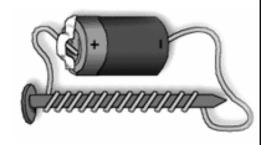

Motor Basics

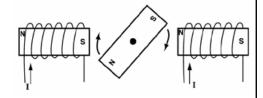
AGSM 325

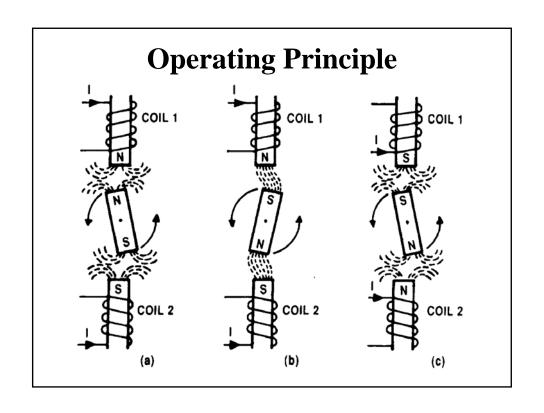
Motors vs Engines

- Motors convert electrical energy to mechanical energy.
- Engines convert chemical energy to mechanical energy.



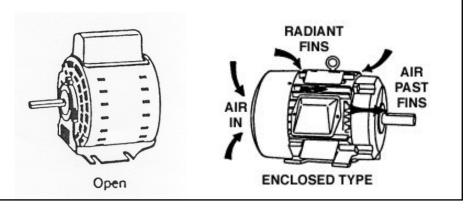
Motors


- Advantages
 - Low Initial Cost \$/Hp
 - Simple & Efficient Operation
 - Compact Size cubic inches/Hp
 - Long Life 30,000 to 50,000 hours
 - Low Noise
 - No Exhaust Emissions
 - Withstand high temporary overloads
 - Automatic/Remote Start & Control
- Disadvantages
 - Portability
 - Speed Control
 - No Demand Charge

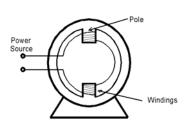

Magnetic Induction

• Simple Electromagnet

- Like Poles Repel
- Opposite Poles Attract


Motor Parts

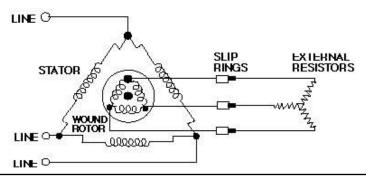
- Enclosure
- Stator
- Rotor
- Bearings
- Conduit Box
- Eye Bolt


Enclosure

- Holds parts together
- Helps with heat dissipation
- In some cases, protects internal components from the environment.

Stator (Windings)

- "Stationary" part of the motor sometimes referred to as "the windings".
- Slotted cores made of thin sections of soft iron are wound with insulated copper wire to form one or more pairs of magnetic poles.

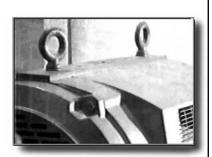

Rotor

- "Rotating" part of the motor.
- Magnetic field from the stator induces an opposing magnetic field onto the rotor causing the rotor to "push" away from the stator field.

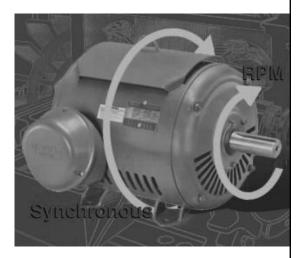

Wound Rotor Motors

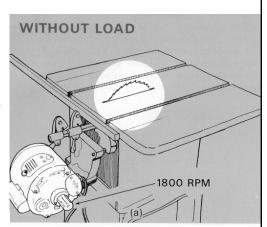
- Older motor designed to operate at "variable speed"
- Advantages
 - Speed Control, High Starting Torque, Low Starting Current
- Disadvantages
 - Expensive, High Maintenance, Low Efficiency

Bearings


- Sleeve Bearings
 - Standard on most motors
 - Quiet
 - Horizontal shafts only
 - Oil lubricated
- Ball (Roller) Bearings
 - Support shaft in any position
 - Grease lubricated
 - Many come sealed requiring no maintenance

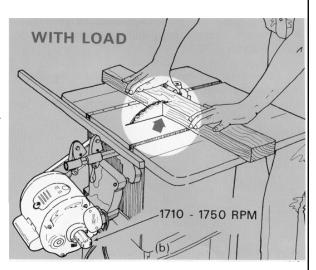
Other Parts


- Conduit Box
 - Point of connection of electrical power to the motor's stator windings.
- Eye Bolt
 - Used to lift heavy motors with a hoist or crane to prevent motor damage.


Motor Speed

- Synchronous Speed
 - Speed the motor's magnetic field rotates.
 - Theoretical speed with not torque or friction.
- Rated Speed
 - Speed the motor operates when fully loaded.
 - Actual speed at full load when supplied rated voltage.

Synchronous Speed


- Theoretical Speed
- A well built motor may approach synchronous speed when it has no load.
- Factors
 - Electrical Frequency (cycles/second)
 - # of poles in motor

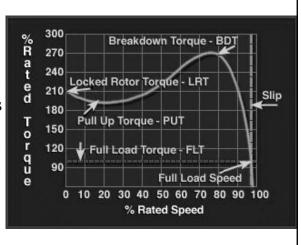
Synchronous Speed = $\frac{120 \text{ x Frequency}}{\text{# of Poles}}$

Rated Speed

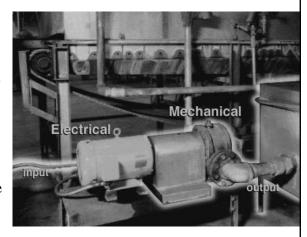
 Speed the motor runs at when fully loaded and supplied rated nameplate voltage.

Motor Slip

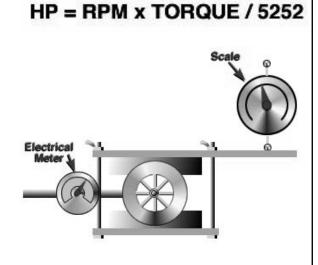
- Percent difference between a motor's synchronous speed and rated speed.
- The rotor in an induction motor lags slightly behind the synchronous speed of the changing polarity of the magnetic field.
 - Low Slip Motors
 - "Stiff"....High Efficiency motors
 - High Slip Motors
 - Used for applications where load varies significantly...oil pump jacks.


Torque

- Measure of force producing a rotation
 - Turning Effort
 - Measured in pound-feet (foot-pounds)


Torque-Speed Curve

- Amount of Torque produced by motors varies with Speed.
- Torque Speed Curves
 - Starting Torque
 - Pull Up Torque
 - Breakdown Torque

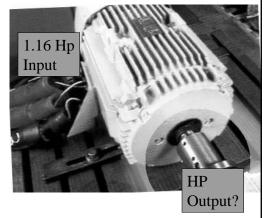

Motor Power

- Output Power
 - Horsepower
 - Amount of power motor can produce at shaft and not reduce life of motor.
- Input Power
 - Kilowatts
 - Amount of power the motor consumes to produce the output power.

Calculating Horsepower

- Need Speed and Torque
- Speed is easy
 - Tachometer
- Torque is difficult
 - Dynamometer
 - Prony Brake

Watt's Law

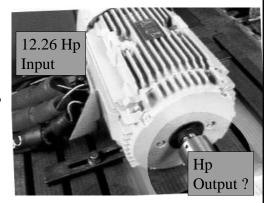

- Input Power
- Single Phase
 - Watts = Volts X Amps X p.f.
- Three Phase
 - Watts = Avg Volts X Avg Amps X p.f. X 1.74

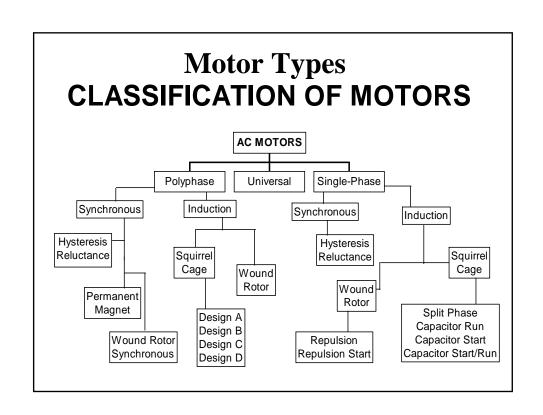
Example

- Is a 1 Hp 1-phase motor driving a fan overloaded?
 - Voltage = 123 volts
 - Current = 9 amps
 - p.f. = 78%
- Watts = Volts X Amps X p.f.
 - Watts = 123 volts X 9 amps X 0.78 = 863.5 Watts864 Watts / 746 Watts/Hp = 1.16 Hp
- Is the motor overloaded?

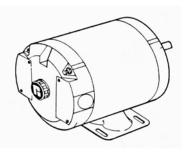
Electrical = Input

- We measured Input
- Motors are rated as Output
- Difference?
 - Efficiency
- If the motor is 75% efficient, is it overloaded?
- Eff = Output / Input
- Output = Eff X Input 0.75 X 1.16 Hp = 0.87 Hp
- The motor is NOT overloaded

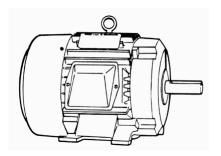



Example #2

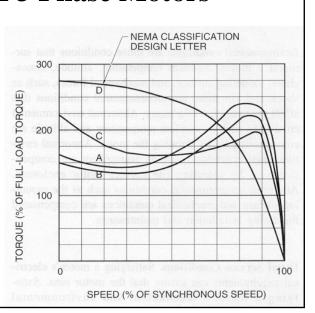
- Is this 10 Hp, 3-phase motor overloaded?
 - Voltages = 455, 458, and 461 volts
 - Currents = 14.1, 14.0 and 13.9 amps
 - P.f. = 82%
- Watts = Volts_{avg} X Amps_{avg} X p.f. X 1.74
 Watts = 458v X 14a X 0.82 X 1.74 = 9148.6 Watts
 9148.6 Watts / 746 Watts/Hp = 12.26 Hp
- Is the motor overloaded?


Example #2

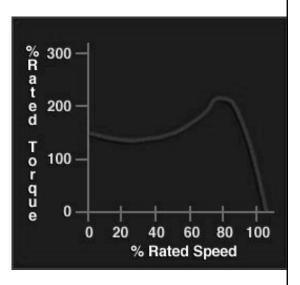
- We measured Input
- Motor is rated as Output
- Difference?
 - Efficiency
- If the motor is 90% efficient, is it overloaded?
- Eff = Output / Input
- Output = Eff X Input 0.90 X 12.26 Hp = 11.0 Hp
- The motor IS overloaded!
- How bad is the overload?



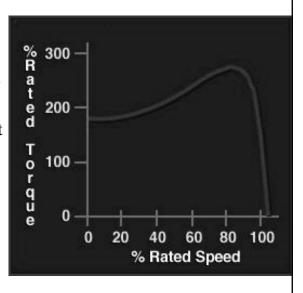
Synchronous vs Induction Motors


- Synchronous Motors
 - Turn at exactly the same speed as the rotating magnetic field.
 - 3600 rpm, 1800 rpm, etc.

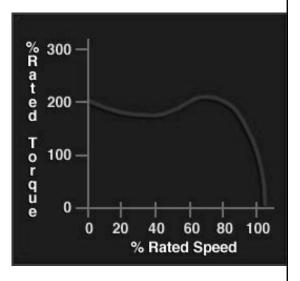
- Induction Motors
 - Turn at less than synchronous speed under load.
 - 3450 rpm, 1740 rpm, etc.


NEMA 3 Phase Motors

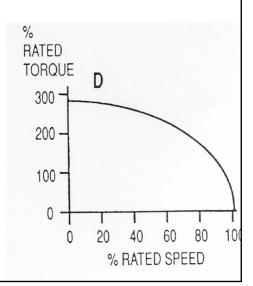
- 3 Phase Induction Motors
- NEMA Torque-Speed Design Types
 - A,B,C,D,E


Design Type B

- Today's "Standard" 3-Phase Motor
- Good Starting Torque
 - In-rush amps 4-6 times full load amps
 - Good breakdowntorque
 - Medium Slip


Design Type A

- The "old" Standard
- Higher starting torque than "B".
- Higher in-rush current (5-8 times full load amps)
- Good breakdown torque


Design Type C

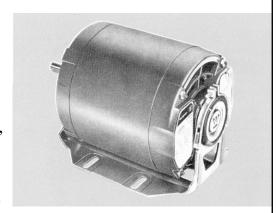
- Common OEM equipment on reciprocating pumps, compressors and other "hard starting" loads.
- High starting torque
- Moderate starting current (5-8 times FLA)
- Moderate breakdown torque

Design Type D

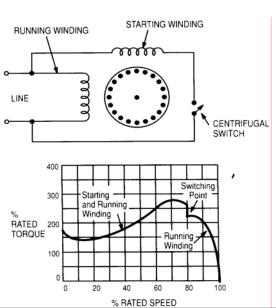
- Common on applications with significant loading changes as a machine operates.
- Impact Loads
 - Punch Presses, Metal Shears, etc.
 - Pump Jacks

Design Type E

- Newest NEMA Category
- Newer ultra-high efficiency motors
 - Higher Starting Torque
 - Higher Starting Current (8-12 times Running)
 - Ultra Low Slip (Higher Rated Speed)


Single Phase Induction Motors

- Are not "self starting"
 - Require a starting mechanism.
- The name generally describes its "starting mechanism".
 - Split Phase
 - Capacitor Run
 - Capacitor Start
 - Capacitor Start-Capacitor Run
 - Shaded Pole
 - Synchronous
 - Universal


Split Phase Motor

- Common small single phase motor
 - Good Starting Torque
 - Moderate Efficiency
 - Moderate Cost
- Small conveyors, augers, pumps, and some compressors
- 1/20th to ³/₄ Hp, available to 1.5 Hp

Split Phase Motor

- Starting winding in parallel with Running winding
- Switch operates at 70-80% of full speed.
- Centrifugal Switch
 - Sticks Open
 - Sticks Shut

Capacitor Run Motor (Permanent Split Capacitor or PSC)

- Primarily a fan and blower motor.
- Poor starting torque
- Very low cost motor.

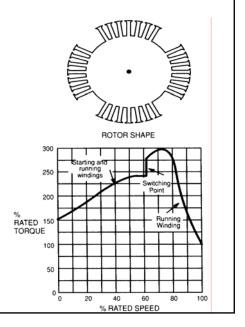
Permanent Split Capacitor (PSC) CAPACITOR WINDING Capacitor in "Capacitor Winding" LINE - Provides a "phase shift" for starting. - Optimizes running CAPACITOR WINDING characteristics. • No centrifugal switch 200 % RATED TORQUE 100 % RATED SPEED

Capacitor Start Motor

- Larger single phase motors up to about 10 Hp.
- A split phase motor with the addition of a capacitor in the starting winding.
- Capacitor sized for high starting torque.

Capacitor Start Motor CENTRIFUGAL SWITCH STARTING Very high starting torque. • Very high starting LINE current. RUNNING WINDING STARTING WINDING Common on compressors and other hard starting % RATED TORQUE₂₀₀ equipment. Main 100 40 60 % RATED SPEED

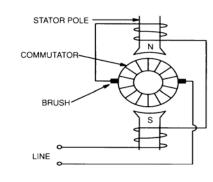
Capacitor Start-Capacitor Run

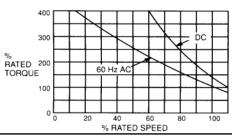

- Both starting and running characteristics are optimized.
 - High starting torque
 - Low starting current
 - Highest cost
- For hard starting loads like compressors and pumps.
- Up to 10 Hp or higher is some situations.

Capacitor Start-Run Motor STARTING CAPACITOR RUNNING CAPACITOR CENTRIFUGAL • Larger single phase motors up to 10 Hp. LINE • Good starting torque (less than cap start) with lower starting STARTING WINDING RUNNING WINDING current. Starting and Running Winding Higher cost than cap % RATED start. TORQUE Winding

Synchronous Motor

- Special design for "constant speed" at rated horsepower and below.
- Used where maintaining speed is critical when the load changes.


Universal Motor


- Runs on AC or DC
- Commutator and brushes
- Generally found in portable power tools.
- Lower Hp sizes

Universal Motor

- Very high starting torque.
- Higher torque on DC than AC (battery operated tools)
- The higher the rpm, the lower the torque.

