N A N O S T O N E W A T E R

SINGAPORE INTERNATIONAL WATER WEEK 2021 ONLINE

Nanostone Water Innovative Ceramic Membrane technology in Water Treatment Applications

June 22,2021

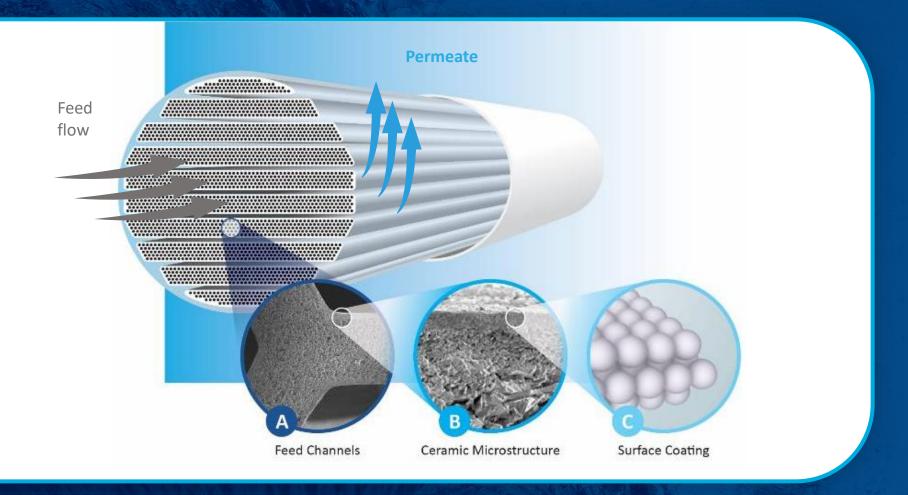
Improved economics and reliability for SWRO pretreatment operations using novel ceramic filtration technology

Jonathan Clement Global Technology Officer, Nanostone Water, Inc.

Biggest Desalination Pretreatment Issues Today

- Pre-treatment for desalination is a serious global problem
- Many membrane pre-treatment systems are under performing or failing
 - Some recoveries are down to 40%
 - Lack of DOC removal leads to RO fouling
- Sea water presents treatment issues very different than fresh surface water
 - high algae concentrations
 - high solids
 - corrosive nature of sea water
- Need a form of pre-treatment that is specifically suitable and robust for these issues

Nanostone Module (Universal Design)



- α Al₂O₃ ceramic membrane
- 262 ft²/24.3 m² area
- · Inside to out filtration, dead end
- 0.03 microns pore size, 2.4 mm feed channels
- 7 bar rated pressure
- Overall height 1.9 m, Dia 9.8 in, shipping weight 95 kg
- Duplex SS Permeate Port
- Allows one for one swap of PUF
- Technology advanced on the inside, but highly integrable on the outside
- Conscious decision round housing for easy PUF retrofit

Nanostone Module

Insert video 1- product animation Download here:

https://nanostonewater-

my.sharepoint.com/:v:/g/personal/nanostonefileserver

nanostone com/ETSTwTdbjF1ChV_LM-

cy4CMBCJ2zdmF_6dKpxxQwcltiFA?e=CLGXUZ

Ideally Suited for Desalination Pretreatment

- Membrane and module are sea water resistant
- Large channels (2.4 mm) can hold a large amount of solids and algae
- Minimal pre-treatment (coagulation only) is necessary to function optimally
 - no need for Dissolved Air Floatation (DAF) or other forms of clarification,
 - saving space and complexity while improving reliability
- Can operate optimally with coagulation removing organics significantly improving downstream RO operations
 - many membrane systems avoid coagulation placing burden on downstream processes
- High fluxes (> 200 lmh) can be achieved reducing footprint
 - many desalination plants are located in urban areas land is a premium
- Rigorous cleaning can be achieved with high flow backwashing and chemicals

Overview of Pilot at Tuas

Objectives

- Stable UF-performance at economical feasible flux
- Highest possible NOM/DOC removal for downstream RO
- Absolute filtration for SS (low Turbidity, SDI)

Pre-treatment

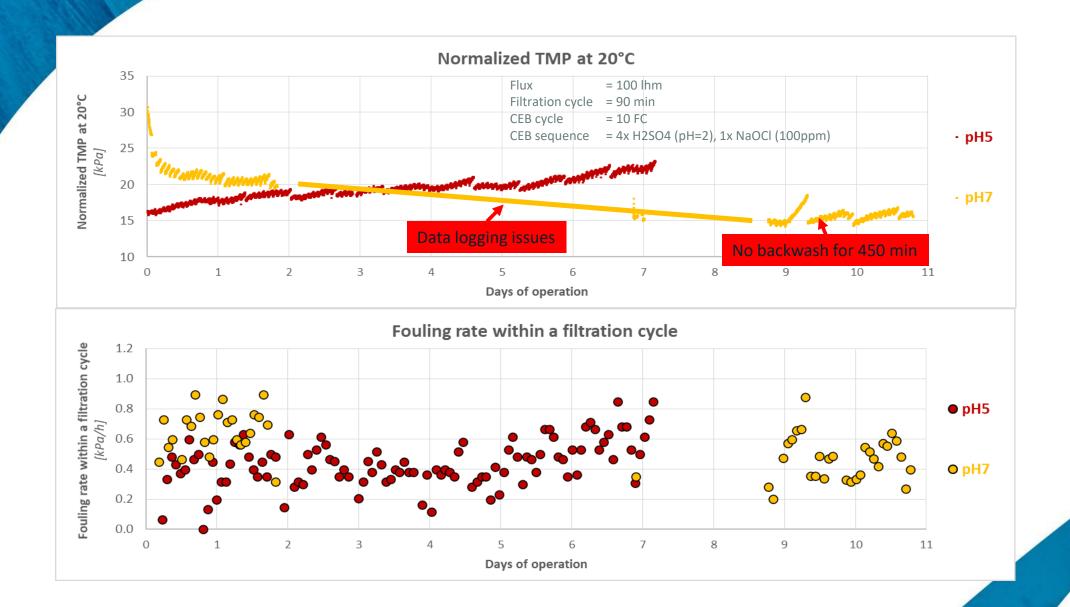
- Continuous 5 days 2 ppm NaOCl dose, +6 ppm shock dose for 2 days (8ppm)
- Sieve 20 mm
- Rough screen 2mm (other MF/UF pilots on site have a 400µm or finer screen)
- In-line coagulation with FeCl3, pH-control and 1-3 minute contact time

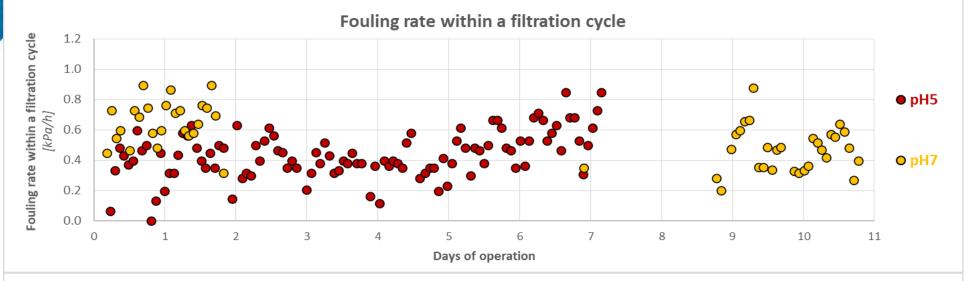
Logistics

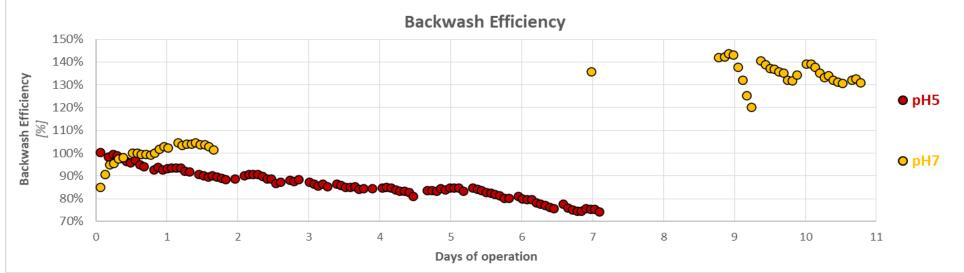
- Trial of 6 months
 - 3 months optimization
 - 3 months longer-term monitoring

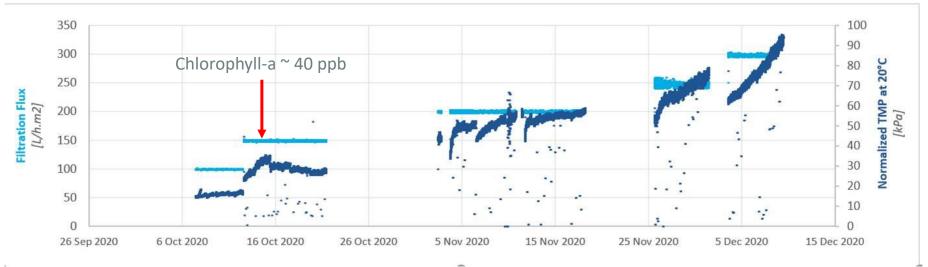
Overview of Pilot at Tuas

Jar Testing	 Find initial coagulant dose and pH-range (done)
Commissioning	Delayed by Covid-19 circuit breaker events
	 Initial optimization, 4 weeks (done)
In-line coagulation	 Confirm jar tests in a continuous process
	 Find optimum pH (done)
	 Establish critical flux, 4 weeks (done)
Optimization	 Establish filtration time or optimum load L/m2, 2
	weeks (done)
	 Establish CEB frequency, 3 weeks (done)
Long-Term Operation	


background/research at TUAS (PUB) – Optimizing ILC


Technical

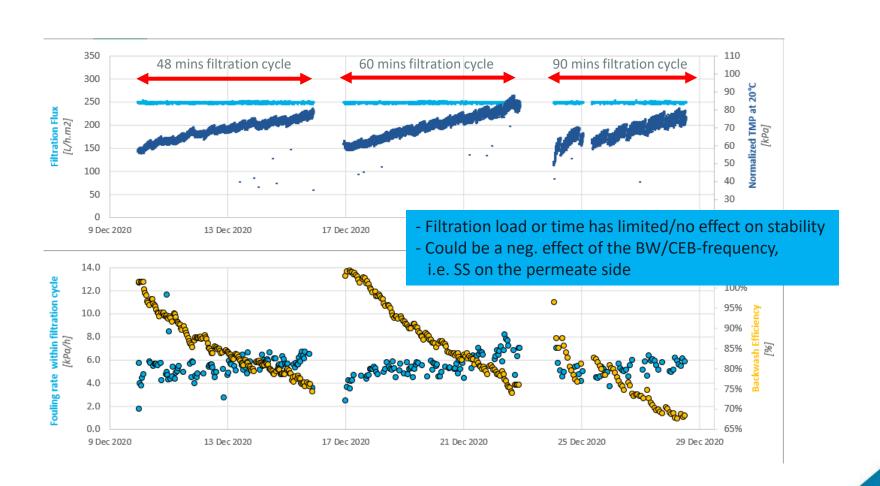

- Based on theory expectations for pH 5 are:
 - Closer to "Enhanced" coagulation
 - Higher removal percentage DOC (humic fraction)
 - Some irreversible fouling caused by charged matter
 - Charged metal organic complexes formed
- Based on theory expectations for pH 7 are:
 - Closer to "Sweep" flocculation
 - Lower removal rate DOC (mainly HMW fraction)
 - Less irreversible fouling caused by formation of uncharged Fe(OH)₃



Critical Flux Determination

CIP Frequency:

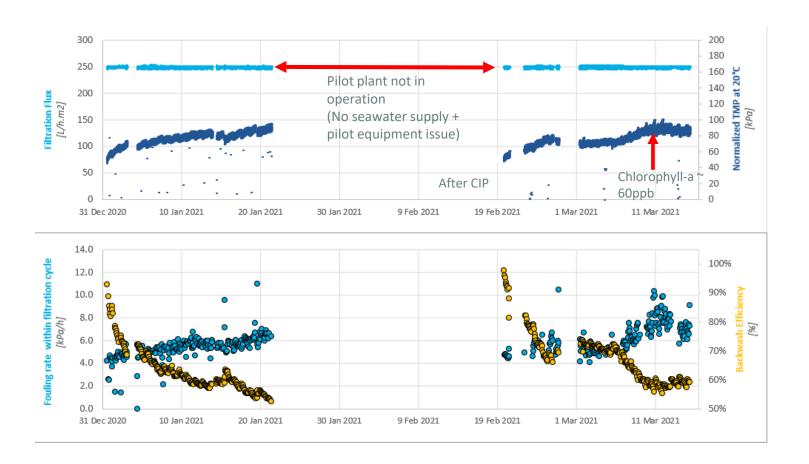
Fouling rate for 100 lmh run = 0.2761 kPa/day (~360 days CIP frequency) Fouling rate for 150 lmh run = 0.2951 kPa/day (~340 days CIP frequency) Fouling rate for 200 lmh run = 2.4313 kPa/day (~45 days CIP frequency) Fouling rate for 250 lmh run = 3.2266 kPa/day (~31 days CIP frequency) Fouling rate for 300 lmh run = 4.6611 kPa/day (~22 days CIP frequency)


At all fluxes (even 300 lhm) critical flux is not reached

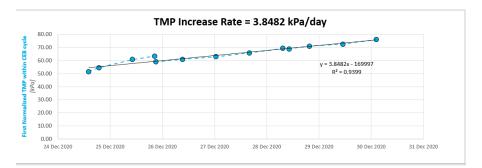
- Fouling at higher flux mainly caused by BW efficiency loss
- 300lhm not feasible in feed/discharge capacity on site
- 250 lhm chosen to further optimize (stabilization)

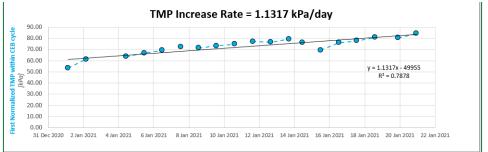
Note: based on initial TMP = 50 kPa and TMP before CIP = 150 kPa

Backwash Frequency Optimization



CEB Frequency Optimization


Long Term Operation

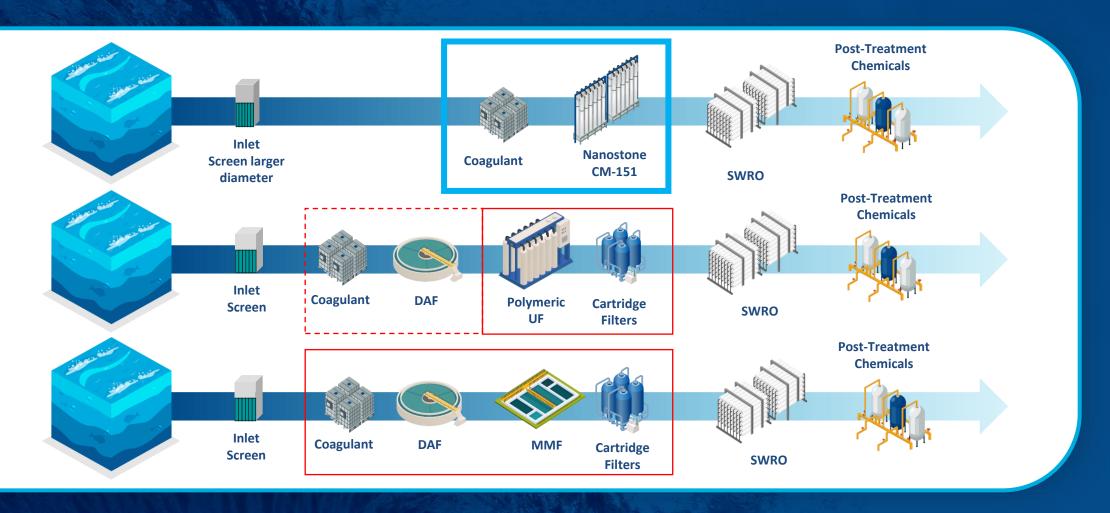

Estimated CIP Frequency

- Flux 250 lmh with 90 mins filtration cycle
- CEB frequency after every 9 BW's

- CIP frequency = 26 days
- Based on initial TMP = 50 kPa and TMP before CIP = 150 kPa

- Flux 250 lmh with 90 mins filtration cycle
- CEB frequency after every 15 BW's

- CIP frequency = 89 days
- Based on initial TMP = 50 kPa and TMP before CIP = 150 kPa



Summary of results

- Membrane operates very well (during algae blooms and neap tide events) with minimal pretreatment - coagulation only – NO DAF
- Very favorable operating conditions
 - Flux 250 lhm at 90 min filtration cycles
 - CEB after 15 FC cycles (approx. 1/day)
 - low pH (2) with 100 ppm H2O2 and then 15 FC later NaOCl (100ppm)
 - High flux means lower footprint
- However further optimization is possible since most likely SS is formed during CEB with NaOCl at 100 ppm
 - We can not lower pH of NaOCl CEB (pilot is limited)
 - No NaOCI CEB has negative effect on overall performance

Nanostone Optimized for Lowest Pretreatment Costs

Insert video 2-CRWA testimonial

Download here:

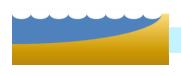
https://nanostonewater-

my.sharepoint.com/:v:/g/personal/nanostonefileserver

nanostone com/EfCPKI-

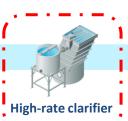
1DolFpjrlArgkJ6wBsC_aljaCixVejmHksTnlVA?e=pqz3B0

Industrial Raw Water Treatment


Large industrial process water users build surface water treatment plants with:

- RO Pre-treatment composed of
 - · Clarifier to reduce incoming TSS and handle solids variability from surface water source
 - · Multimedia Filter to bring down TSS and filter out organics by adding coagulant
 - Polymeric UF to reach SDI and allow for stable operation of the RO

➤ Nanostone Ceramic UF Solution


- Direct feed from the surface water providing UF quality permeate to the RO
- Or a quick clarifier upstream depending on client's requirement and incoming TSS variability
- Lower CapEx (1 system instead of 2 or 3), lower OpEx (chemicals, electricity), lower footprint
- Robust and stable operation with CUF warranty 10 to 15 years

Feed(river, basin)

Coagulant

Nanostone CM-151

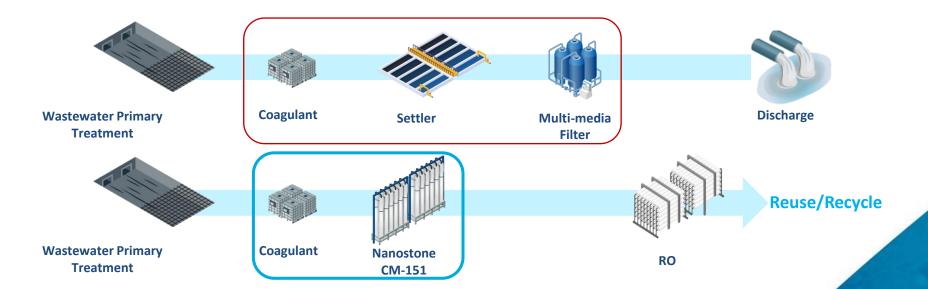
RO

Mixed Bed

Hengyang Power Plant BFW – Shanghai, China

End-User Name	Hengyang Pyroelectricity
Application:	Clarified Surface Water to Boiler Feed
Start Up Date:	October 2017
Overall Plant Flow:	2.28 MGD (360 m ³ /hr)
Incumbent System:	Hyflux – 4 x 28 membranes per skid
NSW Design:	14 x 4 = 56 modules total
Feed Quality:	< 5 NTU in-line coagulated feed
Design Flux:	Operating at >180 GFD (>300 lmh)
Recovery:	>94%

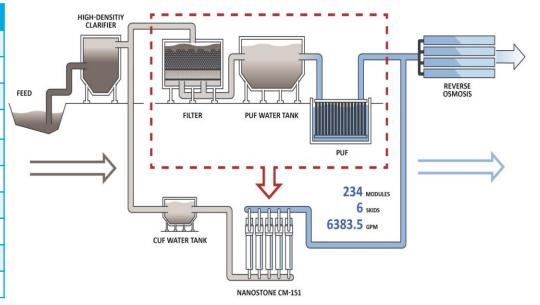
Side by Side Comparison	Hyflux	Nanostone
Matching system	112 Modules	56 Modules
Operational Flow	1,140,000 GPD	2,240,000 GPD
Silt Density Index (SDI)	4-5	< 2



Industrial Wastewater Reuse/Recycling

Industrial Wastewater Reuse/Recycling

- Suitable for Power, Mining & Metal processing, Semiconductors, Chemicals, Refinery & Petrochemicals
- Direct feed from non-biodegradable wastewater into Nanostone CUF to produce safe and reliable feed for the RO
- Downstream biological WWTP, feed from the secondary clarifier into Nanostone CUF to produce safe and reliable feed for the RO
- Compact and robust solution with competitive lifecycle cost



Xiaojihan Coal Mine Wastewater Reuse – Shanxi, China

End-User Name	Xiaojihan Coal Mine
Application:	Coal Mine Wastewater Reuse
Start Up Date:	May 2019
Overall Plant Flow:	9.2 MGD (1452 m³/hr)
Incumbent System:	Submerged Polymeric UF Membrane
NSW Design:	6 x 39 modules
Design Temperature:	68 ° F (20 ° C)
Feed Quality:	<5 NTU Clarifier effluent (Soft/Coag)
Design Flux:	150 GFD (254 lmh)
Recovery:	98.9%
Permeate Quality:	<0.2 NTU

Side by Side Comparison	Submerged PUF	Nanostone
Fiber breakage	Yes	No
Operational Flow	6.4MGD	9.2 MGD
Silt Density Index (SDI)	Instable	< 2

Semiconductor Manufacturer – Shanghai, China

End-User Name	Semiconductor Manufacturer
Application:	Semiconductor Wastewater Reuse
Start Up Date:	October 2017
Overall Plant Flow:	0.32 MGD (50 m³/hr) Mixed waste; 0.16 MGD (25m³/hr)/each, Phase II-IV Grinding waste
Incumbent System:	Mixed WW: clarifier + filter, discharged; no reuse possible Grinding WW: 3 x 10 Norit X-flow
NSW Design:	Mixed waste: 1 skid - 18 CM-151 modules Grinding waste: 3 x 6 CM-151 modules
Design Temperature:	68 – 77° F (20 – 25° C)
Feed Quality:	Mixed waste: 8,000-10,000NTU Grinding waste: 2,000-3,000NTU
Design Flux:	Mixed waste: 67 GFD (114 lmh) Grinding waste:100GFD(170 lmh)
Recovery:	Mixed waste >85%; Grinding waste: >90%; all reused
Permeate Quality:	<0.15 NTU

Grind WW (retrofit)

We want to hear from you...

- General feedback on pretreatment?
- Piloting for ongoing or under planning or construction projects?
- Performance improvement for pre-treatment?

Let's chat further...

nanostonewater.com

THANK YOU

Jonathan Clement
Jonathan.Clement@nanostone.com

Carlo Patteri
Carlo.Patteri@nanostone.com

nanostonewater.com

