. The

model assumes that solutes in the bulk liquid deposit on the membrane leading to

reduction of the number of open pores. Once local flux through open pores exceeds the

critical flux, deposits begin to form on the membrane surface translating to very high

hydraulic resistances causing the, so called, two-stage TMP profile.

Gehlert et al. [68] developed a resistance in series model using cake deposition

as a main fouling mechanism. The model takes into account cake consolidation as
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initially proposed by Nagaoka et al. [176], backwashing as well as cake back transport

due to cross-flow. Cake is assumed to be compressible. The membrane is additionally

discretised to gain more information on permeate flux, cake mass and transmembrane

pressure distribution over an entire length of the module [68].

Liang et al. [149] proposed a resistance in series model in which fouling is described

with two mechanisms: reversible fouling and irreversible fouling. The model was found

to agree well with experimental data obtained from an immersed MBR system for

wastewater treatment.

Broeckmann et al. [17] developed a resistance in series model for a hollow fibre (HF)

immersed MBR system which considers the effects of pore blockage, cake formation and

irreversible fouling. The model introduces two new phenomena: distribution of particle

and membrane pore diameters and adhesion between particles and the membrane sur-

face. Hydrodynamic conditions at the membrane are modelled as flow of uniform air

bubbles through water channels [17].

Busch et al. [19] created a model for immersed HF/UF membranes for wastewater

treatment. The model describes the system geometry, hydrodynamics of the feed and

the permeate flow, and membrane fouling. Membrane fouling model takes into account

membrane resistance, pore blocking, cake formation, polydispersity of particles, biofilm

formation and concentration polarisation. The authors provided a highly detailed de-

scription of microfiltration (MF) and ultrafiltration (UF) processes and analyses the

model’s behaviour through numerous simulations and the parameter sensitivity study.

Li and Wang [147] published another model of an immersed MBR for wastewater

treatment. The membrane is divided into N sections in order to account for uneven

distribution of shear which results in uneven coverage of the membrane with cake. The

model considers the following fouling mechanisms: pore constriction, cake growth and

temporal sludge film coverage. Dynamics of biomass attachment and detachment from

the membrane are related to filtration rate and air-scour aeration intensity.

Wu et al. [262] developed a model of membrane fouling in an immersed MBR which

considers the effects of solid, colloidal and soluble components. Two fouling processes

are considered: pore constriction and cake formation. Cake is assumed to consolidate

as a result of entrapment of colloidal matter within the cake pores leading to a decrease

in cake porosity and thus its specific resistance. Cake thickness and cake porosity are

additionally related to, respectively, air scouring rate and floc size distribution (FSD).

5.2 Processes opposing membrane filtration

Hydraulic resistance experienced during filtration of solutes across the membrane is at-

tributed to: (a) resistance of the clean membrane, (b) effects of reversible, irreversible

and irrecoverable fouling, (c) accumulation of rejected solute (in UF membranes) near

the membrane surface, called concentration polarisation (CP), (d) precipitation of, nor-

mally macromolecular species at the membrane surface called gel layer formation, (e)

144



T. Janus 5.2. PROCESSES OPPOSING MEMBRANE FILTRATION

precipitation of inorganic molecules on the membrane surface, called scaling.

As mentioned in Section 5.1, fouling is defined as a combination of processes which

all attribute to the loss of membrane’s permeability causing deterioration in the perfor-

mance of membrane filtration. During constant TMP filtration (∆P “ const), fouling

causes flux to decline over time, whereas under constant flux filtration (J “ const), as

fouling progresses so does pressure loss around the membrane causing a TMP rise. In

the classical approach fouling is assumed to be caused by just four mechanisms:

1. Pore constriction (standard pore blockage)

2. Complete pore blockage

3. Intermediate pore blockage

4. Cake formation

For constant pressure filtration, these mechanisms have been defined by Hermia [91]

and expressed in a single equation (Equation 5.21) given on page 150.

The four above listed classical fouling mechanisms describe the accumulation of so-

lutes, colloids and particles inside membrane pores and on the membrane surface leading

to a reduction in the diameter of open pores (constriction), occlusion (i.e. blockage) of

pores by particles larger than the pore size (standard and intermediate pore blockage)

and deposition of layers of particles onto the blocked membrane surface (cake forma-

tion). These four fouling mechanisms are graphically represented in Figure 5.2 and are

described in more detail below. Traditionally four classical fouling mechanisms were ap-

plied separately to model filtration of various solutions and suspensions. Depending on

the composition of the liquid being filtered and the interactions between the membrane

and the bulk liquid, one fouling process may dominate over the other three throughout

the filtration process. In such situation, the mathematical model of the dominating

process can be successfully applied to describe flux decline or TMP increase during

filtration. As some researchers pointed out, e.g. Ho and Zydney [96], in many cases, a

single classical fouling mechanism was not able to accurately describe the process over an

entire course of filtration. Discrepancies between the measurements and the predictions

obtained from classical fouling equations were attributed to simultaneous occurrence of

several fouling processes and to sequential occurrence of fouling processes, i.e. different

mechanisms will dominate at different stages of the filtration process. These findings

formed the base for the development of the fouling models which consider simultaneous

occurrence of three classical fouling mechanisms [50, 262] and the development of the

new mechanistic fouling model explained in detail in Section 6.3 in which pore constric-

tion and pore blockage are assumed to occur alongside one another while cake formation

occurs in sequence after pore blockage.
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Figure 5.2: Visualisation of the classical fouling mechanisms as proposed by Hermia
[91].

5.2.1 Classical fouling mechanisms

Pore constriction (standard pore blockage)

Pore constriction which is graphically represented in Figure 5.2 is modelled with a mass

balance equation relating decrease of the total volume of membrane pores, V (m3) to

the mass flux of foulant brought to the membrane surface with the permeate flow, Qu

(m3 s´1), where u stands for ‘unblocked’ flow as it is the flow of fluid passing through

the unblocked part of the membrane. Total flow through the membrane, denoted Q, is

equal to the sum of the ‘unblocked’ flow Qu and the ‘blocked’ flow Qb as shall be later

explained in the latter sections of this chapter.

dV

dt
“ ´β QuCb “ ´β Ju AuCb (5.1)

Equation 5.1 relates the rate of pore constriction to bulk liquid concentration Cb (g m´3).

However not all particles in the bulk liquid deposit inside the membrane pores or even

reach the membrane surface as will be later explained and demonstrated through sim-

ulations in Section 5.4. Proportionality constant β (m3 g´1) is an aggregate parameter

describing combined effects of selective transport of particles from the bulk liquid into

the membrane’s boundary layer due to cross-flow - see Section 5.4, shape and size of par-

ticles, particle density, floc size distribution (FSD), etc. Hence, pore constriction is de-

scribed macroscopically, neglecting the complex particle-particle and particle-membrane

interactions occurring over various spacial scales including molecular. It is thus likely

that β will vary with environmental conditions such as pH, salinity, turbulence, tem-

perature and, in case of bioreactors for wastewater treatment, SRT, concentrations and

chemical composition of SMP and EPS, FSD, floc morphology, etc. The permeate flow

through unblocked area Qu is equal to the ‘unblocked’ permeate flux Ju (m3 m´2 s´1)

multiplied by the ‘unblocked’ membrane surface area Au (m2) as shown in Equation 5.1.

If we assume that the membrane is composed of equally distributed cylindrical pores

of length L (m) and radius r (m), which are additionally exposed to the same rates of

fouling, Equation 5.1 can be written as:

dpNπr2Lq
dt

“ ´βQuCb “ ´βJuAuCb (5.2)
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where N denotes the number of pores per area A. Equation 5.2 can be rearranged into

the following expression describing reduction of pore radius r in time:

dr

dt
“ ´ β Cb Ju

2φp π L r
(5.3)

where φp “
ˆ
N

A

˙
(m´2) denotes the number of pores per unit area. φp remains constant

in time when pore constriction occurs on its own but will decrease with time if pore

constriction occurs in parallel with pore blockage. Membrane resistance R (m´1) can

be calculated from the pore radius r with the Hagen-Poiseuille equation:

R “ 8LA

N π r4
“ 8L

φp π r4
“ 8L

ε r2
(5.4)

where ε “ Ap

A
denotes the membrane area porosity and Ap (m2) denotes the total area

of open pores. Provided that the nominal pore radius is known a priori, i.e. initial

condition for Equation 5.2 rpt “ 0q “ r0 is given and the membrane thickness L is

provided, the last remaining unknown, the total number of membrane pores N can be

calculated using Equation 5.5 shown below:

N “ N0 “ 8µLQ0

πr04∆P0

“ 8µLJ0

πr04A∆P0

(5.5)

where Q0 (m3 s´1), J0 (m s´1), and ∆P0 (Pa) denote the initial flow, flux and pressure

difference at the beginning of the filtration experiment, respectively. Alternatively, if

the intrinsic membrane resistance Rm (m´1) is known beforehand, e.g. determined

during clean water filtration experiment, total number of membrane pores N can be

calculated with Equation 5.6.

N “ N0 “ 8LA

πRmr4
0

(5.6)

Under assumption that ∆P = const., i.e. for constant pressure filtration, integration

of Equation 5.2 yields the following equation representing a decrease of the unblocked

flux in time.
Ju

J0
“ Qu

Q0

“
ˆ
1 ` β Cb Q0

N πLr02
t

˙´2

(5.7)

According to Darcy law resistance R9 1{Q, thus:

R

R0

“ Q0

Q
“

ˆ
1 ` β Cb Q0

N πLr02
t

˙2

(5.8)

where t (s) in the above two equations denotes the time elapsed from the beginning of

the filtration process.

Complete pore blockage

Complete pore blockage is modelled as loss of unblocked area Au (m2) resulting from

occlusion of open pores by single particles with diameters dp (m) greater than the pore
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diameter d (m). Au9Nu, where Nu denotes the number of unblocked membrane pores.

Graphical representation of complete pore blockage is shown in Figure 5.2. Complete

pore blockage assumes that open membrane pores are ‘plugged’ by individual parti-

cles as they deposit on the pores dragged by the convective forces of permeate flow.

The particles are assumed not to deposit on top of the earlier deposited particles as

in case of intermediate pore blockage or deposit anywhere else on the membrane. The

loss of unblocked membrane area Au is proportional to the concentration of the foulant

Cb (g m´3) and the ‘unblocked’ flow Qu “ JuAu (m3 s´1) times the proportionality

constant α (m2 g´1) - see Equation 5.9. α, similarly to the parameter β in pore con-

striction, is an aggregate parameter taking into account combined effects of selective

transport of particles from the bulk liquid to the membrane’s boundary layer due to

convective velocity field associated with permeate flow, cross-flow, effects of adhesion

and desorption of particles from the membrane, shape and size of particles, floc size

distribution (FSD), etc.

dAu

dt
“ ´αCb Qu “ ´αCb JuAu (5.9)

If we express Au in terms of the ‘unblocked’ flux and the ‘unblocked’ flow rate: Au “ Qu

Ju

and describe Ju with Darcy’s equation: Ju “
∆P

µRm
, Equation 5.9 can be rearranged to

give Equation 5.10.
dQu

dt
“ ´α

∆P

µRm
QuCb (5.10)

By integrating Equation 5.10 with initial condition Qupt “ 0q “ Q0 and under as-

sumption that ∆P “ const, we obtain two algebraic equations expressing reduction of

permeate flow (Equation 5.11) and increase of total resistance (Equation 5.12) due to

complete pore blockage in constant pressure filtration.

Qu

Q0

“ exp
ˆ

´α
∆P

µRm
Cb t

˙
(5.11)

R

R0

“ exp
ˆ
α

∆P

µRm
Cb t

˙
(5.12)

Equation 5.12 is obtained by inverting Equation 5.11 due to the fact that R9 1{Q.

Initial resistance Rpt “ 0q “ R0 “ Rm. t in Equations 5.11 and 5.12 represents the

time elapsed from the beginning of the filtration process.

Intermediate pore blockage

Whereas the rate of area loss in complete pore blockage is proportional to the bulk liquid

foulant concentration Cb and the ‘unblocked’ flow rate Qu, in case of intermediate pore

blockage
dAu

dt
is additionally proportional to the unblocked area divided by the initial
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unblocked area:
Au

A0

as expressed in Equation 5.13.

dAu

dt
“ ´α1 CbQu

Au

A0

“ ´α1 Cb Ju
Au

2

A0

(5.13)

In case of new or chemically cleaned membranes it is assumed that A0 “ A. The

proportionality constant α1 has the same physical meaning as α in the complete pore

blockage mechanism although their values are likely to be different. As pore blocking

progresses,
Au

A0

becomes smaller thus reducing the rate of blockage. Such behaviour

results from an assumption that particles can deposit on top of already deposited par-

ticles as shown in Figure 5.2. Thus, a lesser fraction of suspended particles actually

contributes to membrane pore plugging. Additionally, as the pores get plugged and the

unblocked membrane area Au reduces, the probability of a particle landing on the un-

blocked area becomes lower, hence the rate of unblocked membrane area decreases. The

probability of a particle landing onto an unblocked fraction of a membrane is assumed

to be proportional to the fraction of the unblocked area in the total membrane area,

hence appearance of the
Au

A0

term in Equation 5.13. In the same fashion as described

in Section 5.2.1, Equation 5.13 can be rearranged to give Equation 5.14.

dQu

dt
“ ´ ∆P

µRm
α1QuCb

Qu

Q0

(5.14)

where µ denotes the dynamic viscosity of the permeate (Pa ¨ s), Rm is the clean mem-

brane resistance (m´1), ∆P is the pressure difference across the membrane (Pa), and

Q0 is the initial flow rate through the membrane (m3 s´1). Integration of Equation 5.14

with an initial condition Qupt “ 0q “ Q0 and where ∆P “ const gives the following

equations for, respectively, decrease of the ‘unblocked’ flow rate and increase of the total

resistance in time for intermediate pore blockage.

Q

Q0

“
ˆ
1 ` α1 ∆P

µRm
Cb t

˙´1

(5.15)

R

Q0

“
ˆ
1 ` α1 ∆P

µRm
Cb t

˙
(5.16)

where t represents the time elapsed from the beginning of the filtration process.

Cake formation

Cake formation is a process in which solid particles deposit on the membrane surface and

on top of one another forming a continuous porous layer of a finite thickness. This layer

of deposited particles adds additional resistance Rp (m´1) which increases together with

cake thickness and decreases with cake porosity. The rate of increase of cake resistance

is proportional to the influx of solid particles Jb Cb times specific cake resistance R1
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(m kg´1) and fraction of total solids which contribute to the growth of cake, f 1 (–).

dRp

dt
“ f 1 R1 JbCb (5.17)

The permeate flux Jb (m s´1) is termed ‘blocked’ flux because cake formation is assumed

to occur only over the blocked membrane area. Equation 5.17 is integrated with initial

condition Rppt “ tpq “ Rm ` Rp0, where tp (s) denotes the time moment in which

the section of the membrane under consideration is blocked, Rm (m´1) denotes the

clean membrane resistance, and Rp0 (m´1) denotes the additional resistance caused by

fouling at time tp. The integrated equation describing the increase of Rp in time is

shown below.

Rp “
d

pRm ` Rp0q2 ` 2f 1R1
∆P

µ
Cb pt ´ tpq ´ pRm ` Rp0q (5.18)

After Rp is expressed as a function of flux Jb with the Darcy’s law, Equation 5.17 takes

the following form:

´ ∆P

µJ2
b

dJb

dt
“ f 1R1JbCb (5.19)

Equation 5.19 is rearranged and integrated with initial condition Jpt “ tpq “ J0 where

∆P “ const to yield the following algebraic equation expressing the rate of decrease of

permeate flux and flow in time due to cake buildup.

Q

Q0

“ J

J0
“

ˆ
1 ` f 1R1 2∆P

µRm
2
Cb pt ´ tpq

˙´ 1

2

(5.20)

Although R1 is assumed here to remain constant, its value is likely to be changing in time

during filtration in full-scale systems such as MBRs due to variations in hydrodynamic

conditions affecting selective particle deposition, compressibility effects, changes in the

particle shape and the particle size distribution, etc.

Hermia’s equation

All four classical fouling laws for dead-end constant TMP filtration can be represented

with a single second order differential equation first introduced by Hermia [91].

d2t

dV 2
“ k

ˆ
dt

dV

˙n

(5.21)

where the value of n determines the fouling mechanism: n “ 2 for complete pore block-

ing, n “ 1.5 for standard pore blocking (aka pore constriction), n “ 1 for intermediate

pore blocking and n “ 0 for cake filtration.

The first derivative
dt

dV
is a reciprocal of

dV

dt
which represents the volumetric flow

rate Q “ J A. Thus
dt

dV
“ 1

J A
(5.22)

150



T. Janus 5.2. PROCESSES OPPOSING MEMBRANE FILTRATION

The second derivative
d2t

dV 2
“

d

dV

˜
dt

dV

¸
can be written as

d

dV

˜
1

JA

¸
which after

differentiation gives: ´
1

J2A

dJ

dV
. Given that dV “ Qdt “ J Adt the second derivative

d2t

dV 2
can be written as:

d2t

dV 2
“ ´ 1

J3A

dJ

dt
(5.23)

Once Equation 5.22 and Equation 5.23 are substituted into Equation 5.21 and after

appropriate rearrangements, Equation 5.21 becomes:

dJ

dt
“ ´k J3´nA2´n (5.24)

Equation 5.24 describes how permeate flux decreases in time according to each classical

fouling mechanism. Since Equation 5.21 as well as Equation 5.24 describe dead-end con-

stant pressure filtration with no back-transport, the equation of Hermia was extended

by Field et al. [62] to include the effects of crossflow. Equations 5.21-5.24 as well as the

modified constant-pressure blocking equations incorporating cross-flow removal mecha-

nisms can be found in the Appendix of the original research paper of Field et al. [62].

Hlavacek and Bouchet [95] reformulated Hermia equations for dead-end unstirred con-

stant flux filtration. In the general form, constant flux unstirred filtration is expressed

as:
d2t

dp∆P q2 “ k

ˆ
dt

dp∆P q

˙n

(5.25)

5.2.2 Concentration polarisation and gel layer formation

During filtration, a convective transport of solids, colloids and solutes from the bulk

liquid towards the membrane surface is balanced by the rate of permeation of these

solids, colloids and solutes into the effluent stream and the rate of back-transport from

the membrane surface to the bulk liquid. The resulting mass balance can be expressed

by the following equation:

J C “ 9Mb ` J Cp (5.26)

where J C is the influx of solids, colloids and solutes towards the membrane surface,

J Cp is the rate of loss of solutes, colloids and solids due to permeation and 9Mb stands

for the rate of back-transport. J denotes the permeate, Cp denotes the permeate stream

concentration and C is the sought concentration vs. distance from the membrane sur-

face.

When convective transport of solutes, colloids and solids exceeds the combined ef-

fect of back-transport and permeation though the membrane, these substances accumu-

late at the membrane-solution interface within a concentration boundary layer. As the

accumulation progresses, a high concentration gradient developing near the membrane

surface promotes back-transport of the accumulating material back to the bulk liquid

finally leading to attainment of a steady-state concentration profile in which convective
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transport is balanced with back-transport and permeation. Back-transport is usually

proportional to the concentration gradient Mb “ D
dC

dz
where the proportionality con-

stant D is a measure of diffusivity which in absence of turbulence is due to Brownian

motion of particles and is magnified by shear in the presence of velocity gradients.

Development of concentration gradients near the membrane is known as concentra-

tion polarisation and is graphically described in Figure 5.3. Concentration polarisation

has a negative effect on permeability because it increases the osmotic pressure π (see

Section 5.2.3) and enhances fouling and scaling. Scaling develops when concentrations

of low solubility salts near the membrane wall exceed their saturation concentrations

leading to scale deposition on the membrane surface. Fouling is caused by elevated con-

centrations of biopolymers such as SMP and EPS which enhance such processes as cake

formation and pore constriction. Furthermore, CP may trigger precipitation of organic

solutes in the boundary layer leading to formation of a gel layer (see Figure 5.3), which

may have greater selectivity and lower permeability than the membrane itself. Another

detrimental effect of CP is increased permeation of the rejected materials due to locally

increased trans-membrane concentration gradient and thus increased osmotic pressure.

As described later in Section 5.4, the rate of back-transport of suspended matter and

Figure 5.3: Concentration polarisation in the vicinity of the membrane.

colloids from the membrane back to the bulk liquid is proportional to particle diameter

raised to the fourth power, 9Mb 9 dp
4. As a result, majority of solids is kept away from

the membrane surface and thus concentration polarisation applies only to solutes and

very small particles in the colloidal and macromolecular range. In microfiltration (MF)

and ultrafiltration (UF) membranes with pore sizes in the range of 0.1 – 10 µ m and

0.01 – 0.1 µm respectively most of the constituents which may build up on the membrane

surface due to concentration polarisation pass through the membrane thus decreasing or

completely eliminating the concentration polarisation effect which may only occur due

to existence of phase slip between the solvent and the solute in the membrane. Concen-

tration polarisation may however become more prominent on heavily fouled membranes

with clogged and constricted pores. Nevertheless, concentration polarisation becomes

significant only in nanofiltration (NF) and reverse osmosis (RO) systems due to small

pore sizes and hence, high rejection of macromolecular and solute materials.
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5.2.3 Osmotic pressure

Osmotic pressure is the pressure which needs to be applied to a solution to prevent

the inward flow of solvent across a semipermeable membrane [245]. Osmotic pressure

arises from the tendency of a pure solvent to move through a semi-permeable membrane

into solution containing a solute to which the membrane is impermeable. The flow of

pure solvent is driven by osmotic pressure difference between the side where the solute

concentration is low (i.e. osmotic pressure is high) and the side with higher solute

concentration associated with lower osmotic pressure. Effects of osmotic pressure can

be accounted for in the Darcy’s equation expressed below:

J “ ∆P ´ σ0 ∆π

µRtot
(5.27)

where J (m s´1) denotes the permeate flux, µ (Pa s) denotes the dynamic permeate

(solution) viscosity, ∆P (Pa) denotes the applied transmembrane pressure, Rtot (m´1)

is the total membrane resistance, and σ0 and ∆π are the osmotic reflection coefficient

and the osmotic pressure difference across the membrane, respectively. The osmotic

reflection coefficient is a measure of the permselectivity of the membrane to the foulant

and varies from one for a fully retentive membrane to zero for a non-retentive membrane.

The osmotic pressure term is most often neglected in the classical fouling model, because

it was found to be relatively small compared to the pressure loss caused by hydraulic

membrane resistance and fouling. However, osmotic pressure may become important

for ultrafiltration membranes or for heavily fouled microfiltration membranes where

retention of smaller colloidal solutes becomes significant [97].

5.2.4 Biofilm growth

Biofilms are structured habitats of microorganisms within a polymer-EPS-matrix, which

is produced by the microorganisms themselves [38]. Biofilms initially form on clean

surfaces submerged in aqueous environments due to deposition and attachment of indi-

vidual microorganisms, which is then followed by growth and EPS production. Biofilm

growth occurs in all aqueous environments, especially those such as activated sludge

systems within MBRs where bulk liquid concentrations of bacterial biomass and EPS

are very high. In MBR systems biofilm growth is especially undesired as it forms on

the surface of semipermeable membranes leading to partly reversible, partly irreversible

fouling. It would therefore seem vital that biofilm growth is included as one of the

fouling mechanisms in the membrane filtration model. Unfortunately, biofilm models

are very complex and contain many unidentifiable parameters. Microbial growth kinet-

ics and EPS production in biofilms are very hard to measure and mechanisms of EPS

formation are still not well understood. Biofilm detachment rates, biofilm densities

and degree of cross-linking are even harder to predict as the mechanisms are hardly

understood today and little experimental data is available. Therefore, quantitative pre-

diction of resistance caused by biofilm formation is very difficult and additionally, may
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be computationally intensive. For these reasons, the biofilm model is not included in

the model of membrane filtration and instead, the effects of biofilm formation are taken

into account partly through mechanisms of pore constriction/irreversible fouling and

cake formation/reversible fouling.

5.2.5 Scaling

Scaling can be neglected in microfiltration (MF) and also in ultrafiltration (UF) pro-

cesses of majority of municipal wastewater (WW) in which concentrations of inorganic

substances close to their maximum solubility levels are rare [19]. The situation may

be different at some industrial wastewater treatment plants (WWTPs), especially those

employing the UF process where concentration polarisation effects can lead to local exis-

tence of such high concentrations of inorganic substances in the vicinity of the membrane

which will exceed their maximum solubility and thus will trigger the process of scaling.

Since the MBR model developed here is for municipal wastewater only, scaling will not

be modelled.

5.2.6 Resistance in series

Total pressure drop ∆Pt across a fouled membrane is usually subdivided for the purpose

of modelling and analysis into several smaller pressure losses, each one corresponding

to a different fouling mechanism. Hence, ∆Pt “
ÿ

i

∆Pi. As ∆P 9R where R de-

notes resistance (m´1), total membrane resistance Rt can be represented as the sum of

resistances caused by individual fouling mechanisms, concentration polarisation (CP),

biofilm growth, etc., as if the resistances were connected in series.

Rt “
ÿ

i

Ri (5.28)

Depending on the type of fouling mechanisms taking place on the membrane, Ri (m´1)

may be equal to: Rm for clean membrane resistance, Rc for cake resistance, Ri for

resistance caused by pore constriction, Rb for resistance caused by pore blockage, Rcp

for resistance caused by concentration polarisation, Rg for resistance caused by gel layer

formation, and Rbf for resistance caused by biofilm growth. In the most complete model

Rt then becomes:

Rt “ Rm ` Rc ` Ri ` Rb ` Rcp ` Rg ` Rbf (5.29)

5.3 Solute transport through a membrane

MF and UF membranes retain not just particulate materials but also some solutes and

colloids such as SMP. SMP concentrations in the retentate stream have been found to be

significantly lower from the concentrations in the bulk liquid. Drews et al. [47] reported
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20-70% rejection for proteins (PP) and 75-100% rejection for polysaccharides (PS).

However these values are likely to vary with the molecular weight distribution (MWD)

of SMP, type of the membrane and the operating conditions. Retentive properties of the

membrane may be represented by a dimensionless parameter fM “
Ce

Cb
, where Ce and

Cb denote the SMP concentrations (in g m´3), respectively in the effluent (permeate)

and in the bulk liquid. fM “ RF ´1, where RF denotes the membrane’s rejection factor

as later described in Section 7.2. Due to retentive properties of MF and UF membranes,

SMP accumulates inside the bioreactor.

As explained in Chapter 3, SMP together with EPS have an influence on the

physical properties of activated sludge such as FSD, non-settleable solids (NSS) fraction,

SVI, zone settling velocity (ZSV), capillary suction time (CST), specific cake resistance

(SCR) and viscosity. They also influence the activated sludge process kinetics [31] and,

most importantly, they are found to be very strong membrane foulants. The above

mentioned parameters additionally have an impact on performance of the downstream

processes, especially sludge thickening and dewatering, by affecting the required energy

inputs, coagulant and flocculant doses and dry solids content in the thickened and

dewatered sludge.

Ability to predict SMP and EPS concentrations in the bioreactor is therefore of

great significance as it allows us to quantify the bulk liquid’s filterability, settling, thick-

ening and dewatering properties. Modelling of SMP and EPS kinetics has been ex-

plained in Chapter 3 and Chapter 4. As shown in Tables 4.9 and 4.10 in Section 4.7.2,

predictions of the effluent soluble chemical oxygen demand (SCOD) are more sensitive

to fM than to any of the kinetic or stoichiometric parameters in the biokinetic acti-

vated sludge model, while fM can additionally substantially affect the bulk liquid SMP

concentrations. A correct representation of SMP rejection on MF and UF membranes

is therefore very important for three reasons: (a) it is mandatory to correctly predict

the fouling propensity of bulk liquid, (b) it is required for estimation of kinetic and

stoichiometric parameters of SMP and EPS kinetics in the activated sludge model, (c)

it is required correctly predict the effluent SCOD in MBR effluents.

Some researchers postulate that rejection of SMP by MF and UF membranes occurs

primarily through sieving, i.e. exclusion of SMP molecules with diameters larger than

the diameters of the membrane pores, [26, 104, 222]. Although influents to WWTPs

contain soluble organic matter (SOM) of, generally, very low molecular weight (MW)

fractions below 0.5 kDa [8] which will pass entirely through a MF membrane (see Fig-

ure 2.2 on page 34), biological effluents and bulk liquids in activated sludge bioreactors

contain organic compounds with a broad MW spectra from <0.5 kDa to >50kDa which

tend to contain larger MW material under higher SRTs. Shin and Kang [222] observed

that 20% of SOM in the supernatant from three MBRs operating at SRTs between 40

and 130 days had MWs of over 100 kDa. These organic molecules are larger than the

molecular weight cut-off (MWCO) of a MF membrane and would therefore be entirely

captured on ground of size exclusion (sieving). However, often higher SMP rejection
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rates than MWD of SMP would suggest, are observed in MBR reactors. It is postu-

lated that these additional rejection effects may be attributed to additional sieving by

thin, low-porosity fouling layers forming on the membrane surface and by agglomera-

tion and precipitation of SMP molecules in the concentration polarisation region. Song

et al. [226] proposed another theory postulating that SMP rejection on MF membranes

might also happen due to lower mobility of SMP inside the membrane in comparison

to the solvent [210, 40]. As SMP has higher affinity to membrane material than water,

convection velocity of SMP (vs) is slower from water velocity (vw), resulting in the

so-called ‘phase-slip’. This effect is described in Equation 5.30

vs “ αR vw (5.30)

where αR (–) denotes the so-called SMP retardation coefficient. Song et al. [226] de-

scribed the transport of SMP through a porous membrane with a stationary advec-

tion/dispersion equation where dispersion coefficient D (m2 s´1) is related to the flow

velocity vw through a proportionality constant βL (m) denoting the longitudinal dis-

persion length.

D “ βL vw (5.31)

Solute transport in porous media is governed by advection/dispersion equation, [188, 60]

where advection is caused by forward, convective transport of solutes with fluid flow,

whilst dispersion is due to existence of different flow paths in the porous medium.

Transport of SMP through a MF membrane can be modelled in the same fashion with

a one-dimensional parabolic advection-dispersion equation first introduced by Lapidus

and Amundson [134]. The equation is expanded with source and sink terms to represent

loss and production of SMP as a result of sorption/desorption processes. Advection-

dispersion partial differential equation (PDE) was used by Song et al. [226] to describe

solute transport through a MF membrane. Wrong interpretation of the equation led to

the conclusion that dispersion leads to reduction of SMP concentration, i.e. is a mass

sink. This is naturally not true as dispersion does not affect mass balance, only the

temporal and spatial distribution of solute concentration in the membrane and time

response characteristics, as shown in Figure 5.4.

BC
Bt “ βL vw

B2C
Bx2 ´ αR vw

BC
Bx `

ÿ
sources ´

ÿ
sinks (5.32)

Since SMP is not produced anywhere inside the membrane
ÿ

sources “ 0. SMP mass

sinks
´ÿ

sinks
¯

are caused by deposition of SMP inside the membrane pores, i.e. by

pore constriction. This process is is assumed to be described with reversible non-linear

sorption kinetics [188].
BS
Bt “ ksC

Ns ´ kr S (5.33)

BC
Bt “ ´BS

Bt (5.34)

where S (g m´3) denotes the amount of SMP sorbed onto the pore surface, and ks
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(g1´N m3Ns´3 s´1) and kr (s´1) are the rates of, respectively, sorption and desorption,

and Ns is a non-dimensional sorption non-linearity constant. Whilst, for the purpose

of this study, it is appropriate to assume that parameters ks, kr and Ns are constant

for a given membrane configuration, Ye et al. [266] found that the rate of protein de-

position/sorption inside or on the membrane surface is in the positive relationship with

permeate flux. Ye et al. [266] found this relationship to be exponential and described it

with the film model. Exponential relationship between the rate of irreversible fouling

and permeate flux was also experimentally found in Chapter 6, as shown in Figure 6.2

on page 190. The film model assumes that diffusion through a laminar boundary layer

is a limiting process in sorption, which leads to quite a different equation for the rate

of sorption than Equation 5.33. As the main aim of this study is to determine whether

SMP sorption inside the membrane might have any effect on permeate SMP concen-

trations, accurate formulation of SMP sorption vs. flux is not crucial. Hence, it was

decided that the process is modelled with the earlier chosen Equations 5.33 and 5.34 in

which the parameters ks, kr and Ns are assumed to remain constant regardless of flux.

Solution of Equation 5.33 under equilibrium produces the Freundlich isotherm.

Obtaining information about sorbed concentration S is not as important as information

about the pore diameter, which is gradually reduced as SMP is being sorbed inside the

membrane pores. The rate of pore constriction, i.e. reduction of pore diameter can be

related to the rate of sorption as shown in Equation 5.35

Bdp
Bt “ BS

Bt
dp

2 ρs
(5.35)

where ρs (kg m´3) denotes the SMP density. ρs is assumed to be equal to protein

density, whose well established value is 1.35 kg m´3.

Equations 5.33-5.35 are collated by the author and supplemented with the following

initial and boundary conditions to create a well-formed initial boundary value problem

(IBVP):
BC
Bt “ βL vw

B2C
Bx2 ´ αR vw

BC
Bx ` ksC

Ns ´ kr S

Bdp
Bt “ BS

Bt
dp

2 ρs

Spt “ 0q “ 0

Cpt “ 0q “ 0

dppt “ 0q “ dp0

Cpx “ 0q “ f
vs

vw
Cb

BC
Bx

ˇ̌
ˇ̌
ˇ
x“L

“ 0

(5.36)

Here, dp0 (m) denotes the initial pore diameter, Cb (kg m´3) denotes the SMP con-

centration in the bulk liquid, vs and vw are the advection velocities of, respectively,

SMP and water (m s´1) and f is a non-dimensional parameter describing the fraction
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of SMP which infiltrates into the membrane. The above IBVP problem is formulated

using an explicit time-marching finite difference scheme. Equation 5.32 is discretised

using a leapfrog scheme for the time derivative and a 1st order backward difference for

the advection term.

C
j`1

i ´ C
j´1

i

2∆t
“ βL vw

C
j´1

i´1
´ 2C

j´1

i ` C
j´1

i`1

∆x2
` αR vw

C
j
i ´ C

j
i´1

∆x
` (5.37)

ksC
j
i

Ns ´ kr S
j
i

The equations were discretised in space with a uniform grid where each point has an

associated index i “ 1 : M where M “
L

∆x
` 1. The time domain was divided into

N points with indices j “ 1 : N where N “
tend ´ t0

∆t
. With membrane thickness L

arbitrarily discretised into 500 points (M “ 500) in the longitudinal direction, the time

step ∆t was calculated from ∆x and advection velocity vs using a maximum Courant

number criterion ∆t ď Co
∆x

vs
, where Co “ 0.4. Diffusion term in the equation is

evaluated in the previous time step j ´ 1 instead of j “ 1 to eliminate numerical

instability. The system of discretised equations is formulated as follows:

@ i P x2,My C
j“1

i “ 0 (5.38)

@ i P x1,My S
j“1

i “ 0 (5.39)

@ i P x1,My d
j“1

p,i “ dp0 (5.40)

@ j P x1, Ny C
j
i“1

“ f
vs

vw
Cb (5.41)

@ i P x2,M ´ 1y , j P x2, N ´ 1y C
j`1

i “ C
j´1

i `
`
βL vw

C
j´1

i´1
´ 2C

j´1

i ` C
j´1

i`1

∆x2

` αR vw
C

j
i ´ C

j
i´1

∆x
` ksC

j
i

Ns ´ kr S
j
i

˘
∆t (5.42)

@ j P x2, N ´ 1y C
j`1

M “ C
j´1

M `
`
βL vw

C
j´1

M´1
´ C

j´1

M

∆x2
(5.43)

` αR vw
C

j
M ´ C

j
M´1

∆x
` ksC

j
M

Ns ´ kr S
j
M

˘
∆t

@ i P x1,My , j P x2, N ´ 1y d
j`1

p,i “ d
j´1

p,i ´
´
ks C

j
i

Ns ´ kr S
j
i

¯ d
j
p,i∆t

ρp
(5.44)

Equations 5.38 - 5.44 are solved with two different sets of parameters resulting in

two simulation scenarios (Simu 1 & Simu 2). The parameters used in both simulation

scenarios are presented in Table 5.1. The first simulation run (Simu 1) was carried out

for two permeate fluxes: J “ 20 L m´2 h´1 and J “ 40 L m´2 h´1 with SMP retardation

coefficient αR “ 0.5. The results of Simu 1 for four different time snapshots: t “ 2,

8, 15 and 1800 seconds are presented in Figure 5.5 which shows the movement of the

SMP concentration front across the membrane as a result of step change in the bulk

SMP concentration Cb. The SMP concentration inside the membrane Cpx, tq can reach

a maximum value of f αR Cb which for f “ 1 and αR “ 0.5 is equal to 50% of Cb.
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Translation velocity of the moving front is proportional to the solute velocity vs mi-

nus diffusion-like effects represented here by SMP dispersion factor βL. These diffusion-

like effects have no relation to Brownian diffusion but result from solute particles taking

different routes (channels) as they pass through porous membrane material. Contrary

to the earlier mentioned results of Song et al. [226], reduction of SMP across the mem-

brane is only due to sieving and retardation effects, not to dispersion which only changes

the shape of the concentration front, not its magnitude.

Effluent SMP concentrations Ce resulting from a step change in bulk SMP concen-

tration Cb are calculated for three different dispersion factors βL in the 2nd simulation

run (Simu 2) as shown in Figure 5.4. Although dispersion affects the membrane’s time

response characteristics, the measured time-constants are found to be very low, usually

less than a minute. As can be seen in Figure 5.4, for the largest of the three dispersion

factors βL “ 9 and for a relatively low permeate flux of 20 L m´2 h´1 time constant

is less than 20 seconds. The membrane’s dynamics are therefore much faster then the

bioreactor’s dynamics and hence it is justifiable to neglect the membrane’s dynamic

effects in modelling of MBR reactors. SMP sorption inside the membrane pores was
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Ce/Cb βL =0.5
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Figure 5.4: SMP concentration on the permeate side vs. time after step change in the
bulk liquid concentration for different proportionality constants βL of the dispersion
coefficient D.

found to have no effect on effluent SMP concentrations Ce. As can be seen in Figure 5.5

after sufficient amount of time, given that Cb remains constant, the effluent SMP con-

centration Ce is stabilised at the value equal to the SMP concentration at the front end

of the membrane. Hence, no SMP gradient across the membrane is observed. Although

with the chosen kinetics, sorption had no effect on effluent SMP concentrations, it led

to a significant reduction in membrane permeability. The results of the 1st simulation

run (Simu 1) show a 12% reduction in the mean pore diameter within just 30 minutes

(1800 seconds) from the beginning of the filtration experiment, which is a very large

loss of permeability given such a short time-scale. To summarise, it was shown that

sorption of solutes inside the membrane has no effect on effluent SMP concentrations

and that despite of dispersion effects due to differences in pore channel lengths and

connectivity between the pores, the membrane exhibited very fast dynamics in range

of seconds compared to the dynamics of the bioreactor (minutes-hours). Membrane
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Figure 5.5: Solute concentration profiles C{Cb along the membrane thickness and mem-
brane pore diameters dp obtained at four selected time moments during the simulation
of unsteady convective-dispersive transport with adsorption of solutes.

dynamics can therefore be neglected in MBR models without sacrificing the model’s

accuracy. The membrane’s selectivity and retentive properties to SMP are on the other

hand of great importance as they influence the effluent SMP and SCOD concentrations

- see Table 4.9 and Table 4.10. To what degree the retentive properties of MF and

UF membranes depend on just sieving and to which on transport retardation effects is

however unknown.
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Table 5.1: Model parameters used in the simulation of SMP transport through a mem-
brane with an unsteady convective-dispersive transport model with adsorption of so-
lutes.

Parameter Description Unit
Value

Simu 1 Simu 2

Membrane thickness L µm 100

Fraction of SMP in permeate f – 1

SMP retardation coefficient αR – 0.5

SMP dispersion factor βL – 1 r0.5, 3, 9s
Permeate flux J L m´2 h´1 r20, 40s 20

Initial SMP concentration in the membrane C0 kg m´3 0

Bulk SMP concentration Cb kg m´3 200

Membrane porosity ε – 0.6

Mean pore diameter dp µm 0.1

Density of proteins ρp kg m´3 1.35

Sorption rate ks s´1 2 ¨ 10´6

Desorption rate kr s´1 1 ¨ 10´6

Non-linearity coefficient in the sorption model Ns – 1

5.4 Balance of forces on a particle during filtration

Classical macroscopic fouling equations described in Sections 5.2.1-5.2.1 proved suc-

cessful at predicting filtration characteristics of different kinds of monodisperse as well

as polydisperse suspensions through various types of membranes [96, 50, 261]. The

model equation parameters do, however, need to be calibrated on a case by case ba-

sis. Although the classical fouling equations assume these parameters are invariant

in time, they, as shall be shown later, depend on a number of often time-varying ex-

ternal factors such as operating conditions of the membrane filtration unit and the

bioreactor, biochemical and physical characteristics of the liquid being filtered and the

physico-chemical properties of the membrane. In particular, the rates of pore blockage

and cake formation and specific cake resistance depend on the suspension’s floc size

distribution (FSD), pore size distribution (PSD) of the membrane and hydrodynamic

conditions in the vicinity of the membrane. In order to describe these effects, we need

to look at filtration from the microscopic rather than macroscopic point of view by

analysing the behaviour and fate of individual particles in the suspension while it is

being filtered through the membrane.

The fate of a particle which came to find itself in the proximity of the membrane

depends on the balance of forces acting upon it. The particle will deposit on the

membrane causing pore blockage or cake growth or inside the membrane causing pore

constriction if the drag force associated with permeate flux and the adhesive forces

between the particle and the membrane prevail over the turbulence induced forces of

back-diffusion and inertial lift. In case back-diffusion and inertial lift prevail over the

adhesive and drag forces, the particle will be kept away from the membrane and carried

back into the bulk liquid. The forces responsible for carrying the particle towards the

membrane and the forces acting on the particle in the reverse direction to the direction

of flow happen to be proportional to particle diameter dp raised to different exponents.
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These differences in functional relationships between different forces acting on a

particle and particle sizes explains the phenomenon of selective deposition, where par-

ticles with diameter larger than the so-called cut-off diameter are kept away from the

membrane whilst smaller particles deposit on the membrane or cake, within the cake,

inside the membrane pores or pass through the membrane into permeate. Although

calculation of forces acting on single individual particles may be very challenging or

even impossible due to lack of reliable measurement probes and thus difficulties in iden-

tification of model parameters, simplified theoretical analysis is still possible and may

help us broaden our understanding of fouling processes. In particular, the observed

effects of air scouring rates, CFVs and permeate fluxes on rates of pore constriction,

pore blockage, cake formation and specific cake resistance can be better understood and

explained on a theoretical basis.

In this section equations published by different researchers in various scientific

publications are combined by the author in order to formulate a complete model of

selective deposition of particles in an air-sparged immersed system. This model is then

simulated for a wide range of particle diameters in order to calculate cut-off diameters

corresponding to different permeate fluxes and air scouring rates. It is necessary to

point out that the selective deposition model which shall be described in more detail

in the next section is purely theoretical and has not been validated in any manner

in this study. The model is therefore not used to provide exact numerical values of

i.e. cut-off diameters but to theoretically examine the fate of particles in the suspension

under filtration conditions and to derive approximate functional characteristics between

cut-off diameters, permeate fluxes and air scouring rates.

Dominant forces acting on a single particle in the vicinity of the membrane and

after the particle has deposited on the membrane surface are presented in Figure 5.6.

The directions and magnitudes of forces acting on a particle will depend not only on

the operating conditions of the filtration unit but also on positioning and configuration

of the membrane. The two main types of filtration are, as explained in Chapter 2,

Moderate cross-flow filtration implemented in immersed flat sheet (FS) and HF MBRs

and high cross-flow filtration implemented in sidestream MBR configurations. The

type of filtration considered in this study is, as mentioned already in the previous

paragraph, an air-sparged immersed system which will be considered in Chapter 7 during

the development of an integrated MBR model.

Selective deposition of particles in immersed systems was recently covered by

Hwang and Chen [106], whereas in cross-flow systems this subject was thoroughly cov-

ered by a greater number of scientists such as Wang et al. [250], Altmann and Rippergen

[5], Vyas et al. [246] and Knutsen and Davis [124].

5.4.1 Force balance analysis in an immersed MBR configuration

The balance of forces acting on a single particle can be calculated for a particle which

finds itself in the vicinity of the membrane but is not attached to it and for a particle that
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Figure 5.6: Balance of forces acting on a single particle deposited on the membrane
surfrace and in the vicinity of the membrane during filtration.
Fv - drag force due to tangential flow a, Ff - drag force due to permeate flow, Fg - net force due to

gravity and buoyancy, Fa - adhesive force, Ffr - friction force, Fb - forces of back-transport, Fr -

repelling force.

aDepending on the configuration of the filtration unit, tangential flow effects are caused by either
the velocity of liquid passing around the membrane, the movement of rising air bubbles, slugs or caps,
or a combination of the two.

is already deposited on the membrane surface. These two scenarios are distinct as these

two particles will be subjected to different types of forces. Whilst the streaming particle

is subjected only to hydrodynamic forces of the fluid flow, the particle deposited on the

membrane is additionally subjected to interparticle forces and surface wall friction.

A single spherical particle in the feed experiences drag by the velocity field pointing

towards the membrane and associated with the permeate flow J . The resulting force Ff

is calculated from the Stokes law under a valid assumption that the flow is laminar (i.e.

low velocities or particle diameters) and a not-so valid assumption that the particle is

isolated in a continuous viscous fluid (no interactions between the particles). The equa-

tion is multiplied by an empirical correction factor C1 which increases the magnitude

of the force from Stokes’ law to take into account the the effects of the proximity of

porous wall, i.e. membrane. The equation then becomes:

Ff “ 3C1 π ηb dp J (5.45)

where ηb denotes the feed viscosity (Pa s), dp denotes the particle diameter (m) and J

is the permeate flux (m s´1)

The correction factor C1 may be calculated using several different equations de-

veloped by various researchers such as Equation 5.46 by Goren [75], Equation 5.47 by

Sherwood [220] or Equation 5.48 by Chang and Acrivos [22]. In this study the model

of Chang and Acrivos [22] is used as the first two models tend to favour larger particles
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too much leading to the behaviour where larger particles are subjected to stronger lon-

gitudinal forces than smaller particles and, in consequence, the particle cut-off effect is

not predicted.

Having said this, the model of Chang and Acrivos [22] needs to be treated with

some reservation. Although for high porosities the qualitative behaviour of the model

is correct as the drag correction coefficient rightfully tends to 1 meaning that the wall

effects reduce to zero as the additional resistance of the wall disappears, the model

behaviour at the lower end of porosities is, at best, questionable. For porosities tending

to 0 the correction factor tends to infinity, which is obviously incorrect. From the shape

of the curve, it looks like the lower end of membrane porosities to which the equation is

likely to be correct is 0.2, for which the predicted correction coefficient is equal to 1000.

For lower porosities below 0.2 the outputs of the equation rapidly rise to very high,

physically incorrect values. It is possible that the equation was fitted to limited number

of data points covering a limited range of porosities beyond which the model loses its

application. Although this operating region is not known to the author, this study is

based under an assumption that φ “ 0.25 which is very close to the porosity value of 0.3

applied by Wang et al. [250] in their study of particle deposition in crossflow filtration

employing the same equation of Chang and Acrivos [22]. Hence, it is very likely that we

are within the intended operating reqion of the equation and out study is valid (under

an additional assumption that the equation of Chang and Acrivos [22] is universal and

applies to our system).

C1 “ 0.36

ˆ
Rt dp

2

4L

˙0.4

(5.46)

where Rt denotes the total membrane resistance (m´1) and L denotes the membrane

thickness (m).

C1 “
c

Rt dp

3
` p1.072q2 (5.47)

where Rt denotes the total membrane resistance (m´1).

C1 “ 10
1 ´ φ

φ3
(5.48)

where φ denotes the membrane porosity (–) and the value of φ “ 0.25 has been used in

this study.

The particle is also subjected to a tangential drag force Fv resulting from mechan-

ical agitation and bubble flow. Fv is calculated again with a modified Stokes equation

with a correction factor C2 describing the proximity effects of the membrane and cake.

Fv “ 3C2 π η dp u0 (5.49)

where u0 (m s´1) denotes the fluid velocity around the deposited particle caused by

turbulence, i.e. eddy velocity.
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The non-dimensional correction factor C2 is equal to 1.70 according to O’Neill [194]

whereas Rubin [215] found this coefficient to be slightly larger and equal to 2.11. In this

study the former coefficient of O’Neill [194] has been chosen; however the final results,

i.e. calculated cut-off particle diameters were found to be insensitive to the choice of

C2.

Although Equation 5.49 is valid only for very low particle concentrations where

particle interactions are minimal, the effects of higher particle concentrations will not

be considered in this study due to lack of available information for identification of

model parameters and for simplicity. For more information about correction factors

accounting for the presence of particles at higher concentrations, the reader is referred

to Brinkmann [16] and Tam [235].

Fluid velocity around the particle u0 (m s´1) is calculated from the apparent shear

intensity of fluid turbulence G (s´1) and Kolmogorov eddy size λk (m).

u0 “ λk G (5.50)

The apparent shear intensity G is obtained from Equation 5.51 ofy Logan [155] as

proposed in Li and Wang [147] and Wu et al. [262].

G “
ˆ
ρb g vcsg

ηb

˙0.5

(5.51)

where ρb (kg m´3) and ηb (Pa ¨ s) denote, respectively, the bulk liquid density and

dynamic viscosity, and vcsg (m s´1) denotes the superficial air velocity which is obtained

by dividing total air flow Qa (m3 s´1) by net cross-sectional area of the membrane A

(m2): vcsg “ Qa

A
. A “ At ´ Am where At is the total cross-sectional area of the

membrane tank and Am is the cross-sectional area occupied by the membrane.

Whilst it is assumed that bulk liquid density is equal to water density, i.e. ρb “ ρw,

dynamic bulk liquid viscosity ηb is calculated as a function of mixed liquor suspended

solids (MLSS) with equations introduced in Section 5.6.1 on page 176.

The value of λk (m) is obtained from Equation 5.52 [155].

λk “
ˆ

ηb

ρb G

˙0.5

(5.52)

The force of back-transport (Fb) which keeps the particles away from the membrane

surface can be attributed to three mechanisms: inertial lift, shear-induced diffusion and

Brownian diffusion. The theory of inertial lift was introduced by Green and Belfort [77],

Altena and Belfort [4] and Weigand et al. [254] and states that the net particle transport

towards the membrane is reduced by the lift force directed away from the membrane

surface and resulting from the interactions between the flow field and the membrane wall.

The shear-induced diffusion on the other hand arises from particle-particle, not particle-

wall interactions in a shear field which results in lateral migrations of particles from their

instantaneous trajectories. Brownian diffusion is a lateral migration of particles from
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their main trajectories (e.g. set by liquid flow) due to random drifting.

The force of back-diffusion is calculated, similarly as in the case of Fv and Ff , with

the Stokes’ law where back-transport velocity term vb (m s´1) is calculated either from

the theory of back-diffusion, inertial lift or Brownian diffusion:

Fb “ 3π η dp vb (5.53)

where vb (m s´1) is the back diffusion velocity.

The Brownian diffusion coefficient, and ultimately the the Brownian diffusion ve-

locity vb is estimated from the Stokes-Einstein equation: Db “
kT

3π η dp
where k is the

Boltzmann’s constant (1.38ˆ 10´6 g cm2 s´2 K´1) and T (K) is the absolute tempera-

ture. Since Brownian diffusion is inversely proportional to particle diameter dp, it only

affects the motion of the particles of submicron dimensions such as macromolecules.

Its effects are negligible for larger particles of colloidal dimensions and above and thus

Brownian diffusion shall not be considered in this model. Transport models based only

on Brownian diffusion as back-transport mechanism, such as gel polarisation model or

film theory are found to grossly underpredict the fluxes for e.g. colloidal suspensions due

to low diffusivity of colloids and particles. This discrepancy was discovered by Green

and Belfort [77] and termed “flux paradox”.

As, by definition, shear induced diffusion is a product of particle-particle interac-

tions, the magnitude of back-diffusion from the membrane surface to the bulk liquid

depends on particle concentration. Eckstein et al. [51] proposed the following empirical

equation for the diffusivity of rigid spherical particles due to particle collisions:

Dpφq “

$
’’&
’’%

0.1 9γ
d2p

4
φ if 0.0 ă φ ă 0.2

0.025 9γ
d2p

4
if 0.2 ă φ ă 0.5

(5.54)

where 9γ denotes the shear rate (s´1) and φ is the particle volume fraction.

Leighton and Acrivos [141; 142] found a different correlation based on their own

results arguing that the results by Eckstein et al. [51] were biased by wall effects which

led to underestimation of the diffusion coefficient.

Ds “
9γ d2p D̂spφq

4
(5.55)

where D̂spφq is a dimensionless function of the local particle volume fraction φ:

D̂spφq “ 0.33φ2

´
1 ` 0.5 e8.8φ

¯
(5.56)

and is reported to be valid for particle volume fractions up to φ “ 0.5.

So far, no expression for the force of back-transport due to shear induced diffu-
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sion has been proposed and then validated, according to the author’s current state of

knowledge, for an immersed MBR. Whilst a number of alternative expressions for shear-

induced back diffusion exist it is hard to say which ones may be applicable to immersed

membrane systems for wastewater treatment without prior study and validation. Since

no data for validation are available in this study and straight off-the-shelf adoption of

one of the published shear induced diffusion models for cross-flow filtration units may

be too risky, shear induced diffusion has not been adopted in this particle deposition

model.

In inertial lift, which is selected in this study as the only particle back transport

mechanism, the back diffusion velocity vb is substituted with inertial lift velocity vl

which is calculated from Equation 5.57 [246].

vl “
b ρb γw

2

ˆ
dp

2

˙3

16 ηb
(5.57)

where ρb (kg m´3) denotes the bulk liquid density, γw (s´1) is the shear rate at the wall,

ηb (Pa ¨ s) denotes the dynamic viscosity of the feed, and b is a dimensionless parameter

which is a function of a dimensionless distance from the membrane wall. Vyas et al.

[246] found this parameter to be equal b “ 0.577. The same equation for calculating

inertial lift velocity was used by Vasseur and Cox [241] although in their paper they

used the value of b “ 1.694 which is about three time that of Vyas et al. [246]. In this

study, the value of b “ 2.885 which is five times that of Vyas et al. [246] had to be

adopted in order to obtain qualitatively plausible values of particle cut-off diameters.

The shear stress at the membrane wall τw is calculated from fluid velocity around

the particle u0 using Equation 5.50.

τw “ 2 ηb u0

dp
(5.58)

The shear rate at the wall γw is then calculated from τw

γw “ τw

ηb
(5.59)

where dynamic bulk liquid viscosity ηb is calculated from dynamic water viscosity ηw

and bulk solids concentration XMLSS using Equation 5.77 shown on page 176.

After substituting the back-diffusion velocity vb with the inertial lift velocity vl,

Equation 5.53 becomes:

Fb “ 3π η dp vl “ 3π η dp

b ρb γw
2

ˆ
dp

2

˙3

16 ηb
(5.60)

Adhesive forces acting on the deposited particle result from a combination of several

intermolecular forces: Van der Waals forces, electrostatic forces and capillary forces.
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The capillary forces can be neglected in aqueous solutions [17]. The electrostatic forces

can be divided into attractive and repelling parts. As in MBRs these forces are mainly

repelling, the attractive part can also be neglected [118]. The repelling electrostatic force

can be calculated e.g. using the sphere-plane electrical double-layer force expression by

Hogg et al. [99].

Fe “ 2π a ǫ ǫ0 κ
`
ζ2m ` ζ2p

˘ ˆ
2 ζmζp

ζ2m ` ζ2p
´ e´κδ

˙ ˆ
e´κδ

1 ´ e´2κδ

˙
(5.61)

where ǫ and ǫ0 are the relative permittivities of respectively water and vacuum, δ (m) is

the separation between particle and nominal membrane surface, κ is the inverse Debye

length (κ “ 3.28ˆ103 I1{2 µm´1, where I is the ionic strength in mol L´1), and ζm and

ζp are membrane’s and particle’s zeta potentials, respectively. As electrostatic forces are

only expected to be significant where the particle is in contact with small asperities, i.e.

where δ is very small, these forces will not be considered in this study. Therefore, the

adhesive forces are assumed to be entirely the product of the attractive van der Waals

interactions occurring between two spherical particles. The particles are assumed to

deform under strain [244].

Fa “ FvdW “ ~̟dp

32π a2
` ~̟ rc

2

8π a3
(5.62)

where ~̟ is the Lifschitz-van der Waals constant (10´20 J), a denotes the adhesive

distance between two spheres and a “ 0.4 ˆ 10´9 m [5], whereas rc (m) denotes the

radius of the contact area.

Radius of the contact area depends on the forces acting on the particle and the

particle’s elasticity and is calculated from the following theoretical equation [246]:

rc “
„
3

8
dp F

ˆ
1 ´ σ1

2

E1

` 1 ´ σ2
2

E2

˙ 1

3

(5.63)

where σ1 and σ2 are the Poisson’s ratios of materials, E1 and E2 (Pa) denote the

elastic deformation moduli of materials, and F (N) is the force causing deformation.

rc “
˜
0.5625 dp

Ff

E

¸
[246] where E “ E1 “ E2 and σ “ σ1 “ σ2 (two particles of

the same material). The Young modulus of a particle is generally not known unless we

deal with model suspensions of a known composition. Vyas et al. [246] proposed that

E “ p1ˆ 105q ˜ p1ˆ 108q Pa which is a range of moduli for soft to semi-hard materials.

Friction force between the deposited particle and the membrane surface is given

by:

Ffr “ max pµ pFf ` Fa ´ Fb ´ Frq , 0q (5.64)

where µ (–) is the friction coefficient combining the gliding and rolling movement of the

particle along the membrane surface. Halow [82] showed that µ ranges between 0.06

and 1.0, however his investigations were carried out for rather large particles of 20-5000

µm dia. and the value of µ will additionally depend on the shape, size and properties
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of the particle and the properties of the membrane. Jeon and Jung [113] produced

a validated model for dust filtration cakes with µ between 0.1 and 0.3. Broeckmann

et al. [17] quoted Czichos [39], Stiess [229] that friction in solid systems is an order of

magnitude higher than in liquid systems and thus adopted the value of µ “ 0.03.

The net force due to gravity and buoyancy is calculated as:

Fg “ 1

6
π dp

3 pρp ´ ρlq g (5.65)

where ρp and ρl denote respectively the particle and the liquid density (kg m´3) and g

is the gravitational acceleration (9.81 m s´2).

5.4.2 Criterion for particle deposition

The fate of a particle dragged in a permeate flow stream towards the membrane, i.e.

whether it will deposit and adhere to the membrane, deposit and roll on the membrane

surface or be carried away from the membrane, can be predicted through analysis of

the equilibrium of forces and torques [124]. Such analysis requires however a detailed

information about the membrane asperity and friction coefficients. Instead of this ap-

proach, deposition of a particle was analysed by looking at the angle of repose θ which

is calculated from the balance of forces as described in Vyas et al. [246]

θ “ arctan

ˆ
Fv ´ Ffr ´ Fg

Ff ` Fa ´ Fb

˙
(5.66)

If the angle of repose θ is less than the critical angle of repose θcrit the particle will

adhere to the membrane, whereas if θ ě θcrit the particle will either not reach the

membrane or will bounce off after coming in contact with the membrane.

5.4.3 Cut-off diameter and cake properties

Whilst increase of the aeration rate (in immersed MBRs) or CFV (in sidestream MBRs)

leads to a decrease in the cake layer thickness, it also reduces the cut-off diameter leading

to denser cakes of higher packing density and thus higher specific resistance. These

effects depend on the PSD of polydisperse suspensions and may lead, under specific

circumstances, to the situation where increasing the air scouring rate or CFV leads to

unexpectedly higher, rather than lower filtration resistances, i.e. increase of resistance

due to an increased specific cake resistance caused by formation of denser cake exceeds

the decrease of resistance due caused by reduction of the cake layer thickness. Such

observations have been made, e.g. by Wakeman and Tarleton [247] and Mackley and

Sherman [159] for classical MF/UF systems.
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5.4.4 Simulation results

Particle deposition in an immersed MBR was modelled with a set of equations in-

troduced in Section 5.4.1. Drag force due to permeate flow Ff was calculated using

Equation 5.45 with coefficient C1 found from Equation 5.48 accordingly to the model

of Wang et al. [250]. Drag force due to tangential flow Fv was calculated with Equa-

tion 5.49 where coefficient C2 “ 1.70. Back-transport was modelled with inertial lift

accordingly to Equation 5.60. Adhesive force Fa was calculated with Equation 5.62.

Repelling force Fr was neglected. Friction force Ffr was calculated with Equation 5.64,

whereas gravitational force Fg was found from Equation 5.65. All the above forces were

then used to calculate the angle of repose with Equation 5.66. Critical angle of repose

θcrit and parameter b in Equation 5.60 had to be adjusted in the process to obtain the

desired output characteristics. Other parameters used in the model were either assumed

or taken from literature as listed in Table 5.2.

The model was simulated for a range of particle diameters, permeate fluxes and

aeration rates. The ranges of variability for these three variables are as follows: particle

diameter dp “ t0.001 : 0.05 : 1000u µm, permeate flux J “ t30 : 5 : 120u L m´2 h´1,

air flow rate per tank cross sectional area qa “ t10 : 50 : 300u L m´2 s´1.

Table 5.2: Model parameters used in the simulation of particle deposition with the force
balance analysis model.

Parameter Name Value Unit Reference

XMLSS MLSS concentration 20,000 mg/L assumed
T Absolute temperature 293 K assumed
ρw Water density 1000 kg m´3

ρp Particle density 1060 kg m´3

ηw Dynamic water viscosity 1.002ˆ10´3 Pa s
~̟ Lifschitz-van der Waals constant 10´20 J [5]
a Adhesive distance between two spheres 0.4ˆ10´9 m [5]
E Young modulus of the particle 106 – [246]
Rt Total membrane resistance 1013 m´1 assumed
L Membrane thickness 100ˆ10´6 m assumed
A Membrane tank cross sectional area 20 m2 assumed
b Parameter in the lift velocity equation 2.885 – adjusted
µ Friction coefficient 0.03 – [17]

θcrit Critical angle of repose 50 o adjusted
φ Membrane wall porosity 0.25 – assumed

The calculated angles of repose for different diameters, airflow rates and fluxes

are shown in two sub-figures in Figure 5.7. Figure 5.7a shows the angle of repose θ as

a function of dp and qa for two extreme values of permeate flux: J1 “ 30 Lmh and

J1 “ 120 Lmh, while Figure 5.7b represents θ as a function of dp and J for two extreme

values of unit aeration rates: qa,1 “ 10 L m´2 s´1 and qa,2 “ 300 L m´2 s´1. Both

sub-figures indicate that θ remains approximately constant over a wide range of particle

diameters and increases rapidly around the range of diameters for which the forces of

back-diffusion and forces due to tangential flow begin to dominate over the forces of

adhesion and drag forces due to permeate flow.
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(a) Angle of repose θ for different particle diam-
eters dp and unit aeration rates qa.

(b) Angle of repose θ for different particle diam-
eters dp and permeate fluxes J.

Figure 5.7: Angles of repose θ for different particle diameters dp, unit aeration rates qa
and permeate fluxes J obtained from simulation.

The cut-off diameter dp,cutoff was calculated as the minimum particle diameter for

which θ ě θcrit. Cut-off diameters for different permeate fluxes and unit airflow rates

displayed in Figure 5.8 which shows that an average cut-off diameter in the system is

approximately 100µm. dp,cutoff decreases as qa is increased while smaller particles are

kept away from the membrane. This relationship between qa and dp,cutoff is steeper for

lower permeate fluxes. For a given amount of airflow the cut-off diameter increases with

permeate flux as more particles are kept on the membrane by the drag force associated

with permeate flow.
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Figure 5.8: Particle cut-off diameter dp,cutoff vs. permeate flux J and unit aeration
rate qa obtained from simulation.

All forces acting on a single particle for the selected operating point defined by

permeate flux J “ 35 Lmh and unit air-scouring rate qa “ 60 L m´2 s´1 are shown in

Figure 5.9. Ff , Fv and Fa increase linearly with dp, whilst Fa ad Fv additionally happen

to have very similar values and Ff is approximately one third of Fv and Fa. The force

of friction Ffr is found to be very low for lower particle diameters and becomes zero as

the forces of inertial lift begin to exceed the sum of adhesive forces and the drag force
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due to permeate flow. The net force due to gravity and buoyancy increases with the

cube of dp whilst the force of inertial lift increases with dp raised to the power of four

and is found to be the dominant force acting on the particle.
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Figure 5.9: Forces acting on a single particle of diameter dp deposited on the membrane
surface obtained from simulation.

Particle cut-off has an impact on the of the cake’s particle size distribution, which

is different from the particle distribution in the bulk liquid as shown in Figure 5.10. In

general terms, the cake is made up of smaller particles and is therefore denser than the

particle size distribution of activated sludge would have suggested.
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Figure 5.10: Theoretical probability density function (PDF) and cumulative density
function (CDF) for activated sludge particles filtered through semipermeable membrane
in a immersed membrane bioreactor (iMBR).

If we assume that the floc size distribution (FSD) of the activated sludge is de-

scribed with a log-normal probability density function (PDF) represented by Equa-

tion 5.67 and the corresponding cumulative density function (CDF) is given in Equa-

tion 5.68, PSD of the particles forming the cake will be described with a truncated
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log-normal PDF and CDF described by Equation 5.69 and Equation 5.70 respectively.

f px |µ, σq “ 1

xσ
?
2π

exp

˜
´ pln x ´ µq2

2σ2

¸
(5.67)

F px |µ, σq “ 1

σ
?
2π

xż

´8

exp

˜
´ pln x ´ µq2

2σ2

¸
dx (5.68)

fT px |µ, σ, dp,cutoff q “
#

K f px |µ, σq for x ă dp,cutoff

0 for x ě dp,cutoff
(5.69)

FT px |µ, σ, dp,cutoff q “
#

K F px |µ, σq for x ă dp,cutoff

1 for x ě dp,cutoff
(5.70)

where x denotes the particle diameter, σ denotes the standard deviation of the as-

sociated normal PDF, µ denotes the equivalent mean in the normal PDF, and K “
1

F pdp,cutoff |µ, σq .

5.5 Cake back-transport

Whilst the force balance analysis carried out in Section 5.4 allows, in principle, to predict

formation of cake and specific cake resistance during filtration of polydisperse suspen-

sions, such a model contains many parameters and requires a significant amount of data

for calibration and validation. On a macroscopic level where suspensions are consid-

ered as continua and described with a single parameter denoting particle concentration,

back-transport needs to be described with a purely empirical model, or a partly empiri-

cal partly mechanistic macroscopic model with empirically determined coefficients. Two

of such back-transport models are described in Section 5.5.1 and Section 5.5.2 below.

These mathematical expressions will be later used for the formulation of fouling models

described in Chapter 6.

5.5.1 Shear induction - Nagaoka et al. [176]

Nagaoka et al. [176] presented a mathematical relationship between cake detachment

rate kr (s´1) and shear stresses τm (Pa) acting on the cake as a result of crossflow

velocity (CFV) and/or air bubble flow. The cake detachment force resulting from

shear stresses is diminished by a pressure dependent static friction term λm∆P which

represents combined effects of cake consistency and cake attachment to the membrane

surface. The expression for kr,N (s´1) which denotes the cake detachment rate kr

according to Nagaoka is presented in Equation 5.71.

kr,N “ γm pτm ´ λm∆P q (5.71)
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where γm (Pa´1 s´1) is an empirically determined proportionality constant and λm is

a non-dimensional static friction coefficient. Equation 5.71 can be incorporated into

the cake mass balance equation which describes the rate of cake mass growth
dmr

dt
(kg

m´2 s´1) due to flux of solids towards the membrane J XMLSS where J denotes the

permeate flux and XMLSS is the MLSS concentration, minus back-transport of cake

(kr,N mr).
dmr

dt
“ J XMLSS ´ kr,N mr (5.72)

The shear stress τm can be either empirically correlated with CFV and/or aeration

intensity or calculated with the equations of fluid mechanics. The latter approach

was chosen to formulate the relationship between shear stresses on hollow fibre (HF)

membrane fibres and coarse bubble air flow and is described in Section 7.5 in Chapter 7.

Through empirical or theoretical approaches, detachment rate parameter kr can be

directly linked to the operational conditions in a MBR system.

5.5.2 Back transport phenomenon - Ho and Zydney [97]

Ho and Zydney [97] introduced a back transport equation which determines the rate of

cake removal due to inertial lift and shear induced diffusion mechanisms. The calculated

back transport rate, is equivalent to the term kr,N mr in Equation 5.72. The cake back

transport model of Ho and Zydney [97] is described with Equation 5.73.

9mr,back “ dmr,back

dt
“ k γnXMLSS (5.73)

where 9mr,back (kg m´2 s´1) denotes the cake back transport rate per unit area, k

(m sn´1) is the proportionality constant, XMLSS (kg m´3) denotes the mixed liquor

suspended solids (MLSS) concentration, and γ (s´1) is the shear rate created by CFV

or coarse bubble airflow. Exponent n next to γ depends on the type of back-transport

forces acting on the cake and is equal n “ 1 for shear induced diffusion and n “ 2 for

inertial lift.

The complete term k γn refers to the steady state back-flux of solids from the

membrane surface to the bulk liquid which increases with increasing particle radius, r.

This term is found to be proportional to r3 for inertial lift and r1.33 for shear induced

diffusion. Thus, large cells and flocculated material tend to be kept away from the

membrane surface with the steady state flux dominated by smaller colloidal matter

[97].

A number of researchers have developed different empirical macroscopic correla-

tions for the steady state back flux of cake in relation to wastewater properties and

operating conditions [128, 221]. However the functional form and parameters are likely

to be unique to the membrane, module design, wastewater, and biological condition of

the activated sludge, what limits their applicability on a wider scale.
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5.6 Back-flushing

Back flushing, i.e. periodic removal of particles deposited on the membrane in the form

of cake is carried out by reversing the direction of flow through the membrane. The

rate of cake and biofilm removal during back-flushing depends on the reverse flow rate

(qbf ), compactness of the cake and the adhesive forces between the deposited particles

and the membrane. The efficiency, i.e. the fractional amount of biofilm and cake

removed through back-flushing is additionally dependent on back-flush duration time

(tbf ). The properties of the cake and the biofilm change as the filtration progresses due

to continuous cake growth and detachment, deposition of macromolecules within the

void spaces in the cake, growth of biofilm, and variations of the operating conditions

such as CFV and TMP. Cake properties will therefore depend on the history of filtration

and this means that there is a direct link between forward filtration and the energy input

required for back-flushing.

The processes taking place during back-flushing are very complicated and are yet

not well understood. In order to develop a mechanistic model for back-flushing one

has to fully understand how the properties of the cake evolve with filtration and how

these properties later affect cake detachment during back-flushing. One also needs to

understand the intricacies of fluid flow characteristics during back-flush, the velocity

and pressure fields, shear stresses, and shear rates exerted on the cake in this very

complex unsteady multiphase flow. The author has not yet come across a determin-

istic back-flush model and even if such a model has recently been published and was

overlooked, it would most likely require a large number of either yet unidentified or

generally unidentifiable parameters which would limit its practical use in a wider range

of applications. Therefore back-flushing at present will need to be modelled in a rather

simplistic fashion.

In the simplest possible approach, removal of cake during back-flushing can be

considered as an instantaneous process in which the unit mass of cake per membrane

area (kg m´2) at the beginning of the pj `1qth filtration cycle (mc
j`1pτ “ 0q) is related

to the unit mass of cake at the end of the previous jth filtration cycle (mc
jpτ “ tf q).

@j P N : mj`1
c pτ “ 0q “ η mj

c pτ “ tf q (5.74)

where tf (s) denotes filtration cycle duration time, mc
jpτq (kg m´2) denotes the unit

mass of cake per membrane area in the jth filtration cycle at filtration time (τ) and η is

a dimensionless parameter representing the fraction of cake (or cake resistance) which

cannot be removed through back-flushing. Filtration time in the jth filtration cycle τ j

can be calculated from the total filtration time t if we assume that filtration times tf

(s) and back-flush times tbf (s) are constant throughout the filtration process.

@j P N : τ j “ t ´ pj ´ 1q ptf ` tbf q (5.75)
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5.6.1 Viscosity as a function of temperature and MLSS

Dynamic water viscosity ηw (Pa ¨ s) is temperature dependent and this dependence is

usually modelled with an exponential curve of the following form [143]:

ηw pT q “ ηw,20 e
´0.0239 pT´20q (5.76)

where ηw,20 “ 1.002 ˆ 10´3 Pa¨s denotes the dynamic water viscosity at 20 oC and T

(oC) denotes water temperature.

Viscosity of a suspension is usually higher than that of pure solvent due to addi-

tional friction forces created between suspended particles in motion. Activated sludge

suspensions considered here additionally exhibit non-Newtonian properties, meaning

that their viscosity changes under applied shear. Activated sludge suspensions, espe-

cially at higher concentrations, usually behave like Herschel-Bulkley fluids [92] which

exhibit shear-thinning properties (i.e. viscosity decreases with shear) and which are

capable of bearing some stress called yield stress before they begin to flow. However,

as explained in the review paper of Ratkovich et al. [205], many other viscosity models

have been successfully applied to describe the rheology of activated sludge suspensions,

such as, e.g. simpler two-parameter Bingham plastic model or a more complex Casson

plastic model.

Whilst suspended solids at the levels observed in activated sludge suspensions

within MBRs tend to substantially affect the liquid’s viscosity and other rheologi-

cal properties such as presence of yield stress, non-Newtonian flow characteristics and

thixotrophic behaviour, the latter are often neglected. Activated sludge is thus treated

as a Newtonian fluid but with viscosity larger than that of pure water. Several rela-

tionships between viscosity and MLSS of activated sludge can be found in literature

and most of them are of an exponential form. Krauth and Staab [128] proposed the

following relationship:

ηb pMLSSq “ 1.05 ηw e 0.08XMLSS (5.77)

where ηw (Pa ¨ s) denotes the dynamic viscosity of water and XMLSS (kg m´3) is the

concentration of mixed liquor suspended solids.

Meng and Yang [167] found a very similar relationship to Krauth and Staab [128],

but with different coefficients resulting in slightly smaller viscosities but a similar sen-

sitivity to MLSS:

ηb pMLSSq “ 0.909 ηw e 0.0861XMLSS (5.78)

The exponential curve of Ng and Kim [179] derived from their experimental data

produces „ 60% larger viscosities than the previous functions and a lower sensitivity to

MLSS:

ηb pMLSSq “ 1.61 ηw e 0.07XMLSS (5.79)

Equation 5.76 was combined with Equation 5.77 to give the following relationship
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Figure 5.11: Bulk liquid dynamic viscosity ηb as a function of temperature T and MLSS
obtained from Equation 5.80.

representing the viscosity of activated sludge suspension in a function of temperature

and MLSS:

ηb pT,MLSSq “ 1.05 ηw,20 e´1.912ˆ10´3 pT´20q XMLSS (5.80)

Dynamic viscosities of bulk liquid calculated with Equation 5.80 for different MLSS

concentrations and temperatures are shown in Figure 5.11.

Nevertheless, it has to be noted that the above correlations are purely empirical

and hence do not capture the underlying mechanisms of fluid flow. They are only used

to demonstrate that energy requirements for mixing and sludge recirculation in MBR

systems are likely to be substantially higher compared to conventional activated sludge

processes (ASPs) where solids concentrations are lower. As indicated in Ratkovich et al.

[205] accurate modelling of activated sludge rheology is very difficult due to a very com-

plex nature of activated sludge suspensions. Moreover, the rheological models published

in literature are created based on the data obtained from different rheometers using dif-

ferent measuremement protocols and settings. Since it has been found that different

types of rheometers or the same rheometers with different settings and measurement

protocols will give different viscosity readings on the same sample it is difficult to com-

pare viscosity readings from different sources and hence the viscosity models developed

on the base of those readings. Additionally Ratkovich et al. [205] found that good mod-

elling practices were not always followed during the development of various activated

sludge viscosity models, hence they are not very trustworthy and need to be applied

with caution.
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Chapter 6

Development of new fouling models
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6.1 Introduction

This chapter describes the formulation, calibration and validation of the following two

fouling models:

1. Behavioural fouling model of reversible and irreversible fouling

2. Three mechanism fouling model based on classical fouling equations

The first model is based on the development of Liang et al. [149] in which fouling is

divided into short-term reversible fouling tantamount with cake deposition and long-

term irreversible fouling representing combined effects of irreversible particle deposition

on the membrane surface and inside membrane pores. Both fouling processes are mod-

elled with first order ordinary differential equations (ODEs). The model additionally

accounts for cake compressibility, cake detachment due to presence of airflow/crossflow,

back-flushing, and flux-dependent soluble microbial products (SMP) deposition. It can

be configured to predict flux decline in constant trans-membrane pressure filtration as

well as trans-membrane pressure (TMP) increase in constant flux filtration. The model

was calibrated on the data obtained in a short-term flux stepping experiment and in a

long-term operation of a pilot-scale membrane bioreactor (MBR).
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The second model is based on the publication of Duclos-Orsello et al. [50] which

describes fouling as a combination of three classical fouling mechanisms. It is assumed

that pore constriction and pore blockage occur simultaneously whereas cake buildup oc-

curs only on the blocked part of the membrane. Whilst the model of Duclos-Orsello

et al. [50] is presented in the form of a single integral what restricts its use to constant

pressure filtration with time-invariant parameters and properties of the filtered suspen-

sion, the model presented here is described with a set of ODEs. Thus, it can be used

to simulate membrane filtration under time-varying conditions and with time-varying

parameters. Each of the three classical fouling mechanisms is described with an ODE

presented earlier in Chapter 5. Two additional ODEs are provided by the Author in

order to model sequential occurrence of pore blockage and cake formation. Similarly to

the previous model, this one is also formulated in two ways which allows it to describe

constant TMP filtration as well as constant flux filtration. The model was calibrated on

the same constant-pressure filtration data as used in Duclos-Orsello et al. [50] as well

as on the constant-flux filtration data published by Ye et al. [266].

6.2 Development of a behavioural fouling model

The model is intended to provide a reasonable level of prediction accuracy at low com-

putational cost and with minimum amount of effort required for calibration. The

model is intended specifically for filtration of activated sludge suspensions on micro-

filtration (MF) and ultrafiltration (UF) membranes operating either as a cross-flow

or dead-end process. Unlike classical fouling equations that divide fouling into three

mechanisms: pore constriction, pore blockage, and cake formation - see Section 5.2.1

in Chapter 5, this model divides fouling into just two processes: reversible fouling and

irreversible fouling. Both processes are modelled with first order ODEs which describe

an increase of membrane resistance R in time. Although the shape of these equations,

as will be shown later, is different from the shapes of the classical fouling equations,

this model is nevertheless capable of representing fouling on MF and UF membranes in

short as well as long time-scales under certain operating conditions.

This model can be successfully applied to describe membrane fouling provided that

the operating conditions, such as filtration fluxes, mixed liquor suspended solids (MLSS)

and TMPs fall within technical norms, i.e. the membrane is not subjected to conditions

which will result in very fast and heavy fouling. Therefore, the purpose of this model

is solely for optimisation of pilot-scale and full-scale systems, control applications such

as e.g. model predictive control (MPC) and linking with ASM models. As the full-

scale systems are operated such that the amount of fouling is reduced to economically

viable levels, the model will not be operating outside its intended operating range. This

model fails to describe some phenomena of membrane fouling such as the two-stage TMP

jump described in Ognier et al. [190] and Ye et al. [266]. The results of constant-flux

simulations with the behavioural fouling model are provided later in Section 6.2.4.

The model is termed ‘behavioural’ as it neither falls into the mechanistic nor em-

179



T. Janus 6.2. DEVELOPMENT OF A BEHAVIOURAL FOULING MODEL

pirical model category. It has been created to represent the behaviour of MF and UF

membranes without providing any detailed, mechanistic description of the underlying

processes of fouling, hydrodynamic conditions, and fouling control mechanisms. Due to

non-mechanistic approach, the range of application of the model is limited to low fluxes

below or slightly above the threshold flux and intermediate filtration times or fluxes

significantly above the threshold flux and short filtration times in which the membranes

do not have the chance to foul substantially. By the term ‘threshold flux’ the Author

means in this particular modelling context an approximate and visually defined flux

value which divides a region of fluxes for which no perceptual increase in TMP due

to either reversible or irreversible fouling can be observed within the observation time-

scales and the region in which TMP gradients due to ongoing fouling are observed.The

first scenario applies to membrane operation in the, so called, sustainable flux region in

which the membranes are operated within economically viable levels of fouling which

balance the operating costs with capital costs and the membrane productivity. In the

second scenario, the membranes exhibit significant levels of fouling due to operation

under fluxes surpassing the threshold flux as well as sustainable flux defined by the

operators.

A short explanation of the notion of ‘sustainable flux’ and the definition of ‘thresh-

old flux’ as introduced by Field and Pearce [61] can be found in Section 5.1.3 on page 139.

Development of this mathematical model is based on an earlier published model

of Liang et al. [149] which however did not represent backwashing, cake compressibil-

ity, and particle back-transport due to crossflow velocity (CFV) or air-scouring. These

mechanisms were added in order to allow the model to be used in various simulation

studies including integration with ASM models for complete simulation of MBR re-

actors. The model was also upgraded to allow irreversible fouling to depend on the

permeate flux. Flux-dependent SMP deposition was identified on the data obtained in

the short-term flux-stepping experiment performed on a pilot scale membrane filtration

unit equipped with horizontal hollow fibres with a mean pore diameter of 0.1µm. The

information gathered in this experiment was also used to identify other model param-

eters describing reversible fouling, irreversible fouling and solids back-transport as will

be later described in Section 6.2.3. The second calibration was performed on long-term

filtration data from a MBR pilot plant equipped with vertical hollow fibres of a similar

pore size. As will be shown later, the model proved to be in good agreement with the

measurements in both cases.

Since the purpose of this fouling model is to be used in conjunction with the

biological ASM model for MBR plant design, optimisation, and model-based operation

and control, the model needs to possess a set of certain characteristics. It needs to be

simple, fast to compute, adaptable to various MBR configurations and have a small

number of adjustable parameters. These parameters additionally need to be able to

be identified from plant design and operational characteristics, directly measured, or

computed in model calibration studies based on the measurements taken at the plant

(usually inputs and outputs, and sometimes intermediate process measurements). On
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the other hand, the model needs to provide a desired level of accuracy for a range

of operating conditions encountered in real life. In particular, the model needs to be

applicable to simulation of three main MBR configurations:

1. Immersed hollow fibre (HF) MBRs which are back-flushed and are equipped with

coarse bubble air scouring systems,

2. Immersed flat sheet (FS) MBRs which are usually ‘non-backflushable’ and are

also equipped with coarse bubble air scouring systems,

3. Side stream crossflow (CF) MBRs which are operated under high tangential shear

rate and usualy are not air-sparged.

6.2.1 Model formulation

Governing equations

This model is based on the classic resistance in series concept described earlier in Sec-

tion 5.2.6 of Chapter 5. Total membrane resistance Rt (m´1) is divided into three

parts:

Rtptq “ Rm ` Rrptq ` Riptq (6.1)

where Rm (m´1) denotes the clean (unfouled) membrane resistance, Rr (m´1) denotes

the resistance due to reversible fouling (mainly cake formation) and Ri (m´1) denotes

the resistance caused by irreversible fouling (modelled here as SMP deposition).

Depending on the intended application, the model can either receive permeate

flux J as an input and calculate pressure loss on the membrane ∆P or, conversely,

receive ∆P as an input and calculate the resulting permeate flux J . In both instances,

the relationship between flux and pressure loss is modelled with a well known Darcy’s

equation, neglecting any dynamic effects of flow through the membrane. The equations

take the following forms respectively:

∆P “ J µ
ÿ

Ri “ J µRt (6.2)

and

J “ ∆P

µ
ř

Ri
“ ∆P

µRt
(6.3)

where J (m s´1) denotes the permeate flux, ∆P (Pa) denotes the pressure difference

across the membrane, µ (Pa ¨ s) denotes the permeate’s dynamic viscosity and Rt (m´1)

is the total membrane resistance.

The resistances calculated in the model: resistance due to cake build-up (reversible

fouling) Rr and resistance due to SMP deposition (irreversible fouling) Ri are propor-

tional to the unit masses per membrane area of, respectively, cake: mr (kg m´2) and

SMP: mi (kg m´2) deposited on and within the membrane:

Rr “ αc ¨ mr (6.4)
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Ri “ ki ¨ mi (6.5)

where αc (m kg´1) denotes the specific cake resistance and ki (m kg´1) is the irreversible

fouling strength factor.

Accumulation of mr and mi on the membrane is modelled with two ordinary dif-

ferential equations (ODEs).

dmr

dt
“ fr J XTSS ´ 9mr,back (6.6)

dmi

dt
“ fi J SSMP (6.7)

where XTSS (kg m´3) denotes the feed total suspended solids (TSS) concentration,

9mr,back (kg m´2 s´1) denotes the unit mass flux of solids detaching from the cake and

the membrane and SSMP (kg m´3) is the feed SMP concentration. fr (–) and fi (–

) denote the fractions of respectively solids and SMP contributing to reversible and

irreversible fouling. Whilst it is assumed that fr “ 1, fi is rather low and depends on

the amount of flux - See Section 6.2.3 for more details.

Cake thickness δ (m) can be calculated from the amount of cake deposited on the

membrane mr using Equation 6.8.

δ “ mr

ρc p1 ´ εcq
(6.8)

where ρc (kg m´3) denotes the wet cake density and εc (–) denotes the cake porosity.

εc was found by Wu et al. [262] to fall between 0.59 and 0.66. Wu et al. [262] also

postulate that cake porosity varies in time due to consolidation and entrapment of

colloidal components within the cake matrix. The wet cake density ρc was identified by

Wu et al. [262] through calibration as „ 1.24 ˆ 103 kg m´3 whereas Li and Yuan [148]

found ρc “ 1.06 ˆ 103 kg m´3.

As activated sludge cakes are usually compressible, wet cake density (ρc) depend on

the trans-membrane pressure (TMP). However, as the sole purpose of cake thickness

calculations in this model is for indication only, selection of a single value for cake

density is considered a good enough approximation.

The original model of Liang et al. [149] assumes that all SMP in the feed contributes

to irreversible fouling (fi “ 1). However, as was shown in Section 5.3 only a fraction of

SMP actually enters the membrane pores due to sieving and retarded transport effects

and from all the SMP that finds its way into the membrane pores only a tiny frac-

tion of SMP actually deposits inside the membrane. Parameters governing irreversible

fouling in the model were identified on the experimental data form the short-term flux-

stepping experiment as described in Section 6.2.3. Additionally fi was found to be in

an exponential relationship with the permeate flux.

Sludge cake deposits on the membrane surface by the work of advection (i.e. mass

flow of water through the membrane) but, at the same time, is also being detached
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by shear stresses caused by air bubble-flow and/or cross-flow velocity. The rate of

cake back-transport ( 9mr,back) can be described by different empirical and mechanistic

models. Back-transport models employed in this model are described in Chapter 5 in

Sections 5.5.1 and 5.5.2.

Backwashing

HF membranes in a typical submerged MBR plant are ‘backwashable’. Therefore back-

washing needs to be represented in the model. The backwash (or backflush) sequence is

modelled with Equation 6.9 earlier introduced in Chapter 5. The equation is presented

again for completeness.

@j P N : mj`1
r pτ “ 0q “ η mj

r pτ “ tf q (6.9)

Equation 6.9 is implemented in the model by resetting the initial condition of Equa-

tion 6.6 in each time-step during the backwash cycle. After the backwash cycle is

completed, the unit mass of cake mr (kg m´2) remaining on the membrane is equal to

the fraction of the amount of cake present at the beginning of the backwash cycle. The

amount of cake that is left after the backwash is governed by adjustable non-dimensional

parameter η. Forward filtration and backwash cycles are controlled in the model by a

binary backwash logic signal where 0 stands for forward filtration and 1 for a backwash

cycle. It is assumed that back-washing does not remove any irreversible fouling, in other

terms, backwashing does not diminish the mass of SMP (mi) deposited on and inside

the membrane.

Due to lack of knowledge and reliable data for validation of backwash models it is

assumed that cake removal during backwash periods occurs instantaneously. The effects

of backwash water and air flow rates and backwash duration times on the efficiency of

cake removal are therefore not represented. In real world applications it was found that

although cake layer was instantaneously lifted off after permeate flux had been reversed,

in order to remove the cake completely from the membrane module, the backflush flow

rate needed to be at least three times larger than the forward filtration flow rate [218].

Also air was found to improve the backwash efficiency.

Cake compressibility

Biological slurries produced in biological treatment are found to be very compressible

[202]. Compressibility of biological slurries is usually described with Equation 6.10

[197] or Equation 6.11 [63, 139]. According to the latter authors, Equation 6.11 had

been proven more accurate than Equation 6.10 for modelling cake compression. Both

equations relate the specific cake resistance αc (m kg´1) to the pressure (∆P ) exerted

on the cake.

αc “ αc,0 p∆P qn (6.10)
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αc “ αc,0

ˆ
∆P

∆Pcrit

˙n

(6.11)

where αc,0 (m kg´1) denotes the specific cake resistance at atmospheric pressure, n

denotes a dimensionless cake compressibility factor and ∆Pcrit (Pa) is the threshold

pressure below which no cake compression occurs.

Both equations have been successfully used to predict cake compressibility in ac-

tivated sludge systems. In Equation 6.11 the threshold pressure ∆Pcrit for activated

sludge was found to be around 30 kPa whilst cake compressibility n was found to take

values between 0.7 and 1.5 [202]. The n coefficient in Equation 6.10 was found to vary

within a similar range. Kim et al. [122] measured n in a laboratory study and obtained

values between 0.79 and 1.4.

The model assumes that the cake is compressible and αc changes with pressure

accordingly to Equation 6.11 where parameters ∆Pcrit and n are chosen to equal 30 kPa

and 1 respectively [202]. With n “ 1 the exponential relationship between αc and ∆P

in Equation 6.11 reduces to a linear relationship with gradient
αc,0

∆Pcrit
.

It is also assumed that although cake compressibility is significant enough to affect

the TMPs across the membrane, SMP deposits are incompressible. This is justified as

SMP deposits do not form a thick layer on top of the membrane alike solids, but create

dense thin layers of molecules inside the membrane pores, where, a) pressures are lower

than on the bulk liquid side and b) macromolecules bound with one another by van der

Waals and electrostatic forces are harder to shuffle than larger solid particles forming

porous layers.

Deposition of SMP on and inside the membrane

Ye et al. [266] found through experimental analysis that the fraction of alginate proteins

depositing inside membrane pores is in an exponential relationship with permeate flux.

The authors explained this behaviour with a film model theory which describes sorption

as a diffusion limited process through a laminar layer forming on the interface (here,

the interface between the liquid and the membrane surface). Thickness of the laminar

layer under laminar flow conditions that are experienced in membrane filtration is,

accordingly to the Blasius equation, inversely proportional to the square root of the

freestream velocity. Therefore, an increase in the membrane flux and thus the flow

velocity through the membrane pores leads to the reduction of the film thickness, which

in turn increases diffusion and ultimately sorption of solutes inside the membrane pores.

The assumption made by Liang et al. [149] that deposition of SMP does not depend

on permeate flux is thus invalidated by the findings of Ye et al. [266] and are confirmed

by the observations made in this study. As shown in Figure 6.2a, the rate of pressure

gradient due to SMP deposition was observed to increase as the flux was being stepped

up in the flux stepping experiment. Analysis of the data obtained in the flux stepping

experiment confirmed the existence of an exponential relationship between the fraction
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of SMP contributing to irreversible fouling fi (–) and the permeate flux J (m s´1)

as was initially proposed by Ye et al. [266] - see Section 6.2.3 for more details. This

relationship is shown in Equation 6.12.

fi “ a e b J (6.12)

where a (–) and b (s m´1) are the proportionality coefficients which shall be identified

on a case by case basis.

Deposition of solids (cake formation)

As shown in Figure 5.8 on page 171 only the solid particles with diameters smaller than

the cut-off diameter dp,cutoff will deposit on the membrane whilst larger particles will

either not reach the membrane surface at all or will be removed from the membrane

due to combined effects of shear-induced diffusion, inertial lift and cross-flow. These

effects can either be modelled with Computational Fluid Dynamics (CFD) or, as in our

case, can be described with single mass transport equations such as Equation 5.72 and

Equation 5.73 introduced in Chapter 5.

Cake back-transport is described by term 9mr,back. This term can be expressed as

a product of kr mr where the cake detachment constant kr is either measured, inferred

during model calibration, or calculated from CFV or air bubble flow rate Qair using

e.g the model of Nagaoka et al. [176] - see Equation 5.71 on page 173. Alternatively,

the term 9mr,back can be expressed with the model of Ho and Zydney [97] as shown

in Equation 5.73 on page 174. The model of Ho and Zydney relates the mass flux of

cake back to the bulk liquid to shear rates caused by inertial-lift and back-diffusion

mechanisms.

6.2.2 Experimental methods

The model was formulated in Simulink® under MATLAB® 2006a. Then, it was cali-

brated on two sets of data. The first one was obtained from a short-term flux stepping

experiment performed on the ITT Sanitaire
®

pilot membrane filtration unit. The sec-

ond set of data covers 640 hours of operation of a submerged pilot MBR plant.

The first unit was a simple filtration cell receiving a sequencing batch reactor (SBR)

effluent characterised by low bulk liquid total suspended solids (TSS) concentration and

low chemical oxygen demand (COD). Additionally most of the organic substrates in

the effluent were found to be composed of SMP. The pilot plant was installed at the

Cardiff wastewater treatment plant (WWTP) and was under operation in 2007. Low

TSS levels mean that multiple flux steps could be carried out in the unit on a single

day. This speeded up the experimental procedure and prevented repeated clogging or

even permanent membrane damage. Although TSS concentration in the liquid was

only around 25 mg L´1, the concentration was still large enough to lead to a significant

cake buildup on the membrane surface under all fluxes as demonstrated in Figure 6.1.
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Temperature throughout the test remained at 17˝C and the rate of airflow for cake

removal was kept at 13 Nm3/hr. Cake growth was required in the experimental setup

for identification of the model parameters responsible for cake formation.

In this flux stepping experiment the membrane was subjected to a range of fluxes

ranging from 30 L m´2 h´1 to 55 L m´2 h´1 stepped up and down in 5 L m´2 h´1

increments. Each flux was run through 3 filtration/backwash cycles as shown in Fig-

ure 6.1. The selected flux range and step size allowed for testing the irreversible and

reversible fouling under various conditions both below and above the critical flux 1. The

unit’s main operational data is listed in Table 6.1.

The model parameters were first adjusted manually in an iterative fashion until

a reasonable fit between the model outputs and the experimental data was obtained.

It was made sure that the chosen parameters are within the range of values reported

in literature to ascertain a realistic initial starting point for the automatic calibration

procedure to follow. The final ‘optimal’ set of parameters that leads to a minimum value

of the sum of absolute deviations between the measurements and the model outputs

as shown in Equation 6.13 was obtained by running a nonlinear simplex optimisation

algorithm of Nelder and Mead [178].

min

nÿ

i“1

|yi ´ fpxiq| (6.13)

where yi denotes the i-th measurement and xi denotes the i-th model output.

The algorithm is implemented in the MATLAB® function fminsearch.

Table 6.1: Operational data for the pilot membrane filtration unit used in the flux-
stepping experiment (ITT Sanitaire, Dr. Alan Merry, personal communication)

Membrane filtration unit fed with SBR effluent

Membrane type and area Horizontal ‘Kolon’ fibres; PVDF 0.1µm pore size; 20 m2

Feed flow; permeate flow; backwash 1-2.4 m3/h; 0.6-1 m3/h; 1.2-1.8 m3/h

Backwash interval and duration Every 4 min with 30 s ON

TMP 300-500 mbar

Aeration rate 13 Nm3/h from coarse bubble tube diffuser

Cleaning regime Hypochlorite dosed 4 times daily into permeate tank

Biological feed data COD∼50 mgO2/L; TSS∼25 mg/L

SMP feed data Glucose∼5 mg/L; proteins∼100 mg/L

The second experiment was carried out on an immersed MBR pilot plant equipped

with vertical hollow fibre polyethersulfone (PES) membranes and fed with brewery

wastewater. The pilot plant was installed by ITT Sanitaire
®

at the Coors Shobnall

Maltings site in the Midlands and was operational between August 2004 and February

2005. Wastewater was fed with an inlet pump to the anoxic tank, then entered the

aerobic reactor and finally flew over a weir into the membrane tank. The permeate

was withdrawn from the membrane tank with a permeate suction pump. The plant
1Critical flux has been defined and explained in Section 5.1.2 on page 138
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was equipped with a recirculation pump which reversed the mixed liquor from the

membrane tank back to the anoxic zone thus allowing nitrates to be removed through

denitrification in the anoxic tank. The variable speed permeate suction pump operated

in an automatic fashion and was controlled by a central pilot plant programmable logic

controller (PLC) which turned the pump on and off, adjusted the pump speed and

direction of flow. The permeate pump periodically operated in reverse mode to perform

membrane backwash or an occasional periodic chemical clean with sodium hypochlorite.

The plant was also equipped with a small chemical dosing tank which could be used

to dose various chemicals such as coagulants, powdered activated carbon (PAC), or

various external carbon sources into the anoxic tank. The aerobic tank was aerated

with a tubular diffuser aeration system linked to a small compressor.

The plant was operating at a the MLSS concentration of „ 10, 000 mg L´1, hence it

was possible to calibrate the model under suspended solids concentrations characteristic

of a full scale MBR. For this calibration exercise, filtration period of 640 hour was used.

The relevant operational data for the plant is listed in Table 6.2.

Table 6.2: Operational data for the MBR pilot plant (ITT Sanitaire, Dr. Alan Merry,
personal communication)

MBR pilot plant

Membrane type and area Vertical ‘Puron’ fibres; PES 0.04 µm pore size; 20 m2

Permeate flow; backwash flow 0.6 m3/h; 1.1 m3/h

Permeate recirculation flow 0.27 m3/h

Backwash interval and duration Every 6 min with 45 s ON

TMP 300-500 mbar

dissolved oxygen (DO) operating range 2-4 mg O2/L

Full air scour flow 27 Nm3/h for 15 s every 60 s

Low air scour flow ∼2 Nm3/h for 45 s every 60 s

MLSS concentration ∼7,500 mg/L

Bioreactor tank Volume 1 m3; operating level of weir 1.9-2.0 m

6.2.3 Model calibration

Short-term flux stepping experiment

Flux and TMP measurements in the flux-stepping experiment are shown in Figure 6.1.

As the flux is increased in a step-wise fashion the TMP gradients between each back-

wash become larger due to increasing levels of fouling. These upward TMP gradients

between consecutive backwashes are attributed to the combined effects of reversible and

irreversible fouling where reversible fouling (i.e. cake buildup) is a dominant process.

Figure 6.1 also shows that TMP right after backwash at the beginning of the next cycle

is always higher from the TMP at the beginning of the previous cycle. This TMP dif-

ference is attributed to fouling which cannot be removed with backwashing and hence

represents the irreversible fouling.
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Therefore, flux and TMP data gathered in the flux stepping experiment offers two

types of information: (a) the rate of pressure increase associated mainly, although not

entirely, with reversible fouling at different permeate fluxes and (b) the rate of pressure

increase associated with irreversible fouling at different fluxes. This piece of information

is extracted from the flux stepping experiment and used for the identification of model

parameters as described in Section 6.2.3.
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Figure 6.1: TMP and permeate flux measurements in a filtration unit during the flux
stepping experiment with indicated TMP gradients due to irreversible and reversible
fouling - measurements collected by Dr. Alan Merry, ITT Sanitaire.

Identification of model parameters on the data obtained from the flux step-

ping experiment

The rate of pressure buildup during filtration
ˆ
dp∆P q

dt

˙
which, as mentioned earlier,

is caused by combined effects of reversible and irreversible fouling, was measured by

calculating the gradient of the line of best fit for all TMP data points in each filtration

cycle. Similar procedure was carried out to find the rates of pressure increase caused by

irreversible fouling by calculating the differences in TMP at the ends of two consecutive

backwashes for each filtration cycle. Since for each value of flux, the filtration cycle

was repeated three times, the pressure gradient under each flux was calculated as an

average of the three values.

The calculated averaged pressure gradients associated with irreversible fouling at

different flux rates are plotted in Figure 6.2a. These data points are then approximated

with a curve of a general form: y “ mx 2 enx where parameters a and b are identified

with nonlinear regression using the MATLAB’s® Curve Fitting Toolbox™. The form of

the curve is derived from the model equations 6.3, 6.5, and 6.7 which, when rearranged,
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yield the following equation for the TMP gradient due to irreversible fouling.

dp∆P q
dt

“ µki SSMP fi J
2

“ µki SSMP a e b J J 2 (6.14)

where µ (Pa¨s) denotes the permeate’s dynamic viscosity, ki (m kg´1) denotes the

irreversible fouling strength factor, fi (–) denotes the fraction of SMP contributing

to irreversible membrane fouling, and SSMP (g m´3) denotes the SMP concentration.

Parameter m obtained from curve fitting is equal to aµ ki SSMP in Equation 6.14 and,

whilst µ and SSMP are both given, identification of m allows us to find the value of

a ki, but not a and ki individually.

Additionally, the pressure gradient points were approximated with a simpler curve

of a form: y “ mx 2 which corresponds to the scenario where SMP deposition re-

mains constant during the flux stepping experiment. Hence, parameter m is equal to

ki SSMP fi. The curve fit is shown in Figure 6.2a in blue colour. It is apparent that

the simpler model fits the data significantly worse with the sum of squared residuals of

8.516 ˆ 10´4 on 6 degrees of freedom, compared to 2.017 ˆ 10´4 on 5 degrees of free-

dom for the more complex model. The analysis of variance performed on both models

produced an F-value of 16.1. The reported p-value, 0.010, is far below the standard

cutoff of 0.05, hence we reject the null hypothesis that the simpler model is statistically

better and we adopt the more complex model, i.e. the model which assumes that the

amount of SMP contributing to irreversible fouling depends exponentially on flux.

Since the pressure gradient in each filtration cycle is due not only to reversible

fouling but also due to the effects of irreversible fouling, the values of
dp∆P q

dt
obtained

from regression as explained in the beginning of this section for each filtration cycle

need to be reduced by the values of
dp∆P q

dt
due to irreversible fouling in order to

represent the true sole effects of cake buildup. To serve the purpose, TMP gradients

calculated from Equation 6.14 were subtracted from the pressure gradients calculated

in individual filtration cycles. The resulting data points are then approximated with a

quadratic polynomial of the form y “ a x2 ` b x ` c as shown in Figure 6.2b.

As in the previous example, MATLAB’s® Curve Fitting Toolbox™ was used for

identification of the unknown coefficients a and b, while the third coefficient c is set

to zero. The fitted curve has the same shape as the expression for TMP increase in

time due to reversible fouling presented in Equation 6.15. Thus, a “ µαc fr XTSS

and b “ ´µαc 9mr,back, where µ (Pa¨s) is the dynamic permeate viscosity, αc (m kg´1)

denotes the specific cake resistance, fr (–) denotes the fraction of suspended solids

contributing to cake buildup, XTSS (g m´3) is the TSS concentration in the membrane

feed, and 9mr,back (kg m´2 s´1) denotes the rate of cake back-transport.

Since µ and XTSS are given and, for the sake of simplicity, we can assume that

fr “ 1, αc and 9mr,back can be explicitly calculated from the identified parameters a and
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Figure 6.2: Relationship between the rate of TMP increase in time due to (a) irreversible
and (b) reversible fouling, and flux rate.

b.

dp∆P q
dt

“ µJ αc pfr J XTSS ´ 9mr,backq

“ µαc fr XTSS J 2 ´ µαc 9mr,back J (6.15)

Equation 6.15 is obtained by rearranging and combining Equations 6.3, 6.4, and 6.26

and by substituting the total resistance Rt in Equation 6.3 with the resistance caused

by cake buildup Rr.

The identified model parameters are presented in Table 6.3. While fitting the

quadratic curve from Equation 6.15 to the second set of data, it has been assumed that

the amount of cake back-transport 9mr,back remains constant throughout the flux step-

ping experiment. Although this might theoretically be true under high CFVs, usually

9mr,back will depend on the amount of cake on the membrane in addition to CFV, thus

it is seldom constant. If we look again at the quality of the curve fits in Figure 6.2,

we can see that whilst the curve in Figure 6.2a fits the data well, the points in Fig-

ure 6.2b appear to be more scattered and further away from the curve for higher fluxes

where TMP measurements become more erratic possibly due to pump cavitation. Nev-

ertheless, when we compare the parameter values obtained from curve fitting shown in

Table 6.3 with the values obtained from the optimisation-based parameter calibration

shown in Table 6.4, we can see that it was sufficient to adjust only the value of 9mr,back

in the non-linear model calibration whilst a ki and αc determined from the curve fits

have been successfully used in final simulations. Hence, it seems that the model can

be successfully identified with a ‘pen and ruler’ technique based on the flux and pres-

sure data obtained from flux-stepping experiments without the need for complicated

parameter estimation procedures.

The non-linear parameter calibration is explained below. The model was calibrated

in four different model configurations:

1calculated under assumption that fr “ 1
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Table 6.3: Parameters identified from the d TMP
d t

vs. J data generated from the flux-
stepping experiment.

Identified lumped and single parameters Unit Value

a µ ki SSMP mbar s´1 (Lmh)´2 2.306 ˆ 10´7

b (Lmh)´1 7.991 ˆ 10´2

µαc fr XTSS mbar s´1 (Lmh)´2 7.391 ˆ 10´5

µαc 9mr,back mbar s´1 (Lmh)´1 1.884 ˆ 10´3

Recalculated parameters Unit Value

a ki m kg´1 2.397 ˆ 1012

αc
1 m kg´1 5.061 ˆ 1015

9mr,back kg m´2 d´1 1.040 ˆ 10´2

Option 1 Constant SMP deposition rate; Cake detachment rate kr expressed as a single

constant value.

Option 2 Flux dependent SMP deposition rate; Cake detachment rate kr expressed as a

single constant value.

Option 3 Flux dependent SMP deposition rate; Cake detachment rate kr calculated with

the shear induction model of Nagaoka et al. [176].

Option 4 Flux dependent SMP deposition rate; Cake detachment 9mr modelled with the

back transport model of Ho and Zydney [97].

In Option 1 the model takes the form of the original model of Liang et al. [149].

Option 2 introduces flux-dependent SMP deposition fraction but keeps the original de-

scription of cake back transport. Option 3 and Option 4 additionally introduce the

cake back transport models of Nagaoka et al. [176] and Ho and Zydney [97], respec-

tively. Each option assumes that cake is compressible accordingly to Equation 6.11 and

introduces back-flushing (Equation 6.9).

Optimum parameter values for the cake detachment models were calculated with

MATLAB’s fminsearch function employing a multidimensional unconstrained non-

linear derivative-free minimization algorithm of Nelder-Mead [133]. The objective func-

tion Θ to be minimised is shown below.

Θ “

i“Nÿ

i“1

`
∆P i

meas ´ ∆P i
simu

˘2

N
(6.16)

where N denotes the number of TMP measurements and ∆P i
meas and ∆P i

simu (mbar)

denote, respectively, the measured and the predicted TMPs in the i-th time step.

Figure 6.3a shows good quality of fit between the original model in Option 1 and

the measurements. However, one can observe some discrepancies between the predicted

and the measured TMPs under lower permeate fluxes in the first 40 minutes of the

experiment. Whilst the model predicts cake formation (reversible fouling) under sub-
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critical fluxes, the experimental data shows no accumulation of cake in this region. To

remind the reader, reversible fouling manifests itself on the graphs with TMP gradients

in filtration periods. This model behaviour results from the chosen representation of

9mr,back which is modelled as kr mr and which thus tends to zero for very low mr values.

Small back-transport 9mr,back in turn creates an opportunity for thin layers of cake to

build up on the membrane surface. Although the predicted cake thicknesses are small,

high αc values lead to noticeable additional resistances causing the visible predicted

pressure gradients in Figure 6.3a.

Figure 6.3a also shows that the predicted long-term TMP gradient due to irre-

versible fouling under low permeate fluxes is higher than what is manifested by the

experimental data. The data shows that the long-term TMP gradient in the first 40

minutes of operation where flux was kept at a constant value of „ 30 L m´2 h´1 was

not noticeable. This observation leads to the conclusion that SMP deposition at low

sub-critical fluxes in this experiment either does not occur or, what is more probable,

occurs at very slow rates. The pressure gradient caused by irreversible fouling is found

to increase with the applied permeate flux, which indicates that SMP deposition rates

are dependent on the value of permeate flux. As the model in Option 1 uses a single

SMP deposition constant fi for an entire range of fluxes, the model over-predicts SMP

deposition under lower flux rates in order to remain in agreement with the measure-

ments under higher fluxes where the rates of SMP deposition and hence irreversible

fouling are larger.

Figure 6.3b shows the measurements and the model outputs in Option 2. The

model introduces flux dependent SMP deposition constant fi which increases exponen-

tially with flux in accordance with Equation 6.12. Cake detachment model is the same

as in Option 1. As can be seen in Figure 6.3b the long-term gradient under low fluxes

is slightly reduced but the model still over-predicts the amount of cake buildup under

low fluxes.

The models in Option 3 and Option 4 incorporate flux dependent SMP deposition

and additionally introduce cake detachment models of, respectively, Nagaoka et al. [176]

and Ho and Zydney [97]. Results obtained from these two fouling models are shown in

Figures 6.4a and 6.4b. Whilst Figure 6.4a is almost identical to Figure 6.3a, Figure 6.4b

shows the best quality of fit between the model and the data out of all four figures. The

pressure gradients due to cake growth under sub-critical fluxes are lower than in the

previous simulations and additionally the amount of irreversible fouling under low fluxes

is reduced. The most accurate predictions are thus offered with the model incorporating

flux dependent SMP deposition and cake back-transport model of Ho and Zydney [97].

All calibrated parameters for Option 1 - Option 4 are presented in Table 6.4.

Long-term filtration under sub-critical flux

Reversible and irreversible fouling occur at different temporal scales. Under ‘favourable’

conditions for the occurrence of fouling, such as low CFV or air scouring rate, reversible
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Table 6.4: Values of behavioural model parameters identified on the flux-stepping experiment measurements collected by Dr. Alan Merry, ITT
Sanitaire.

Description Parameter Unit
Option

Source

1 2 3 4

Bulk liquid temperature T oC 15 15 15 15 Measured

Clean membrane resistance Rm m´1 1.68 ˆ 1012 1.68 ˆ 1012 1.68 ˆ 1012 1.68 ˆ 1012 Calibrated

TMP below which compression does not occur ∆Pcrit Pa 30, 000 30, 000 30, 000 30, 000 [202]

Exponent in cake compressibility equation nαc – 1.0 1.0 1.0 1.0 [202]

SMP deposition fraction times its fouling strength fi ki m kg´1 2.40 ˆ 1012 x x x Calibrated

Specific cake resistance αc m kg´1 5.06 ˆ 1015 5.06 ˆ 1015 5.06 ˆ 1015 5.06 ˆ 1015 Calibrated

SMP fouling strength ki m kg´1 x 2.40 ˆ 1012 2.40 ˆ 1012 2.40 ˆ 1012 Calibrated

Exponent in SMP deposition formula b – x 6.80 ˆ 10´2 6.80 ˆ 10´2 6.80 ˆ 10´2 Calibrated

Cake detachment rate kr d´1 200 200 x x Calibrated

Static friction coefficient λm – x x 1.00 ˆ 10´3 x [176]

Proportionality coefficient γm d´1 Pa´1 x x 1.00 ˆ 10´1 x [176]

Shear stress at the membrane wall τm Pa x x 1.00 ˆ 102 x Calibrated

Shear rate at the membrane wall γ d´1 x x x 155 Calibrated

Exponent in the back-transport model n – x x x 1.5 [97]

Proportionality coefficient in the back transport model k m sn´1 x x x 0.07 [97]
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Figure 6.3: Results of calibration of the behavioural model on Cardiff flux stepping data
- Option 1 and Option 2
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Figure 6.4: Results of calibration of the behavioural model on Cardiff flux stepping data
- Option 3 and Option 4

fouling happens very quickly in the range of seconds to minutes. Irreversible fouling

in turn is a long-term process attributing to a slow but constant increase of membrane

resistance. Since it takes many days for irreversible fouling to develop under sub-critical

fluxes while flux-stepping experiment took only 5 hours, irreversible fouling equation

could not be properly tested in the previous calibration exercise. Hence, the model

was additionally calibrated on 640 hours (i.e. „ 27 days) of filtration data obtained

from an immersed MBR pilot plant equipped with vertical hollow fibre PES membranes

and fed with brewery wastewater. As mentioned in the beginning of this chapter, the

pilot plant was installed by ITT Sanitaire
®

at the Coors Shobnall Maltings site in the

Midlands, UK. On-line data recorded at 2s intervals was supplied by ITT Sanitaire
®

and is composed of permeate fluxes and TMPs. Off-line information included average

MLSS concentrations, membrane area and bulk liquid temperature. Model parameters

that remained constant during calibration are listed in Table 6.5.

The model adopted for calibration is the basic unmodified model of Liang (Option

1). Due to very high cross-flow velocities and thus almost complete absence of cake

buildup in the pilot plant, except for Calibration 4 where cake formation did occur, it
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Table 6.5: Model parameters set to remain constant during the long-term calibration
experiment.

Parameter Value Unit Description Source

T 15 oC Bulk liquid temperature Provided

XTSS 10, 000 g m´3 Total suspended solids concentration Provided

Rm 1.68 ˆ 1012 m´1 Clean membrane resistance Initial condition

Am 34 m2 Membrane area Provided

ki 1.1 ˆ 1016 m kg´1 SMP fouling strength [265]

αc 4.0 ˆ 1013 m kg´1 Specific cake resistance Assumed

nαc 1.0 – Exponent in cake compressibility equation [202]

∆Pcrit 30, 000 Pa TMP below which compression does not occur [202]

was sufficient to describe cake detachment with a simple kr mr term as in the original

model of Liang et al. [149]. Modelling of the flux dependency of irreversible fouling was

also not required as the pilot plant was operating at a constant flux of „ 19.2 Lmh

except for the initial 48 hours where flux was kept at „ 17.7 Lmh - see Figure 6.6a and

Figure 6.5.

In order to calibrate the model, the measurements had to be split into 5 separate

data sets (see Figure 6.5). The model was then calibrated individually for each set of

measurements using the same nonlinear simplex optimisation algorithm of Nelder and

Mead [178] as used in the previous study. Two parameters were selected for calibration:

the cake detachment rate (kr) and SMP deposition fraction times SMP concentration

(fi SSMP ). The SMP deposition fraction fi could not be identified individually due to

lack of information about SMP concentrations in the system. The fouling strength ki

was neither known nor could be identified due to lack of appropriate measurements,

hence the value of 1.1 ˆ 1016 m kg´1 was adopted after Ye et al. [265] as shown in

Table 6.5. Clean membrane resistance (Rm) was identified from initial TMP at the

beginning of the filtration period and was found to be equal to 1.68 ˆ 1011 m´1.

Values of the calibrated parameters for each calibration period are shown in Ta-

ble 6.6. The table is additionally supplemented with the values of specific cake resistance

αc which is kept at a constant value of 4.0ˆ1013 m kg´1 except for Calibration 4 where

αc had to be increased to 5.0 ˆ 1013 m kg´1 in order to match the data.

Table 6.6: List of model parameters identified in the long-term calibration experiment.

kr (d´1) fi ˆ SSMP (g m´3) αc (m kg´1)

Calibration 1 7.5 ˆ 103 0.040 4.0 ˆ 1013

Calibration 2 3.5 ˆ 103 0.225 4.0 ˆ 1013

Calibration 3 8.5 ˆ 103 0.000 4.0 ˆ 1013

Calibration 4 0 1.250 5.0 ˆ 1013

Calibration 5 8.5 ˆ 103 0.000 4.0 ˆ 1013

For the purpose of visualisation the measurements and model outputs were filtered
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to remove the data points associated with backwash periods. Thus, the data points

corresponding to filtration were isolated from an entire set of data including forward

filtration and backwash. Next, the data which, as mentioned before, were collected

every 2 seconds, were averaged over 2-hour time windows. The averaged flux and

TMP data and model outputs are shown in Figure 6.5. As Figure 6.5 indicates, the

model performed very well at predicting pressure losses across the membrane for each

calibration period.
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Figure 6.5: Combined results of calibration of the behavioural model on all experimental
data from the Coors plant.

Calibration results for each individual calibration period are shown in Figures 6.6,

6.7, and 6.8. In Calibration 3 and Calibration 5 TMP was found to decrease in time

while flux remained constant, what indicates an increase in the membrane permeability.

The reason for this permeability recovery effect was unknown and because very little

information about operational conditions in the pilot-plant was available, it could only

be assumed that this permeability recovery might have been caused by gradual redisso-

lution of irreversible foulants due to e.g. change of pH in the influent wastewater. The

observed permeability recovery was modelled with 1st order exponential decay of the

mass of irreversible foulant (mi) as shown in Figure 6.8b. The measured flux and the

measured and simulated TMPs in the Calibration period 3 and Calibration period 5 are

shown in Figure 6.7a and Figure 6.8a respectively.

Although not shown here, the simulated and measured TMPs were found to diverge

slightly in backwash cycles. This discrepancy may be due to several reasons. Firstly,

the backwash model is very crude and predicts instantaneous removal of the entire cake

mass, which does not happen in reality. Additionally, since the backwash flow is almost

double the forward flow but only lasts for a short period of time, the pressure transients

developing during instantaneous changes in the direction of flow could have been causing

pressure and flow fluctuations which are not represented in the Darcy’s equation used

in the model.
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Figure 6.6: TMP predictions of the calibrated behavioural model vs. measurements for
time periods 1 and 2.
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Figure 6.7: TMP predictions of the calibrated behavioural model vs. measurements for
time periods 3 and 4.
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Figure 6.8: TMP predictions of the calibrated behavioural model vs. measurements for
time period 5 (a) and decrease in mi over time for calibration periods 3 and 5 (b).
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6.2.4 Two-stage TMP profiles

The model was additionally simulated under sub-critical fluxes of 2, 4, 6, and 7 Lmh.

Backwashing was switched off whilst cake removal constant kr was kept at 0.75ˆ104 d´1.

Irreversible fouling was modelled with two different equations. Whilst in the first option

the original Equation 6.7 for irreversible fouling is used, the second option incorporates

Hagen-Poiseuille equation which calculates the pressure loss across the membrane under

assumption that a) flow is laminar b) membrane is a sheet of constant thickness with

uniformly spaced cylindrical pores of equal diameters. Whilst in Equation 6.7 resistance

is proportional to the amount of irreversible foulant mi, membrane resistance in Hagen-

Poiseuille equation is inversely proportional to the square of pore diameter dp (m) and

directly proportional to the membrane thickness L (m).

Ri “ 128LA

N π dp
2

(6.17)

In Equation 6.17, Ri (m´1) denotes the resistance due to irreversible fouling, A (m2)

denotes the total membrane area, and N (–) denotes the total number of (open) pores

in the membrane.

The internal pore diameter decreases in size starting from an initial pore diameter

dp0 due to deposition of SMP inside the pores. It is assumed that SMP deposits uni-

formly along the length of the pore and leads to a decrease in pore diameter according

to Equation 6.18.
d dp

d t
“ ´2 ka e

b J SSMP J A

ρSMP Lπ dpN
(6.18)

where ρSMP “ 1, 060 ˆ 3.45 kg m´3 denotes SMP density and ka “ 10´19 and b “ 0.01

are flux dependent SMP deposition parameters.

Due to gradual decrease in the size of pore diameters, the total area of pores Aopen

(m2) and, as a result, the membrane porosity εp (%) decrease accordingly.

Aopen “ 0.25N π dp
2 (6.19)

εp “ Aopen

A
100% (6.20)

Pressure loss across the membrane is then calculated in both options using the

Darcy’s law.

∆P “ µJ pRm ` Ri ` Rrq (6.21)

Results of the simulations carried out with both model options are presented in

Figure 6.9. Figure 6.9 shows that whilst Hagen Poiseuille equation predicts high rate of

pressure rise after a specific amount of time in which pore constriction becomes advanced

enough to create an almost infinite amount of resistance, the response of Equation 6.7

is very different and it is clear that Equation 6.7 is unable to represent the so-called

two-stage TMP profile which will be explained in more detail in Section 6.3. It will be
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later demonstrated that a two-stage TMP profile can be modelled with a combination

of three classical filtration laws: pore constriction, complete pore blockage and cake

formation. The model described here is unable to predict this behaviour, however it

is able to represent certain behaviour of MF membranes as outlined in the previous

sections.
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Figure 6.9: Comparison of models with (a) irreversible fouling described accordingly to
Liang et al. [149] and (b) with Hagen-Poiseuille equation for pore constriction, under
constant sub-critical flux operation.

6.3 Development of the mechanistic fouling model

6.3.1 Model formulation

As described in Hwang et al. [107] and Hwang and Chen [105] microfiltration of liquids

containing dissolved organic matter (DOM) and suspended solids (SS) often cannot be

described by only one mechanistic fouling model such as pore constriction, intermediate

pore blockage, complete pore blockage and cake formation. Each of the above mentioned

fundamental fouling processes can be described by Equation 6.22 introduced by Hermia

[91] where n “ 2 for complete pore blockage, n “ 1 for intermediate pore blockage,

n “ 3{2 for pore constriction and n “ 0 for cake filtration. As demonstrated by Hwang

and Chen [105] the value of n is usually not constant throughout the entire course of

filtration but varies in time as a consequence of simultaneous occurrence and mutual

interactions between pore constriction, blockage and cake filtration. In order to simu-

late membrane filtration in situations where pore constriction, pore blockage and cake

buildup contribute to membrane fouling at comparative levels and none of these pro-

cesses dominate over the rest, it is necessary to use a mathematical model taking into

consideration all three of these processes.

d2t

dV 2
“ k

ˆ
dt

dV

˙n

(6.22)
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The fouling model presented here is based on the idea described in Duclos-Orsello et al.

[50] where three fundamental fouling processes: pore constriction, complete pore block-

age and cake formation are incorporated within a single mathematical model. The

authors of the above mentioned paper analytically integrated each one of the three clas-

sical fouling equations and provided a closed solution in the form of a single expression

describing the reduction of total flow through a membrane in constant pressure filtration.

Their final solution is presented, for the convenience of the reader, in Equation 6.23.

Q

Q0

“ 1
´
1 ` β̃Q0Cbt

¯2
exp

ˆ
´ αCbJ0t

1 ` β̃Q0Cbt

˙

`

tż

0

αCbJ0´
1 ` β̃Q0Cbtp

¯2
exp

˜
´ αCbJ0tp

1 ` β̃Q0Cbtp

¸

dˆ
Rp0

Rm
`

´
1 ` β̃Q0Cbtp

¯2
˙2

` 2
f 1R1∆PCb

µRm
2

pt ´ tpq
dt (6.23)

The first two factors before the integral describe the effects of pore constriction and

pore blockage. The extent of pore blockage is reduced by simultaneously occurring

pore constriction. The third term under the integral describes reduction of flow due

to cake formation on the membrane surface. Q0 and J0 denote the initial flow and

initial flux, Cb is the bulk concentration of the foulant and Rm is the clean membrane

resistance. Parameters β̃ and α govern the rates of, respectively, pore constriction

and pore blockage. β̃ is an auxiliary variable and is equal to
β

N0πr
2
0
L

where β is a pore

constriction parameter in Equation 6.24. f 1 and R1 govern the process of cake formation.

f 1 is the fraction of the foulant which contributes to cake formation and R1 is the specific

resistance of the fouling layer. Rp0 denotes the resistance of a single layer of foulant

causing pore blockage. Succession of pore blockage and cake formation processes is

ascertained by solving the cake growth Equation 6.26 over the time interval tp to t

where tp denotes the time moment at which the considered region of the membrane

was first blocked. It is however difficult to understand from the original paper how

the value of tp is determined or calculated. The Author understands that in order to

simulate constant pressure dead-end filtration with Equation 6.23 one has to discretise

the membrane area and solve this equation for each discrete element with tp individually

calculated as the time at which this elemental area is entirely blocked which in turn

can be obtained from the pore blocking equation described in Duclos-Orsello et al. [50].

Whilst discretisation of the membrane area might offer benefits in providing insight into

development of spatial inhomogeneities in the membrane with regards to the levels of

fouling caused by individual fouling processes, solution of such a model might be very

computationally intensive. Additionally the use of an analytically integrated equation

only allows modelling of filtration under constant TMP. For this reason an alternative

solution to the three-mechanism fouling model of Duclos-Orsello et al. [50] was sought

and is described in the latter parts of this section.
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Three classical fouling models used in this work are shown in Equations 6.24-6.26.

dpNu π rp
2 Lq

dt
“ ´f β Ju Au SSMP (6.24)

dAu

dt
“ ´αXTSS JuAu (6.25)

dRp

dt
“ f 1 R1 Jb XTSS ´ kr Rp (6.26)

where Nu (–) denotes the number of open membrane pores, rp (m) denotes the average

pore diameter, L (m) denotes the membrane thickness, f (–) is the fraction of foulant

contributing to pore constriction, β (m3 kg´1) is the pore constriction parameter, Ju
(m3 m´2 s´1) denotes the permeate flux through unblocked area, Au (m2) denotes the

unblocked membrane surface, SSMP (g m´1) denotes the SMP concentration in the

membrane feed, α (m2 kg´1) is the pore blocking parameter, XTSS (g m´3) is the

concentration of TSS in the membrane feed, Rp (m´1) is the resistance of cake deposit,

f 1 (–) is the fraction of foulant contributing to cake growth, kr (m kg´1 s´1) is the cake

detachment coefficient, R1 (m kg´1) is the specific resistance of the fouling layer and Jb

(m3 m´2 s´1) denotes the permeate flux through the blocked area.

Pore constriction is modelled with Equation 6.24 which describes reduction of pore

volume due to deposition of the foulant. Reduction of pore volume is proportional to the

fraction of SSMP , described with parameter f , absorbed on the internal pore surface.

This equation assumes uniform spatial distribution of pores, uniform pore diameter (rp)

and uniform length (L). It is solved with an initial condition rpp0q “ rp,0 where rp,0

denotes the initial membrane pore diameter and is calculated from Equation 6.30 in

which Rinb has been substituted with clean membrane resistance Rm.

Complete pore blockage is described with Equation 6.25 whereas cake formation

is governed by Equation 6.26. The second part of Equation 6.26 represented by term

kr Rp models the effects of turbulence-induced shear on accumulation of cake mass on

the membrane area. In this equation, the rate of change of cake resistance Rp is in

direct proportion to the flux of suspended solids (Jb XMLSS), where Jb (m3 m´2 s´1)

denotes the permeate flux through blocked area and XTSS (g m´3) is the TSS con-

centration. The back-flux of solids due to cake detachment is proportional to the cake

detachment coefficient kr times the unit mass of cake accumulated on the membrane

mc (kg m´2). mc can be calculated as a ratio between the current cake resistance Rp

and the specific cake resistance R1 (Rp “ R1 mc). Equations 6.25 and 6.26 are solved

with initial conditions Aup0q “ A and Rpp0q “ Rp,0, where often Rp,0 “ n0, i.e. initial

cake resistance is assumed to be zero.

Equation 6.24 can be rearranged to yield an expression for the rate of change of

the membrane pore diameter in time as shown in Equation 6.27.

drp

dt
“ ´f β Ju SSMP

2π ρpLrp
(6.27)
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where the newly introduced parameter ρp “ N

A
“ Nu

Au
denotes the membrane pore

density. It is assumed that the pore density in a membrane is constant in every part of

the membrane.

As shown in Figure 6.10 flux through the membrane is divided into two parts,

the so called unblocked flux Ju which denotes the flux passing through an unblocked

portion of the membrane with area Au (calculated from Equation 6.25) and blocked flux

Jb which denotes the flux through the blocked area Ab.

Although Equations 6.24-6.26 can be solved via analytic integration as described

in Duclos-Orsello et al. [50] and outlined above, this approach suffers from three major

drawbacks. First, it requires the membrane area to be discretised thus leading to si-

multaneous solution of multiple instances of Equation 6.23, each for one elemental area.

Second, it only allows to simulate filtration under constant TMP with model parame-

ters kept constant throughout duration of the filtration process. Third, it only allows

calculation of the flux decline under a given pressure difference ∆P . Hence, calculations

of TMP increase under a given permeate flux would not be possible.

The alternative is to solve Equations 6.24-6.26 numerically treating the membrane

as a single point in space with properties rp, A and L. In order to do so, we need to

calculate the resistance under the blocked area Ab (Rib) which is required by Equa-

tion 6.37 to compute the blocked flux Jb. Jb is also used in Equation 6.26 to calculate

the flux of solids per unit area leading to cake formation pf 1JbXTSSq. Thanks to the

introduction of Rib, discretisation of the membrane area and explicit calculation of tp
as required in Equation 6.23 are avoided. Pore blockage and the principle of calculating

the blocked membrane resistance Rib are graphically described in Figure 6.10. As the

Figure 6.10: Graphical representation of the evolution of blocked area Ab and resistance
under blocked area Rib at elementary time steps ∆ti during filtration of solutes and
suspensions.

time goes by during filtration, open pores in an unblocked part of the membrane are

gradually covered with blocking layer having an initial resistance Rb,0. The number

of blocked pores Nb are proportional to the blocked area (Ab) accordingly to relation

Nu “ ρpAu and hence Nb “ ρpAb, where ρp (m´2) denotes the density of homoge-

neously distributed pores in the membrane. In each time increment i, the resistance

of the additional blocked area ∆Ab,i is equal to the resistance of the unblocked area

from the previous time step (Rinb,i´1) plus Rb,0. The resistance of an entire blocked

area minus Rp at the time step i is calculated from the resistances of the elemental
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blocked surfaces ∆Ab,j calculated in all previous time steps (j “ 2 : i) such that the

flow through the entire blocked area (Ab) is equal to the sum of elemental flows through

all elemental areas. This relationship is based on the Darcy’s law and is represented in

Equation 6.28.
iÿ

j“2

∆P

µ pRinb,j´1 ` Rb,0q∆Ab,j “ ∆P

µRib,i
Ab,i (6.28)

where Rinb (m´1) denotes the membrane resistance under the unblocked area, whereas

Rib (m´1) denotes the membrane resistance under the blocked area.

After appropriate mathematical rearrangements it is possible to derive a difference

Equation 6.29 which calculates Rib in each time step during filtration. The parameter

Rb,0 denotes the resistance of a single blocking layer.

Rib,i “ Rib,i´1 `
∆Ab,i

˜
i´1ÿ

j“1

∆Ab,j

Rinb,j´1 ` Rb,0
´ Ab,i´1

Rinb,i´1 ` Rb,0

¸

i´1ÿ

j“1

∆Ab,j

Rinb,j´1 ` Rb,0

iÿ

j“1

∆Ab,j

Rinb,j´1 ` Rb,0

(6.29)

Resistance of the unblocked area Rinb is obtained from Hagen-Poiseuille equation in

which the value of rp is obtained from Equation 6.27. ρp is calculated from as a ratio

of total number of pores in the membrane and total membrane surface: ρp “ N

A
.

Rinb “ 8L

π ρp r4p
(6.30)

It is possible to convert Equation 6.29 into two ordinary first order differential

equations. Let’s introduce a new variable K which represents the product of av-

erage blocked membrane conductivity and the blocked area (Ab). The value of K

in time step i ´ 1, Ki´1 “
i´1ÿ

j“1

∆Ab,j

Rinb,j´1 ` Rb,0
while K in time step i can be rep-

resented as: Ki “
iÿ

j“1

∆Ab,j

Rinb,j´1 ` Rb,0
. Ki can be written as a function of Ki´1:

Ki “ Ki´1 ` ∆Ab,i

Rinb,i´1 ` Rb,0
, which can be rearranged to form the following differ-

ence equation:
Ki ´ Ki´1

∆t
“ ∆Ab,i

∆t

1

Rinb,i´1 ` Rb,0
. This difference equation represents

the Euler difference scheme for the following differential equation:

dK

dt
“ dAb

dt

1

R
˚

inb ` Rb,0

(6.31)

where the subscript
˚

denotes the numerical value from the previous time step. As

dt Ñ 8, K
˚ Ñ K, hence Equation 6.31 becomes:

dK

dt
“ dAb

dt

1

Rinb ` Rb,0
(6.32)
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After Ki´1 and Ki have been substituted into Equation 6.29, Equation 6.29 takes

the following form: Rib,i “ Rib,i´1 `
∆Ab,i

ˆ
Ki´1 ´ Ab,i´1

Rinb,i´1 ` Rb,0

˙

Ki´1 Ki
. This equation is

then rearranged into:
Rib,i ´ Rib,i´1

∆t
“ ∆Ab,i

∆t

ˆ
Ki´1 ´ Ab,i´1

Rinb,i´1 ` Rb,0

˙

Ki´1Ki
which repre-

sents the Euler difference scheme for the following differential equation:

dRib

dt
“ dAb

dt

K
˚ ´ A

˚

b

R
˚

inb

K
˚
K

(6.33)

As dt Ñ 8, then K
˚ Ñ K, A

˚

b Ñ Ab, and R
˚

inb Ñ Rinb. Hence, Equation 6.33 becomes:

Rib

dt
“ dAb

dt

ˆ
1

K
´ Ab

K2Rinb

˙
(6.34)

The value of Ab in Equation 6.34 is calculated from Au which, in turn, is obtained from

Equation 6.25. The rate of pore blocking
dAb

dt
equals ´dAu

dt
, although Ab is simply

computed with Equation 6.25.

Ab “ A ´ Au (6.35)

Permeate fluxes through unblocked and blocked areas Ju and Jb are calculated with

Equation 6.36 and Equation 6.37.

Ju “ ∆P

µRinb

(6.36)

Jb “ ∆P

µ pRib ` Rpq (6.37)

Table 6.7: Equations used for the formulation of the mechanistic fouling model in the
differential-difference form.

Equation Reference

Eq. 3 Equation 6.24
Eq. 4 Equation 6.25
Eq. 5 Equation 6.26
Eq. 6 Equation 6.28
Eq. 7 Equation 6.29
Eq. 8 Equation 6.30
Eq. 9 Equation 6.35
Eq. 10 Equation 6.36
Eq. 11 Equation 6.37
Eq. 12 Equation 6.38
Eq. 13 Equation 6.39
Eq. 14 Equation 6.40

The model can be used to simulate flux decline under a given TMP or TMP
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increase under a given amount of flux. In both cases the model inputs, i.e. ∆P and J

respectively can vary in time. Equations used in both model configurations are collated

in Table 6.7. The difference Equation 6.29 in Table 6.7 can be substituted with two

differential equations - Equation 6.32 and Equation 6.34. Thus, the mixed difference-

differential set of equations is converted into a system of ordinary differential equations.

Model for the predictions of flux decline under a given TMP is composed of four

main differential and difference equations: 6.24, 6.25, 6.26, and 6.29 and four algebraic

equations: 6.30, 6.35, 6.36, and 6.37. Solution flow diagram and the connections between

all constituting equations shown as blocks are presented in Figure 6.11. Total flow and

total flux at a given time moment are equal to: Q “ JuAu ` Jb Ab and J “ Q{A,

respectively.

Figure 6.11: Flow diagram of the three mechanism fouling model configured to simulate
pressure driven filtration.

Where it is required to predict the TMP in filtration of a liquid under known

flux, solution sequence of the constituting equations needs to be reordered. The known

permeate flow is split into the unblocked flow (Qu) and the blocked flow (Qb) where

Qu “ JuAu and Qb “ JbAb. Under a given total flow Q, the split into Qu and Qb

can be calculated from Equation 6.36 and Equation 6.37 and the continuity equation:

Q “ Qu ` Qb. The unblocked and blocked fluxes resulting from this derivation are

given in Equations 6.38 and 6.39. Either unblocked or blocked flux can be then used to

calculate the pressure drop across the membrane with Equation 6.40.

Ju “ JA pRib ` Rpq
RinbAb ` Au pRib ` Rpq (6.38)

Jb “ JARinb

Rinb Ab ` Au pRib ` Rpq (6.39)

∆P “ Ju µRinb “ Jb µ pRib ` Rpq (6.40)

The flow diagram of the model for calculation of TMP under known flux is shown in

Figure 6.12.

205



T. Janus 6.3. DEVELOPMENT OF THE MECHANISTIC FOULING MODEL

Figure 6.12: Flow diagram of the three mechanism fouling model configured to simulate
flux driven filtration.

6.3.2 Model calibration

The model was calibrated on two sets of experimental data obtained from two different

sources.

The first set of data was obtained by Duclos-Orsello et al. [50] from a 25mm

diameter Amicon stirred ultrafiltration cell. The stirring was switched off and the cell

operated under constant TMP of 14 kPa. Four filtration experiments were carried out for

different solutions and on different membranes as shall be explained in the next section.

Each experiment was performed at various solution concentrations which resulted in a

family of flux and resistance curves for model calibration.

The second calibration exercise was carried out on the data obtained by Ye et al.

[266] from a crossflow filtration cell receiving a 100 mg L´1 sodium alginate solution

at different sub-critical flux rates. For each preset flux rate the cell was operating for

a period of time between 10 hours and 250 hours which, depending on the flux rate,

was sufficient to observe a two-stage TMP profile with slow gradual pressure rise over

a relatively long period of time followed by a rapid TMP rise.

Experimental methods

Detailed description of the experimental methods is provided in the original papers of

Duclos-Orsello et al. [50] and Ye et al. [266]. Nevertheless the experimental methods

are briefly outlined here for the benefit of the reader.

The four filtration experiments described in Duclos-Orsello et al. [50] were per-

formed in a 25mm dia. stirred ultrafiltration cell Model 8010 by Amicon, Co. Filtra-

tion was performed without stirring at a constant TMP of 14kPa. All experiments were

performed at a constant temperature of 20˝C. The permeate flow rate was measured by

timed collection using a digital balance (PB3002-S, DeltaRange, Mettler Toledo) [50].

Filtration was carried out on three different membranes (0.2 µm polycarbonate track
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etched, 0.22 µm hydrophobic Durapore® membrane (GVHP), and 0.22 µm hydrophilic

Durapore® membrane (GVWP)), with three different solutions (polystyrene micro-

sphere solution, bovine serum albumen (BSA) solution, and BSA solution prefiltered

through 0.1µm hydrophilic Durapore® membrane).

Data for the second calibration study was obtained form a crossflow filtration

cell equipped with a 0.22µm hydrophilic polyvinylidene fluoride (PVDF) membrane

from Millipore, Australia. TMP was measured with a pressure transducer connected

to both the feed and the permeate sides of the membrane. CFV and permeate flux

were controlled with a flow sensor and the balance. CFV was maintained at 0.33 m/s

which equals for this particular system to Reynolds number Re=660. 100 mg L´1

sodium alginate was used as a model extracellular polymeric substances (EPS) solution.

0.02% NaN3 was additionally added to the solution to prevent bacterial growth. The

average size of the alginate was measured by ZetaPals particle size analyser (Brookhaven

Instruments Corp.) and was found to equal 0.2µm. The critical flux for this alginate

solution was found in a flux stepping experiment to be 66 L m´2 h´1. The pH value and

the solution viscosity were found to remain constant indicating no alginate degradation

during the filtration procedure citepYe2006. The experiment was run for up to 250

hours under constant five different flux rates of, respectively, 40, 45, 50, 55, and 60

L m´2 h´1. Each of the five experiments were carried out on a virgin membrane.

Calibration on constant TMP filtration data

Parameters in each model were identified with a Nelder-Mead nonlinear simplex al-

gorithm [178] with bound constraints by transformation of variables which allowed to

convert a bound constrained problem into an unconstrained problem. The constrained

optimisation procedure was implemented in function fminsearchbnd written by John

D’Errico in Matlab®.

In the first calibration study, four model parameters were calibrated in four separate

calibrations corresponding to different data sets: pore constriction parameter β, pore

blockage parameter α, specific cake resistance times fraction of foulant contributing to

deposit growth f 1 R1, and initial resistance of cake deposit Rp,0. fminsearchbnd was

used to minimise the sum of squared errors between the calculated and the predicted´
Q
Q0

¯
fractions and the predicted and calculated total resistances Rtot. Experimental

data and model outputs were normalised to 0-1 range to ascertain that the errors in flows

and resistances are assigned equal weights. The objective function Ω for minimisation

is shown in Equation 6.41

Ω “

Nÿ

j“1

njÿ

i“1

˜
Q̂

Q0

j

norm,i

´ Q

Q0

j

norm,i

¸2

nj
`

Nÿ

j“1

njÿ

i“1

´
R̂

j
norm,i ´ R

j
norm,i

¯2

nj

N
(6.41)

where N (–) denotes the number of data series (curves), nj (–) is the number of data
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points in the j-th series,
Q

Q0

(–) denotes the amount of flow per initial flow and R “ Rtot

(m´1) denotes the total membrane resistance.

Final (calibrated) parameter values are given in Table 6.8.

Table 6.8: Values of model parameters identified on dead-end constant pressure filtration
data borrowed from Duclos-Orsello et al. [50].

Experiment β (m3 kg´1) α (m2 kg´1) f 1R1 (m kg´1) Rp,0 (m kg´1)

Polystyrene beads 0 5.370 ˆ 10 4 2.253 ˆ 1014 2.95 ˆ 10´1

BSA-GVHP 1.971 ˆ 10´7 5.260 ˆ 10´2 2.021 ˆ 1010 3.88 ˆ 10´3

Prefiltered BSA-GVHP 1.606 ˆ 10´7 5.235 ˆ 10´5 1.671 ˆ 1010 7.93 ˆ 10´3

BSA-GVWP 7.689 ˆ 10´8 1.117 1.243 ˆ 1010 1.62 ˆ 10´1

Figures 6.13-6.16 show very good agreement between the model outputs and the

measurements. Polystyrene beads in the first simulation are larger from the pore diam-

eters and thus are completely rejected by the membrane. Pore constriction is therefore

completely eliminated and fouling is composed of just pore blocking and cake forma-

tion. Lack of pore constriction is visible in Figure 6.13b where resistance curves are all

concave (concave downwards). The initial loss of filtrate flow is highest for the highest

concentration of beads Cb “ 0.004% where pore blocking and subsequent cake formation

mechanisms have the highest rates. At lower concentrations of polystyrene beads the

loss of permeate flow is more gradual suggesting that a longer amount of time required

to achieve a complete coverage of the membrane.
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Figure 6.13: Flow decline and resistance increase during filtration of 0.25µm polystyrene
microsphere solutions through 0.2µm polycarbonate track etched membranes (data ob-
tained from the paper of Duclos-Orsello et al. [50] through digitisation).

Figure 6.14 shows the flux decline and total membrane resistance vs. time dur-

ing filtration of a standard BSA solution through a hydrophobic Durapore membrane.

Resistance curves in Figure 6.14b are now, contrary to the previous simulation, convex

(concave upwards) indicating pore constriction. The initial flux decline is slower than in

Figure 6.13a suggesting that pore blockage and cake formation is slower whilst, initially,

flux decrease is mainly due to pore constriction.
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Figure 6.14: Flow decline and resistance increase during filtration of standard BSA
solutions through 0.22µm hydrophobic Durapore membranes (GVHP) (data obtained
from the paper of Duclos-Orsello et al. [50] through digitisation).

In experiment 3, BSA has been initially prefiltered through a 0.1µm hydrophilic

membrane prior to filtration on a 0.22µm hydrophobic Durapore membrane. Since

larger particles have been removed from the solution prior to the experiment, the rate

of pore blocking is significantly decreased whilst pore constriction happens to occur at

a similar rate. Therefore contribution of pore constriction in the overall fouling process

is larger, which manifests itself in the resistance curves which are convex (concave

upwards) throughout the filtration process.
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Figure 6.15: Flow decline and resistance increase during filtration of 0.1µm prefiltered
BSA solutions through 0.22µm hydrophobic Durapore membranes (GVHP) (data ob-
tained from the paper of Duclos-Orsello et al. [50] through digitisation).

Figure 6.16 shows the flux decline and total resistance vs. time during filtration of

BSA through 0.22µm hydrophilic Durapore membrane. The flux decline in Figure 6.16a

is slower from flux decline in Figure 6.14a due to slower pore constriction. Figure 6.14b

indicates that fouling occurs mainly due to cake formation as all resistance curves are

concave (concave downwards). All of the observations are reflected in the model pa-

rameters values presented in Table 6.8.

Similarly to Duclos-Orsello et al. [50] the values of
d2t

dV 2
expressed in Equation 5.21
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Figure 6.16: Flow decline and resistance increase during filtration of standard BSA
solutions through 0.22µm hydrophilic Durapore membranes (GVWP) (data obtained
from the paper of Duclos-Orsello et al. [50] through digitisation).

are plotted against
dt

dV
which have been calculated with Equation 5.22 on a double

logarithmic scale for each filtration experiment. The slope of the curve in each graph

represents the value of the n coefficient in the Hermia equation according to Equa-

tion 6.42.

n “
d

”
log

´
d2t
dV 2

¯ı

d
“
log

`
dt
dV

˘‰ (6.42)

The value of n determines the fouling mechanism: n “ 2 denotes complete pore blocking,

n “ 1.5 denotes standard pore blocking (pore constriction), n “ 1 denotes intermediate

pore blocking and n “ 0 denotes cake filtration.

Figure 6.17a shows that although the n values are initially negative due to inter-

action of pore blocking and cake formation mechanisms, the plots quickly become flat

indicating complete blockage of an entire membrane area followed by cake formation.

n in Figure 6.17b remains at a constant value of „ 1.4. Since n is very close to 1.5 the

plots indicate the dominance of pore constriction over other fouling processes. The slope

is reduced by slow cake formation which becomes most prominent for Cb “ 8 g/L where

the onset of cake formation is indicated as a curvature at the end of the corresponding

data series. Figure 6.18a indicates that n “ 1.5 what is understandable and correct

since pore blockage and cake formation processes are eliminated by prefiltering BSA

on a membrane with an average pore size over twice smaller from the main filtration

membrane. n values in Figure 6.18b are similar to Figure 6.17a although filtration times

are not sufficiently large to allow cake filtration to dominate in the filtration process,

except for Cb “ 8 g/L where n becomes null at the end of filtration.

Calibration on constant flux filtration data

The ‘inverted’ model shown in Figure 6.12 was calibrated on the long term constant

flux filtration data of Ye et al. [266] as earlier outlined in the beginning of Section 6.3.2.

The model parameters were identified individually for each permeate flux.

210



T. Janus 6.3. DEVELOPMENT OF THE MECHANISTIC FOULING MODEL

10
7

10
8

10
10

10
11

10
12

10
13

dt/dV , s/m3

d
2
t/

d
V

2
,
s/

m
6

 

 
Cb = 0.00025%
Cb = 0.005%
Cb = 0.001%
Cb = 0.002%
Cb = 0.004%

(a)

10
7

10
8

10
9

10
10

10
11

10
12

dt/dV , s/m3

d
2
t/

d
V

2
,
s/

m
6

 

 
Cb = 1g/L
Cb = 2g/L
Cb = 4g/L
Cb = 8g/L

n = 1.403
R2 = 1.000

n = 1.382
R2 = 1.000

n = 1.361
R2 = 1.000

n = 1.351
R2 = 1.000

Beginning of
cake formation

(b)

Figure 6.17: Hernia plots for (a) filtration of 0.25µm polystyrene microsphere solutions
through 0.2µm polycarbonate track etched membranes and (b) filtration of standard
BSA solutions through 0.22µm hydrophobic Durapore membranes (GVHP).
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Figure 6.18: Hernia plots for (a) filtration of 0.1µm prefiltered BSA solutions through
0.22µm hydrophobic Durapore membranes (GVHP) and (b) filtration of standard BSA
solutions through 0.22µm hydrophilic Durapore membranes (GVWP).

Specific cake resistance R1 was calculated from the slope of the linear portion of

the ∆P vs. t curve at end of the two-stage TMP profile as indicated in Figure 6.19.

Values of R1 for each value of the permeate flux are shown in Table 6.9. The other

two unknown model parameters, i.e. pore blockage parameter (α) and pore constriction

parameter (β) were identified using the same function fminsearchbnd as used in the

previous calibration study. The algorithm was set to minimise the sum of squared

errors between the measured and the predicted TMPs. The values of the calibrated

parameters α and β are shown alongside the R1 values in Table 6.9.

α, β and R1 as a function of flux J are plotted in Figure 6.20a, Figure 6.20b, and

Figure 6.21 respectively. The data points in the individual figures were approximated

with an exponential curve y “ a exppb Jq using non-linear regression. Whilst the re-

gression for α and R1 has a relatively high measure of goodness of fit with R2 equal of,

respectively, 0.90 and 0.88, pore blocking parameter β does not seem to form any clear

functional relationship with the flux.

Nevertheless, the model was simulated with the parameters identified from the
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Figure 6.19: Determination of specific cake resistance R1 in long-term constant flux
filtration experiment (data obtained from the paper of Ye et al. [266] through digitisa-
tion).
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Figure 6.20: Dependence of (a) pore blocking parameter α and (b) pore constriction
parameter β on permeate flux J - data obtained from individual model calibrations
supplemented with results of non-linear regression with a general exponential curve of
the form y “ a exppb Jq.
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Figure 6.21: Dependence of specific cake resistance R1 on permeate flux J - data ob-
tained from individual model calibrations supplemented with results of non-linear re-
gression with a general exponential curve of the form y “ a exppb Jq.
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Table 6.9: Values of model paramters identified on long-term constant flux filtration
data of Ye et al. [266].

Fluxes, Lmh 60 55 50 45 40

Parameter Unit

R1 ˆ 1014 m kg´1 3.62 1.68 0.754 1.03 0.427

α m2 kg´1 454 365 88.0 43.6 10.6

β ˆ 102 m3 kg´1 3.91 6.97 1.29 1.26 0.303

measurements and additionally with the parameters obtained from the fitted curves.

Results of the simulation are presented in Figure 6.22. Figure 6.22 shows that the

three-mechanism mechanistic fouling model based on classical fouling equations is able

to reproduce a TMP jump during constant flux filtration. Hence, it seems that the

TMP jump is not necessarily caused by such mechanisms as cake consolidation or lo-

cal development of fluxes exceeding the critical flux as postulated by some researchers.

TMP jump can also be explained by sequential occurrence of different fouling mecha-

nisms where pore constriction and pore blockage occur in parallel while cake formation

occurs only on the previously blocked parts of the membrane, i.e. after pore blockage

has taken place. Although the values of pore constriction parameter, pore blockage

parameter and specific cake resistance seem to depend on the value of flux, accurate

relationships between these parameters could not be established. As a result, model

outputs where the parameters were obtained from the curve fits are far away from the

measurements. Hence, although two stage TMP profiles could be represented by the

model, accurate prediction of the time in which TMP jump would occur is not possible

with this model.
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Figure 6.22: Calibration results of the mechanistic model with parameters identified in
individual calibrations and obtained from curve fits on constant flux filtration data in
a crossflow microfiltration cell (data obtained from the paper of Ye et al. [266] through
digitisation).
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Chapter 7

Development of an immersed MBR

model
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7.1 Introduction

In this chapter the CES-ASM1 model described in Chapter 4 is combined with the

behavioural fouling model developed in Chapter 6 to formulate a complete model of an

immersed membrane bioreactor (MBR). The MBR model layout is based on the MBR

benchmark simulation model (BSM-MBR) published by Maere et al. [160] whereas the

model inputs, operational parameters and simulation scenarios are taken directly from

the original COST Benchmark Model [37, 36].
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Selection of an activated sludge model was not easy, because both of the newly de-

veloped bespoke ASM models (CES-ASM1 and CES-ASM3) possess different strengths

and weaknesses with regards to this simulation study. Whilst the original COST Bench-

mark Model as well as the MBR benchmark simulation model (BSM-MBR) are both

based on the Activated Sludge Model No. 1 (ASM1) and thus it would be logical

and convenient to use the ASM1-based model, the death-regeneration concept used in

ASM1 to describe the cycle of organic substrates in the system had been found to lose

its validity under high sludge retention times (SRTs) and thus, ASM1-based approach

may not be appropriate for MBR systems. On the other hand combined extracellular

polymeric substances (EPS) and soluble microbial products (SMP) production ASM3-

based model (CES-ASM3) is based on the Activated Sludge Model No. 3 (ASM3) which

contains different processes and state variables to ASM1. Hence, creation of input files

and comparison of model results between BSM-MBR and the new MBR benchmark

model can be difficult if CES-ASM3 becomes the biokinetic model of choice. For this

reason combined EPS and SMP production ASM1-based model (CES-ASM1) has been

selected despite known weaknesses of its base kinetic model (ASM1) such as e.g. over-

prediction of denitrification rates due to overestimation of organic cycle in the system.

Its limitations will however be taken into account whilst analysing and interpreting the

final simulation results.

The membrane is described with the behavioural fouling model which has been

chosen over the three mechanism model for its overall simplicity, speed of execution,

ease of calibration and easy implementation of various fouling control mechanisms such

as backwashing and cake removal due to crossflow velocity (CFV) and air scouring.

Although, as already stated in Chapter 6, the behavioural fouling model is unable to

predict the so called trans-membrane pressure (TMP) jump during long-term constant

flux filtration and TMP gradients during long-term filtration at supra-critical flux con-

ditions, these limitations are not detrimental for the integrated MBR model which is

intended to simulate membrane operation under economically viable, usually sub-critical

flux conditions.

The two above-mentioned models are then combined to form an integrated model

of an immersed MBR. In order to provide bi-lateral links between the biological sub-

model and the membrane filtration submodel, the following processes are additionally

described and included in the model.

1. Impact of coarse-bubble aeration on cake detachment.

2. SMP rejection by the membrane.

3. Impact of SMP concentration on irreversible fouling.

4. Impact of permeate flux on the rate of SMP adsorption on and inside the mem-

brane.

5. Impact of EPS content in activated sludge on specific cake resistance αc.

Additionally, the model takes into account the negative impact of mixed liquor sus-

pended solids (MLSS) on oxygen transfer coefficient α. The structure of the integrated
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model including the above listed links between both parts of the system are described

in the subsequent sections of this chapter.

7.2 Conceptual model of a MBR

Model of a generic wastewater treatment process such as an MBR process can be de-

scribed with a set of ordinary differential equations.

9x “ f pxptq,uptq, zptq,wptq,mptqq (7.1)

where xptq denotes the vector of system states, uptq is the vector of inputs from other

subsystems, zptq are the inputs associated with wastewater inflow, wptq is the vector

of external inputs and disturbances, and mptq is the vector of manipulated (control)

variables.

The model outputs yptq are in a functional relationship with the model states.

yptq “ g pxptqq (7.2)

A block diagram of such a typical wastewater treatment process is shown in Fig-

ure 7.1.

Figure 7.1: Representation of a typical wastewater treatment process model.

Membrane bioreactor (MBR) is a combination of two distinctly different processes

inside one process unit: an activated sludge process (ASP) where biochemical treat-

ment occurs and a microfiltration (MF) or ultrafiltration (UF) microporous membrane

which acts as a barrier for suspended matter, bacteria and viruses. These membranes

can either be immersed in the bioreactor or placed outside the reactor in a so-called

sidestream configuration. In both cases these two processes are interdependent meaning

that one or more states, outputs, or properties of one process have direct and indirect

impacts on the states and outputs of the other process. Outputs of the bioreactor form

direct inputs to the membrane whilst the parameters and state of the membrane have

a direct effect on the states of the bioreactor.

These complex relationships between the bioreactor and the membrane are pre-

sented in a graphical manner in Figure 7.2 in which the bioreactor and the membrane

are divided into different subcategories. The bioreactor is divided into four subcate-

gories: liquid phase, solid phase, bulk liquid and operating conditions. The membrane
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is divided into membrane properties, module properties and operating conditions. These

subcategories are later divided into the properties which directly or indirectly influence

other properties and processes. Directions of these causal relationships are marked with

an arrow. A positive relation is shown with a blue line, negative relation is presented

with a red line and where the character of the relation is either not known, or can be

either positive or negative depending on e.g. process conditions, the line is drawn in

grey colour. Some of the rectangles in Figure 7.2 have been drawn with dotted lines.

These rectangles indicate the quantities which are not included of the mathematical

equations in the developed integrated MBR model.

A conceptual block diagram of a generic integrated MBR model is shown in Fig-

ure 7.3. The MBR plant is divided into three distinctive parts: the bioreactor, the

membrane and the interface. The membrane receives the bioreactor outputs (y1ptq) and

the outputs from the interface (u3ptq). The bioreactor receives the membrane’s outputs

(y2,2ptq) which are fed back with the recirculation stream. y2,3ptq represents the vector

of outputs from the membrane associated with the waste activated sludge (WAS) (also

known as surplus activated sludge (SAS)) stream. The links between the bioreactor

and the membrane described in the Interface and presented in Figure 7.2 are further

explained in Sections 7.5, 7.6 and 7.7.

The vector of wastewater flow associated inputs z1 is made up of wastewater quality

parameters Sinf and Xinf and wastewater flow rate qinf . Vector Sinf represents the

concentrations of all soluble state variables in the influent, whereas Xinf is a vector of

all particulate state variables in the influent. The make-up and the size of Sinf and

Xinf depend on the choice of the biological activated sludge model. Compositions of

Sinf and Xinf in ASM1 and CES-ASM1 are later explained in Section 7.3.

z1 “
`
Sinf Xinf qinf

˘T (7.3)

The bioreactor has only one external input - the bulk liquid temperature (T ) .

Temperature variations create an external disturbance by affecting the biochemical re-

action rates, oxygen solubility and can promote higher production of SMP and EPS.

Thus w1 “
`
T

˘
.

The vector of manipulated (control) variables for the bioreactor m1 “ m1ptq has

four elements: fine-bubble air flow rate qa,bio, sludge wastage rate qw, external (sludge)

recirculation rate qrec, and internal recirculation rate, qir.

m1 “
`
qa,bio qw qrec qir

˘T (7.4)

Biological and chemical composition of the bulk liquid, i.e. bioreactor states depend

on the retentive properties of the membrane. This unidirectional link between the

membrane and the bioreactor is modelled by a feedback loop y2,2 “ u1 which returns
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Figure 7.3: Block structure of the MBR plant model implemented in this study.

the components retained on the membrane back to the bulk liquid.

u1 “ y2,2 “
`
Sret Xret qret

˘T (7.5)

where Sret denotes the vector of concentrations of all soluble wastewater constituents,

Xret is the vector of all particulate wastewater constituents, and qret denotes the recir-

culation flow rate.

Concentrations of all wastewater constituents both soluble and particulate in the

retentate stream are calculated from the mass balance equation around the membrane

shown in Equation 7.6.

qfeed cfeed “ qperm cperm ` qret cret (7.6)

where qfeed and cfeed denote, respectively, the feed flow and the feed concentration,

qperm and cperm are, respectively, the permeate flow and the substance concentration

in the permeate stream and qret and cret denote the flow rate and the concentration of

that substance in the retentate stream.

Figure 7.4: Block diagram representing the mass balance across the membrane.

Equation 7.6 can be rearranged to solve for cret:

cret “ cfeed
qfeed

qret
´ cperm

qperm

qret
(7.7)

Concentration of a particular substance (component) in the permeate stream cperm

can be expressed as a function of the so called retention factor (rF ) defined as one

minus the ratio of the permeate concentration (cperm) to the retentate concentration

(cret) of this component (rF “ 1 ´ cperm

cret
) [126]. Alternatively, cperm can be calculated

from the concentration of this substance in the feed stream cfeed based on the value of

the rejection factor RF defined as one minus the ratio of the concentrations of this

220



T. Janus 7.2. CONCEPTUAL MODEL OF A MBR

component in, respectively, downstream and upstream sides of the membrane [126].

For extractive membranes RF “ 1 ´ cperm

cfeed
. rF and RF characterise the properties of a

membrane and substance being filtered, and depend on the size distribution and shape

of the membrane pores, size distribution and shape of the particles, electric charge of the

substance and the membrane, hydrophobicity, properties of the dynamic layer forming

on the membrane and others. Substances being completely retained by the membrane

are associated with retention factor rF and rejection factor RF of 1 whereas substances

which end up entirely in the permeate stream are characterised with retention factor and

rejection factor of zero. Any substance which is not fully retained nor fully permeates

through the membrane will have rF and RF between 0 and 1. If we introduce the notion

of recovery parameter defined in Judd [116] as the ratio of permeate to feed flow

(η “ qperm

qfeed
), Equation 7.7 can be presented as:

cret “ cfeed

1 ´ η rF
(7.8)

or

cret “ cfeed

ˆ
1 ` RF

η

1 ´ η

˙
(7.9)

Input vector to the membrane (u2) is equal to the output vector of the bioreactor

(y1), which is made up of the bioreactor state variables x1 and the membrane influent

flow rate qperm ` qret. The bioreactor state vector x1 “
`
Sbio Xbio

˘T is composed of the

vector of soluble state variables (Sbio) and particulate state variables (Xbio).

u2 “ y1 “
`
Sbio Xbio qperm ` qret

˘T (7.10)

The vector of external inputs and disturbances to the membrane is, alike in case

of the bioreactor, composed of a single element: w2 “ T , which affects liquid viscosity

and thus the pressure drop across the membrane.

An immersed hollow fibre (HF) membrane modelled here has three manipulated

variables: qperm, tfilt, and tflush, where qperm denotes the permeation rate, tfilt denotes

the filtration time, and tflush is the backflush time. If the membrane undergoes periodic

relaxation instead of backflushing, tflush will be replaced with membrane relaxation

time trel. Since in an immersed configuration the membrane is fully submerged in

the bioreactor and the solids mass transfer between the bulk liquid and the membrane

surface is mainly facilitated by the velocity flow field inside the bioreactor, provision of

external recirculation is not required.

m2 “
`
qperm tfilt tflush

˘T (7.11)

Another control variable in HF membranes is the backflush flow rate but since the

effects of backflush intensity on cake detachment are not modelled in this study this

variable is not included in m2.
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The membrane has two output streams- one on the retentate side of the mem-

brane (y2,2) - see Equation 7.5 and the second one (y2,1) on the permeate side. y2,1

is composed of four elements: the vector of soluble wastewater constituents Sperm, the

vector of particulate wastewater constituents Xperm usually assumed to be equal to

zero, permeate flow rate qperm and total membrane resistance Rtot.

y2,1 “
`
Sperm Xperm qperm Rtot

˘T (7.12)

The vector of membrane state variables z2 depends on the choice of the fouling

model. If the behavioural fouling model described in Section 6.2 is applied in the MBR

model, the vector of states will be given as

x2 “ x2,a “
`
Rr Ri

˘T (7.13)

where Rr denotes the resistance due to reversible fouling and Ri denotes the resistance

caused by irreversible fouling.

If the mechanistic three mechanism fouling model described in Section 6.3 is im-

plemented in the MBR model the vector of states will be composed of four variables:

the blocked membrane surface area Ab, the resistance due to irreversible fouling under

the blocked surface Rib, the resistance due to irreversible fouling under the unblocked

surface Rinb, and cake resistance Rc.

x2 “ x2,b “
`
Ab Rib Rinb Rc

˘T (7.14)

The interface has only one manipulated variable m3 “ qa,mem, where qa,mem de-

notes the air-scouring flow rate. If the MBR is equipped with side-stream non-aerated

membranes then m3 “ vcf , where vcf denotes the cross-flow velocity.

The input vector ỹ1 “
`
XEPS XMLV SS

˘T contains two elements, mixed liquor

EPS and mixed liquor volatile suspended solids (MLVSS) concentrations, respectively.

The interface then calculates the cake back-transport rate 9mr as a function of air-

scouring rate qa,mem and specific cake resistance αc as a function of the EPS/MLVSS

ratio. The two above values form the vector of interface outputs.

u3 “
`

9mr αc

˘T (7.15)

7.3 MBR benchmark model layout

The MBR benchmark model described in Chapter 8 is based on the plant layout pro-

posed by Maere et al. [160] where the bioreactor is divided into five completely stirred

tank reactors (CSTRs). However, whilst in the BSM-MBR model of Maere et al. [160]

each reactor is given an active volume of 1,500 m3, in the integrated bioreactor and

membrane fouling MBR model (IBMF-MBR) anoxic volume has been increased at the
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cost of the aerobic volume. In IBMF-MBR, each anoxic tank Vax,1 and Vax,2 has been

given an active volume of 1,800 m3 wheareas each aerobic tank Vox,1, Vox,2, and Vmem

has been assigned an active volume of 1,300 m3. Thus, the anoxic fraction is increased

from 40% to 51.4% which is closer to the value recommended by MUNLV [172] for

pre-denitrification MBR plants. It has also been found that denitrification kinetics pre-

dicted in CES-ASM1 are somehow slower from those in ASM1 due to an altered flow

of organic substrates caused by introduction of SMP and EPS kinetics. Therefore, the

anoxic volume needed to be increased in the model for the outputs to be comparable

with the outputs of the MBR benchmark simulation model (BSM-MBR) of Maere et al.

[160]. As a word of notice, denitrification kinetics in pre-denitrificaiton MBR plants

are much slower from conventional activated sludge plants due to high operational SRT

and high oxygen carry-over from the membrane tank to the anoxic tank.

The plant has two recirculation streams: qir which recycles nitrate rich mixed liquor

from the second aerobic tank to the first anoxic tank, and qrec recycling high MLSS

mixed liquor from the membrane tank back to the first aerobic tank. The benchmark

plant layout is shown in Figure 7.5.

Figure 7.5: MBR benchmark layout and flow scheme.

Composition of the vector of state variables for each reactor denoted by j where
j “ 1 : 5 depends on the choice of the activated sludge model. For ASM1 x

j
1

is equal
to:

x
j
1

“
´
S

j
I S

j
S X

j
I X

j
S X

j
BH X

j
BA X

j
P S

j
O S

j
NO S

j
NH S

j
ND X

j
ND S

j
ALK

¯T

(7.16)

In CES-ASM1 x
j
1

contains additional three state variables - concentration of biomass
associated products SBAP , concentration of utilisation associated products SUAP and
concentration of extracellular polymeric substances XEPS, hence:

x
j
1

“
´
S

j
O S

j
S S

j
NH S

j
NO S

j
N2

S
j
ALK S

j
I X

j
I X

j
S X

j
BH X

j
STO X

j
BA X

j
TSS S

j
BAP S

j
UAP X

j
EPS

¯T

(7.17)
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7.4 Aeration and oxygen transfer

7.4.1 Oxygen transfer

Oxygen mass balance for a single variable volume CSTR (and thus for a constant volume

CSTR in which qeff = qinf ) takes the following form:

V
dSO

dt
“ qinf SO,inf ´ qeff SOloooooooooooomoooooooooooon

t1

` kLa pS˚
O ´ SOq Vloooooooooomoooooooooon
t2

` rM Vloomoon
t3

(7.18)

Here, rM (gO2 m´3 d´1) denotes the oxygen uptake rate (OUR) resulting from res-

piration of microorganisms in the activated sludge, S˚
O (gO2 m´3) denotes the oxygen

saturation concentration under field conditions, and kLa (d´1) denotes the oxygen mass

transfer coefficient. SO (gO2 m´3) denotes the O2 concentration and V (m3) denotes

the reactor volume.

Term t2 describes transfer of oxygen from air to the liquid according to the the

two film theory of transfer of sparingly soluble gases [145]. Under static conditions, i.e.

when
dSO

dt
“ 0, the mass transfer of oxygen from gas into liquid needs to counterbalance

oxygen uptake caused by respiration of microorganisms in the activated sludge (t3) and

the usually negative oxygen balance due to loss of oxygen with the outflow (t1).

Oxygen mass transfer coefficient kLa in term t2 describes the rate of mass flow

of oxygen into the bioreactor. Depending on the type of aeration device used, it is

associated either with the rotational speed of a surface aerator, volumetric flow of liquid

in jet aeration systems or the flow of air, qair in diffused air aeration systems. As this

modelling study considers fine bubble diffused air aeration for the main two bioreactors

and coarse bubble diffused air aeration for the membrane tank, we will restrict our

thinking to just these two aeration systems.

The actual oxygen transfer rate (AOTR) described in term t2 is proportional to

airflow rate qair, specific oxygen transfer efficiency (SOTE), difference between oxygen

saturation concentration S˚
O and mixed liquor oxygen concentration SO, diffuser sub-

mersion depth (hsub), type of wastewater, and various local and operating conditions.

AOTR as a function of SOTE is described in Equation 7.19.

AOTR “ γ qair ρa Oa,m SOTE hsub (7.19)

where hsub (m) denotes the diffuser submersion depth, ρa (kg m´3) denotes the air

density under standard temperature and pressure, and Oa.m (´) is the mass fraction

of oxygen in air. In this study it is assumed that diffuser submersion depth is equal to

tank depth, i.e. hsub “ h.

Non-dimensional coefficient γ describes the effects of local conditions and wastew-

ater characteristics on oxygen solubility described with oxygen saturation concentration

(S˚
O) and is used to relate specific oxygen transfer efficiency (SOTE) in wastewater un-
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der field conditions to the, so called, ‘standard conditions’ - tap water, 20oC at mean

sea level. The γ coefficient is used to recalculate actual oxygen transfer rates (AOTRs)

and actual oxygen transfer efficienciess (AOTEs), i.e. oxygen transfer under local con-

ditions from, respectively, SOTR and SOTE usually provided by vendors and measured

in clean water under laboratory controlled conditions.

γ “ αF

˜
β S

˚,ave
O,T ´ SO

S˚
O,20oC

¸
θT´20 (7.20)

where F (–) is the non-dimensional diffuser fouling factor, θ is the non-dimensional

temperature dependency coefficient, T (oC) denotes the air temperature, β denotes the

O2 solubility reduction due to the presence of salts, S
˚,ave
O,T (mgO2 L´1) denotes the

average O2 saturation concentration in clean water in the aeration tank at temperature

T and atmospheric pressure at the sea level, and SO,20oC (mgO2 L´1) denotes the O2

saturation concentration in water at 20˝C.

Parameter α in Equation 7.20 describes reduction of oxygen mass transfer coef-

ficient in wastewater in relation to tap water: α “ kLa wastewater
kLa tap water

. α depends on

the multitude of factors such as the type of aeration device, tank geometry, level of

turbulence in the tank, concentration of solids and wastewater characteristics. A rough

estimate of α can often be provided by the aeration equipment vendor given some

influent wastewater characteristics or, to ensure more accuracy, α can be determined

experimentally either on a full-scale plant, pilot-plant or in a laboratory scale reactor.

Although α is dependent on wastewater characteristics, solids concentrations, and

hydrodynamic conditions inside the bioreactor, which all vary throughout the operation

of the treatment plant, α is usually assumed to remain constant during the simulation.

Whilst for the purpose of modelling conventional activated sludge processs (CASPs)

this assumption is generally acceptable, elevated MLSS concentrations in MBRs hinder

the oxygen transfer to such extent that introduction of a dependency function α “
fpMLSSq is necessary for accurate predictions of the system’s air demand. Whilst

MLSS concentrations in CASP systems are usually between 2, 000 and 5, 000 mg/L

and α values range between 0.45 ´ 0.75 [236], in immersed MBRs with MLSS up to

20, 000 mg/L, α can attain values as small as 0.2. Reduction of α with MLSS is usually

modelled with an exponential function given in Equation 7.21 where ω varies on a case-

by-case basis. ω depends stronly on air bubble size and is assumed to be equal to 0.05

for coarse bubble aeration and 0.083 for fine bubble aeration as originally proposed by

Maere et al. [160]. Oxygen transfer variability with MLSS concentration is explained in

more detail in Section 7.4.2.

α “ e´ωXTSS (7.21)

Parameter β in Equation 7.20 is a reduction factor describing lower O2 solubility

in wastewater compared to clean water due to presence of salts, particulates and sur-

factants: β “ S˚
O wastewater
S˚
O tap water

. The value of β for typical domestic wastewaters ranges

between 0.70 ´ 0.98 [236] and, in the absence of measurements, is often assumed to be
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equal to 0.95 - see Table 7.1.

Parameter F is termed the diffuser fouling factor and describes the loss of diffuser

membrane porosity due to bacterial growth (biofouling) and deposition of calcium car-

bonate (scaling) on the surface of the porous membrane. F is typically between 0.65

and 0.90.

The effects that temperature has on AOTR and AOTE are modelled with a non-

dimensional Arrhenius coefficient θ which, for aeration systems, is equal to 1.024.

So far the aeration model equations listed above have followed the modelling ap-

proach adopted in the MBR benchmark simulation model of Maere et al. [160]. The

model which was used in BSM-MBR was however found to slow down the execution

times due to its iterative nature where S
˚,ave
O,T used in calculation of AOTE was depen-

dent on AOTE itself. Solution of that model thus necessitates using an iterative solution

algorithm for systems of non-linear algebraic equations such as MATLAB’s fsolve. In

order to avoid the need for solving a system of non-linear algebraic equations at each

integration step a simpler modelling approach used in GPS-X v.4.5 WWTP simulation

package by Hydromantis® [109] was adopted as explained below.

The average dissolved oxygen saturation concentration in clean water in the aer-

ation tank, at temperature T , and the atmospheric pressure at the sea level S˚,ave
O,T is

calculated with Equation 7.22.

S
˚,ave
O,T “ 1777.8β ρw PO2

kH
(7.22)

where 1777.8 is a unit conversion coefficient from molO2/molH2O to gO2/m3H2O, PO2

(atm) is the corrected partial pressure of oxygen and kH (atm/mol fraction) denotes

the Henry’s law constant for dissolved oxygen (DO) which is calculated using a linear

regression equation shown below.

kH “ 708T ` 25700 (7.23)

The partial pressure of oxygen PO2
depends on the fraction of oxygen in the gas phase

OA,v, which for air is equal to 21%, and the average pressure of the gas phase as shown

in Equation 7.24.

PO2
“ OA,v

ˆ
Patm ` ρs g h

2Patm,std

˙
(7.24)

Patm,std is equal to 101325 Pa and denotes the standard atmospheric pressure at the sea

level, Patm (atm) denotes the local atmospheric pressure at the site, and h (m) is the

tank depth. Whilst the mixed liquor density ρs (kg m´3) depends on the temperature,

pressure, salinity, MLSS and DO concentration, MLSS concentration is the dominant

factor in ρs which is found to be in an exponential relationship with MLSS as shown in

Equation 7.25.

ρs “ 0.99959 ρw exp p4.397 ˆ 10´4 XTSSq (7.25)

where ρw (kg m´3) denotes the water density and XTSS (kg m´3) denotes the local
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concentration of suspended solids.

Water density ρw is assumed to vary with temperature T (oC) accordingly to

Equation 7.26 [164].

ρwpT q “ 1000

˜
1 ´

`
T ` 2.889414 ˆ 10 2

˘
pT ´ 3.9863q 2

p5.089292 ˆ 10 5q pT ` 68.12963q

¸
(7.26)

Whilst the atmospheric pressure under standard conditions (Patm,std) is considered

constant and equal to 1013.25 hPa - see Table 7.1 for reference, the actual atmospheric

pressure under field conditions (Patm) is assumed to depend on local elevation above

the mean sea level helev (m) according to Equation 7.27 [109].

patm “ patm,std e´
helev
7992 (7.27)

S˚
O,20oC in Equation 7.20 is calculated with a third order polynomial in T given in

Equation 7.28 [109] where T “ 20oC.

S˚
O,T “ ´6.588 ˆ 10´5 T 3 ` 7.311 ˆ 10´3 T 2 ´ 3.825 ˆ 10´1 T ` 13.89 (7.28)

Air density ρa (kg m´3) depends on the local atmospheric pressure Patm and air

temperature Tair (˝C ) and is obtained from the following correlation published in Hyd

[109].

ρa “ 293.16
Patm

pTair ` 273.16qPatm,std
(7.29)

SOTE (% m´1) which is used to determine AOTE and AOTR characterises the

type of air diffusers and depends on wastewater composition, airflow per diffuser and

diffuser location and density. Dependency of SOTE on the airflow per diffuser and

airflow density is shown in Figure 7.6.

Figure 7.6: SOTE vs. air flow per diffuser and diffuser density - Sanitaire Silver Series
II (http://www.sanitaire.com).
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Table 7.1: Oxygen transfer model parameters applied to the MBR simulation model -
Maere et al. [160].

Parameter Unit Values

β – 0.95
F – 0.9˚ – 0.7˚˚

g m s´2 9.81
OA,v % 21
Patm,0 Pa 101325
ρa g m´3 1200
ρsludge g m´3 10000
SOTE % m´1 2˚ – 6˚˚

T oC 15
h m 3.5˚ – 5˚˚

θ – 1.024
ω – 0.05˚ – 0.083˚˚

cSI – 29.7
e – 0.5
n – 0.283
R J mol´1 K´1 8.314
Tair

oC 20
˚ - coarse bubble aeration (membrane air scouring), ˚˚ - fine bubble aeration (process aeration)

The observed values of SOTE are typically between 5% m´1 and 8% m´1 for fine

bubble aeration and 1% m´1 and 3% m´1 for coarse bubble aeration. Respectively,

specific oxygen transfer rate (SOTR) is usually found to fall between 10 g O2 m´3 m´1

and 15 g O2 m´3 m´1 in fine bubble aeration systems and between 5 g O2 m´3 m´1

and 7 g O2 m´3 m´1 for coarse bubble aeration.

The list of all variables introduced in the aeration model used in the author’s

implementation of BSM-MBR and the own model IBMF-MBR is provided in Table 7.1.

7.4.2 Oxygen transfer coefficient as a function of MLSS

In membrane bioreactors (MBRs) where, due to large SRTs, MLSS concentrations are

„ p3´5q times higher than in conventional activated sludge systems, effects of solids on

oxygen transfer coefficient α become significant. As mentioned in the previous section,

studies on the dependence of α on MLSS in activated sludge systems show an expo-

nential relationship between these two parameters. Günder [81], Krampe and Krauth

[127] and Rosenberger [213] proposed a simple exponential relationship where the value

of the exponent is proportional to MLSS:

α “ e´ωMLSS (7.30)

where the proportionality constant ω is equal to 0.083, 0.0879 and 0.049 respectively.

Whereas Günder [81] and Krampe and Krauth [127] observed virtually the same

functional relationship between α and MLSS, the α values observed by Rosenberger
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[213] are generally higher and less sensitive to MLSS. A similar exponential trend to

Rosenberger’s was found by Müller et al. [171] who, through regression, derived the fol-

lowing equation: α “ 1.05074 e´0.0446MLSS . The most recent observations of Germain

et al. [69] led to another correlation described with equation: α “ 6.77 e´0.26MLSS in

which MLSS has the largest effect on α out of all the studies mentioned above.

All of the above functions are plotted in Figure 7.7 which shows two distinctive

trend patterns - one of Günder [81] and Krampe and Krauth [127] and the other of

Rosenberger [213] and Müller et al. [171], whereas the function proposed by Germain

et al. [69] describes the most dramatic decrease of α with MLSS and is not similar to

any other functions.
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Figure 7.7: Oxygen transfer coefficient α as a function of MLSS - findings of different
researchers supplemented with an averaged model.

As these two observed trend characteristics are equally plausible, the approach

taken in this study was to average the exponent coefficients of Günder [81] and Rosen-

berger [213] and use this coefficient ω in the MBR model. Hence, the following expres-

sion for α vs. MLSS was proposed.

α “ e´0.0645MLSS (7.31)

The curve in Equation 7.31 is later used used in the MBR benchmark model simulations

described in Chapter 8. For more information on inhibition of oxygen transfer by

suspended solids the reader is referred to Germain et al. [69] who described in detail

the effects of various physical and biochemical mixed liquor characteristics on oxygen

transfer in MBR systems.

As mentioned in the review paper on rheological models for activated sludge sus-

pensions by Ratkovich et al. [205], reduction of α with MLSS concentration was at-

tributed by Fabiyi and Novak [54] to higher viscosity of activated sludge suspensions

at increased solids concentrations. Whist at low fluid viscosities in air sparged systems

bubbles leaving the sparger were small and the bubble plume was similar to the diam-

eter of the sparger, at higher fluid viscosities bubble diameter increased while the size
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of the plume decreased. Ratkovich et al. [205] then, rightfully postulated, that plumes

of larger bubble diameters are characterised with lower area per volume and will hence

produce lower O2 transfer rates, while reduction of the plume diameter means that less

liquid in the tank is exposed to air bubbles, hence the contact time between both phases

is reduced. Ratkovich et al. [205] suggested that bubble coalescence occurs due to the

effect of the viscosity of the liquid continuous phase on the critical detachment bubble

diameter. It is however not clear when reading the review paper whether higher fluid

viscosities in the experiment of Fabiyi and Novak [54] were attributed to higher solids

concentrations, i.e. the dispersed phase or higher continuous phase viscosities, i.e. the

dispersant. While in the body of the text the former was stated, the figure demonstrat-

ing the differences in bubble diameter, shape and the size of the plume indicates that

higher viscosity in the investigated system was, either fully or partly, achieved by using

a more viscous continuous phase, specifically carboxymethyl cellulose, CMC. It is quite

possible that the mechanisms of bubble formation and rheology of the system would

be quite different in these two systems. It may be hypothesised that coalescence may

be promoted by the presence of solids not only at the surface of the sparger but also

during the upwards flow of the bubbles due to collisions with the suspended matter. It

is also possible that the smallest bubbles might attach to bigger flocs and coalesce on

their surface. In order to quantify these effects more research is needed on activated

sludge rheology and the effects of the dispersed phase on the motion of air bubbles as

opposed to just the viscosity of the liquid phase.

7.4.3 Power requirements for compressed air provision

Power demand which is later used to calculate energy consumption for aeration is cal-

culated with an adiabatic compression equation published in Tchobanoglous et al. [236]

and shown below.

Pw “ wR p273 ` Tairq
cSI n e

«ˆ
p2

p1
´ 1

˙0.283
ff

(7.32)

where Pw (kW) denotes the power requirement of the air blowers, w (kg s´1) denotes

the mass flow of air, R “ 8.314 (kJ kmol´1 K´1) is the engineering gas constant for air,

Tair (˝C) is the absolute inlet temperature, pin and pout (atm) are the absolute inlet

and outlet pressures respectively, n “ pk ´ 1q{k “ 0.283 is the theoretical coefficient for

air where k “ 1.395, cSI “ 29.7 is the constant for SI unit conversion, and e (-) denotes

the blower efficiency and is usually equal between 0.70 and 0.90.

7.5 Modelling air scour with the slug-flow model

7.5.1 Introduction

Prevention of cake buildup in immersed MBRs is accomplished mainly through coarse

bubble aeration, i.e. injection of air bubbles of „ 6 ´ 13 mm dia. at the bottom of the
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membrane modules. These air bubbles rise and coalesce to form larger bubbles, usually

occupying most of the free space and which, whilst flowing upwards in the vicinity of

the membrane and cake, create shear stresses leading to cake detachment.

Coarse-bubble aeration leads to a two-phase air-water flow which may exhibit dif-

ferent patterns depending on the relative concentration of the two phases and the flow

rate [152]. In case of immersed MBRs liquid phase flow is dependent on the gas flow

velocity which induces circulating flow through and around the membrane modules.

The functional relationship between gas and liquid flow rates depends on the tank and

membrane module geometry and the type and location of the aeration grid. Two-phase

gas-liquid flow patterns in a vertical upward flow have been investigated by various

researchers. One of the most well-known studies is a study of Hewitt and Roberts [93]

who developed a flow regime map shown in Figure 7.8 for and upward two-phase flow.

The map is based on a fairly wide range of experimental data.

Figure 7.8: Flow regime map for a vertical upward two-phase flow [93].

Horizontal and vertical coordinates of the map denote the superficial momenta of

liquid
`
ρL UL

2
˘

and gas
`
ρG UG

2
˘

phases and explicitly identify the type of the flow

regime present in the system. Whilst all of these flow regimes are outlined below,

the favourable type of flow in immersed MBRs is slug flow as it is found to create high

levels of shear and turbulence per amount of air provided to the system. The fluctuating

movement of liquid slugs and air pockets induces shear stresses on the boundaries of

the flow domain and create wakes which produce additional turbulence-induced shear.

These turbulence and shear stresses promote back-transport of cake from the membrane

to the bulk liquid.

• Bubbly flow. Defined as flow of gas bubbles dispersed in a continuous liquid phase.

The bubbles’ sizes and shapes may vary widely but they are typically spherical

and small compared to the cross-sectional dimension of the flow domain.

• Slug flow. Higher gas flow rates lead to larger gas void fractions inside the flow

domain to the point where proximity of the bubbles is sufficiently small for them

to start coalescing and forming larger bubbles. These bubbles are characterised
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with a similar cross-sectional dimension as the length-scale of the flow domain (e.g.

tube diameter), have a characteristic bullet-like shape with a hemispherical nose

and a blunt tail-end, and are commonly referred to as Taylor bubbles (TBs). Taylor

bubbles are separated from one another by sections of liquid called slugs which

themselves, depending on the ratio between gas and liquid mass flow rates (see

Figure 7.8) may contain more or less gas bubbles. Taylor bubbles are surrounded

by a thin liquid film forming between them and the tube wall, which may flow

downwards due to the force of gravity, even though the net flow of fluid is upwards.

The slug flow problem is schematically presented in Figure 7.10 and is further

explained and modelled in Section 7.5.2.

• Churn flow. As the gas flow rate grows further, the structure of the flow becomes

unstable with the liquid phase experiencing an oscillatory intermittent upward

and downward motion but with a net upward flow. This instability is the result of

the relative parity of the gravity and shear forces acting in opposing directions on

the thin film of liquid around Taylor bubbles. The resulting oscillatory pattern is

termed churn flow and constitutes an intermediate regime between slug flow and

annular flow.

• Annular flow. Once the interfacial shear caused by high velocity gas flow on the

liquid film begins to dominate over gravity, the liquid phase is expelled form the

centre of the flow domain (e.g. vertical tube) and flows as a thin film on the wall

forming an annual ring of liquid while the gas phase flows as a continuous phase

up the centre of the tube. The interface is disturbed by high frequency waves

and ripples. It is also possible that some of the liquid may be entrained as small

droplets in the gas core, or that some bubbles may be entrained in the liquid film.

• Wispy annular flow. This type of flow falls between annular and misty flow and

exists where gas flow velocity is further increased (in annular flow) causing the

droplets entrained in the central core gas phase to form coherent and transient

structures resembling clouds or whisps.

Studies on the characteristics of two-phase vertical flows, such as the one published

by Hewitt and Roberts [93], do not explicitly mention any intermediate flow patterns

which occur during transition between the, so called, independent flow regimes. One

such flow regime, which is of particular interest in this study, is cap bubbly flow briefly

described below.

• Cap bubbly flow occurs during transition between bubbly and slug flow [232] and

leads to formation of the, so called, cap bubbles which are substantially different

in shape and their motion and produce different drag and shear forces to small

bubbles in bubbly flow and bullet-like Taylor bubbles in slug flow. Cap bubbly

flow may occur in immersed MBRs when the air-flow in a given flow domain is less

than required for the development of full slug-flow. Cap bubbly flow was observed

to develop in MBRs where spaces between membrane bundles are greater than 15

cm. Drews et al. [48] also showed through experiments and simulation that the

bubbles of larger diameters undergo larger deformations during the upward flow

232



T. Janus 7.5. MODELLING AIR SCOUR WITH THE SLUG-FLOW MODEL

due to drag forces and, as a consequence, develop cap-like rather than spherical

shapes. Fabre and Liné [55] observed caps forming in spacings as little as 8cm.

Results of the simulations carried out in this study (see Section 7.5.7 for details)

support the findings of Drews et al. [48]. Under specific aeration demands per membrane

area SADm of 0.2–1.2 Nm3m´2h´1 normally applied in immersed membrane bioreactors

(iMBRs), the fraction of gas phase in a membrane module is characteristic of bubbly

and cap-bubbly flow rather than slug-flow. The predicted Taylor bubble lengths are

very short in comparison to the lengths of liquid slugs, which indicates formation of

cap-like short air-bubbles.

7.5.2 Modelling of slug-flow

Two-phase flows are very difficult to model due to their inherent temporal and spatial

variability. In bubbly-slug, slug, or cap-bubbly flow as well as other two-phase flows

the interfacial topology constantly changes as both phases, here air and water, interact

by exchanging energy, momentum and mass. Any point along the flow domain will

experience alternating high and low gas fractions. We may therefore confidently state

that there is no such thing as a steady-state slug flow, but we will use this term to

describe constant average mass flows and slug and bubble lengths under time-varying

flow conditions.

All macroscopic two-phase models begin with the formulation of mass, momentum

and energy conservation equations for each phase. In order to obtain closure, these

equations are then supplemented with the, so called, constitutive equations which de-

scribe the interactions between the phases and between each phase and the medium in

which the flow occurs [152]. In case of coarse-bubble aeration these constitutive relations

describe the interfacial exchange of mass between phases by the mechanism of phase

change, interfacial exchange of momentum resulting from the slip velocity between the

phases, and the interactions between the phases and the containing medium, e.g. wall

shear due to friction.

The most accurate, yet very computationally intensive approach to modelling slug-

flow would be to apply general methods of Computational Fluid Dynamics (CFD) to

solve a set of discretised partial differential equations (PDEs) for mass, momentum

and energy conservation together with the appropriate constitutive equations on a two-

dimensional (2D) or three-dimensional (3D) spacial grid covering an entire domain of

flow. Such a model allows to capture both the spacial as well as temporal dynamics

of the flow. Complexity of such a model would however exceed the complexity of the

biological and fouling models combined. With slug-flow description being only a mere

addition to ASM and fouling models which form the core of the integrated MBR model,

the approach adopted in this study is to formulate a much simpler, time and spatially

averaged one-dimensional (1D) steady-state description of the two-phase slug flow.

It is assumed that slug flow is fully developed, axially symmetric, isothermal,
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steady-state, and under low pressure conditions. Both phases are at an equilibrium,

i.e. no one-directional mass transfer occurs between the phases whilst coalescence and

breakage happen at equal rates. As mentioned earlier, in reality, this type of flow is

highly fluctuating and displays a spatial and temporal distribution of both phases within

the flow domain, but for the purpose of modelling the flow is idealised and the model

can be considered to give temporally and spatially averaged values for the parameters

involved. It is also assumed that the flow geometry does not change with time, i.e.

hollow-fibre membrane bundles in the iMBR do not sway due to velocity and pressure

gradients developing in the bulk liquid. Although hollow-fibre bundles are known to

move in the tank, it would have been very hard, if not impossible, to include these

effects in the steady-state model considered in this study.

As already mentioned, the flow pattern inside an air-sparged iMBR is likely to

resemble more of a cap-bubbly flow than a slug-flow. However, since reliable models

of cap-bubbly flow have not yet been developed and transition conditions between slug

and cap-bubbly flow are difficult to establish, it is assumed that the flow pattern devel-

oping in the system under consideration falls into the slug-flow category. This is quite

a significant assumption and shall be taken into consideration when interpreting the

simulation results.

7.5.3 Investigated slug-flow models

Two mathematical models of slug flow have been investigated:

1. Plug flow model of Busch et al. [19]

2. Slug flow model of Zaisha and Dukler [268]

The model of Busch et al. [19] simplifies a slug-flow problem to the, so called, plug-flow

where liquid slugs are assumed to be devoid of any gas bubbles. The model also assumes

no mass and momentum transfer between the gas and the liquid phase. Gas and liquid

velocities are calculated with mass balance equations under an assumption that the gas

phase is incompressible. The film thickness around Taylor bubbles and their mean rise

velocity due to buoyancy are calculated with correlation equations proposed by Wallis

[248]. The superficial liquid velocity is obtained from Bernoulli equation for an upward

non-ideal liquid flow across the membrane module in which the resistance coefficient λ

is calculated according to Blasius’ equation for smooth tubes.

The model of Zaisha and Dukler [268] is an extension and improvement of the

‘model of two-phase slug flow in vertical tubes’ published by Fernandes et al. [59]. The

model of Zaisha and Dukler [268] extends the original model with improved formulation

of gas entrainment by falling liquid film leading to improved predictions of void fraction

in the liquid slugs. The new model also describes the development of liquid film around

Taylor bubbles and is valid also for short, not just long Taylor bubbles. The model uses

12 original equations of Fernandes et al. [59] and adds 10 new equations leading to 22

equations and 22 variables overall. The superficial liquid velocity has to be specified by
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the user or calculated either with the same set of Bernoulli equations for smooth tubes

as in the model of Busch et al. [19] or with a different hydraulic model of the system.

Both models were initially solved for a different number of air flow rates and starting

conditions using MATLAB’s Optimization Toolbox function lsqnonlin which solves

nonlinear least-squares problems of the form:

min
x

∥

∥

∥

fpxq
∥

∥

∥

2

2

“ min
x

´
f1 pxq2 ` f2 pxq2 ` . . . ` fn pxq2

¯
(7.33)

where fpxq denotes the vector of n known equations and x denotes the vector of un-

knowns. Here, residuals of the individual equations were minimised to find the solution

of the system of equations defining the slug flow model.

The default ‘trust-region-reflective’ algorithm was used for its ability, contrary to

the alternative ‘Levenberg-Marquardt’ algorithm, to handle bound constraints.

Both of the above models were found to converge to different solutions depending on

the choice of a starting point. For example, different combinations of the gas fraction in

Taylor bubbles αTB and the TB-to-liquid slug ratio β in the plug flow model of Busch

et al. [19] produce the same air flow rates and thus superficial gas velocities vsg but

different superficial liquid velocities vsl. It is therefore possible, for the same airflow

rate, to obtain short Taylor bubbles with high αTB and long slugs leading to lower

superficial liquid velocity vsl and therefore high gas fraction ε or long Taylor bubbles

with low αTB and short liquid slugs leading to higher superficial liquid velocity vsl

and thus low gas fraction. Although, no formal mathematical analysis of both models

was performed, it seems possible that a unique solution may exist provided that the

computational domain of the model is limited by setting appropriate lower and upper

bounds on calculated variables or by additional equations. These additional pieces of

information may be obtained from own experimental studies or from published studies

on the same subject.

The model of Busch et al. [19] appears to exhibit poorer convergence than the more

complex model of Zaisha and Dukler [268], possibly due to its simpler, less physical

treatment of mass and momentum exchange between gas bubbles and liquid slugs.

Whilst the model of Zaisha and Dukler [268] provides an in depth description of gas

exchange and entrainment between the gas and the liquid phase, the model of Busch

et al. [19] assumes that liquid slugs do not contain any gaseous phase, despite the

reports that the gas fraction in liquid slugs may be as high as 20%. It is possible

that the model of Busch et al. [19] is too much of an oversimplification of the slug flow

problem considered here and therefore physically significant results may be difficult to

obtain. Hence, further investigations of slug flow in the immersed hollow fibre outside-in

membrane module will be carried out with a modified version of the model of Zaisha

and Dukler [268]. This model together with additional supporting equations found in

literature is presented below.

It was later discovered that convergence and uniqueness of solutions are negatively

affected by the Bernoulli model linking the superficial liquid velocity to the superficial
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gas velocity inside the membrane module. Although no formal and rigorous mathe-

matical analysis of the model was performed in this study, nevertheless the Bernoulli

equation was eliminated from the model and instead, Equation 7.42 introduced in Böhm

et al. [13] was adopted.

7.5.4 Geometric model of a hollow fibre module

Geometric model of a hollow fibre module is adopted from Busch et al. [19] where it

is assumed that all fibres are staggered, such that three neighbouring fibres form an

equilateral triangle. An entire module area can then be represented with the structure

shown in Figure 7.9, where each hexagon represents the catchment area Ahex (m2) of a

single fibre [19].

Ahex “
?
3 lf

2

2
´ π

4
df,o

2 (7.34)

where lf (m) denotes the distance between two fibres and df,o (m) denotes the outer

fibre diameter. Total free area Amod (m2) of the module is then given by

Amod “ nf Ahex (7.35)

where nf (–) denotes the number of fibres in the module.

As stated in the original paper of Busch et al. [19], rising Taylor bubbles are

assumed to occupy the maximum available space with cross-sectional area Aslug (m2)

and diameter dslug (m) - see Figure 7.9. Aslug and dslug are calculated as follows.

dslug “ 2 lf?
3

´ df,o (7.36)

Aslug “ π
d2slug

4
(7.37)

Figure 7.9: Hollow fibre module geometry in a horizontal cross-section adopted from
Busch et al. [19]
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7.5.5 Bulk phase density and viscosity

Dynamic viscosities of water and bulk liquid (ηw and ηl respectively) as well as bulk

liquid density (ρl) are calculated with correlations of Ohle [191] as proposed in Busch

et al. [19]. Dynamic water viscosity ηw (Pa¨s) is a function of the bulk liquid temperature

Tl (oC).

ηw “ 1.78 ˆ 10´3 exp
`
´0.041T 0.875

l

˘
(7.38)

Bulk liquid viscosity ηl (Pa s) and density ρl (kg m´3) depend on, respectively, the

viscosity ηw and density ρw of water and the suspended solids concentration in the bulk

liquid XTSS (kg m´3)

ηl “ ηw

´
0.0254 pXTSSq2 ´ 0.1674XTSS ` 1.5918

¯
(7.39)

ρl “ 0.99959 ρw exp
`
4.397 ˆ 10´4 XTSS

˘
(7.40)

The bulk liquid viscosity calculated in Equation 7.39 is only indicative and likely to

differ substantially from the actual viscosity value in a real system. As briefly explained

in Section 5.6.1 activated sludge suspensions behave like non-Newtonian fluids and their

viscosities will depend on the amount of shear they are exposed to. However, as the

purpose of this study is to demonstrate the nature of slug flow within the HF membrane

modules in a qualitative, rather than quantitative manner, accurate rheological model

of an activated sludge suspension is not needed here.

7.5.6 Equations of slug flow

This section lists all equations used in the slug-flow simulations of coarse-bubble aeration

on the HF outside-in iMBR geometry. Most of the governing and constitutive equations

are borrowed from the model of Zaisha and Dukler [268] except the geometric model

of the membrane module which has been obtained from the paper of Busch et al. [19],

the model of superficial functional relationship between liquid velocity and superficial

gas velocity which has been borrowed form Böhm et al. [13] and the model of average

shear stresses on fibre surface which has also been adopted from Busch et al. [19].

Superficial velocities of gas and water

The superficial air velocity vsg (m s´1) is calculated by dividing the volumetric air flow

rate Qair (Nm3 s´1) by the cross-sectional free area of the module Amod.

vsg “ Qair

Amod
(7.41)

The flow of liquid is directly related to the amount of air injected into the membrane

module. Injection of air bubbles at the bottom of the membrane creates the velocity field

and a density current leading to a circulating motion of fluid with upwards movement
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inside the membrane modules and downwards movement outside the modules. This

superficial liquid velocity vsl (m s´1) can be calculated using Bernoulli’s energy mass

balance equation across the membrane module as proposed by Busch et al. [19] but this

approach was found to lead to poor convergence of the slug-flow model and hence has

not been used in this study. Instead, the model implements a modified Chisti equation

as proposed by Böhm et al. [13], where vsl is in a quadratic relationship with vsl.

vsl “ 47.119 v2sg ´ 6.624 vsg ´ 9.835 ˆ 10´2 (7.42)

The mean superficial rising velocity of Taylor bubbles and liquid slugs vs,tot (m s´1) is

then given by

vs,tot “ vsg ` vsl (7.43)

A vertical slug flow can be represented, as briefly described in Section 7.5.2, with a

number of mass and momentum conservation equations supplemented with a number of,

so called, constitutive equations describing the interactions between the two phases and

between the phases and the boundaries of the flow domain. The first of the conservation

equations is the mass balance in A-A section of the flow geometry (see Figure 7.10).

QLS
l ` QLS

g ` QTB
l “ QTB

g (7.44)

where QLS
l , QTB

l , QLS
g and QTB

g (m3 s´1) are the volumetric flow rates of, respectively,

liquid phase in liquid slugs, liquid phase in Taylor bubbles, gas phase in liquid slugs,

and gas phase in Taylor bubbles. The above equation can be reformulated by dividing

both parts by the free cross-sectional module area Amod.

vLSl p1 ´ αLSq ` vLSg αLS ` vTB
l p1 ´ αTBq “ vTB

g αTB (7.45)

where vLSl , vTB
l , vLSg and vTB

g (m s´1) are the velocities of, respectively, liquid phase

in liquid slugs, liquid phase in Taylor bubbles, gas phase in liquid slugs, and gas phase

in Taylor bubbles, and αLS and αTB (–) denote void fraction in liquid slugs and Taylor

bubbles, respectively. The balance of liquid and gas flow for an entire volume of the

slug unit are given in Equations 7.46 and 7.47 [59].

vsl “ p1 ´ βq
“
p1 ´ αLSq p1 ´ γq vLSl ` p1 ´ αHq γ vLSH

‰
´ β p1 ´ αTBq vTB

l (7.46)

vsg “ β αTB vTB
g ` p1 ´ βq αLS vLSg (7.47)

where αH (–) and vLSH denote, respectively the void fraction and the liquid velocity in

the high voidage circulation zone of a liquid slug and

γ “ LHLS

LLS
(7.48)

is the length ratio of the circulation zone LHLS (m) to the length of the liquid slug LLS
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(m). β denotes the length ratio of TB to the whole slug unit.

β “ LTB

Lslug
“ LTB

LTB ` LLS
(7.49)

where LTB , LLS , and Lslug are, respectively, the lengths of the Taylor bubble, the liquid

slug and the entire slug unit. Void fraction in the circulation zone αH (–) is calculated

as

αH “ QC
1

QC
1 ` QTB

l

1 (7.50)

where QTB
l

1
(m3 s´1) denotes the flow of liquid film relative to the liquid slug.

QTB
l

1 “ π

4
d2slug p1 ´ αTBq

`
vN ` vTB

l

˘
(7.51)

Liquid velocity in the circulation zone vLSH is given by

vLSH “ vN ´ 4QTB1

l

πd2slug
(7.52)

The two other mass balances, for the gaseous and liquid phases respectively, as published

in Fernandes et al. [59], are calculated relative to the nose of the Taylor bubble.

`
vN ´ vLSg

˘
αLS “

`
vN ´ vTB

g

˘
αTB (7.53)

`
vN ´ vLSl

˘
p1 ´ αLSq “

`
vN ´ vTB

l

˘
p1 ´ αTBq (7.54)

where vN (m s´1) denotes the TB rise velocity.

The rising velocity of Taylor bubbles is given as

vN “ C vs,tot ` v0 “ C pvsg ` vslq ` 0.351
a

g dslug (7.55)

where v0 (m s´1) denotes the bubble rise velocity in stagnant liquid [184] and C is a

dimensionless coefficient that depends on the velocity profile ahead of the bubble, and

can be seen as the ratio of the maximum to the mean velocity in the profile [233]. The

values of C under fully developed turbulent and laminar conditions were determined in

the early work on slug flow by Nicklin et al. [184] and later confirmed in the work of

various other researchers [76, 12, 34, 200].

C –
#

2.0 if Recs ď 8000

1.2 if Recs ą 8000
(7.56)

where Recs denotes the Reynolds number based on the mean slug flow velocity

Recs “ vcs,tot dslug ρl

ηl
(7.57)

However, in order to avoid poor convergence issues, the model of Zaisha and Dukler

[268] used in this study adopts just a single value of C “ 1.29 regardless of the Reynolds
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number.

Taylor bubbles exchange gas with liquid slugs at the top (nose), the bottom, and at

the periphery of the bubble. As Taylor bubbles move faster from the liquid slugs, they

coalesce and entrain little gas bubbles present in the liquid slugs. At the same time,

little gas bubbles detach from TBs under shear forces developing around the bubble and

get entrained in the liquid slugs. Under a pseudo-steady state condition, gas flow into

TB and out from TB into the liquid slugs is at an equilibrium, which can be expressed

as

QA
1 ` QB

1 “ QC
1 (7.58)

where QA
1, QB

1, and QC
1 (m3 s´1) denote, respectively, gas flow into Taylor bubbles at

the top and at the bottom, and gas entrainment from Taylor bubbles into liquid slugs,

all relative to TB nose.

Figure 7.10: Graphical representation of a slug flow problem - adopted from Zaisha and
Dukler [268].

The gas exchange flow rates QA
1, QB

1, and QC
1 in Equation 7.58 are obtained from

the following three constitutive equations [59, 268].

QA
1 “ π

4
d2slug αLS

`
vN ´ vLSg

˘
(7.59)

QB
1 “ π

4
pdslug ´ 2 pδl ` δgqq2 αH

`
0.25

`
1.15 vTB

l ` vN
˘˘

(7.60)

QC
1 “ 1

3

c
2 ηg

ρl g

`
vTB
l ` vN

˘1.5
Lf (7.61)

where ηg (Pa¨s) denotes the dynamic gas viscosity and is calculated with the Suther-

240



T. Janus 7.5. MODELLING AIR SCOUR WITH THE SLUG-FLOW MODEL

land’s formula, f “ 40.85 is a correction coefficient for enhancement of entrainment due

to waviness of the liquid film and L (m) is the TB periphery at its bottom and is equal

to L “ π pdslug ´ δgq where δg is calculated from Equation 7.67. The rising velocity of

gas bubbles in the liquid slugs vLSg in Equation 7.59 is calculated from Equation 7.62

below [84, 273].

vLSg “ vLSl ` 1.53

ˆ
σl,g g pρl ´ ρgq

ρ2l

˙ 1

4 ?
1 ´ αLS (7.62)

where σl,g (N m´1) denotes the surface tension between the gaseous and the liquid phase.

Terminal velocity of falling liquid film vTB
l in Equations 7.60 and 7.61 is calculated as

vTB
l “

´
v
TB,0
l ` vN

¯
r1 ´ b expp´c Y qs ´ vN (7.63)

where v
TB,0
l is an equilibrium terminal velocity of falling liquid film and is given by

v
TB,0
l “ 9.916

b
g dslug p1 ´ ?

αTBq (7.64)

and Y denotes a transformed axial distance from the TB nose

Y “ 2

ˆ
x

dslug

˙ ˆ
ηl

ηw

˙ 2

3

(7.65)

where ηl and ηw (Pa¨s) denote, respectively, the dynamic viscosities of bulk liquid and

water. Thickness of a falling liquid film δl around the cylindrical part of a TB is derived

from the void fraction in the Taylor bubble αTB

δl “ dslug

2

`
1 ´

?
1 ´ αTB

˘
(7.66)

whereas the entrained gaseous film thickness δg is given by [268]

δg “ 2QC
1

π pdslug ´ 2 δlq
`
vTB
l ` vN

˘ (7.67)

Length of the circulation zone and the liquid slug

The model does not calculate the lengths of the circulation zone LHLS and the liquid

slug LLS and thus, these quantities have to either be measured, assumed or calculated

with additional equations provided. The original paper of Zaisha and Dukler [268]

assumes that

LHLS “ 5 dslug (7.68)

as originally reported by Shermer and Barnea [219] and

LLS “ 20 dslug (7.69)
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Although the model of Zaisha and Dukler [268] used in this study adopts the two above

simple relationships which assume that LHLS and the liquid slug LLS remain constant

regardless of the hydrodynamic conditions present, many researchers reported that these

two lengths vary with flow conditions. Fernandes et al. [59] reported LLS “ 16´22 dslug

whilst Zhang et al. [270] found LLS to be in a function of Reynolds number based on

the relative velocity at the bottom of the Taylor bubble, Ren (–).

LLS “
´
4.0 ` 0.0526

a
Ren

¯
dslug (7.70)

Ren “
ρL

`
vTB
g ´ vTB

l

˘
dslug

ηl
(7.71)

Shear stress on the fibre surface

Under the assumption that slug flow through a HF membrane module can be modelled

in the same manner as slug flow in a vertical tube, shear stress caused on the surface

of a fibre in the slug unit can be divided into two parts [271]

1. Positive shear stress τTB
w due to the falling liquid film.

2. Negative shear stress τLSw due to the rising liquid slug.

Average shear stress on the fibre surface τw is then calculated as a weighed sum of τTB
w

and τLSw

τw “ β
ˇ̌
τTB
w

ˇ̌
` p1 ´ βq

ˇ̌
τLSw

ˇ̌
(7.72)

where β (–) denotes the TB to liquid slug ratio.

Although absolute values of individual shear stresses caused by the motion of falling

liquid film and rising liquid slugs, rather than average shear stress, will govern the system

behaviour, i.e. detachment of cake from the membrane surface, in order to describe

cake detachment as a function of these shear stresses one has to be in possession of a

dynamic cake detachment model. Whilst shear stresses due to the falling liquid film

τTB
w are found to be much higher than the shear stresses caused by rising liquid slugs

τLSw , the membrane in this study is exposed to them for only a very short amount of

time as the air bubbles are very short compared to liquid slugs. Hence, although shear

stresses τTB
w are high, the membrane exposure time to these shear stresses may not be

sufficient for the cake to detach from the membrane surface. Due to the lack of available

information on the dynamics of cake detachment the two shear stress components are

temporarily averaged according to Equation 7.72 and this averaged shear stress value is

used as the input to the cake detachment model given in Equation 5.71. The produced

shear stress value τw represents a time-averaged shear stress on the membrane surface.

Shear force in the liquid slug (τLSw ) is calculated from the Blasius’ equation for

smooth tubes [19]

τLSw “ ρl λslug

`
vLSl

˘2

8
(7.73)
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where λslug is calculated as

λslug “ 0.316 Recs
´0.25 (7.74)

Shear forces caused by a falling liquid film around Taylor bubbles are calculated with

Equation 7.75 under the assumption that shear forces between liquid, gas and film

curvature can be neglected [19].

τTB
w “ pρl ´ ρgq g δl (7.75)

7.5.7 Model simulation and results

The slug-flow model described above was simulated for a range of superficial gas ve-

locities between 1 and 5 m s´1 which satisfy the aeration demands per membrane area

(SADm) of 0.20 - 1.00 m3 m´2 h´1. All relevant inputs and parameters of the slug

model are presented in Table 7.2.

Table 7.2: Values of the slug-flow model parameters adopted in the simulations.

Parameter Description Unit Value

lf Distance between neighbouring fibres m 0.01

df,o Fibre’s outer diameter m 0.0025

h Membrane module’s (fibre’s) height m 1.8

Amod Module cross-section area m2 402.8

ρw Density of water kg m´3 998.2

ρg Density of air kg m´3 1.15

ηg,0 Dynamic gas viscosity under normal conditions Pa ¨ s 1.827 ˆ 10´5

σl,g Surface tension between water and air N m´1 0.0729

vsg Superficial gas velocity cm s´1 t1 : 0.25 : 5u

XTSS Total Suspended Solids kg m´3 t6, 13, 20u

Tl Bulk liquid temperature oC t8, 14, 20u

b Coefficient in Equation 7.63 – 0.807

c Coefficient in Equation 7.63 – 0.0671

f Correction coefficient in Equation 7.61 – 40.85

The average shear stresses τw on the fibre surface were calculated for all given

superficial gas velocities vsg, bulk liquid temperatures Tl and suspended solids concen-

trations xTSS. The results are shown in Figure 7.11. Each continuous sequence of

points in Figure 7.11 represents the relationship between τw and vsg for a chosen combi-

nation of xTSS and Tl maintained at a constant level throughout the simulation. τw, as

logic indicates, increases with the aeration rate and so does the superficial gas velocity

vsg. Gradient of the τw “ fpvsgq curve however gets smaller as vsg is increased. The

amount of shear created by aeration is found to increase with xTSS and decrease with

Tl, although the influence of xTSS is stronger than of the liquid temperature Tl.

Each of the nine sets of points shown in Figure 7.11 were approximated with a

third-order polynomial of the following form:

τwpvsgq “ p1 pvsgq3 ` p2 pvsgq2 ` p3 pvsgq ` p4 (7.76)
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Figure 7.11: Average shear stresses on the fibre surface τw under different superficial
gas velocities vsg, suspended solids concentrations xTSS and bulk liquid temperatures
Tl.

The approximations were carried out with MATLAB’s Curve Fitting Toolbox

cftool, results of which are listed in Table 7.3.

Table 7.3: Coefficients of interpolating polynomials for τw vs vsg data for each combi-
nation of xTSS and Tl.

Simulation
xTSS Tl p1 p2 p3 p4

kg m´3 oC Pa s3 m´3 Pa s2 m´2 Pa s m´1 Pa

1 6 8 -0.01039 0.04406 0.2949 -0.1607

2 13 8 -0.01101 0.04783 0.3328 -0.1489

3 20 8 -0.01137 0.05117 0.3695 -0.1193

4 6 14 -0.01034 0.04374 0.2888 -0.1629

5 13 14 -0.01093 0.04731 0.3255 -0.1519

6 20 14 -0.01136 0.05123 0.3586 -0.1214

7 6 20 -0.01030 0.04345 0.2833 -0.1649

8 13 20 -0.01086 0.04683 0.3190 -0.1547

9 20 20 -0.01134 0.05129 0.3488 -0.1234

It is assumed that each of the four sets of polynomials shown in columns in Table 7.3

form a continuous function with xTSS and Tl:

@i“1:4 pi “ fipxTSS , Tlq (7.77)

It was found that the polynomial given in Equation 7.78 is able to give the highest

quality of fit out of all tested polynomials with R2 ą 0.995 in all instances.

pi “ a1 ` a2 xTSS ` a3 Tl ` a4 pxTSSq2 ` a5 pxTSS Tlq (7.78)

The approximations were carried out, similarly to the previous task, with MATLAB’s

Toolbox cftool. All four polynomial coefficients in Table 7.3 can be expressed in the
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following form:

p1 “ ´9.884 ˆ 10´3 ´ 1.106 ˆ 10´4 pxTSSq ` 1.256 ˆ 10´5 pTlq (7.79)

`1.669 ˆ 10´6 pxTSSq2 ´ 3.722 ˆ 10´7 pxTSS Tlq
p2 “ 4.231 ˆ 10´2 ` 3.862 ˆ 10´4 pxTSSq ´ 9.708 ˆ 10´5 pTlq (7.80)

`3.378 ˆ 10´6 pxTSSq2 ` 4.288 ˆ 10´6 pxTSS Tlq
p3 “ 0.2627 ` 6.695 ˆ 10´3 pxTSSq ´ 5.703 ˆ 10´4 pTlq (7.81)

´3.598 ˆ 10´5 pxTSSq2 ´ 5.445 ˆ 10´5 pxTSS Tlq
p4 “ ´0.151 ´ 2.212 ˆ 10´3 pxTSSq ´ 4.014 ˆ 10´4 pTlq (7.82)

`1.985 ˆ 10´4 pxTSSq2 ` 8.685 ˆ 10´7 pxTSS Tlq

Equation 7.76 was then solved with p1, p2, p3 and p4 obtained from Equations 7.79-

7.82 for all values of vsg, xTSS, and Tl used in the simulation. The resulting curves were

plotted along the simulation results in Figure 7.11 and exhibit a perfect visual fit.

We therefore come to the conclusion that for this particular HF iMBR system under

consideration, the polynomial presented in Equation 7.76 with coefficients calculated

from Equations 7.79-7.82 is able to produce the same values of wall shear stress on the

fibre surface as the slug-flow model of Zaisha and Dukler [268].

Figure 7.12 shows the two components of τw: shear stress caused by the motion

of liquid slugs τLSw and Taylor bubbles τTB
w at different operating points defined in

the simulation. Figure 7.12 shows that whilst τLSw depends on xTSS and Tl and is in

a positive almost linear relationship with vsg, τTB
w is independent of xTSS and Tl, is

„ 6 ˆ τLSw and decreases rapidly with vsg. Decrease in τTB
w under higher gas velocities

is caused by decreasing thickness of liquid film around the Taylor Bubble δl and is

responsible for the curvature of τw “ fpvsgq shown in Figure 7.11.
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Figure 7.12: Shear stresses caused by the motion of liquid slugs τLSw and Taylor bubbles
τTB
w at different superficial gas velocities vsg, suspended solids concentrations xTSS and

bulk liquid temperatures Tl.

The model predicts, for a given set of inputs and parameters, rather low values

of gas fraction ε between 7-14% and similarly low TB to slug unit ratios β, which are
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found to increase with vsg and range approximately between 0.004 and 0.06. On one

hand the model tends to support the findings of other researchers, e.g. [48] that under

specific aeration rates SADm applied to iMBRs, the air-liquid flow pattern resembles

more of a cap-bubbly flow with cap-like small air bubbles rather than a fully developed

slug-flow. On the other hand, the results presented here are obtained with a number

of risky assumptions. The adopted functional relationship between vsg and vsl is likely

not to represent the specific system under study, the HF module geometry is simplified

with a geometric model in Figure 7.9, it is assumed that the flow domain does not vary

in time, i.e. the fibres remain rigid and do not sway, the highly time-varying shear

stresses are calculated as a weighed sum of τTB
w and τLSw according to Equation 7.72.

Last but not least, the slug-flow model itself constitutes a significant simplification of

slug-flow because, as already explained in Section 7.5.2 and mentioned indirectly above,

it leads to spatial and temporal averaging of a highly variable and chaotic process. This

means that the model might be flawed in its basic assumptions as it may not be possible

to approximate a highly variable process of this kind with a spatially and temporally

averaged approximation.

Thus, the results provided above are very unlikely to be quantitatively accurate.

However, bearing in mind the lack of empirical data, they do introduce some insight into

the nature of the system and can serve as a theoretical basis for further investigations.

The results are complemented with gas fractions ε and length ratios of TB to the whole

slug unit β at different superficial gas velocities vsg, suspended solids concentrations

xTSS and bulk liquid temperatures Tl shown in Figure 7.13 and Figure ??. xTSS and Tl

do not have any influence on the predicted values of ε and β, hence both figures show

single curves instead of families of curves.
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Figure 7.13: Gas fractions ε and length ratios of TB to the whole slug unit β at differ-
ent superficial gas velocities vsg, suspended solids concentrations xTSS and bulk liquid
temperatures Tl.

Back transport of cake
dmc

dt
(kg m´2 s´1) has also been empirically linked to the

superficial air velocity vsg (m/s) with the following power relationship [72].

dmc

dt
“ ´αv pvsgqβv (7.83)
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where αv (–) is a dimensionless air scouring coefficient, vsg (m/s) denotes the superficial

air velocity, and βv denotes the dimensionless air scouring exponent.

7.6 EPS and SMP effects on fouling

Dependence of specific cake resistance αc on EPS

Results of various research studies on dependence of specific cake resistance αc on EPS

content in activated sludge are so far not conclusive, however it is understood that

specific cake resistance does depend on EPS.

Nuengjamnong et al. [187] measured the specific cake resistance αc of washed and

unwashed sludge of three laboratory-scale iMBRs operating at a constant subcritical

permeate flux of 12.5 Lmh, equipped with a flat-sheet microfiltration membrane with a

0.25 µm pore size at three different SRTs of 8, 20 and 80 days. The reactors were fed

with synthetic wastewater based on glucose as a carbon source. EPS were extracted

using a cation- exchange resin (CER, Dowex 50x80, 20-50 mesh, sodium form, Aldrich

42878-7) method. The obtained results shown in Figure 7.14 indicate that αc increases

with the EPS content, although the type of this relationship is difficult to identify due

to limited number of data points and large errors associated with the measurements.

Nevertheless the data points for the washed and unwashed sludge were fitted with two

separate linear regression models with a reasonable quality of fit characterised by R2 of

respectively 0.724 and 0.672.
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Figure 7.14: Specific cake resistance αc as a function of EPS content in the cake -
Nuengjamnong et al. [187].

Cho et al. [29] measured the specific cake resistance of activated sludge samples

characterised with different MLSS concentrations and EPS/MLVSS ratios. Specific cake

resistance was measured at different pressures in dead-end filtration experiments per-

formed using an unstirred batch cell equipment, called Amicon Cell (AmiconTM, USA)
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equipped with a 0.2µm, polyethersulfone, hydrophilic membrane. EPS was extracted

using cation exchange resin (DOWEX 508, 20-50 mesh in the sodium form, Aldrich

42878-7) accordingly to Frølund et al. [66].

Cho et al. [29] found that

µ2 TMP´1 αc “ fpEPS{MLV SSq (7.84)

where fpEPS{MLV SSq “ A ` B p1 ´ expp´C xqqD and A, B, C, D are adjustable

parameters.

Equation 7.84 was fitted to the measurements, however the curve published in Cho

et al. [29] doesn’t seem to reproduce the data. Therefore the curve in Equation 7.84

was fitted by the author of this thesis producing the following relationship between αc,

∆P , µ and
EPS

MLV SS
and shown in Figure 7.15b.

αc “ ∆P

µ2

˜
1057 ` 17707

ˆ
1 ´ exp

ˆ
´118.6

EPS

MLV SS

˙˙40.33
¸

(7.85)

When we substitute µ with the value for dynamic viscosity of water at 20˝C , i.e.

µ “ µw,20oC “ 1.002 ˆ 10´3 Pa¨s, Equation 7.85 becomes:

αc “ ∆P

˜
1.053 ˆ 109 ` 1.764 ˆ 1010

ˆ
1 ´ exp

ˆ
´118.6

EPS

MLV SS

˙˙40.33
¸

(7.86)

which shows that αc is found to depend on pressure according to the relationship αc “
α0 TMPn where n “ 1. The relationship between αc and TMP is shown in Figure 7.15a.
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Figure 7.15: (a) Dependence of cake resistance on trans-membrane pressure (TMP) and
(b) relationship between EPS/MLVSS, dynamic viscosity µ, specific cake resistance αc

and TMP.

The effect of TMP on the relationship for αc vs EPS/MLVSS described in Equa-

tion 7.85 is shown in Figure 7.16 and indicates that the relationship becomes more linear

for lower TMP.
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Figure 7.16: Specific cake resistance αc as a function of EPS content in the cake at
different TMPs.

Ahmed et al. [1] investigated the the effects of SRT on membrane fouling in a

MBR equipped with the sequential anoxic/anaerobic reactor. At each studied SRT,

they measured specific cake resistance αc, TMP, MLVSS and MLSS and EPS. The

measurements of Ahmed et al. [1] were used to create the αc vs EPS/MLVSS plot

shown in Figure 7.17.

Although Figure 7.17 suggests a nonlinear relationship between αc and EPS/MLVSS,

small number of data points with significant measurements errors prevent to infer an

accurate form of this relationship. Hence a simple straight line equation was fitted to

the data as shown in the figure.
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Figure 7.17: Specific cake resistance αc as a function of EPS content in the cake -
Ahmed et al. [1].

7.7 SMP rejection by the membrane

Song et al. [226] identified the following relationship between effluent SMP concentration

SSMP,e and bulk liquid SMP concentration SSMP,bio as a function of the plant’s SRT
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(θ).

SSMP,e “ SSMP,bio p0.425 ´ 0.005 θq (7.87)

Here, SSMP,e was found to decrease with SRT possibly due to the changes in sludge floc

size distribution (FSD) and retentive properties of the dynamic layer.

However, the above relationship is only valid for one particular system whereas

SMP rejection will normally depend on the number of factors such as FSD of the bulk

liquid, particle size distribution of the cake, composition of the dynamic layer, degree

of fouling on the membrane, properties of the membrane, etc. Hence, it was decided

to refrain from any attempts of modelling SMP rejection and hence the membrane’s

retentive properties are instead described with a single parameter fnr which denotes the

fraction of non-retained SMP, i.e. the fraction of SMP which ends up in the permeate.

7.8 Output and process evaluation criteria

Outputs of the integrated MBR model (IBMF-MBR) developed in this thesis are as-

sessed in the same way as the outputs of the COST/IWA benchmark simulation model

no.1 (BSM1) [36, 37] and of the MBR benchmark simulation model (BSM-MBR) [160].

As shall later be described in Chapter 8 all three models are simulated with different

scenarios under constant and time-varying inputs called respectively, steady-state and

dynamic simulations.

The recorded results of steady state simulations include the flow averaged state vari-

able concentrations in the influent, effluent and underflow streams and time-averaged

process variables: SRT, hydraulic retention time (HRT), aeration energy, pumping en-

ergy, mixing energy, sludge production, and observed sludge yield. Outputs of the

dynamic simulations include flow averaged influent and effluent loads and concentra-

tions of state and composite variables. The recorded process variables are respectively:

average SRT, HRT and sludge yield. The effluent and operational cost performance cri-

teria are respectively: influent quality index (IQI), effluent quality index (EQI), 95%-ile

concentrations of the effluent ammoniacal nitrogen (NH`
4
-N), total nitrogen (TN), total

suspended solids (TSS), chemical oxygen demand (COD) and biological oxygen demand

in five days (BOD5), number of effluent consent violations and percent of time under

violation of these state and composite variables, as well as average sludge production,

energy demand for aeration, pumping and mixing, and operational cost index (OCI).

The calculation procedure for composite variables in IBMF-MBR was adopted from

BSM1 and takes into account three new state variables: SUAP , SBAP and XEPS present
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in CES-ASM1.

TSS “ 0.75 pXS ` XH ` XA ` XP ` XI ` XEPSq (7.88)

COD “SS ` SI ` XS ` XH ` XA ` XP ` XI ` XEPS ` SUAP ` SBAP (7.89)

BOD5 “ fBOD pSS ` XS ` p1 ´ fP qpXH ` XAq ` XEPS ` SUAP ` SBAP q (7.90)

TKN “SNH ` SND ` XND ` iXB pXH ` XAq ` iXP pXP ` XIq ` (7.91)

iXBAP SBAP ` iXEPS XEPS

TN “TKN ` SNO (7.92)

where fBOD “ 0.25 in the effluent stream and fBOD “ 0.65 in the influent stream. It is

assumed that XEPS contribute to the amount of solids in the system and that XEPS ,

SUAP , and SBAP are biodegradable, hence contribute to both COD and BOD5. Whilst

SBAP contains nitrogen (N), SUAP is devoid of any nitrogen and hence does not appear

in the equation for total Kjeldahl nitrogen (TKN).

The effluent quality, i.e. pollution emitted to the receiving body is characterised

with a combination of flow-proportionally averaged state and composite effluent pa-

rameters, 95%-ile concentrations of the selected effluent parameters, number of consent

violations, % of time in violation of the effluent consent limits and the effluent quality

index (EQI). All of the above quantities are calculated from raw simulation results

recorded at a 15-min sampling interval.

The number of consent violations and % of time in violation in IBMF-MBR are

calculated with reference to the same effluent consent limits as applied in BSM1 and

BSM-MBR, i.e. Smax
NH,eff “ 4 gN m´3, N max

tot,eff “ 18 gN m´3, BODmax
eff “ 10 gO2 m´3,

CODmax
eff “ 100 gO2 m´3, TSSmax

eff “ 30 gSS m´3.

IBMF-MBR model is simulated under the same scenarios and with the same pro-

tocol as introduced in [37, 160]. The model is first brought to the steady-state, then

simulated for 14 days under dry-weather inputs followed by a 14 day simulation under

either dry-weather, rain-event or storm-event conditions. The model’s performance is

evaluated for the last 7 days of operation, i.e. between day 22 and day 28, hence the

simulation time used for the eavaluation of effluent quality and process performance

tsim “ 7d.

EQI is calculated with Equation 7.93 published in COST624 [37].

EQI “ 1

1000 tsim

t0`tsimż

t0

”
βTSS TSSeff ptq ` βCOD CODeff ptq`

βBOD BODeff ptq ` βTKN TKNeff ptq`
βNO NOeff ptq

ı
qeff ptq dt

(7.93)

where βTSS “ 2, βCOD “ 1, βBOD “ 2, βTKN “ 20, and βNO “ 20. TSSeff , CODeff ,

BODeff , TKNeff , and NOeff denote, respectively, the effluent concentrations of TSS,

COD, biological oxygen demand (BOD), TKN, and nitrates+nitrites.
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IQI is calculated with the same equation as EQI after the substitution of the effluent

flow and concentrations with the influent-related flow and concentrations.

Production of sludge for disposal Psludge,disp is calculated with Equation 7.94 [37]

Psludge,disp “ ∆MTSS,bio ` MTSS,was

tsim
(7.94)

where the amount of sludge for disposal generated within the simulation time tsim is

computed as the sum of the mass of sludge wasted MTSS,was (in the WAS stream and

at volume flow rate qw) and the mass of biomass grown in the bioreactor ∆MTSS,bio.

∆MTSS,bio “ M
end of day 28

TSS,bio ´ M
end of day 21

TSS,bio . The total mass of biosolids MTSS,bio is

equal to the sum of masses of solids in each of the five bioreactors.

MTSS,bio “
5ÿ

i“1

Xi
TSS Vi (7.95)

where Vi and Xi
TSS denotes the volume and TSS concentration in the ith bioreactor,

respectively. The mass of solids disposed of in the WAS stream is calculated with

Equation 7.96

MTSS,was “ 0.75

tsimż

0

rXS,w ` XH,w ` XA,w ` XI,w ` XP,w ` XEPS,ws qwptq dt (7.96)

The mass of solids lost in the effluent stream is calculated with Equation 7.97

MTSS,e “ 0.75

tsimż

0

rXS,e ` XH,e ` XA,e ` XI,e ` XP,e ` XEPS,es qeptq dt (7.97)

Then the total sludge production in the system Psludge,tot (kg d´1) is calculated as

Psludge,tot “ Psludge,disp ` MTSS,e

tsim
(7.98)

Pumping energy PE (kWh d´1) is calculated in BSM1 and BSM-MBR by multi-

plication of the flow rate by the pumping economy coefficient PF (kWh m´3).

PE “ 1

tsimu

i“Nÿ

i“1

PFi

t0`tsimuż

t0

qiptq dt (7.99)

where N “ 3 in BSM1 and N “ 4 BSM-MBR. q1ptq “ qwptq, q2ptq “ qintptq, q3ptq “
qrptq, q4ptq “ qeptq

Equation 7.99 is replaced in IBMF-MBR with pump Equation 7.100 which cal-

culates the amount energy required to lift a given volume of water up to a specified
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Table 7.4: Values of the parameters used in pumping equations 7.99 and 7.100

Model Parameter Symbol Unit
Flow

qw qint qr qe qb

BSM1 Pumping economy PF kWh m´3 0.04 0.04 0.04 – –
BSM-MBR Pumping economy PF kWh m´3 0.05 0.0075 0.0075 0.075 –

IBMF-MBR
Geometric height hg m 7.0 0.50 0.50 calc calc
Sum of losses hl m 2.17 1.42 1.42 0.5 0.5

Efficiency η – 0.5 0.7 0.7 0.7 0.7

height.

PE “ 60 ρw g

1000 tsimu

i“5ÿ

i“1

h i
g ` h i

l

ηi

t0`tsimuż

t0

qiptq dt (7.100)

where ρw (kg m´3) denotes the water density, hg (m) denotes the geometric height, hl
(m) denotes the sum of hydraulic losses, η (–) denotes the pump efficiency, and q5 “ qe

(m3 d´1) denotes the permeate (effluent) flow rate.

The parameter values used in Equation 7.99 and Equation 7.100 are listed in Ta-

ble 7.4. Geometric height for permeate pumping and during backflush periods is calcu-

lated in IBMF-MBR from the fouling model. Backwash flow is assumed to be twice that

of the average permeate flow and corresponds to a backwash flux of „40 L m´2 h´1.

Membrane resistance during backwash periods is assumed to be equal to the resistance

of the clean membrane Rm plus additional resistance caused by irreversible fouling Ri.

Resistance due to cake formation Rr is assumed zero, i.e. removal of cake is assumed

to occur instantaneously.

Whilst energy demand for aeration AE (kWh d´1) in BSM1 is calculated with

Equation 7.101 shown below which relates AE to the oxygen mass transfer coefficient

kLa in each bioreactor, aeration energy in BSM-MBR and IBMF-MBR is calculated

with Equation 7.32 presented on page 230 which describes the energy input required

for adiabatic compression of an ideal gas.

AE “ 24

tsim

t0`tsimż

t0

i“5ÿ

i“1

“
0.4032 kLaiptq2 ` 7.8408 kLaiptq

‰
dt (7.101)

Parameters used in the adiabatic compression equation are given in Table 7.1 on

page 228.

Power requirements and energy demand for mixing ME (kWh d´1) is calculated

in the same manner as described in Copp [36] and Maere et al. [160], i.e. using Equa-

tion 7.102 in the BSM1 model and Equation 7.103 in BSM-MBR and IBMF-MBR.

ME “

$
&
%
0 if kLa ě kLamin

24 kmix V if kLa ă kLamin

(7.102)
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ME “

$
&
%
0 if qa ě qa,min

24 kmix V if qa ă qa,min

(7.103)

where kmix (kW m´3) denotes the unit power requirement for mixing of one cubic metre

of activated sludge and V (m3) is the bioreactor volume. In BSM1 kmix “ 0.005 kW m´3

whereas in BSM-MBR and IBMF-MBR kmix is higher and equal to 0.008 kW m´3 due to

higher solids contents in the bioreactors and thus, higher propensity of the bulk liquid to

settling. In BSM1 kLamin = 20 d´1 whilst qa,min in BSM-MBR and IBMF-MBR is equal

to 660 Nm3 h´1 for the anoxic and aerobic tanks and 480 Nm3 h´1 for the membrane

tank based on the minimum specific aeration rate per square metre of ground surface

area of 2.2 m3 h´1 m´2 [160].
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8.1 Introduction

8.1.1 Overview of the published integrated MBR models

Despite of the recent developments in modelling SMP and EPS production in activated

sludge systems, e.g. Lu et al. [157], Jiang et al. [115], Janus and Ulanicki [111], Chen

et al. [25] and the abundance of scientific literature examining various membrane fouling

models, the scientific community has so far seen only a handful of journal publications

in the area of integrated modelling of membrane bioreactors (MBRs). The gap between

state of the art in modelling individual components of MBR reactors and complete,

integrated MBR models stems from the fact that the interactions existing between

biological and physical (membrane filtration) parts of the MBR are very complex and
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hence difficult to describe. Research in this area seems however to have been gaining

momentum in the last couple of years which manifested itself in recent publications

of several integrated MBR models. The most well known of these models are briefly

introduced and outlined below.

Integration of activated sludge models with membrane fouling was first attempted

over a decade ago. However, MBR models developed back then were quite simple and

did not account for many bi-lateral interactions between the bioreactor and the mem-

brane. Lee et al. [140] modelled an immersed membrane bioreactor (iMBR) for wastew-

ater treatment with the ASM1-based model of Lu et al. [157] and a simple membrane

filtration model where fouling was described only with a cake formation mechanism. The

authors did not describe any links between concentrations of soluble microbial prod-

ucts (SMP) in the bulk liquid and the rates of fouling, nor was the model validated,

hence its practical applicability is unknown [179]. Wintgens et al. [257] developed a

model of a hollow fibre (HF) iMBR for wastewater treatment. The bioreactor was

modelled with the IAWQ Activated Sludge Model No. 3 (ASM3), hence production of

the main membrane foulants - SMP and extracellular polymeric substances (EPS), was

not described. Membrane filtration was modelled with a very simple filtration model

based on Darcy’s equation in which total membrane resistance was expressed as the

sum of clean membrane resistance, cake layer resistance, and the resistance due to con-

centration polarisation. Although the model was able to reproduce long-term changes

in membrane permeability in a full scale MBR wastewater treatment plant (WWTP) it

did not describe the complexities of membrane fouling and the links existing between

membrane fouling and biological processes in the membrane bioreactor.

A short review of modelling studies on membrane bioreactors (MBRs) was pub-

lished in 2007 by Ng and Kim [179]. A year later two significantly more complex

integrated MBR models were published by Zarragoitia-González et al. [269] and Bella

et al. [11]. Zarragoitia-González et al. [269] linked the activated sludge model of Lu et al.

[157] described in Chapter 3 on page 65 with a comprehensive membrane fouling model

of Li and Wang [147] where fouling is assumed to be the product of pore constriction,

sludge cake accumulation, and dynamic film layer formation. Specific cake resistance

was linked to the concentration of soluble EPS in the bulk liquid while cake detachment

from the membrane surface was related to coarse bubble aeration rate. The model was

simulated under intermittent filtration and coarse bubble aeration and was found to

be in a reasonable agreement with the experimental results obtained from a lab-scale

MBR reactor. Bella et al. [11] linked a ASM1-based activated sludge model with SMP

kinetics closely resembling the model of Lu et al. [157] with a comprehensive membrane

filtration and fouling model heavily based on the model of Lee et al. [140]. The authors

were mainly focussed on prediction of chemical oxygen demand (COD) in the perme-

ate whilst, unfortunately, the links between SMP concentration and irreversible fouling

have not been modelled. COD was assumed to decrease across the membrane due se-

lective characteristics of the membrane and pre-sieving on the cake layer which were

described with deep-bed theory. The model was calibrated with very good results on

256



T. Janus 8.1. INTRODUCTION

the measurements obtained from a iMBR pilot plant. The obtained parameter values

of the biological model might not however be representative of the physical system due

to the fact that the Petersen matrix of the biological model used in the study does not

pass a mass-balance check, similarly to the model of Lu et al. [157].

Mannina et al. [163] improved the model of Bella et al. [11] by swapping the non-

mass and charge conserving model of Lu et al. [157] with a modified Activated Sludge

Model No. 1 (ASM1) implementing the SMP kinetics first introduced in Jiang et al.

[115]. The filtration model was modified to include more fouling mechanisms whilst

keeping the sectional model approach of Lee et al. [140] and the deep bed filtration

equations introduced originally in Bella et al. [11]. Calibration was carried out with the

procedure for calibration of activated sludge models introduced by Mannina et al. [162]

which is based on a comprehensive sensitivity analysis and a novel step-wise Monte

Carlo-based calibration of the subset of most influential parameters. Although the

model was found to be in a good agreement with the measurements obtained from a

MBR pilot plant, it suffers from the same weakness as the model of Bella et al. [11], i.e.

irreversible fouling has not been related to the SMP concentration in the bulk liquid.

SMP was assumed to influence the specific cake resistance according to the model of

Cho et al. [29]. However the adopted equation was originally derived as a correlation

between specific cake resistance and EPS not SMP, hence the assumption of Mannina

et al. [163] is questionable.

Most recently Suh et al. [231] developed an integrated MBR model based on the

benchmark simulation layout of Maere et al. [160]. The authors selected the combined

EPS and SMP production ASM3-based model (CES-ASM3) described in Chapter 4

and developed by the author of this thesis as their activated sludge model (ASM) of

choice. The membrane fouling model was borrowed from Li and Wang [147] similarly

to the integrated MBR models outlined previously. The model was used to evaluate

different membrane fouling control strategies, such as coarse bubble aeration intensity

during membrane filtration and idle-cleaning. Energy consumption was evaluated with

the same equations as used in Copp [36], Maere et al. [160]. Coarse bubble aeration and

idle cleaning time were identified as the main parameters influencing membrane fouling.

The model suffers from the same limitation as the previously outlined integrated models

due to the fact that no links have been provided between the irreversible fouling and

the bulk liquid SMP concentration.

As demonstrated above, research in the area of integrated MBR modelling is begin-

ning to pick up speed and more original research papers in the topic are being published

in the top peer-reviewed journals. At the same time we have recently seen quite a few

review papers in the subject. Fenu et al. [57] wrote a comprehensive review of ASM

based modelling of MBR reactors focussed on MBR-specific modelling issues whilst the

review papers of Zuthi et al. [274], Naessens et al. [173; 174] were concentrated on

integration of biological and filtration models.

Although this is not strictly an example of an integrated MBR model, Maere et al.

[160] developed a MBR benchmark simulation model (BSM-MBR) for an immersed
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membrane bioreactor (iMBR) in which the activated sludge process is described with

ASM1. Pressure drop across the membrane was not modelled at all whilst retentive

properties of the membrane were represented with a single-point ideal clarifier which

assumes 100% retention of particulate components, no retention of soluble components

and no temporal or spatial dynamics. According to Maere et al. [160] BSM-MBR

is intended to serve as a tool for the evaluation of operational and control strategies

in MBR-based plants in terms of effluent quality and operational costs [160]. It was

developed on the basis of COST/IWA benchmark simulation model no.1 (BSM1) [36]

and hence uses the same inputs and the same ASM1 biological model. Although the idea

of developing a simulation model for benchmarking control and operational strategies

at MBR-based WWTPs is very good, BSM-MBR lacks some of the crucial components

required for an adequate representation of a MBR plant. These are: a biological model

capable of predicting the concentrations of the main membrane foulants, a membrane

fouling model, and an interface model linking the biological and the physical parts of

the system. Author of this thesis postulates that only an integrated MBR model can

guarantee that the effects of the changes in the operational and control strategies on

the effluent quality and the operational costs are realistically evaluated, although it

is understood that the task of developing such a model is not trivial. Nevertheless,

development of such an integrated model was attempted in this thesis and is described

in the following sections of this chapter.

8.1.2 Overview of the the developed IBMF-MBR model

As already mentioned in Section 7.3 of Chapter 7 the integrated bioreactor and mem-

brane fouling MBR model (IBMF-MBR) developed here is based on the same plant

layout as implemented in the BSM-MBR model of Maere et al. [160] - see Figure 7.5 on

page 223. Whilst the plant layout in Figure 7.5 shows the configuration of tanks and

flow streams, it does not explain any functional relationships that exist between the

bioreactor and the membrane. These relationships are therefore presented separately in

Figure 8.1 and are explained below.

Figure 8.1: Graphical representation of the links existing between the biological and
the filtration part of the IBMF-MBR model.
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The bioreactor is modelled with the combined EPS and SMP production ASM1-

based model (CES-ASM1) developed in Section 4.3.1 of Chapter 4 while the membrane

is described with the behavioural fouling model developed in Section 6.2 of Chapter 6.

The rationale behind selecting CES-ASM1 over CES-ASM3 is explained in Section 7.1

of Chapter 7. The choice was made on the grounds of similarity of CES-ASM1 model

structure to ASM1 used in the BSM1 and BSM-MBR simulation benchmarks, hence

easier comparison to BSM1 and BSM-MBR results and easier adaptation of the BSM1

input signals (influent wastewater concentrations) in the new model. The behavioural

fouling model was chosen over the more complicated three-mechanism fouling model for

its simplicity and its ease of calibration.

CES-ASM1 was initially extended with slow XI and XP hydrolysis mechanisms

described in Section 4.2 in an attempt to eliminate overestimation of sludge yields

characteristic of ASM1 when applied to modelling high sludge retention time (SRT)

systems [227]. However, introduction of SMP and EPS kinetics changed the flow of

organic substances and altered the death-regeneration mechanism in the base ASM1

model resulting in lower predicted sludge yields compared to the original ASM1 model.

Although the added biopolymer kinetics were found to have little effect on predictions of

sludge production at intermediate sludge ages, as discussed in Chapter 3, sludge yields

predicted by CES-ASM1 in the benchmark MBR model are found to be about 0.13

kgSS kg´1BOD5 lower from the ones predicted by ASM1. Whist BSM-MBR calculates

an observed steady-state sludge yield of „ 0.70 kgSS kg´1BOD5 under dry-weather con-

ditions, the sludge yield predicted by CES-ASM1 is „ 0.57 kgSS kg´1BOD5. Since the

predicted sludge production in IBMF-MBR is already lower compared to the previous

benchmark model, kinetics of XI and XP hydrolysis have been set to zero.

EPS fraction in activated sludge
´
XEPS

XTSS

¯
determines the value of the specific cake

resistance αc according to the model of Ahmed et al. [1] presented in Figure 7.17 on

page 249. Total solids concentration XTSS affects the amount of reversible fouling
dmr

dt
whilst SMP in the bulk liquid affects the rate of irreversible fouling dmi

dt
. SMP

concentration in the bioreactor (SSMP ) depends not only on the biopolymer kinetics

in the activated sludge but also on the retentive properties of the membrane. SMP

retention on the membrane is modelled with parameter fnr which denotes the fraction

of non-retained SMP, i.e. the fraction of SMP which ends up in the permeate. The lower

the value of this parameter the higher the amount of SMP retained by the membrane

and hence, bulk liquid SMP concentration.

The rate of cake back-transport from the membrane is in a functional relation-

ship with coarse-bubble aeration rate qa. Air bubbles create shear stresses τw on the

membrane surface causing detachment and removal of solid particles deposited on the

membrane. The relationship between qa and τw is described with Equation 7.76 shown

on page 243. The shear stresses are linked to the cake detachment constant kr “ kr,N

in accordance to the model of Nagaoka et al. [176] described with Equation 5.71 pre-

sented on page 173. The cake detachment constant then appears in the model of cake

mass balance on the membrane surface described with Equation 5.72. Moreover, coarse
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bubble aeration leads to an increase in oxygen concentration (SO) in the membrane

tank as a result of the mass transfer of oxygen from the air bubbles to the bulk liquid.

The oxygen mass transfer coefficient α is hindered by the presence of suspended solids

XTSS accordingly to Equation 7.31 shown on page 229. The rates of reversible dmr

dt

and irreversible dmi

dt
fouling are linked to the permeate flux as shown in Equations 6.6

and 6.7 respectively. Whilst dmr

dt
9 qe, dmi

dt
is in a non-linear relationship with qe due

to the fact that the proportionality constant ki in Equation 6.7 is itself dependent on

permeate flux J and hence the permeate flow rate (qe).

The membrane is assumed to be ‘backflushable’ hence operation of the membrane is

assumed to be composed of filtration and backflush cycles, whilst idle/relaxation cycles

are not modelled.

8.2 Piping and instrumentation diagram

The piping and instrumentation diagram (P&ID) of the IBMF-MBR simulation bench-

mark scheme is shown in Figure 8.2. Air supply to the first aerobic tank Vox,1, second

DO

FT

NO3

NO3

PI

FT

K

K

PI

FT

FT

FT

Figure 8.2: Process and instrumentation diagram of the IBMF-MBR simulation bench-
mark scheme.

aerobic tank Vox,2 and membrane tank Vmem is facilitated by three separate air blowers.

Whilst the anoxic tanks (Vax,1 and Vax,2) are constantly mixed with energy inputs of

0.008 kW m´3 both aerobic tanks and the membrane tank are only mixed if aeration

rate to the tank corresponds to less than 2.2 Nm3 h´1 per m2 of ground surface area.

IBMF-MBR is simulated in the same fashion as BSM-MBR, i.e. first under con-

stant flow-averaged inputs for a period of 300 days in order to reach a steady-state

condition, then under time-varying inputs and three 14-day long weather scenarios: dry

weather, rain event, and storm event. Each simulation sequence, i.e. steady-stateÑdry

weatherÑdry weather, steady-stateÑdry weatherÑrain event, and steady-stateÑdry

weatherÑstorm event is performed under 4 levels of process control: (a) open-loop, (b)

closed-loop with dissolved oxygen (DO) control, (c) closed-loop with DO and nitrate

nitrogen (NO´
3
-N) control, and (d) closed-loop with DO, NO´

3
-N and specific aeration

demand per membrane area (SADm) control.

Under all of the process control variants listed above the return activated sludge
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flow qrec is assigned a constant value of 55,338 m3 d´1 which is equal to 3 times the

rate of dry weather flow (DWF). Sludge wastage rate qw is assigned a constant value

of 160 m3 d´1 which guarantees a steady-state mixed liquor suspended solids (MLSS)

concentration in the membrane tank of „ 10 kg m´3. The sludge wastage rate qw

in IBMF-MBR is lower from the 200 m3 d´1 setpoint assigned in BSM-MBR due to

alteration of the flow of organic substrates in CES-ASM1 compared to ASM1 caused by

introduction of biopolymer kinetics. This resulted in „ 18.5% lower predicted sludge

yields in CES-ASM1 compared to ASM1.

In open-loop simulations, internal recirculation qir is kept at a constant rate of

55,338 m3 d´1, i.e. at the same value as the sludge recirculation rate qrec. Fine-bubble

aeration flow rates qa,1 and qa,2 are maintained at 3,440 Nm3 d´1 and 3360 Nm3 d´1

respectively. Total fine bubble aeration flow rate is thus equal to 6,800 Nm3 d´1,

which is 300 Nm3 d´1 higher than in the BSM-MBR benchmark model. Although the

difference in total airflow is minimal the flow split between both aeration tanks is quite

different. Whilst the airflow in BSM-MBR was split between Vox,1 and Vox,2 at the

ratio of 1.89 : 1, the flow split in CES-ASM1 is near 1 : 1 in the open-loop simulations

and has been assigned a more uniform value of 1.3 : 1 in closed-loop simulations with

DO control. Coarse-bubble aeration flow rate qa,3 is kept at 20,025 Nm3 d´1 which

corresponds to SADm of 0.3 Nm3 h´1 m´2 on total membrane area Amem of 66,750 m2.

The membrane area is slightly lower from 71,500 m2 adopted in Maere et al. [160] due

to reduction of the membrane tank volume from 1,500 m3 to 1,300 m3.

In the closed-loop simulation scenario with DO control, oxygen concentration SO in

the second aerobic tank is maintained at 1.5 mgO2 L´1 via a PI controller set to adjust

the air flow rate to the second aerobic tank (qa,2) based on the signal received from the

DO probe. The air flow rate to the first aerobic tank qa,1 is adjusted proportionally to

qa,2 at 1.3 : 1 ratio. The proportional integral (PI) controller is assigned a proportional

gain Kp “ 500 Nm3 h´1 per mgO2 L´1 and integral time tI “ 0.002 d, i.e. the same

values as in the BSM-MBR benchmark model of Maere et al. [160].

In the closed-loop simulation scenario with DO and nitrate control, in addition

to aeration control, denitrification is controlled via a PI controller which receives the

NO´
3
-N concentration signal from the nitrate probe located in the second anoxic tank

and manipulates the internal recirculation rate qir in order to maintain the concentration

of nitrates in the second anoxic tank at 1.0 mgNO´
3

L´1. The PI controller is assigned

a proportional gain of Kp “ 15, 000 m3 d´1 per mgNO´
3

L´1 and an integral time of

tI “ 0.05 d. The internal recirculation rate qir is capped at 92,230 m3 d´1, i.e. 5ˆDWF.

In the closed-loop simulation scenario with DO, nitrate, and SADm control, coarse-

bubble aeration in the membrane tank is additionally controlled in proportion to the

permeate flux J in the same fashion as originally introduced in Maere et al. [160].

A proportional (P) controller receives the permeate flow (qe) signal from the flow

transmitter positioned on the discharge side of the permeate suction pump, calculates

the value of the permeate flux J and adjusts the SADm setpoint in proportion to J .

The controller is assigned a proportional gain Kp of 0.015 Nm3 h´1 m´2 per Lmh.
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SADm is capped from the top and the bottom at SADmin
m “ 0.15 Nm3 h´1 m´2 and

SADmax
m “ 0.30 Nm3 h´1 m´2 which correspond to permeate fluxes of 10 Lmh and

20 Lmh, respectively.

All the above control strategies, i.e. DO and SADm control strategies of Maere et al.

[160] and the NO´
3
-N control strategy adopted from COST624 [37] are not indicated

to be the most adequate strategies for this particular system, but serve the purpose of

demonstrating how different control strategies can be compared using benchmark models

such as BSM-MBR or IBMF-MBR. The IBMF-MBR benchmark model developed here

adopts the same control strategies as BSM-MBR in order to demonstrate the similarities

and the differences between both models under different operating conditions.

All control loops assume that the actuators and the sensors are ideal, i.e. without

any noise and delay. As a word of notice, the purpose of the P&ID diagram presented

in Figure 8.2 is solely for visualisation of control loops implemented in the simulations.

Hence, no effort was made to produce realistic piping and instrumentation, especially

with regards to placement of isolation valves and penstocks. In particular, flow routing

and flow control on the permeate side of the membrane required for implementation of

backwash cycles and periodic cleaning in place (CiP) procedures has not been shown.

8.3 Model inputs

The input files used in BSM1 and BSM-MBR simulation benchmarks had to be modified

to take into account three new variables introduced in CES-ASM1, i.e. XEPS, SUAP ,

and SBAP . It is assumed that influent wastewater does not contain any utilisation

associated products (UAP), hence SUAP “ 0, whilst concentration of biomass associated

products (BAP) is assumed to be equal to 70% of the influent soluble inert substrates

SI in BSM1 and BSM-MBR. XEPS is assumed to constitute 5% of the biomass, i.e.

the sum of XH and XA, in the original BSM1 input files. EPS and BAP are assumed

to contain 6% of nitrogen (N) whilst UAP is assumed to be composed only of organic

matter. Calculation of new state variables and recalculation of old state variables, i.e.

XH , XA, SI and XND in order to maintain the same carbon (C) and N loads to the

plant were carried out using Equations 8.1-8.7 listed below.

XCES´ASM1

EPS “ fEPS pXH ` XAq (8.1)

SCES´ASM1

BAP “ fSMP SI (8.2)

SCES´ASM1

UAP “ 0 (8.3)

XCES´ASM1

H “ p1 ´ fEPSq XH (8.4)

XCES´ASM1

A “ p1 ´ fEPSq XA (8.5)

SCES´ASM1

I “ p1 ´ fSMP q SI (8.6)

XCES´ASM1

ND “XND ` fEPS pXH ` XAq piXB ` iXEPSq ´ iXBAP fSMP SI (8.7)
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In the equations above, fEPS denotes the fraction of biomass which becomes EPS in

the BSM-MBR model. fSMP denotes the fraction of SI in BSM1 model which becomes

SBAP in the BSM-MBR model. iXB denotes the N content of the biomass whereas

iXEPS and iXBAP represent the N content in EPS and BAP respectively. All of the

above influent stoichiometric parameters are assigned the following values: fEPS “ 0.05,

fSMP “ 0.7, iXB “ 0.086, iXEPS “ 0.06, iXBAP “ 0.06.

8.3.1 Flow averaged influent concentrations

The flow proportionally averaged influent concentrations for the ASM1-based bench-

mark simulation models are shown in Table 8.1 whilst the modified flow proportionally

averaged influent composition in IBMF-MBR taking into account the bound and soluble

polymer concentrations is presented in Table 8.2. Both tables cover all three weather

scenarios and additionally include the average, minimum, and maximum flow rates

measured during each weather scenario.

Table 8.1: Flow proportionally averaged influent composition for the ASM1-based
benchmark simulation models, BSM1 and BSM-MBR.

Compound Unit Dry weather Rain weather Storm weather

SI gCOD m´3 30.00 25.96 28.03

SS gCOD m´3 69.50 60.13 64.93

XI gCOD m´3 51.20 44.30 51.92

XS gCOD m´3 202.32 175.05 193.32

XH gCOD m´3 28.17 24.37 27.25

XA gCOD m´3 0.00 0.00 0.00

XP gCOD m´3 0.00 0.00 0.00

SO gO2 m´3 0.00 0.00 0.00

SNO gN m´3 0.00 0.00 0.00

SNH gN m´3 31.56 27.30 29.48

SND gN m´3 6.95 6.01 6.49

XND gN m´3 10.59 9.16 10.24

SALK molHCO´
3

m´3 7.00 7.00 7.00

qave m3 d´1 18446.33 21319.75 19744.72

qmin m3 d´1 10000.00 10000.00 10000.00

qmax m3 d´1 32180.00 52126.00 60000.00

8.3.2 Influent composite variables under time-varying conditions

Influent flows, CODs, and total Kjeldahl nitrogen (TKN), and total suspended solids

(TSS) concentrations in dry-, rain- and storm-weather are plotted in Figure 8.3 and

Figure 8.4. Both figures show that the main composite variables in the IBMF-MBR

model exactly match the influent composite variables in BSM1 and BSM-MBR, hence

all three models have the same organic, nitrogen and suspended solids loadings and

thus, their outputs can be quantitatively compared.

All three weather scenarios exhibit a diurnal flow and load pattern relating to

changes in human activity over the course of the day. In the dry-weather scenario

hydraulic organic and solids loading to the plant are lower on Saturday and Sunday
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Table 8.2: Flow proportionally averaged influent composition for the IBMF-MBR bench-
mark simulation model.

Compound Unit Dry weather Rain weather Storm weather

SI gCOD m´3 9.00 7.78 8.41

SS gCOD m´3 69.50 60.13 64.93

XI gCOD m´3 51.20 44.30 51.92

XS gCOD m´3 202.32 175.05 193.32

XH gCOD m´3 26.76 23.15 25.89

XA gCOD m´3 0.00 0.00 0.00

XEPS gCOD m´3 1.41 1.22 1.36

SUAP gCOD m´3 0.00 0.00 0.00

SBAP gCOD m´3 21.00 18.17 19.62

XP gCOD m´3 0.00 0.00 0.00

SO gO2 m´3 0.00 0.00 0.00

SNO gN m´3 0.00 0.00 0.00

SNH gN m´3 31.56 27.30 29.48

SND gN m´3 6.95 6.01 6.49

XND gN m´3 9.37 8.10 9.10

SALK molHCO´
3

m´3 7.00 7.00 7.00

qave m3 d´1 18446.33 21319.75 19744.72

qmin m3 d´1 10000.00 10000.00 10000.00

qmax m3 d´1 32180.00 52126.00 60000.00

compared to the rest of the week whilst TKN loading remains constant over the whole

week.

In the rain weather scenario the instantaneous influent flow rate increases around

2.2 times compared to dry weather flow (DWF) for a period of about 1.5 days then

decreases over the course of the next day returning back to the dry weather diurnal flow

pattern until the end of day 14. Although this is not an entirely valid assumption, it is

postulated that rainwater does not contain any contamination and has a diluting effect

on all influent concentrations, leading to a decrease in COD, TKN and TSS loading

rates.

The storm weather scenario features two large storms - the first short-duration

storm which occurs on the 8th day and the second, longer-duration one, occurring 2 days

after the end of the first storm. It is assumed that the first storm causes resuspension

of solid deposits in the sewer network leading to an increase in the influent suspended

solids concentrations and particulate COD. Once the sewer system has been flushed

by the first storm and the sewer deposits have been removed, the second storm has a

similar effect to rain, i.e. leads to dilution of TKN and TSS concentrations and COD

levels.
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(a) Influent flow rate in dry weather.
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(b) Influent COD in dry weather.

0 2 4 6 8 10 12 14
1

2

3

4

5

6
x 10

4

time, days

Q
i
,
m

3
d
−

1

(c) Influent flow rate during rain event.

0 5 10 15
0

100

200

300

400

500

600

time, days

C
O

D
,
m

g
O

2
/
L

R2 = 1ASM1 CES-ASM1

(d) Influent COD during rain event.
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(e) Influent flow rate during storm event.
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(f) Influent COD during storm event.

Figure 8.3: Influent flow rates (a),(c),(e) and COD levels (b),(d),(f) under dry weather,
rain, and storm events.
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(a) Influent TKN in dry weather.
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(b) Influent TSS in dry weather.
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(c) Influent TKN during rain event.
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(d) Influent TSS during rain event.
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(e) Influent TKN during storm event.
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(f) Influent TSS during storm event.

Figure 8.4: Influent TKN (a),(c),(e) and TSS (b),(d),(f) concentrations under dry
weather, rain, and storm events.
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8.4 Model parameters

Parameters of the aeration model were listed in Table 7.1 on page 228. Recirculation,

sludge wastage and airflow rates in open-loop simulations and controller setpoints and

gains in closed-loop scenarios are listed in Section 8.2. Individual reactor volumes are

given in Section 7.3 on page 222. Parameters of the pumping cost equations are given

in Table 7.4. Default parameter values of the CES-ASM1 biological model listed in

Table 4.7 on page 103 were adopted in this study except 3 biopolymer kinetic and

stoichiometric parameters listed below.

The fraction of XEPS produced from heterotrophic growth (fEPS,h) and decay

(fEPS,dh) were decreased, respectively from 0.18 to 0.1 gXEPS g´1XH and 0.045 to

0.025 gXEPS g´1 XH to reduce the production of EPS in the model in order to bring

the bulk liquid EPS concentrations closer to the values reported in Ahmed et al. [1].

The maximum specific heterotrophic growth rate on SBAP (µBAP ) was increased from

0.05 d´1 to 0.15 d´1 to reduce the dominance of BAP production over UAP production

in the bioreator.

Simulations with IBMF-MBR are performed at the same temperatures as used in

BSM-MBR, i.e. at wastewater temperature T of 15˝C and air temperature Tair of 20˝C.

The membrane module in the membrane tank is modelled with a hollow fibre mod-

ule geometry of Busch et al. [19] described in Section 7.5.4. The geometric parameters

of the module are listed in Table 7.2 on page 243. Outer diameter of the HF fibre df,o

is equal to 2.5 mm, distance between neighbouring fibres lf equals 1 cm and membrane

module height is equal h “ 1.8 m. The module is assumed to cover 100% of the tank’s

floor plan area. The resulting membrane packing density is equal to 49.4 m2 m´3 which

is slightly higher from the packing density of 46.2 m2 m´3 used in Maere et al. [160].

The membrane is operated in the cycle of 10 minute-long filtration followed by

1 minute-long backwash. The module is aerated during filtration whilst aeration is

switched off during the backwash periods. Other membrane and fouling-specific param-

eters of the membrane filtration model used in the simulations are listed in Table 8.3.

Table 8.3: Parameters of the membrane filtration and fouling model applied in the
IBMF-MBR model.

Symbol Value Unit Description Equation

Rm 3.0 ˆ 1012 m´1 Clean membrane resistance
∆Pcrit 30 kPa Threshold pressure below which no cake compres-

sion occurs
6.11

nα 0.25 – Dimensionless cake compressibility factor 6.11
b 6.8 ˆ 10´2 – Dimensionless proportionality coefficient 6.12
ki 1.0 ˆ 1011 m kg´1 Irreversible fouling strength factor 6.5
γm 1500 d´1 Pa´1 Proportionality constant 5.72
λm 2.0 ˆ 10´6 – Static friction coefficient 5.72
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8.5 Steady-state simulation results

Results of the simulations at the steady state conditions with open-loop configuration

and closed-loop configuration with DO, NO´
3
-N and SADm control are listed in Table 8.4

and Table 8.5 respectively.

Table 8.4: Steady state open-loop IBMF-MBR results for all reactor zones and the
membrane permeate and retentate stream.

Inf R.1 R.2 R.3 R.4 R.5 Perm Ret

SI 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00
SS 69.50 4.53 4.24 2.91 2.51 1.90 1.90 1.90
XI 51.20 3342.24 3342.24 4439.27 4439.27 5901.99 0.00 5901.99
XS 202.32 64.46 60.04 34.81 27.33 24.32 0.00 24.32
XH 26.76 1298.25 1292.43 1716.50 1716.94 2277.89 0.00 2277.89
XA 0.00 119.73 119.29 159.87 160.18 212.86 0.00 212.86
XEPS 1.41 550.59 550.32 732.31 732.56 974.03 0.00 974.03
SUAP 0.00 10.31 11.10 11.65 11.59 11.97 5.99 11.97
SBAP 21.00 25.81 26.54 27.64 27.29 29.92 14.96 29.92
XP 0.00 2161.24 2162.84 2878.66 2879.53 3831.03 0.00 3831.03
SO 0.00 0.01 0.00 1.34 1.81 7.08 7.08 7.08
SNO 0.00 3.44 0.60 8.37 10.487 12.43 12.43 12.43
SNH 31.56 9.50 10.23 3.18 1.248 0.23 0.23 0.23
SND 6.95 1.15 0.77 0.98 0.990 0.88 0.88 0.88
XND 9.37 4.04 4.13 2.63 2.157 2.05 0.00 2.05
SALK 7.00 5.18 5.43 4.38 4.086 3.87 3.87 3.87
TSS 211.27 5652.38 5645.37 7471.06 7466.85 9916.58 0.000 9916.58
Q 18446.33 73784.33 73784.33 129122.33 129122.33 129122.33 18286.33 55498.00

The values listed in individual columns in Tables 8.4 and 8.5 denote, respectively,

the final concentrations of state variables and TSS, and flow rate in the influent stream

(Inf), each of the five reactor zones (R1, R2, R3, R4, and R5), permeate stream (Perm)

and retentante stream (Ret). Reactors R1 and R2 refer to the first two anoxic zones,

R3 and R4 refer to aerobic zones, and R5 denotes the (aerobic) membrane tank.

Under both modes of operation the plant achieves similar effluent quality but,

as will be show in the next sections, at different costs. SMP concentration in the

membrane tank is found to be around 42 mgCOD L´1 while the EPS/MLSS ratio is

equal to „98.2mgCOD g´1 TSS. The plant produces a relatively low steady state nitrate

concentration SNO of about 12 mgN L´1 and a very low ammoniacal N concentration

of „0.25 mgN L´1.

It is important to emphasise that the biomass is not uniformly distributed in

the bioreactor but exhibits an upward gradient with lower MLSS concentrations of

around 6 kgSS m´3 in the anoxic tanks and higher MLSS concentrations in the aer-

obic tanks and the membrane tank of, respectively 7.5 kgSS m´3 and 10 kgSS m´3.

As a result, despite of the volumetric anoxic fraction being very large compared to

the anoxic fractions characteristic of conventional activated sludge processs (CASPs)

and equal to Vax{Vtot “ 0.50, the anoxic mass fraction is significantly lower and equals

Max{Mtot “ 0.124. Hence, it seems, that although replacement of a final settlement

tank (FST) with the membrane allows to reduce the aerobic reactor volume, the ben-
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efits of membrane technology with regards to denitrification and, similarly, biological

phosphorus removal in pre-denitrification systems are less clear.

Table 8.5: Steady state closed-loop IBMF-MBR results with DO, SADm and NO´
3
-N

control for all reactor zones and the membrane permeate and retentate stream.

Inf R.1 R.2 R.3 R.4 R.5 Perm Ret

SI 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00
SS 69.50 4.35 3.34 2.90 2.55 1.94 1.94 1.9
XI 51.20 3466.97 3466.97 4439.76 4439.76 5902.64 0.00 5902.64
XS 202.32 61.27 58.01 35.09 28.01 24.78 0.00 24.78
XBH 26.76 1329.57 1324.45 1696.30 1696.77 2251.41 0.00 2251.41
XBA 0.00 122.84 122.44 158.02 158.30 210.37 0.00 210.37
XEPS 1.41 565.27 565.04 724.74 724.98 963.97 0.00 963.97
SUAP 0.00 10.22 10.71 11.35 11.35 11.83 5.91 11.83
SBAP 21.00 25.61 26.08 27.11 26.82 29.46 14.73 29.46
XP 0.00 2248.04 2249.49 2885.59 2886.39 3840.12 0.000 3840.12
SO 0.00 0.01 0.00 1.69 1.50 4.49 4.49 4.49
SNO 0.00 3.661 1.000 7.900 9.77 11.670 11.670 11.67
SNH 31.56 8.616 9.258 3.018 1.29 0.240 0.240 0.24
SND 6.95 1.129 0.762 0.985 1.00 0.889 0.889 0.89
XND 9.37 3.886 4.008 2.648 2.20 2.081 0.000 2.08
SALK 7.00 5.100 5.336 4.397 4.14 3.930 3.930 3.93
TSS 211.27 5845.47 5839.80 7454.62 7450.66 9894.97 0.00 9894.97
Q 18446.33 83217.50 83217.50 138555.50 138555.50 129122.33 18286.33 55498.00

Table 8.6: Comparison of effluent concentrations from steady state simulations with
IBMF-MBR and BSM-MBR.

Output Unit
BSM-MBR IBMF-MBR

Open-loop Closed-loop˚q Open-loop Closed-loop˚q

SI gCOD m´3 30.00 30.00 9.00 9.00
SS gCOD m´3 0.68 0.69 1.90 1.94
XI gCOD m´3 0.00 0.00 0.00 0.00
XS gCOD m´3 0.00 0.00 0.00 0.00
XH gCOD m´3 0.00 0.00 0.00 0.00
XA gCOD m´3 0.00 0.00 0.00 0.00
XEPS gCOD m´3 – – 0.00 0.00
SUAP gCOD m´3 – – 5.99 5.91
SBAP gCOD m´3 – – 14.96 14.73
XP gCOD m´3 0.00 0.00 0.00 0.00
SO gO2 m´3 7.69 5.19 7.08 4.49
SNO gN m´3 12.03 11.71 12.43 11.67
SNH gN m´3 0.076 0.080 0.23 0.24
SND gN m´3 0.59 0.59 0.88 0.89
XND gN m´3 0.00 0.00 0.00 0.00
SALK molHCO´

3
m´3 3.89 3.92 3.87 3.93

˚q DO, NO´
3
-N, and SADm control

Effluent concentrations produced from IBMF-MBR are compared in Table 8.6 with

the outputs of the BSM-MBR simulation benchmark of Maere et al. [160]. The results

show that the outputs of both models are very similar with minor differences in SS ,

SNO and SNH concentrations.
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8.6 Dynamic simulation results

Dynamic simulations were performed with BSM-MBR and IBMF-MBR models in dry-,

rain- and storm-weather under four levels of process control: open-loop (a), closed-loop

with DO control (b), closed-loop with DO and NO´
3
-N control (c), and closed-loop

with DO, NO´
3
-N and SADm control (d).The results obtained in each of the 9 resulting

simulation scenarios were assessed with regards to effluent quality, cost performance

and process variables. Each weather scenario is defined by a 14-day long sequence of

influent flow and state variables, although the first 7 days of data is common in all three

scenarios whilst the last 7 days define the dry-weather diurnal pattern, the rain event

and the storm event. Hence, the results are evaluated in each scenario for the last 7

days of the simulation.

8.6.1 Effluent concentrations

The flow-proportionally averaged effluent results of the open-loop and closed loop sim-

ulations under all three weather scenarios are listed, respectively in Table 8.7 and Ta-

ble 8.8. As in case of steady-state simulation results, closed loop dynamic simulation

refers to the simulation variant with the maximum level of process control, i.e. DO,

SADm and NO´
3
-N control.

Table 8.7: Flow proportionally averaged effluent results from dynamic open-loop simu-
lations with BSM-MBR and IBMF-MBR in dry-, rain- and storm-weather.

Variable Unit
BSM-MBR IBMF-MBR

Dry Rain Storm Dry Rain Storm

Effluent state variables

SI gCOD m´3 30.00 22.86 26.30 9.00 6.86 7.89
SS gCOD m´3 0.73 0.75 0.76 1.96 1.97 2.02
XI gCOD m´3 0.00 0.00 0.00 0.00 0.00 0.00
XS gCOD m´3 0.00 0.00 0.00 0.00 0.00 0.00
XH gCOD m´3 0.00 0.00 0.00 0.00 0.00 0.00
XA gCOD m´3 0.00 0.00 0.00 0.00 0.00 0.00
XEPS gCOD m´3 – – – 0.00 0.00 0.00
SUAP gCOD m´3 – – – 6.20 6.05 6.30
SBAP gCOD m´3 – – – 15.26 13.68 14.63
XP gCOD m´3 0.00 0.00 0.00 0.00 0.00 0.00
SO gO2 m´3 6.97 6.32 6.27 5.96 5.35 5.23
SNO gN m´3 12.21 10.76 11.26 12.74 11.14 11.63
SNH gN m´3 0.15 0.15 0.17 0.45 0.44 0.54
SND gN m´3 0.61 0.62 0.64 0.89 0.89 0.90
XND gN m´3 0.00 0.00 0.00 0.00 0.00 0.00
SALK molHCO´

3
m´3 3.88 4.52 4.23 3.87 4.52 4.23

Effluent composite variables

TSS g m´3 0.00 0.00 0.00 0.00 0.00 0.00
TKN gN m´3 0.76 0.78 0.81 2.25 2.15 2.31
TN gN m´3 12.98 11.54 12.07 14.99 13.29 13.94
COD gO2 m´3 30.73 23.61 27.06 32.43 28.55 30.84
BOD5 gO2 m´3 0.18 0.19 0.19 0.49 0.49 0.50

Results presented in Table 8.7 and Table 8.8 show that IBMF-MBR produces, on
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Table 8.8: Flow proportionally averaged effluent results from dynamic closed-loop sim-
ulations (DO. NO´

3
-N and SADm control) with BSM-MBR and IBMF-MBR in dry-,

rain- and storm-weather.

Variable Unit
BSM-MBR IBMF-MBR

Dry Rain Storm Dry Rain Storm

Effluent state variables

SI gCOD m´3 30.00 22.86 26.30 9.00 6.86 7.89
SS gCOD m´3 0.70 0.72 0.73 2.01 2.03 2.07
XI gCOD m´3 0.00 0.00 0.00 0.00 0.00 0.00
XS gCOD m´3 0.00 0.00 0.00 0.00 0.00 0.00
XH gCOD m´3 0.00 0.00 0.00 0.00 0.00 0.00
XA gCOD m´3 0.00 0.00 0.00 0.00 0.00 0.00
XEPS gCOD m´3 – – – 0.00 0.00 0.00
SUAP gCOD m´3 – – – 6.07 5.95 6.09
SBAP gCOD m´3 – – – 14.93 13.48 14.14
XP gCOD m´3 0.00 0.00 0.00 0.0 0.00 0.00
SO gO2 m´3 5.33 5.65 5.20 3.90 4.29 3.75
SNO gN m´3 12.19 10.35 11.15 11.89 10.27 10.86
SNH gN m´3 0.10 0.10 0.10 0.39 0.37 0.40
SND gN m´3 0.60 0.61 0.62 0.91 0.91 0.92
XND gN m´3 0.00 0.00 0.00 0.00 0.00 0.00
SALK molHCO´

3
m´3 3.88 4.24 4.23 3.93 4.58 4.28

Effluent composite variables

TSS g m´3 0.00 0.00 0.00 0.00 0.00 0.00
TKN gN m´3 0.70 0.71 0.72 2.19 2.09 2.17
TN gN m´3 12.89 11.06 11.87 14.08 12.36 13.03
COD gO2 m´3 30.70 23.58 27.03 32.00 28.32 30.20
BOD5 gO2 m´3 0.18 0.18 0.18 0.50 0.51 0.52

average, 1 mgN/L higher effluent total nitrogen (TN) concentrations than the ASM1-

based BSM-MBR as a result of slightly higher produced effluent nitrate (SNO) and

ammoniacal nitrogen (NH`
4
-N) (SNH) levels. Effluent TKN concentrations produced

by IBMF-MBR model are again about 1.5 mgN/L higher than those in the BSM-MBR

benchmark model as a result of higher NH`
4
-N (SNH) and soluble organic nitrogen

(SND) concentrations. The rest of effluent state and composite variables in both models

have similar values except soluble inert organics SI which are lower in IBMF-MBR due

to lower influent SI concentrations which had been reduced in order to accommodate

three new biopolymer state variables.

Due to variations in the influent flow rate as demonstrated in Figures 8.3a, 8.3c and

8.3e, MLSS concentration in the individual sections (tanks) of the bioreactor exhibit

often very large fluctuations as the biomass is shifted towards the downstream end of the

bioreactor. This behaviour is observed during the periods when the flow of wastewater is

large enough that the flux of suspended solids through the bioreactor exceeds the sludge

return rate. At these elevated flow periods the sludge is shifted towards the membrane

tank as indicated in Figure 8.5. Unfortunately, this increased sludge loading coincides

with higher required permeate flow rates causing increased reversible fouling as well as

simultaneous irreversible fouling promoted which is promoted by high permeate fluxes.

Dissolved oxygen (DO) concentrations in both aerobic tanks exhibit very high
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Figure 8.5: MLSS concentrations during (from left to right) dry-, rain- and storm-
weather conditions.

fluctuations in open-loop simulations where airflow rates are constant. Once DO control

is put into action, DO concentration in the second aerobic tank is kept at an almost

steady value of 1.5 mgO2 L´1 while O2 concentration in the first aerobic tank varies

between 1.4 mgO2 L´1 and 2.1 mgO2 L´1. Introduction of DO control leads to reduction

of effluent NH`
4
-N concentrations, although already at a very low levels, but cause an

increase in effluent TN, as can be seen when we compare the plant’s performance under

both simulation variants- see Table 8.9 and Table 8.10. As the system is characterised

with large aerobic SRT the rate of nitrification is very high whilst nitrogen removal

is limited by denitrification. Under open-loop operation, fluctuations of DO in both

aerobic tank were leading to temporary, cyclic development of anoxic conditions inside

both aerobic tanks thus increasing the denitrification capacity in the system. Once DO

control is turned on both aerobic tank become fully aerobic at all times, hence reducing

the denitrification potential of the plant. Although DO control does not offer many

advantages in this particular case, the positive effects may be seen in the long run when

wastewater temperatures are lower during colder seasons.

DO concentration in the membrane tank fluctuates significantly between nearly

0 mgO2 L´1 to almost its saturation concentration of around 9 mgO2 L´1. At such

high oxygen concentrations, significant amounts of oxygen are being introduced into the

anoxic zone with the return stream, what in turn impairs denitrification. Hence, once

SADm control is introduced and oxygen concentrations in the membrane tank become

lower, the effluent TN concentrations and the amount of time at violation decrease

compared to the simulation scenario with just DO control as has been demonstrated in

Table 8.11.

As already mentioned, effluent NH`
4
-N concentrations are very low at all times

during all weather conditions and under all operating scenarios due to high nitrification

capacity of the system. At no point in time effluent NH`
4
-N exceeded the effluent NH`

4
-N

concentration constraint SNH,max = 4 mgN L´1 whilst SNH was below 1 mgN L´1 at

around „ 90% of the time.

On the other hand, effluent total nitrogen (TN) concentration is predicted to exceed

the effluent TN constraint of 18 mgN L´1 at some point of time in each weather scenario

and under each level of process control as shown in Figure 8.8 and in the process
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Figure 8.6: DO concentrations during in the (from left to righ) first aerobic tank, second
aerobic tank, and membrane tank in dry-weather conditions.
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Figure 8.7: Effluent NH`
4
-N concentrations during (from left to right) dry-, rain- and

storm-weather conditions.

performance comparison Tables 8.9-8.12.
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Figure 8.8: Effluent TN concentrations during (from left to right) dry-, rain- and storm-
weather conditions.

8.6.2 Effluent quality measures, cost performance and process vari-

ables

Performance of the BSM-MBR benchmark simulation model and the IBMF-MBR model

in each weather scenario and under each level of process control is summarised in Ta-

ble 8.9, Table 8.10, Table 8.11 and Table 8.12. These tables correspond to, respectively,

open-loop, closed-loop with DO control, closed-loop with DO and SADm control, and

closed-loop with DO, SADm and NO´
3
-N control.
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Table 8.9: Comparison of dynamic open-loop effluent quality and operating cost per-
formance criteria between BSM-MBR and IBMF-MBR models.

Criterion Unit
BSM-MBR IBMF-MBR

Dry Rain Storm Dry Rain Storm

I.Q. kgPU d´1 52115.2 52115.2 54074.5 52052.1 52050.2 54029.5
E.Q. kgPU d´1 3216.9 3423.6 3423.6 4177.5 4935.9 4544.6

SNH,95 gN m´3 0.475 0.473 0.491 1.42 1.40 1.59
TN95 gN m´3 16.49 15.42 16.32 18.64 17.73 18.55
TSS95 g m´3 0 0 0 0 0 0
COD95 gO2 m´3 30.90 30.80 30.86 34.78 34.31 35.16
BOD5,95 gO2 m´3 0.225 0.232 0.237 0.605 0.610 0.638

SNH,violations – 0 0 0 0 0 0
(4 gN m´3) % of time 0 0 0 0 0 0
TNviolations – 0 0 0 5 3 4
(18 gN m´3) % of time 0 0 0 8.16 4.31 6.87
BOD5,violations – 0 0 0 0 0 0
(10 gO2 m´3) % of time 0 0 0 0 0 0
CODviolations – 0 0 0 0 0 0
(100 gO2 m´3) % of time 0 0 0 0 0 0
TSSviolations – 0 0 0 0 0 0
(30 g m´3) % of time 0 0 0 0 0 0

SPtot kgTSS d´1 1971.2 1982.9 2198.5 1590.1 1587.6 1772.0
SPdisp kgTSS d´1 1971.2 1982.9 2198.5 1590.1 1587.6 1772.0

AEbioreactor kWh d´1 3878.6 3878.6 3878.6 4075.6 4075.6 4075.6
AEmembrane kWh d´1 9680.7 9680.7 9680.7 9018.1 9018.1 9018.1
AEtotal kWh d´1 13559.3 13559.3 13559.3 13093.7 13093.7 13093.7

PEtotal kWh d´1 2209.2 2639.6 2403.2 1023.6 1128.3 1078.2
PEsludge kWh d´1 840.1 840.1 840.1 835.2 835.2 835.2
PEpermeate kWh d´1 1369.2 1800.0 1563.2 188.33 293.03 243.00
PEqw kWh d´1

N
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ed
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ed

8.00 8.00 8.00
PEqint

kWh d´1 413.61 413.61 413.61
PEqr kWh d´1 413.61 413.61 413.61
PEqe kWh d´1 145.94 250.53 200.55
PEqback

kWh d´1 42.39 42.50 42.25
ME kWh d´1 576 576 576 714.38 714.38 714.38

OCI – 26200.4 26690.0 27531.2 22763.9 22856.1 23728.2
Total SRT d 27.51 25.90 26.83 33.38 31.24 32.47
Aerobic SRT d 18.85 18.17 18.56 20.41 19.67 20.09
Yobs – 0.700 0.743 0.732 0.565 0.603 0.591

The first section in all tables lists the influent quality (IQ) index and the effluent

quality (EQ) index. The second section lists 95%-iles of the effluent NH`
4
-N, TN and

TSS concentrations, as well as effluent COD and biological oxygen demand in five

days (BOD5). The third section shows the number of violations and % of time under

violation during last 7 days of dynamic simulation for, respectively, NH`
4
-N, TN, BOD5,

COD and TSS. The fourth section lists total sludge production (SPtot) and the amount

of sludge for disposal (SPdisp) which, for MBR systems are equal, since no solids are

lost in the effluent due to complete rejection of solids by the membrane. The fifth

section lists the aeration energy used for fine-bubble aeration (AEbioreactor), coarse-

bubble aeration (AEmembrane), as well as the total energy demand for aeration (AEtotal).
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Section number six deals with energy consumption due to pumping and mixing. PEtotal

denotes the total energy demand for pumping, PEsludge denotes the amount of energy

spent on pumping of mixed liquor, whilst PEpermeate is the energy demand for producing

sufficient amounts of suction pressure to transport the permeate across the membrane.

The columns dedicated to the IBMF-MBR simulation model additionally list pumping

energy demands for individual pumped flows, i.e. waste activated sludge (WAS) flow

(PEqw), internal recirculation (PEqint
), sludge recirculation (PEqr ), permeate pumping

(PEqe), and backwashing (PEqback). ME denotes the amount of energy required to mix

the anoxic tanks and the aerobic tanks if the amount of air provided is not sufficient

for a thorough mixing of the tank contents. The last section lists the operational cost

index (OCI), total and aerobic SRT and the observed sludge yield Yobs.

Table 8.10: Comparison of dynamic closed-loop effluent quality and operating cost
performance criteria between BSM-MBR and IBMF-MBR models with DO control.

Criterion Unit
BSM-MBR IBMF-MBR

Dry Rain Storm Dry Rain Storm

I.Q. kgPU d´1 52115.4 52115.4 54074.5 52052.1 52050.2 54029.5
E.Q. kgPU d´1 3222.5 3714.4 3456.8 4145.9 4894.3 4504.4

SNH,95 gN m´3 0.169 0.175 0.176 0.784 0.783 0.747
TN95 gN m´3 17.43 16.18 17.23 19.62 18.52 19.54
TSS95 g m´3 0 0 0 0 0 0
COD95 gO2 m´3 30.82 30.75 30.78 34.13 33.60 34.49
BOD5,95 gO2 m´3 0.205 0.210 0.215 0.584 0.591 0.612

SNH,violations – 0 0 0 0 0 0
(4 gN m´3) % of time 0 0 0 0 0 0
TNviolations – 4 1 4 5 3 5
(18 gN m´3) % of time 2.38 0.743 2.53 11.06 6.11 10.00
BOD5,violations – 0 0 0 0 0 0
(10 gO2 m´3) % of time 0 0 0 0 0 0
CODviolations – 0 0 0 0 0 0
(100 gO2 m´3) % of time 0 0 0 0 0 0
TSSviolations – 0 0 0 0 0 0
(30 g m´3) % of time 0 0 0 0 0 0

SPtot kgTSS d´1 1978.2 1990.6 2182.1 1588.4 1584.7 1764.3
SPdisp kgTSS d´1 1978.2 1990.6 2182.1 1588.4 1584.7 1764.3

AEbioreactor kWh d´1 3834.3 3791.5 3945.3 4070.6 3981.4 4169.5
AEmembrane kWh d´1 9680.7 9680.7 9680.7 9018.1 9018.1 9018.1
AEtotal kWh d´1 13515.0 13472.2 13626.0 13088.7 12999.5 13187.6

PEtotal kWh d´1 2209.2 2639.6 2403.2 1023.5 1128.2 1078.2
PEsludge kWh d´1 840.1 840.1 840.1 835.22 835.22 835.22
PEpermeate kWh d´1 1369.2 1799.5 1563.2 188.32 293.01 242.98
PEqw kWh d´1
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8.00 8.00 8.00
PEqint

kWh d´1 413.61 413.61 413.61
PEqr kWh d´1 413.61 413.61 413.61
PEqe kWh d´1 145.93 250.52 200.54
PEqback

kWh d´1 42.39 42.49 42.44
ME kWh d´1 576 576 576 714.38 714.38 714.38

OCI – 26191.3 26640.8 27505.8 23954.9 22765.5 25123.1
Total SRT d 27.51 25.89 26.83 33.38 31.24 32.48
Aerobic SRT d 18.85 18.17 18.56 20.41 19.67 20.10
Yobs – 0.702 0.744 0.732 0.565 0.603 0.591
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IBMF-MBR produces higher TN concentrations to the BSM-MBR benchmark

model as indicated by the value of TN95, number of TN consent limit violations and

% of time under violation. While in BSM-MBR no TN violations are reported un-

der open-loop operation and closed-loop operation with DO, SADm and NO´
3
-N con-

trol, IBMF-MBR is found to exceed the maximum allowed TN concentration under all

weather conditions and all levels of process control despite higher anoxic volume frac-

tion. The difference in the effluent TN95 concentration produced by BSM-MBR and

IBMF-MBR is on average about 2 mgN L´1 in favour of BSM-MBR.

Table 8.11: Comparison of dynamic closed-loop effluent quality and operating cost
performance criteria between BSM-MBR and IBMF-MBR models with DO and SADm

control.

Criterion Unit
BSM-MBR IBMF-MBR

Dry Rain Storm Dry Rain Storm

I.Q. kgPU d´1 52115.4 52115.4 54074.6 52052.1 52050.2 54029.5
E.Q. kgPU d´1 3197.2 3696.0 3432.0 4112.4 4871.0 4470.9

SNH,95 gN m´3 0.174 0.179 0.178 0.882 0.842 0.815
TN95 gN m´3 17.32 16.08 17.12 19.31 18.26 19.22
TSS95 g m´3 0 0 0 0 0 0
COD95 gO2 m´3 30.82 30.75 30.79 34.28 33.76 34.62
BOD5,95 gO2 m´3 0.205 0.211 0.216 0.586 0.592 0.614

SNH,violations – 0 0 0 0 0 0
(4 gN m´3) % of time 0 0 0 0 0 0
TNviolations – 3 1 3 5 3 5
(18 gN m´3) % of time 1.63 0.594 1.63 10.16 5.56 8.81
BOD5,violations – 0 0 0 0 0 0
(10 gO2 m´3) % of time 0 0 0 0 0 0
CODviolations – 0 0 0 0 0 0
(100 gO2 m´3) % of time 0 0 0 0 0 0
TSSviolations – 0 0 0 0 0 0
(30 g m´3) % of time 0 0 0 0 0 0

SPtot kgTSS d´1 1977.1 1991.0 2181.2 1587.7 1584.7 1763.4
SPdisp kgTSS d´1 1977.1 1991.0 2181.2 1587.7 1584.7 1763.4

AEbioreactor kWh d´1 3911.8 3848.2 4007.9 4152.4 4039.7 4246.2
AEmembrane kWh d´1 5597.0 6647.8 5970.9 5469.5 6409.9 5809.3
AEtotal kWh d´1 9508.9 10486.0 9988.8 9621.9 10449.6 10055.7

PEtotal kWh d´1 2209.2 2639.6 2403.2 1025.5 1129.7 1080.0
PEsludge kWh d´1 840.07 840.07 840.07 835.22 835.22 835.22
PEpermeate kWh d´1 1396.2 1799.5 1563.2 190.29 294.43 244.8
PEqw kWh d´1
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8.00 8.00 8.00
PEqint

kWh d´1 413.61 413.61 413.61
PEqr kWh d´1 413.61 413.61 413.61
PEqe kWh d´1 147.90 251.93 202.36
PEqback

kWh d´1 42.39 42.49 42.44
ME kWh d´1 576 576 576 714.38 714.38 714.38

OCI – 22179.6 23666.5 23864.1 19301.0 20217.2 20667.1
Total SRT d 27.51 25.89 26.83 33.38 31.24 32.48
Aerobic SRT d 18.85 18.17 18.56 20.41 19.67 20.10
Yobs – 0.701 0.744 0.732 0.565 0.603 0.591

IBMF-MBR also produces less surplus activated sludge (SAS) leading to „ 20%

lower observed sludge yields (Yobs) and proportionally higher total and aerobic SRTs.
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Whilst energy demand for fine bubble aeration is slightly higher in IBMF-MBR, energy

demand for air scouring is less due to lower installed membrane area. In consequence,

similar energy requirements for aeration are predicted in both models.

Mixing energy requirement is „ 24% higher in IBMF-MBR due to larger total

anoxic tank volume, whilst energy consumption for pumping is significantly lower due

to lower energy requirements for permeate pumping. Energy requirements for permeate

pumping are found to be significantly exaggerated in the BSM-MBR benchmark. The

trans-membrane pressure (TMP) calculations in the IBMF-MBR model indicate an

eight fold decrease in permeate pumping requirements despite of rather average for an

ultrafiltration (UF) module permeabilities of about 80–100 Lmh bar´1.

Table 8.12: Comparison of dynamic closed-loop effluent quality and operating cost
performance criteria between BSM-MBR and IBMF-MBR models with DO, SADm and
NO´

3
-N control.

Criterion Unit
BSM-MBR IBMF-MBR

Dry Rain Storm Dry Rain Storm

I.Q. kgPU d´1 52115.4 52115.4 54074.5 52052.1 52050.2 54029.5
E.Q. kgPU d´1 3174.8 3569.5 3345.7 3980.8 4679.1 4280.6

SNH,95 gN m´3 0.191 0.207 0.201 1.16 1.07 1.05
TN95 gN m´3 16.72 15.22 16.48 17.82 16.64 17.45
TSS95 g m´3 0 0 0 0 0 0
COD95 gO2 m´3 30.80 30.75 30.79 34.10 33.61 34.50
BOD5,95 gO2 m´3 0.200 0.206 0.211 0.609 0.624 0.641

SNH,violations – 0 0 0 0 0 0
(4 gN m´3) % of time 0 0 0 0 0 0
TNviolations – 0 0 0 4 1 2
(18 gN m´3) % of time 0 0 0 3.90 1.38 2.89
BOD5,violations – 0 0 0 0 0 0
(10 gO2 m´3) % of time 0 0 0 0 0 0
CODviolations – 0 0 0 0 0 0
(100 gO2 m´3) % of time 0 0 0 0 0 0
TSSviolations – 0 0 0 0 0 0
(30 g m´3) % of time 0 0 0 0 0 0

SPtot kgTSS d´1 1978.2 1992.2 2180.5 1584.5 1577.0 1757.1
SPdisp kgTSS d´1 1978.2 1992.2 2180.5 1584.5 1577.0 1757.1

AEbioreactor kWh d´1 3897.8 3806.9 3974.1 4096.4 3951.3 4159.2
AEmembrane kWh d´1 5596.9 6647.6 5970.4 5469.4 6410.0 5809.2
AEtotal kWh d´1 9494.7 10454.5 9944.5 9565.8 10361.3 9968.4

PEtotal kWh d´1 2198.4 2682.0 2428.2 1092.3 1238.8 1188.0
PEsludge kWh d´1 829.18 882.42 864.98 902.14 945.00 943.63
PEpermeate kWh d´1 1369.2 1799.5 1563.2 190.16 293.80 244.35
PEqw kWh d´1
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8.00 8.00 8.00
PEqint

kWh d´1 480.53 523.39 522.02
PEqr kWh d´1 413.61 413.61 413.61
PEqe kWh d´1 147.77 251.31 201.91
PEqback

kWh d´1 42.39 42.49 42.44
ME kWh d´1 576 576 576 714.38 714.38 714.38

OCI – 22160.0 23673.3 23851.3 20479.6 20199.6 20656.3
Total SRT d 27.44 26.04 26.91 33.80 31.90 33.11
Aerobic SRT d 18.85 18.17 18.56 20.41 19.67 20.10
Yobs – 0.706 0.743 0.732 0.566 0.599 0.587
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8.6.3 Membrane fouling and biopolymer production

Bulk liquid SMP concentrations in the membrane tank under all three weather scenarios

are plotted in Figure 8.9. Figure 8.9 shows rather moderate variations in the concen-

trations of SUAP and SBAP which are mainly due to diurnal influent flow pattern and

dilution effects during rain and storm events. This behaviour stems from the fact that

CES-ASM1, similarly to other published biopolymer ASM models, has not been de-

signed to predict the changes in biopolymer production in a response to large variations

in the influent quantity and quality and operating conditions, such as large variations in

DO concentration, salinity, pH, changes in the type of organic substrates, toxic effects,

shear stresses, etc. The model was calibrated on the data obtained during cultivation

of bacterial cultures under rather slowly changing environmental conditions and under

constant influent flow rates, hence the sort of dynamics present at full-scale WWTPs

have not been captured. Therefore, whilst the system might experience additional SMP

dynamics under time varying conditions in response to environmental stress, these ef-

fects have not modelled and will need to be studied in more detail in order to formulate

an appropriate model which is going to take these effects into account.
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Figure 8.9: SMP concentrations in the membrane bioreactor during (from left to right)
dry-, rain- and storm-weather conditions.

Figure 8.10 shows irreversible fouling resistance Ri and the SMP/MLSS ratio in

the membrane tank under all three weather scenarios. The figure shows that whilst

under dry-weather flow resistance Ri increases slowly and steadily at a rate of about

1.10 ˆ 10´2 m kg´1 h´1, under the elevated flow conditions in wet periods the rate of

Ri increase is up to four fold higher and about 4.58 ˆ 10´2 m kg´1 h´1 during the rain

event and up to „ 0.21 m kg´1 h´1 during the storm event. These elevated irreversible

fouling rates coincide with the decrease of SMP concentration and SMP/MLSS ratio,

indicating that the rate of irreversible fouling is dominated by flux rate, not but SMP

concentrations in the bulk liquid.

The membrane flux rates for all three weather scenarios are plotted in Figure 8.11

which shows that the membrane is operating under rather small fluxes between 8 and

20 Lmh in dry-weather periods and up to 32 Lmh and 38 Lmh during rain and storm

events, respectively. Hence, the plant requires very small energy input for permeate

pumping.
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Figure 8.10: (a) Resistance due to irreversible fouling Ri and (b) SMP fraction in MLSS
vs. time during open-loop simulation in dry-, wet-, and storm-weather conditions.
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Figure 8.11: Permeate flux rates during dry-, rain- and storm-weather conditions.

As previously stated in Section 8.1.2 of this Chapter, specific cake resistance αc

is calculated in the IBMF-MBR model according to the αc vs. MLSS relationship

proposed by Ahmed et al. [1] and shown in Figure 7.17. The specific cake resistance

figures obtained from the model were then increased ten fold to produce ‘observable’

reversible fouling which was otherwise so small that short-term TMP increse during

filtration periods could not be observed. Although introduction of such a ‘fudge’ factor

may sound as a dubious decision, in the absence of validation data the model presented

here is only intended to give indicative figures and to illustrate the proof of concept,

hence no rigorous checking of model parameters is required at this stage.
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Figure 8.12 shows, as one would expect, that specific cake resistance changes in

proportion to EPS content in the activated sludge. However, as EPS do not vary

much over the course of simulation, αc remains at a relatively constant value of „
1.12 ´ 1.16 m kg´1.
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Figure 8.12: Specific cake resistance αc and EPS fraction in MLSS vs. time during the
open-loop simulation in dry-, wet-, and storm-weather conditions.

Transmembrane pressure (TMP) during rain- and storm-weather and under open-

loop as well as closed-loop scenario with SADm control is plotted in Figure 8.13 and Fig-

ure 8.14, respectively. Both figures indicate increased reversible fouling in wet weather

conditions due to a combined effect of higher permeate flux and higher MLSS concentra-

tion in the membrane tank. Although the effects of cake deposition on the membrane are

visible at higher fluxes under both, open-loop and closed-loop operation, cake buildup at

lower fluxes is almost non-existing when constant air-scouring rate is applied through-

out the simulation period. This indicates the possibility for energy saving through

reduction of coarse-bubble airflow rate when permeate fluxes are low. When SADm

control is applied, energy demand for coarse aeration is reduced by about a third whilst

reversible fouling under low flux rates increased only slightly and is still insignificantly

small compared to the overall membrane resistance.

8.6.4 Energy consumption

Energy consumption per m3 of treated wastewater in IBMF-MBR is compared against

the results obtained with the BSM-MBR benchmark model and the measurements per-

formed on three full-scale MBR plants. The results are collated in Table ?? which

extends the table originally published in Maere et al. [160].

The energy demand predicted from IBMF-MBR in open-loop operation is similar

to the energy consumption estimated with BSM-MBR except earlier mentioned energy

for permeate pumping which is the lowest among all effluent pumping figures in the

table. The reasons for that are two-fold. First, the permeate fluxes in the model under

dry-weather conditions are at the lower end of sustainable long-term fluxes used on this

sort of membranes at full-scale municipal MBR plants. Second, the effects of irreversible

fouling on the overall operational costs including permeate pumping cannot be evaluated
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(a) Operation under constant SADm.
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(b) Operation with SADm proportional to permeate flux.

Figure 8.13: Transmembrane pressure (TMP) and specific aeration demand (SADm)
with and without SADm control during rain-weather conditions.
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(a) Operation under constant SADm.
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(b) Operation with SADm proportional to permeate flux.

Figure 8.14: Transmembrane pressure (TMP) and specific aeration demand (SADm)
with and without SADm control during storm-weather conditions
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in such a short time scale as 14 days. Hence, permeate pumping costs calculated here

will be typical for initial periods of operation where the membranes do not yet show

any effects of irreversible fouling and hence the permeabilities are high. In order to

quantify the overall permeate pumping costs, the model first and foremost needs to

be calibrated and validated and secondly, the simulation horizon needs to be extended

to at least a few months such that the effects of long-term irreversible fouling can be

accounted for in the estimation of energy demand. Extended simulation periods will

also allow to quantify chemical cleaning costs if the model is extended with a chemical

cleaning processes and cost model.

The percent share of various energy consuming processes in the simulated bench-

mark plant under dry-weather and rain-weather are shown respectively in Figure 8.15

and Figure 8.16. Both figures show that energy demand distribution does not differ be-

tween dry-weather and rain-weather conditions although changes significantly between

open-loop and closed-loop operation with DO, SADm and NO´
3
-N control. Whilst in

open-loop scenario 61% of all energy is used for coarse-bubble aeration and 27% for

fine bubble aeration, the amount of energy required for air-scouring is reduced to 48%

under closed-loop operation while, due to overall reduction of total energy demand at

the plant, the share of energy being used for fine-bubble aeration increased to 26%

in dry-weather and 33% in rain-weather. Fine-bubble and coarse-bubble aeration are

hence the most energy demanding processes at the plant. Rest of the energy is utilised

for internal and sludge recirculation (3-4% each) and anoxic mixing (5-6%). Permeate

pumping accounts for just 1-2% while energy costs for backwashing and WAS pumping

are insignificant and account for less than 1% of the overall energy costs.
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Table 8.13: Comparison of energy costs between IBMF-MBR, BSM-MBR and three
full-scale municipal MBR WWTPs - modified from Maere et al. [160].

Energy cost
Schilde 1q Varsseveld 2q Nordkanal 3q BSM-MBR

IBMF-MBR

(kWh m´3) Open-loop˚q Closed-loop˚q

ME 0.05 0.04 0.11 0.03 0.039 0.039
PEsludge 0.10 0.11 0.01 0.05 0.046 0.049
PEeffluent 0.07 0.12 0.02 0.07 0.008 0.008
AEbioreactor 0.07 0.24 0.11 0.21 0.22 0.22
AEmembrane 0.23 0.34 0.45 0.53 0.49 0.30
Total 0.52 0.85 0.71 0.90 0.81 0.62

˚q dry-weather conditions with average permeate flow rate qperm,ave “ 18286.3 m3 d´1

1q Fenu et al. [58]
2q Wever et al. [255]
3q Brepols et al. [15]
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Figure 8.15: Energy consumption during dry-weather conditions in (from left to right)
open-loop simulation, closed-loop simulation with DO control, closed-loop simulation
with DO,NO´

3
-N and SADm control.
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Chapter 9

General Conclusions

9.1 Overall summary

This thesis is divided into three distinct parts, each focusing on different aspects of

modelling membrane bioreactors (MBRs) for wastewater treatment.

The first part describes the development of two activated sludge models (ASMs)

extended with kinetics of extracellular polymeric substances (EPS) and soluble micro-

bial products (SMP). The first model is based on the Activated Sludge Model No.

1 (ASM1) whilst the second model is based on a more recently developed Activated

Sludge Model No. 3 (ASM3). Both models are calibrated and assigned default parame-

ter sets, and produce similar outputs with regards to original state variables present in

their base models as well as the added state variables: concentrations of utilisation asso-

ciated products (UAP), biomass associated products (BAP) and extracellular polymeric

substances (EPS).

The second part describes the formulation of two membrane fouling models. The

first model is an extension of a rather uncomplicated model of Liang et al. [149] which is

based on two ordinary differential equations (ODEs) describing an increase of membrane

resistance due to reversible and irreversible fouling, respectively. The model of Liang

et al. [149] is extended to allow simulation of the effects of membrane backwashing,

prediction of cake removal rates according to the models of Nagaoka et al. [176] and Ho

and Zydney [97], and prediction of irreversible fouling rates as a function of permeate

flux. The second fouling model is based on the concept of Duclos-Orsello et al. [50]

where three classical fouling equations: pore constriction, complete pore blockage and

cake formation, are solved simultaneously to predict the loss of membrane permeability

during filtration. Whilst the original model has been presented in an integral form and is

limited to description of permeate flux reduction flux during constant trans-membrane

pressure (TMP) filtration, the extended model is presented with differential equations

allowing simulations under time-varying inputs. In order to describe the sequential

occurrence of pore blockage and cake filtration the model is extended with two ODEs

which calculate the resistance under the blocked area. Both models can be used for
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predicting flux decrease under a given pressure or for calculating TMP increase under

a given flux.

The third part describes integration of the combined EPS and SMP production

ASM1-based model (CES-ASM1) developed in Part I with the modified Liang model

developed in Part II. Irreversible fouling is linked to SMP concentrations whilst specific

cake resistance used in the reversible fouling equation is made dependent on EPS con-

centrations, which, together with SMP are predicted by the CES-ASM1 model. Cake

detachment rate is linked to coarse bubble aeration rate through modelling of shear

stresses on the membrane surface as a function of the superficial air velocity with a

two-phase slug-flow model of Zaisha and Dukler [268]. The integrated model is applied

on the plant layout defined in the MBR benchmark simulation model (BSM-MBR) of

Maere et al. [160].

9.2 Summary of achievements

The work presented in this thesis can be divided into following four categories:

1. Collection and presentation of recent research related to different aspects of mod-

elling MBR systems.

2. Analysis, comparison and evaluation of various mathematical models published

in the scientific literature.

3. Development of new models, modification of the existing models and adaptation

of the existing models to new fields of science.

4. Integration of models and formulation of the integrated bioreactor and membrane

fouling MBR model (IBMF-MBR).

With regards to point 1 this thesis provides a comprehensive overview of different

aspects of modelling MBR systems as well as activated sludge systems in general. Ac-

cording to the author’s knowledge this is the first published PhD thesis of this kind and

it may serve as a comprehensive literature review and as a roadmap for PhD students

and researchers working in this area.

With regards to point 2 this thesis analyses several published ASM models, theoret-

ical equations of forces acting on a single particle in the vicinity of the membrane surface

and the model of slug-flow by Zaisha and Dukler [268]. The models were evaluated in

terms of produced outputs, sensitivity to parameters and, although not with rigorous

mathematical methods, existence of unique solutions and parameter identifiability.

With regards to point 3 this thesis provides two new ASM models with SMP and

EPS kinetics and two membrane fouling models. All of the above were calibrated on

various sets of experimental data obtained from project partners and from literature.

CES-ASM1 and the modified fouling model of Liang et al. [149] were integrated

using a number of interface relationships: (1) shear stresses on the membrane surface

due to forces caused by lateral movement of air bubbles are calculated for a given
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membrane module geometry with a two-phase slug flow model of Zaisha and Dukler

[268], (2) EPS fraction in activated sludge is correlated with specific cake resistance,

(3) irreversible fouling rate is in a functional relationship with SMP concentration and

permeate flux. Through establishment of links between the membrane model and the

bioreactor model we are allowed to describe a MBR as a whole and evaluate the effects

of various operational strategies on both parts of the MBR, not just one.

9.3 Summary of main findings

Whilst the models presented in this thesis were not validated and hence drawing definite

conclusions regarding the behaviour of the physical systems from the model outputs

would be inadequate, the author made several observations with regards to the quality of

the published models, behaviour of the newly developed models, the models’ limitations

as well as their advantages. The main findings are listed below.

1. The published biopolymer ASM models of Lu et al. [157] and Oliveira-Esquerre

et al. [192] are found to be structurally incorrect as the first model does not con-

serve mass and the second model is unable to predict correct SMP concentrations

without sacrificing the predictability of other state variables such as ammoniacal

nitrogen (NH`
4
-N) or nitrate nitrogen (NO´

3
-N).

2. The way that combined biopolymer ASM models are formulated, addition of

biopolymer kinetics affect the process rates of the original state variables in the

base ASM models. These links can be seen in the Petersen matrix in which

bioppolymer-related stoichiometric parameters appear in the stoichiometric coef-

ficients of the non-biopolymer related reactions. For example, production of EPS

by the biomass comes at the cost of biomass growth, hence the stoichiometric

parameter for biomass in the biomass growth process is equal to 1 ´ feps instead

of 1 where feps denotes the fraction of EPS produced during biomass growth. As

the biopolymer kinetics are being adjusted, kinetics of other state variables are

affected as well which poses additional difficulties during model calibration. More-

over, Petersen matrices in the new biopolymer models are different from those of

the standard International Association on Water Quality (IAWQ) ASM models,

hence it is advisable that the new models are thoroughly calibrated in the same

fashion as had been done with the standard ASM models.

3. Based on own observations, the author hypothesizes that different relationships

between biopolymer concentrations and environmental conditions such as e.g. dis-

solved oxygen (DO) or sludge retention time (SRT) observed by various authors

are due to relative parity between the rates of different biopolymer kinetics, such

as, e.g. biomass associated production and utilisation associated production. In

order to verify (or disprove) this hypothesis the models need to be simulated for

a number of different combinations of different biopolymer-associated kinetic and

stoichiometric parameters with e.g. Monte-Carlo methods.

287



T. Janus 9.3. SUMMARY OF MAIN FINDINGS

4. Whilst different researchers suggested different mechanisms as the cause of occur-

rence of the so called ‘two-stage’ TMP profiles during constant flux filtration, such

as e.g. cake layer collapse or local transgression of the critical flux, simulations

with the three-mechanism fouling model indicate that two-stage TMP profiles can

be explained by modelling cake deposition in sequence with combined effects of

pore constriction and pore blockage.

5. Irreversible fouling has been found to occur at significantly faster rates during rain

events where SMP concentrations were significantly lower due to dilution effects

but flux began to exceed critical flux. This observation suggests that irreversible

fouling depends more on flux than on SMP concentrations in the bulk liquid.

6. Although irreversible fouling entails higher operational expenditures (OPEX) as-

sociated with pumping costs and chemical cleaning, as well as capital expendi-

tures (CAPEX) associated with membrane replacements, reversible fouling puts

far more significant demands on energy and is the main culprit causing high op-

erating costs of MBR plants. Another significant detrimental process in MBR

plants is membrane clogging, i.e. blockage of passages inside membrane modules,

although it receives less attention in the scientific community than membrane

fouling.

7. Irreversible fouling is a very slow process whose process time constant exceeds

the simulation horizon of the benchmark simulation model. Hence its effects

on the MBR’s operating costs cannot be properly evaluated. For appropriate

evaluation of the MBR’s operating costs, the plant may need to be simulated over

much longer times, e.g. 609 days as implemented in the long term benchmark

simulation model no.1 (BSM1_LT) of Rosen et al. [212]. Such a long simulation

horizon may allow to properly evaluate the effects of irreversible fouling on the

membrane permeability and hence the energy requirements for permeate pumping

as well as other OPEX and CAPEX associated with control and amelioration of

fouling. We may then capture these costs directly in the simulation model and

formulate a cost measure of fouling which could be used for comparison of control

strategies from the point of view of fouling. Such a proposed measure of fouling

termed FCI (CU d´1 m´3) for ‘Fouling Cost Index’ may be expressed in the

following manner.

FCI “

tendş
tstart

ˆ
i“6ř
i“1

ci

˙
dt

ptend ´ tstartq pVperm ´ N Vbackwashq (9.1)

where c1, c2, c3, c4, and c5 (CU) denote the costs associated, respectively, with air

scouring, backwashing, permeate pumping, chemical cleaning, additives (chemi-

cals) and, finally, membrane replacement, where CU (-) is a unified cost unit.

tstart (d) and tend (d) are, respectively, the beginning and the end of the process

evaluation period, and Vperm ´ N Vbackwash (m3) is the total (net) volume of the

permeate produced in the plant, where N (-) denotes the number of backwashes

288



T. Janus 9.4. RECOMMENDATIONS FOR FUTURE WORK

in the evaluation period and Vbackwash (m3) denotes the volume of each backwash

under an assumption that each backwash uses the same volume of water (perme-

ate). Introduction of such a cost measure of fouling will however necessitate prior

quantification of the unit costs of chemical membrane cleaning, backwashing and

membrane replacement. These costs may be either calculated from the mathemat-

ical models developed bespoke for this purpose or inferred from the OPEX and

CAPEX costs observed on full scale municipal MBR-based wastewater treatment

plants (WWTPs).

8. Looking at the simulation results from the IBMF-MBR model it becomes apparent

that the plant suffers from three problems, which shall be listed below. We might

therefore ask ourselves a question whether it would be possible to obtain better

effluent quality and/or process efficiency within the same volumes if the process

was reconfigured, i.e. the order and volumes of individual reactors were changed,

reactors were added/removed, and the flow streams between the reactors were

altered. The benchmark model at current configuration is characterised with low

anoxic mass fraction despite of 50% volumetric anoxic fraction due to uneven dis-

tribution of sludge between individual reactors. Additionally the first anoxic tank

is subjected to ingress of large amounts of oxygen coming with the recirculation

stream from the membrane tank what additionally impairs denitrification. The

third problem experienced in this model configuration is the shift of solids down-

stream to the membrane tank under elevated flow rates. This phenomenon causes

simultaneous occurrence of irreversible and reversible fouling on the membrane

which has a negative effect on membrane performance. It seems therefore like a

very attractive idea to come up with a better process configuration or, perhaps, to

create a framework for comparison of different MBR configurations together with

operational and control strategies. This task would however necessitate formula-

tion of an objective function which would take into account not only the process

performance and OPEX criteria but also CAPEX and yet unknown measures of

process reliability and complexity. Such an optimisation problem would fall into

the mixed integer non-linear programming (MINLP) category and is something

to look forward to developing in future research studies.

9.4 Recommendations for future work

Despite of being on the market for almost two decades, MBRs are still in a heavy

research and development stage with hundreds of scientific papers published each month

on different aspects of MBR design, manufacturing, operation and control. Whilst

membrane filtration is used in many branches of industry, the fundamental processes

occurring on the membrane are still not entirely understood. The same applies to

activated sludge systems which, although invented in the beginning of the last century,

are still not well understood with regards to production of biopolymers, flocculation

and deflocculation, bulking and foaming or responses to shock loads and toxicity.
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There is still an active debate in the scientific community about what actually

causes fouling and reports of different researchers are often conflicting. With regards

to biopolymer production in activated sludge systems, first and foremost the biopoly-

mer production models have not been extensively validated against the data from real

wastewater treatment plants and secondly, mechanisms of SMP and EPS production

are still unknown. Whilst models such as the model of Jiang et al. [115] or the author’s

own models: CES-ASM1 and CES-ASM3 differentiate between utilisation associated

and biomass associated biopolymer production, additional production of biopolymers

in a response to changing environmental conditions or environmental stress such as

substrate and nutrient deficiency, toxicity, shear, or shock loads is not accounted for.

On the membrane filtration side, the role of SMP and EPS in fouling is not well

understood and whilst it has been found that polysascharide fraction of SMP might

cause more fouling than the protein fraction, it is not known whether the difference in

fouling strengths of these two groups of substances are due to differences in their chem-

ical composition or molecular weight distributions (MWDs). Moreover, the effects of

membrane porosity, pore shape and pore size distribution (PSD) as well as particle size

distribution and particle shapes on membrane fouling are very difficult to measure and

even harder to describe in mathematical terms. The same applies to modelling gel-layer

formation, biofilm growth and passive adsorption which are usually disregarded in the

published fouling models. Links between cake detachment and air scouring rates are

currently being intensively investigated using experimental methods as well as Compu-

tational Fluid Dynamics (CFD). At present, cake detachment is predicted with simple

empirical equations as the ‘quasi-static’ mechanistic two-phase slug-flow models contain

far too many risky assumptions. Improvement of predictions of cake detachment will

require better understanding of flow dynamics inside the membrane modules and will

allow to improve our understanding of membrane clogging and will enable us to further

reduce the energy consumption for coarse bubble aeration.

With regards to the links between biopolymer production and membrane fouling

it is just a mere hypothesis that SMP causes irreversible fouling whilst EPS is respon-

sible for reversible fouling. In fact these two hypotheses may be entirely wrong as the

relationships between SMP, EPS and different fouling mechanisms are likely to be more

complicated and thus need to be further investigated. Moreover, although the bench-

mark model presented here assumes that SMP rejection by the membrane is constant,

SMP rejection and permeation through the membrane is likely to vary in time due to

changing MWD of the SMP and changing rejection properties of the membrane, dy-

namic layer and cake. Although Song et al. [226] derived a relationship between SMP

rejection and SRT, their model is purely empirical and the underlying mechanisms caus-

ing such effects need to be better understood. Rejective properties of the membrane

are of utmost importance as they are found to have a dominant effect on the effluent

chemical oxygen demands (CODs) and SMP concentrations in the bulk liquid, hence

the bulk liquid’s fouling propensity.

The list of unknowns when it comes to modelling MBRs is vast and hence much
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more fundamental research, modelling and especially validation are required to ensure

that the models reflect reality. All of the research presented in this thesis is preliminary

and will require far more efforts in order to provide definite answers in relation to

derivation of optimum operating strategies and design of more energy-efficient reactors,

i.e. the aims set out in the beginning of this thesis. However, it creates a reference

framework for other researchers to continue the work on modelling and simulation of

MBR reactors.

The most urging research questions and tasks are presented in a list below.

1. SMP and EPS mechanisms need to be better understood especially with regards

to their production in response to dynamic changes in influent composition and

operating conditions.

2. The biopolymer kinetics need to be identified on the data obtained from MBR

processes operating on real sewage using full ASM models.

3. Calibration protocols for the developed biopolymer ASM models need to be de-

veloped to assist the modellers with design of experiments and subsequent model

identification.

4. Fouling strengths of different groups of SMP need to be measured under various

operating conditions and process configurations to identify whether different ob-

served strengths of SMP are due to differences in their chemical compositions or

different MWDs.

5. As SMP retention on the membrane is found to have a dominant effect on effluent

CODs and bulk liquid SMP concentrations in the bioreactor, it is vital that reten-

tive properties of the membrane are investigated and the findings are encapsulated

within a mathematical model in order to improve the accuracy of integrated MBR

models in terms of irreversible fouling and effluent COD levels. It is hypothesized

that SMP retention on the membrane is in a function of its MWD and molecular

weight (MW) cutoff of the membrane, dynamic layer and the cake.

6. From the point of view of modelling pore constriction, pore blockage and cake

formation mechanisms it is important to answer the question whether pore con-

striction stops after the pores have been blocked or whether it still occurs in the

pores, although at lower rates due to pre-filtering effects of the cake and the pore

blocking layer.

7. Hydraulic models of air-water flow in membrane modules need to be created and

validated to allow better predictions of membrane clogging and cake detachment.

8. Modelling and identification of passive adsorption, gel layer formation and biofilm

growth mechanisms in MBRs need to be carried out such that these processes can

be included in the fouling models and their effects can be quantitatively compared

against the effects of the so-called classical fouling mechanisms: pore constriction,

pore blockage and cake formation.

9. Integrated MBR models need to be calibrated and validated on the measurements

obtained from full scale WWTPs treating real sewage.
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10. After calibration and validation the benchmark model needs to be extended with

irreversible fouling control mechanisms such as cleaning in place (CiP) and sim-

ulated over longer time horizons such as in the BSM1_LT model of Rosen et al.

[212] in order to properly quantify the effects of irreversible fouling on the overall

operational expenditures (OPEX).
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TSS total suspended solids. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .263

UAP utilisation associated products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

UF ultrafiltration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

UFV upflow velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

VSS volatile suspended solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

WAS waste activated sludge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

VFA volatile fatty acids. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59

WW wastewater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

WWTP wastewater treatment plant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

XBOD5 particulate biological oxygen demand in five days

XBOD8 particulate ultimate biological oxygen demand

XCOD particulate chemical oxygen demand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

XTKN particulate total Kjeldahl nitrogen

ZSV zone settling velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
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Combined EPS and SMP Activated Sludge Model CES-ASM1

Table 9.1: CES-ASM1 state variables.

Name Description Unit

SI Soluble inert organic matter gCOD m´3

SS Readily biodegradable substrate gCOD m´3

XI Particulate inert organic matter gCOD m´3

XS Slowly biodegradable substrate gCOD m´3

XH Heterotrophic biomass gCOD m´3

XEPS Extracellular polymeric substances gCOD m´3

SUAP Utilisation associated products gCOD m´3

SBAP Biomass associated products gCOD m´3

XA Autotrophic biomass gCOD m´3

XP Particulate products arising from biomass decay gCOD m´3

SO Dissolved oxygen gO2 m´3

SNO Nitrate and Nitrite nitrogen gN m´3

SN2
Dinitrogen gN m´3

SNH NH`
4

and NH3 nitrogen gN m´3

SND Soluble biodegradable organic nitrogen gN m´3

XND Particulate biodegradable organic nitrogen gN m´3

SALK Alkalinity moleHCO´
3

m´3
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Table 9.2: Stoichiometric and composition matrix for CES-ASM1, j : process, i : component.

Model components i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

j Processes SI SS XI XS XH XEPS SUAP SBAP XA XP SO SNO SN2
SNH SND XND SALK

Heterotrophic organisms

p1 Ammonification 1 ´1
1

14

p2a Aer. growth on SS ´
1

YH

1 ´
fEPS,h

fEPS,h

γH

YH

x2a y2a ´
iXB

14

p2b Aer. growth on
SBAP

1 ´
fEPS,h

fEPS,h ´
1

YSMP

x2b y2b ´
iXB

14

p2c Aer. growth on
SUAP

1 ´
fEPS,h

fEPS,h ´
1

YSMP

x2c y2c ´
iXB

14

p3a Anox. growth on SS ´
1

YH

1 ´
fEPS,h

fEPS,h
γH

YH

x3a ´x3a y3a
1 ´ YH

40 YH

´
iXB

14

p3b Anox. growth on
SBAP

1 ´
fEPS,h

fEPS,h ´
1

YSMP

x3b ´x3b y3b
1 ´ YH

40 YH

´
iXB

14

p3c Anox. growth on
SUAP

1 ´
fEPS,h

fEPS,h ´
1

YSMP

x3c ´x3c y3c
1 ´ YH

40 YH

´
iXB

14

p4 Decay of het-
erotrophs

1 ´ fP ´

fEPS,dh ´ fBAP

´1 fEPS.dh fBAP fP iXP ´
fP iXP

p5 Hydrolysis of org.
compounds

1 ´1

p6 Hydrolysis of org. N 1 ´1

p7 Hydrolysis of XEPS fS ´1 1 ´ fS
iXEPS´

iXBAP p1 ´ fSq

p8 Hydrolysis of XI fI,I 1 ´ fI,I ´1 fN,I

p9 Hydrolysis of XP fI,P 1 ´ fI,P ´1 fN,P

Autotrophic organisms

p10 Aerobic growth of au-
totrophs

fEPS,a
γA

YA

1 ´ fEPS,a ´
64{14 ´ YA

YA

1

YA

´iXB ´
1

YA

´
iXB

14
´

1

7YA

p11 Decay of autotrophs
1 ´ fP ´

fEPS,da ´ fBAP

fEPS,da fBAP ´1 fP iXP ´
fP iXP

Composition matrix

1 ThOD (g ThOD) 1 1 1 1 1 1 1 1 1 1 -1 ´
64

14
´
24

14
2 Nitrogen (g N) iXB iXEPS iXBAP iXB iXP 1 1 1 1 1

3 Ionic charge (Mole`) ´
1

14

1

14
-1

This model assumes that ThOD is identical to the measured COD. 1 gSO = -1 gThOD, 1 gSNH = 0 gThOD, 1gSNO = -64/14 gThOD, 1 gSN2
= -24/14 gThOD.
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Table 9.3: Process rate equations of the CES-ASM1 moedel.

Process Process rate

p1 ka,20 e´0.069 p20´T q SND XH

p2a µH,20 e´0.069 p20´T q SS

KS`SS

SO

KOH `SO

SALK

KALKH`SALK
XH

p2b µBAP,20 e´0.069 p20´T q SBAP

KBAP `SBAP

SO

KOH`SO

SALK

KALKH`SALK
XH

p2c µUAP,20 e´0.069 p20´T q SUAP

KUAP `SUAP

SO

KOH`SO

SALK

KALKH`SALK
XH

p3a µH,20 e´0.069 p20´T q ηg
SS

KS`SS

KOH

KOH`SO

SNO

KNO`SNO

SALK

KALKH`SALK
XH

p3b µBAP,20 e´0.069 p20´T q ηg
SBAP

KBAP `SBAP

KOH

KOH`SO

SNO

KNO`SNO

SALK

KALKH`SALK
XH

p3c µUAP,20 e´0.069 p20´T q ηg
SUAP

KUAP `SUAP

KOH

KOH`SO

SNO

KNO`SNO

SALK

KALKH`SALK
XH

p4 bH,20 e´0.11 p20´T q XH

p5 kh,20 e´0.11 p20´T q
XS
XH

KX20 e´0.11 p20´T q`
XS
XH

´
SO

KOH `SO
` ηh

KOH

KOH`SO

SNO

KNO`SNO
` ηh,A

KOan

KOan`SO`SNO

¯
XH

p6 p5
XND

XS

p7 kh,EPS,20 e
´0.11 p20´T q XEPS

p8 kh,XI ,20 e
´0.11 p20´T q XI

p9 kh,XP ,20 e
´0.11 p20´T q XP

p10 µA,20 e´0.098 p20´T q SNH

KNH`SNH

SO

KOA`SO

SALK

KALKA`SALK
XA

p11 bA,20 e´0.098 p20´T q XA

* T denotes the temperature of the bulk liquid

** In the original version of the ASM1 model published by International Water Association (IWA) in 1987, the Monod constant

KX20 in equation p5 was not dependent on temperature T . Moreover, hydrolysis of organic substrates was assumed not to occur

under anaerobic conditions. Here, equation p5 was amended to include dependency of KX20 on temperature and allow hydrolysis

to occur under anaerobic conditions with a reduced rate determined by parameter ηh,A

*** All above equations are temperature dependent. These temperature dependency functions are also an addition to ASM1 in

its original shape and form.

**** This model assumes that process rates p2a, p2b, p3a, p3b, and p7 depend on alkalinity SALK . Original formulation of

ASM1 neglected any impacts alkalinity would have on process kinetics. This model also assumes that heterotrophic bacteria can

assimilate nitrogen not only from NH4 ´ N (SNH) as initially postulated in ASM1 (p2a and p3a) but during its absence also

from nitrites and nitrates SNO (p2b and p3b).
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Table 9.4: Stoichiometric parameters in the Petersen matrix of the CES-ASM1 model.

Parameter Expression

x2a ´1 ´ YH ´ γH

YH

x2b ´1 ´ YSMP

YSMP

x2c ´1 ´ YSMP

YSMP

x3a
x2a

40{14

x3b
x2b

40{14

x3c
x2c

40{14

y2a ´p1 ´ fEPS,hq iXB ´ fEPS,h iXEPS

y2b ´p1 ´ fEPS,hq iXB ` 1

YSMP
iXBAP ´ fEPS,h iXEPS

y2c ´p1 ´ fEPS,hq iXB ´ fEPS,h iXEPS

y3a y2a

y3b y2b

y3c y2c
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Table 9.5: Default stoichiometric and kinetic parameters in CES-ASM1

Default
value

Description Unit

ASM1 kinetic parameters

µH,20 6.0 Maximum specific growth rate of heterotrophic biomass d´1

µA,20 0.8 Maximum specific growth rate of autotrophic biomass d´1

bH,20 0.62 Decay rate for heterotrophic biomass d´1

bA,20 0.15 Decay rate for autotrophic biomass d´1

kh,20 3 Maximum specific hydrolysis rate d´1

ka,20 0.08 Maximum specific ammonification rate m3 gCOD´1 d´1

ASM1 stoichiometric parameters

YH 0.67 Yield coefficient for heterotrophic biomass gCOD gCOD´1

YA 0.24 Yield coefficient for autotrophic biomass gCOD gCOD´1

iXB 0.086 N content of biomass, XH , XA gN gCOD´1

iXP 0.06 N content of products of biomass decay, XP gN gCOD´1

fP 0.08 Fraction of biomass leading to particulate products gCOD gCOD´1

KS 20 Half saturation coefficient for substrate in heterotrophic
growth

gCOD m´3

KOH 0.2 Half saturation coefficient for oxygen in heterotrophic growth gO2 m´3

KNO 0.5 Half saturation coefficient for NO´
3

in heterotrophic growth gN m´3

ηg 0.8 Correction factor for µH under anoxic conditions –

ηh 0.4 Correction factor for hydrolysis under anoxic conditions –

ηh,A 0.65 Correction factor for hydrolysis under anaerobic conditions –

KX,20 0.03 Half saturation coefficient for hydrolysis of organic com-
pounds

–

KNH 1 Half saturation coefficient for ammoniacal N in autotrophic
growth

gN m´3

KOA 0.4 Half saturation coefficient for oxygen in autotrophic growth gO2 m´3

KALKH 0.1 Half saturation coefficient for alkalinity (HCO´
3

) in het-
erotrophic growth

mole HCO´
3

m´3

KALKA 0.25 Half saturation coefficient for alkalinity (HCO´
3

) in au-
totrophic growth

mole HCO´
3

m´3

KOan 0.2 Inhibition coefficient for SO and SNO in hydrolysis of organ-
ics under anaerobic conditions

gO2 m´3

KNHNO 0.1 Half saturation coefficient for SNH in heterotrophic growth gN m´3

CES-ASM1 kinetic parameters

µUAP,20 0.35 Maximum specific growth rate of heterotrophs on SUAP d´1

µBAP,20 0.25 Maximum specific growth rate of heterotrophs on SBAP d´1

kh,EPS,20 0.3 Maximum XEPS hydrolysis rate d´1

kh,XI ,20 0.013 Maximum XI hydrolysis rate d´1

kh,XP ,20 0.013 Maximum XP hydrolysis rate d´1

CES-ASM1 stoichiometric parameters

YSMP 0.5 Yield coefficient for heterotrophic growth on SMP gCOD gCOD´1

γH 0.0335 Fraction of SUAP produced during heterotrophic growth gCOD gCOD´1

γA 0.012 Fraction of SUAP produced during autotrophic growth gCOD gCOD´1

iXBAP 0.06 N content of SBAP gN gCOD´1

iXEPS 0.06 N content of XEPS gN gCOD´1

KUAP 100 Half saturation constant for SUAP gCOD m´3

fS 0.4 Fraction of SS produced from XEPS hydrolysis gCOD gCOD´1

fEPS,dh 0.05 Fraction of XEPS produced from heterotrophic biomass de-
cay

gCOD gCOD´1

fEPS,da 0.05 Fraction of XEPS produced from autotrophic biomass decay gCOD gCOD´1

fEPS,h 0.35 Fraction of XEPS produced from heterotrophic biomass ac-
tivity

gCOD gCOD´1

fEPS,a 0.2 Fraction of XEPS produced during autotrophic growth gCOD gCOD´1

KBAP 85 Half saturation constant for SBAP gCOD m´3

fBAP 0.0215 Fraction of SBAP produced from biomass decay gCOD gCOD´1

fN,I 0.02 Fraction of nitrogen (N) released during XI hydrolysis gN gCOD´1

fN,P 0.086 Fraction of N released during XP hydrolysis gN gCOD´1

fI,I 0 Fraction of SI generated during XI hydrolysis gCOD gCOD´1

fI,P 0 Fraction of SI generated during XP hydrolysis gCOD gCOD´1
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Combined EPS and SMP Activated Sludge Model CES-ASM3

Table 9.6: CES-ASM3 state variables.

Name Description Unit

SO Dissolved oxygen gO2 m´3

SS Readily biodegradable substrate gCOD m´3

SNH NH`
4

and NH3 nitrogen gN m´3

SNO Nitrate and Nitrite nitrogen gN m´3

SN2
Dinitrogen gN m´3

SALK Alkalinity moleHCO´
3

m´3

SI Soluble inert organic matter gCOD m´3

XI Particulate inert organic matter gCOD m´3

XS Slowly biodegradable substrate gCOD m´3

XH Heterotrophic biomass gCOD m´3

XSTO Organic storage products gCOD m´3

XA Autotrophic biomass gCOD m´3

XTSS Particulate material gTSS m´3

SBAP Biomass Associated Products (BAP) gCOD m´3

SUAP Utilisation Associated Products (UAP) gCOD m´3

XEPS Extracellular Polymeric Substances (EPS) gCOD m´3
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Table 9.7: Stoichiometric and composition matrix for CES-ASM3, j : process, i : component.

Model components i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

j Processes SO SI SS SNH SN2 SNO SHCO SBAP SUAP XI XS XH XSTO XA XEPS XTSS

Heterotrophic organisms

p1 Hydrolysis fSI
1 ´ fSI

y1 z1 -1 t1

p2,a Aerobic storage of SS x2a -1 y2a z2a
YSTO,O2

´

fEPS,STO

fEPS,STO t2a

p2,b Aerobic storage of SBAP x2b y2b z2b -1
YSTO,SMP,O2

´

fEPS,STO

fEPS,STO t2b

p2,c Aerobic storage of SUAP x2c y2c z2c -1
YSTO,SMP,O2

´

fEPS,STO

fEPS,STO t2c

p3,a Anoxic storage of SS -1 y3a ´x3a x3a z3a
YSTO,NO´

fEPS,STO

fEPS,STO t3a

p3,b Anoxic storage of SBAP y3b ´x3b x3b z3b -1
YSTO,SMP,NO´

fEPS,STO

fEPS,STO t3b

p3,b Anoxic storage of SUAP y3c ´x3c x3c z3c -1
YSTO,SMP,NO´

fEPS,STO

fEPS,STO t3c

p4 Aerobic growth x4 y4 z4 γH {YH,O2
1 ´ fEPS,h ´1{YH,O2

fEPS,h t4

p5 Anoxic growth y5 ´x5 x5 z5 γH {YH,NO 1 ´ fEPS,h ´1{YH,NO fEPS,h t5

p6 Aerobic endogenous respiration x6 y6 z6 fBAP fXI
-1 fEPS,dh t6

p7 Anoxic endogenous respiration y7 ´x7 x7 z7 fBAP fXI
-1 fEPS,dh t7

p8 Aerobic respiration of XSTO x8 -1 t8

p9 Anoxic respiration of XSTO ´x9 x9 z9 -1 t9

Autotrophic organisms

p10 Nitrification x10 y10 1{YA z10 γA{YA 1 ´ fEPS,a fEPS,a t10

p11 Aerobic endogenous respiration x11 y11 z11 fBAP fXI
-1 fEPS,da t11

p12 Anoxic endogenous respiration y12 ´x12 x12 z12 fBAP fXI
-1 fEPS,da t12

EPS and XI hydrolysis

p13 Hydrolysis of XEPS fS 1 ´ fS -1 t13

p14 Hydrolysis of XI fI,I 1 ´ fI,I fN,I ´1 t14

1 ThOD (g ThOD) -1 1 1 ´24{14 ´64{14 1 1 1 1 1 1 1 1

2 Nitrogen (g N) iN,SI
iN,SS

1 1 1 iN,SBAP
iNXI

iNXS
iN,BM iN,BM iN,EPS

3 Ionic charge (Mole`) 1{14 ´1{14 -1

4 TSS (g TSS) iTSS,XI
iTSS,XS

iTSS,BM iTSS,STO iTSS,BM iTSS,EPS 1

This model assumes that ThOD is identical to the measured COD. 1 gSO = -1 gThOD, 1 gSNH = 0 gThOD, 1gSNO = -64/14 gThOD, 1 gSN2
= -24/14 gThOD.

Stoichiometric parameters xi yi zi and ti were calculated from mass and electric charge conservation equations and are given in Table 9.9.
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Table 9.8: Process rate equations of the CES-ASM3 model.

Process rate

p1 e´0.04 p20´T q ¨ kh,20 ¨
XS
XH

KX`
XS
XH

¨ XH

p2,a e´0.07 p20´T q ¨ ksto,20 ¨ SO

KH,O2
`SO

¨ SS

KH,SS
`SS

¨ XH

p2,b e´0.07 p20´T q ¨ ksto,BAP,20 ¨ SO

KH,O2
`SO

¨ SBAP

KBAP `SBAP
¨ XH

p2,c e´0.07 p20´T q ¨ ksto,UAP,20 ¨ SO

KH,O2
`SO

¨ SUAP

KUAP `SUAP
¨ XH

p3,a e´0.07 p20´T q ¨ ksto,20 ¨ ηH,NO ¨
KH,O2

KH,O2
`SO

¨ SS

KH,SS`SS
¨ SNO

KH,NO`SNO
¨ XH

p3,b e´0.07 p20´T q ¨ ksto,BAP,20 ¨ ηH,NO ¨
KH,O2

KH,O2
`SO

¨ SBAP

KBAP `SBAP
¨ SNO

KH,NO`SNO
¨ XH

p3,c e´0.07 p20´T q ¨ ksto,UAP,20 ¨ ηH,NO ¨
KH,O2

KH,O2
`SO

¨ SUAP

KUAP `SUAP
¨ SNO

KH,NO`SNO
¨ XH

p4 e´0.07 p20´T q ¨ µH,20 ¨ SO

KH,O2
`SO

¨ SNH

KH,NH4
`SNH

¨ SALK

KH,ALK`SALK
¨

XSTO
XH

KH,STO`
XSTO
XH

¨ XH

p5 e´0.07 p20´T q ¨ µH,20 ¨ ηH,NO ¨
KH,O2

KH,O2
`SO

¨ SNH

KH,NH4
`SNH

¨ SALK

KH,ALK`SALK
¨

XSTO
XH

KH,STO`
XSTO
XH

¨ SNO

KH,NO`SNO
¨ XH

p6 e´0.07 p20´T q ¨ bH,20 ¨ SO

KH,O2
`SO

¨ XH

p7 e´0.07 p20´T q ¨ bH,20 ¨ ηH,end ¨
KH,O2

KH,O2
`SO

¨ SNO

KH,NO`SNO
¨ XH

p8 e´0.07 p20´T q ¨ bH,20 ¨ SO

KH,O2
`SO

¨ XSTO

p9 e´0.07 p20´T q ¨ bH,20 ¨ ηH,end ¨
KH,O2

KH,O2
`SO

¨ SNO

KH,NO`SNO
¨ XSTO

p10 e´0.105 p20´T q ¨ µAUT,20 ¨ SO

KN,O2
`SO

¨ SNH

KN,NH4
`SNH

¨ SALK

KN,ALK`SALK
¨ XA

p11 e´0.105 p20´T q ¨ bAUT,20 ¨ SO

KH,O2
`SO

¨ XA

p12 e´0.105 p20´T q ¨ bAUT,20 ¨ ηN,end ¨ SNO

KH,NO`SNO
¨

KH,O2

KH,O2
`SO

¨ XA

p13 e´0.04 p20´T q ¨ kh.EPS,20 ¨ XEPS

p14 e´0.04 p20´T q ¨ kh,XI ,20 ¨ XI

where T denotes the temperature of the bulk liquid

Table 9.9: Stoichiometric parameters in the Petersen matrix of the CES-ASM3 model.

Parameter Expression

x2a YSTO,O2
´ 1

x2b YSTO,SMP,O2
´ 1

x2c YSTO,SMP,O2
´ 1

x3a
YSTO,NO ´ 1

40{14

x3b

YSTO,SMP,NO ´ 1

40{14

x3c
YSTO,SMP,NO ´ 1

40{14

x4 1 ´
1 ´ γH

YH,O2
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Table 9.9: Stoichiometric parameters in the Petersen matrix of the CES-ASM3 model.

Parameter Expression

x5

1 ´ p1 ´ γHq{pYH,NOq

40{14

x6 ´p1 ´ fXI
´ fBAP ´ fEPSdhq

x7

fXI
` fBAP ` fEPS,dh ´ 1

40{14

x8 ´1

x9 ´14{40

x10 1 `
´64{14 ´ γA

YA

x12

fXI
` fBAP ` fEPS,da ´ 1

40{14

y1 iN,XS
´ iN,SI

fSI
´ p1 ´ fSI

q iN,SS

y2a iN,SS
´ fEPS,STO iN,EPS

y2b iN,SBAP
´ fEPS,STO iN,EPS

y2c ´fEPS,STO iN,EPS

y3a iN,SS
´ fEPS,STO iN,EPS

y3b iN,SBAP
´ fEPS,STO iN,EPS

y3c ´fEPS,STO iN,EPS

y4 ´p1 ´ fEPS,hq iN,BM ´ fEPS,h iN,EPS

y5 ´p1 ´ fEPS,hq iN,BM ´ fEPS,h iN,EPS

y6 ´fXI
iN,XI

` iN,BM ´ fBAP iN,SBAP
´ fEPS,dh iN,EPS

y7 ´fXI
iN,XI

` iN,BM ´ fBAP iN,SBAP
´ fEPS,dh iN,EPS

y10 ´1{YA ´ p1 ´ fEPS,aq iN,BM ´ fEPS,a iN,EPS

y11 ´fXI
iN,XI

` iN,BM ´ fBAP iN,SBAP
´ fEPS,da iN,EPS

y12 ´fXI
iN,XI

` iN,BM ´ fBAP iN,SBAP
´ fEPS,da iN,EPS

z1 y1{14

z2a y2a{14

z2b y2b{14

z2c y2c{14

z3a
y3a ´ x3a

14

z3b
y3b

14
´

YSTO,SMP,NO ´ 1

40

z3c
y3c

14
´

YSTO,SMP,NO ´ 1

40

z4 y4{14

z5
y5 ´ x5

14

z6 y6{14

z7
y7 ´ x7

14
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Table 9.9: Stoichiometric parameters in the Petersen matrix of the CES-ASM3 model.

Parameter Expression

z9 1{40

z10
y10 ´ x10

14

z11 y11{14

z12
y12 ´ x12

14

t1 ´iTSS,XS

t2a pYSTO,O2
´ fEPS,STOq iTSS,STO ` fEPS,STO iTSS,EPS

t2b pYSTO,O2
´ fEPS,STOq iTSS,STO ` fEPS,STO iTSS,EPS

t2c pYSTO,O2
´ fEPS,STOq iTSS,STO ` fEPS,STO iTSS,EPS

t3a pYSTO,NO ´ fEPS,STOq iTSS,STO ` fEPS,STO iTSS,EPS

t3b pYSTO,NO ´ fEPS,STOq iTSS,STO ` fEPS,STO iTSS,EPS

t3c pYSTO,NO ´ fEPS,STOq iTSS,STO ` fEPS,STO iTSS,EPS

t4 p´1{YH,O2
q iTSS,STO ` p1 ´ fEPS,hq iTSS,BM ` fEPS,h iTSS,EPS

t5 p´1{YH,NOq iTSS,STO ` p1 ´ fEPS,hq iTSS,BM ` fEPS,h iTSS,EPS

t6 ´iTSS,BM ` fXI
iTSS,XI

` fEPSdh iTSS,EPS

t7 ´iTSS,BM ` fXI
iTSS,XI

` fEPSdh iTSS,EPS

t8 ´iTSS,STO

t9 ´iTSS,STO

t10 iTSS,BM p1 ´ fEPS,aq ` fEPS,a iTSS,EPS

t11 ´iTSS,BM ` fXI
iTSS,XI

` fEPS,da iTSS,EPS

t12 ´iTSS,BM ` fXI
iTSS,XI

` fEPS,da iTSS,EPS

t13 ´iTSS,EPS

t14 ´iTSS,XI

Table 9.10: Default stoichiometric and kinetic parameters in the CES-ASM3 model.

Parameter Default
value

Description Unit

ASM3 kinetic parameters

kh,20 9 Hydrolysis rate constant d´1

ksto,20 12.5 Maximum storage rate d´1

µH,20 3.0 Maximum growth rate on substrate d´1

bH,20 0.3 Rate constant for lysis and decay d´1

µA,20 1 Maximum growth rate of XA d´1
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Table 9.10: Default stoichiometric and kinetic parameters in the CES-ASM3 model.

Parameter Default
value

Description Unit

bA,20 0.2 Decay rate of XA d´1

ASM3 stoichiometric parameters

iN,SI
0.01 N content of inert soluble COD SI gN gCOD´1

iN,SS
0.03 N content of readily biodegradable substrate SS gN gCOD´1

iN,XI
0.03 N content of inert particulate COD XI gN gCOD´1

iN,XS
0.035 N content of slowly biodegradable substrate XS gN gCOD´1

iN,BM 0.07 N content of biomass, XH , XA gN gCOD´1

iTSS,XI
0.75 TSS to COD ratio for XI gTSS gCOD´1

iTSS,XS
0.75 TSS to COD ratio for XS gTSS gCOD´1

iTSS,STO 0.6 TSS to COD ratio for XSTO gTSS gCOD´1

iTSS,BM 0.9 TSS to COD ratio for biomass XH , XA gTSS gCOD´1

fSI
0.00 Production of SI in hydrolysis gCOD gCOD´1

YH,O2
0.80 Yield coefficient for heterotrophs in aerobic growth gCOD gCOD´1

YH,NO 0.65 Yield coefficient for heterotrophs in anoxic growth gCOD gCOD´1

YSTO,O2
0.80 Yield coefficient for XSTO in aerobic growth gCOD gCOD´1

YSTO,NO 0.70 Yield coefficient for XSTO in anoxic growth gCOD gCOD´1

fXI
0.20 Fraction of XI generated in biomass lysis gCOD gCOD´1

YA 0.24 Yield coefficient for autotrophs gCOD gCOD´1

KX 1.0 Saturation/inhibition coefficient for XS gCOD gCOD´1

ηH,NO 0.8 Reduction factor for denitrification –

ηH,end 0.33 Reduction factor for bH under anoxic conditions –

ηN,end 0.5 Reduction factor for bAUT under anoxic conditions –

KH,O2
0.2 Saturation/inhibition coefficient for O2, heter.

growth
gO2 m´3

KH,SS
10 Saturation/inhibition coefficient for SS , heter.

growth
gCOD m´3

KH,NO 0.5 Saturation/inhibition coefficient for NO´
3

gN m´3

KH,NH4
0.01 Saturation/inhibition coefficient for NH`

4
gN m´3

KH,ALK 0.1 Saturation coefficient for alkalinity (HCO´
3

) moleHCO´
3

m´3

KH,STO 0.1 Saturation coefficient for storage products gCOD m´3

KNO2
0.5 Saturation coefficient for oxygen in autotrophic

growth
gO2 m´3

KN,NH4
1 Saturation coefficient for ammonium in autotrophic

growth
gN m´3

KN,ALK 0.5 Saturation coefficient for alkalinity in autotrophic
growth

moleHCO´
3

m´3

CES-ASM3 kinetic parameters

kSTO,UAP,20 0.1 Maximum SUAP storage rate d´1

kSTO,BAP,20 0.1 Maximum SBAP storage rate d´1

kh,EPS,20 0.17 Maximum XEPS hydrolysis rate d´1

kh,XI ,20 0.013 Maximum XI hydrolysis rate d´1

CES-ASM3 stoichiometric parameters

γH 0.0193 Fraction of SUAP produced during cell growth of XH gCOD gCOD´1

γA 0˚ Fraction of SUAP produced during cell growth of XA gCOD gCOD´1

KUAP 100 Saturation constant for SUAP gCOD m´3

KBAP 85 Saturation constant for SBAP gCOD m´3
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Table 9.10: Default stoichiometric and kinetic parameters in the CES-ASM3 model.

Parameter Default
value

Description Unit

YSTO,SMP,O2
0.80 Aerobic yield of stored product per SBAP and SUAP

(SMP)
gCOD gCOD´1

YSTO,SMP,NO 0.70 Anoxic yield of stored product per SBAP and SUAP

(SMP)
gCOD gCOD´1

fBAP 0.0215 Fraction of SBAP produced during cell lysis gCOD gCOD´1

fEPS,h 0.12 Fraction of XEPS produced during cell growth of
XH

gCOD gCOD´1

fEPS,a 0˚ Fraction of XEPS produced during cell growth of XA gCOD gCOD´1

fEPS,STO 0.12 Fraction of XEPS produced during storage of inter-
nal substrates

gCOD gCOD´1

fEPS,dh 0.05 Fraction of XEPS produced during cell decay of XH gCOD gCOD´1

fEPS,da 0˚ Fraction of XEPS produced during cell decay of XA gCOD gCOD´1

fS 0.4 Fraction of SS produced during hydrolysis of XEPS gCOD gCOD´1

iN,SBAP
0.07 N content of SBAP gN gCOD´1

iN,EPS 0.07 N content of XEPS gN gCOD´1

iTSS,EPS 0.9 TSS to COD ratio for XEPS gTSS gCOD´1

fN,I 0.02 Fraction of N released during XI hydrolysis gN gCOD´1

fI,I 0 Fraction of SI generated during XI hydrolysis gCOD gCOD´1

* EPS and SMP formation kinetic parameters for autotrophic biomass are set to zero as they have been found not to affect

SMP and EPS concentrations. Parameter fitting was performed manually (parameters adjusted by hand) during the two

described calibration exercises. Some of the parameters have been calculated as a function of other parameters which had been

fitted, assumed or taken from the literature.

** Value of the parameter differs from the default value in the ASM3 model.
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