Ozonation and UV Disinfection

Steven Summerfelt & Brian Vinci Freshwater Institute, Shepherdstown, WV

Ozonation & Water Quality

- ➤ Used to improve water quality in ultra-intensive recirculating production systems.
 - ✓ Ozone can produce excellent water quality in recirculating systems without resorting to high daily water exchange rates.
 - ✓ Ozone can reduce fish disease problems.

Ozonation: +/-

- Advantages:
 - ✓ rapid reaction rate,
 - dissolved ozone half-life only 0-15 sec (Bullock et al., 1997);
 - ✓ few harmful reaction by-products in freshwater;
 - ✓ oxygen is produced as a reaction end-product.
- Disadvantages:
 - ✓ ozone is dangerous to humans and fish.

Ozone Supports Water Treatment

- \triangleright directly oxidizes NO_2^- to NO_3^- ;
- ➤ helps remove color & dissolved organic matter:
 - ✓ breaks non-biodegradable compounds into smaller & more biodegradable compounds;
- helps remove dissolved & fine particulate matter
 - ✓ precipitates dissolved organic molecules,
 - ✓ micro-flocculates fine particulate matter,
 - ✓ improving solids removal by settling, filtration, or flotation.

Ozone Can Reduce Fish Disease

- Ozone is also added to recirculating systems to reduce fish disease, by:
 - ✓ improving water quality and reducing fish stress
 - ✓ disinfecting the water
 - large reductions in micro-organisms are possible, but
 - ozone's rapid reaction with nitrite and organic matter limit C*t;
 - requires much greater ozone doses than required for water quality control;
 - disinfection not commonly achieved in recirculating systems.

Ozonation for Disinfection

Must maintain a residual concentration (C) for a given time (t), i.e., Chick-Watson Law:

microbial reduction
$$\propto [O_3]_{residual} \cdot t_{contact}$$

Ozone Doses for Disinfection

Must maintain a residual concentration (C) for a given time (t):

	C*t, mg*min/L
✓ ISAV	0.3
✓ Aeromonas salmonicida	1.6
✓ Yersinia ruckeri	0.45-0.6
✓ Flavobacterium sp.	2.8
✓ Flexibacter sp.	1.6
✓ Streptococcus sp.	0.015
✓ Vibrio salmonicidia	0.45-0.6

Maintaining Ozone Residual

- Sometimes difficult to maintain ozone residual for a given contact time due to ozone demand of water.
 - ✓ dissolved ozone has a half-life of only 0-15 sec in recirc systems (Bullock et al., 1997);
 - ✓ Ozone demand of relatively clean surface water supplies can range from 2-10 mg/L!
 - ✓ Ozone demand of recirc water could be 20-100 mg/L (????)!

Ozone Dosing Rate

- ➤ Bullock et al. (1997); Summerfelt et al. (1997)
 - $\checkmark 0.025 \text{ kg O}_3 \text{ per kg feed input}$
 - improved water quality and microscreen filter performance
 - reduced mortalities associated with Bacterial Gill Disease (BGD)
 - reduced chemical treatments required to control BGD
 - did not reduce bacteria counts by even 1 log₁₀
 - \checkmark 0.036-0.039 kg O_3 per kg feed input
 - same type and magnitude of benefits of lower ozone dose
 - much more likely to kill fish

Ozone Dosing Rate

- Brazil (1996) found:
 - \checkmark 0.025 and 0.045 kg O_3 per kg feed
 - produced best water quality
 - \checkmark 0.013 kg O₃ per kg feed
 - was all ozone dose necessary to maximize fish growth

Ozone & Water Quality

 \triangleright Effect of O_3 on culture tank influent water quality:

	TSS (mg/L)	COD (mg/L)	DOC (mg/L)	Color (Pt-Co)
Control	6.3±1.1	44±4	7.1±0.4	17.7±1.2
Ozone trial 1	4.0±0.6	26±2	NA	5.3±0.9
Ozone trial 2	2.9±0.6	26±6	6.3±0.3	2.9±0.4
Ozone trial 3	5.6±0.5	37±2	6.0±0.3	2.1±0.5
Ozone trial 4	3.1±0.3	24±2	5.5±0.2	2.1±0.4

(Summerfelt et al., 1997)

Ozone & Microscreen Filtration

> Solids removal across the microscreen filter:

✓ no ozone 24% of feed fed removed

✓ozone 33% of feed fed removed

- ➤ Total solids production in system was ~40% of feed fed.
- ➤ Increased solid removal was probably due to ozone:
 - ✓ precipitating dissolved organic molecules
 - ✓ microflocculating fine particlates

(Summerfelt et al., 1997)

Ozone & Microscreen Filtration

Microscreen filter improvements with ozone:

✓TSS removal increased 33%

✓ wash cycles reduced 35%

✓ sludge water production reduced 53%

✓ sludge water settled sludge volume reduced 77%

(Summerfelt et al., 1997)

Ozone & Solids Removal

- Also improves solids removal via
 - ✓ Foam fractionation
 - Sander & Rosenthal (1975)
 - Otte and Rosenthal (1979)
 - Williams et al. (1982)
 - ✓ Settling
 - Wilczak et al. (1992)
 - Reuter and Johnson (1995)

Ammonia and Ozone

- ➤ In freshwater systems:
 - ✓ Ozone does not oxidize significant NH_3 to NO_3 until pH > 9

Ammonia and Ozone

- In saltwater systems (if sufficient bromide is present),
 - ✓ ozone will react with bromide to produce hypobromous acid and this will react with ammonia to produce nitrogen gas while producing H⁺ that consumes alkalinity

$$O_3 + Br^- + H^+ \rightarrow HOBr + O_2$$

 $3HOBr + 2NH_3 \rightarrow N_2 + 3Br^- + 3H^+ + 3H_2O$
 $+CO_3^- + \rightarrow CO_2 + H_2O$
(Haag and Hoigne, 1984)

Nitrite and Ozone

➤ Ozone stoichiometrically oxidizes nitrite to nitrate.

	NO2-N Influent (mg/L)	NO2-N Uptake Rate (kg/day)
Control	0.28±0.01	0.76±0.02
Ozone trial 1	0.13±0.01	0.65±0.02
Ozone trial 2	0.15±0.01	0.51±0.02
Ozone trial 3	0.11±0.01	0.47±0.02
Ozone trial 4	0.10±0.01	0.41±0.02

(unpublished data from same experiment as Summerfelt et al., 1997)

Nitrite and Ozone

- Ozone oxidized nitrite to nitrate:
 - ✓ reduced nitrite concentration in water
 - ✓ reduced nitrite loading on biofilter
 - ✓ caused population of nitratifiers to decrease
 - ✓ reduced total nitrite removal capacity of biofilter

Nitrite and Ozone

- > If ozonation is interrupted:
 - ✓ biofilter cannot remove all nitrite produced
 - ✓ rapid nitrite accumulation occurs
 - ✓ fish health is compromised
 - ✓ several weeks may be required for biofilter to adapt to additional nitrite loading

- > Energy sources used to generate ozone:
 - ✓ High voltage corona discharge
 - ✓ UV light at wavelengths < 200 nm
 - Requires 6-30 times more energy than corona discharge systems
 - ✓ Cheminuclear sources
 - Electrolytic processes

 \triangleright Corona discharge energy dissociates O_2 into oxygen radicals and produces O_3 :

$$O_2$$
 + energy \rightarrow O+O
O+O₂ \rightarrow O₃

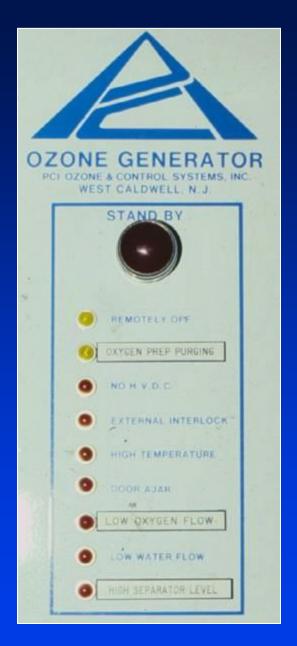
Ozone is produced when oxygen gas is exposed to electric current arcing between two parallel electrode surfaces.

- ➤ Must be generated onsite.
- Ozone generation requires 2-3 times less energy using enriched oxygen gas rather than air.
- Most economical ozone generation method takes advantage of the oxygen feed gas already required to increase carry capacity.

- Ozone generation:
 - ✓ operating costs:
 - corona discharge generator (~10 KW per kg O₃ generated)
 - increases cost of oxygen by 17-35% (Wade et al., 1996)
 - ✓ capital costs:
 - ozone generators cost more than onsite oxygen generators
 - large economies of scale for large facilities

Air cooled ozone generator

(Target Marine Hatchery)


9th Annual Recirculating Aquaculture Systems Short Course

➤ Water cooled ozone generator.

(Freshwater Institute)

Safety interlocs shut-off generators in case of problems.

(Freshwater Institute)

Ozone Generator Fires

► Before Fire....

> After Fire....

(USFWS Fish Technology Center, Bozeman, MT)

➤ If it becomes necessary, cleaning dielectrics can be

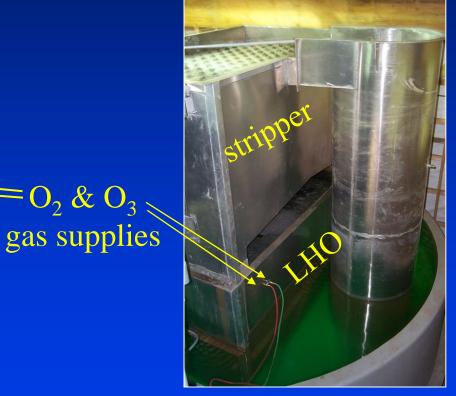
a hassle.

(Freshwater Institute)

Ozone Gas Transport

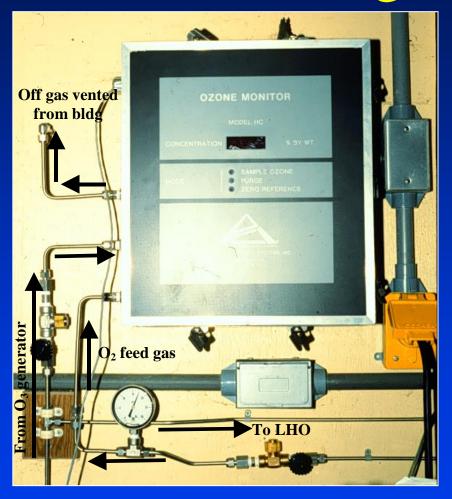
➤ Use stainless steel, teflon, viton, or kynar.

(Freshwater Institute)


(Target Marine Hatchery)

Ozone Gas Transport

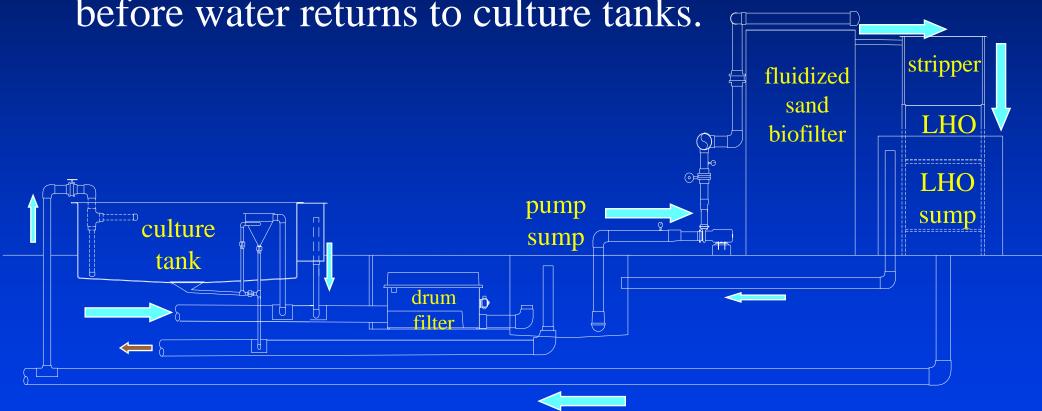
➤ Use stainless steel, teflon, viton, or kynar.



(Freshwater Institute)

(Nutreco's Big Tree Creek Hatchery)

Ozone Monitoring in Gas Phase


(Freshwater Institute)

Ozone Transfer

When adding ozone to a recirculating system, suggest taking advantage of the oxygen gas stream and oxygen transfer unit already used to increase the system's carrying capacity.

Ozone Transfer in Recirc Systems

Done is often added in LHO just before water returns to culture tanks.

(courtesy of PRAqua Technologies)

Ozone Transfer in Recirc Systems

> Ozone added within LHO at WV Aqua LLC (Man, WV)

(system designed by PRAqua Tech.)

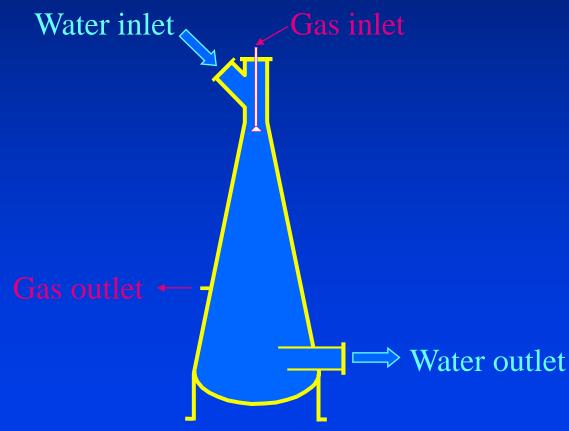
Ozone Transfer

 \triangleright O₂ & O₃ transfer within low head oxygenators (LHOs)

 $^{-}$ O₂ & O₃ gas supplies

(Nutreco's Big Tree Creek Hatchery; designed by PRAqua Technologies)

9th Annual Recirculating Aquaculture Systems Short Course


Ozone Transfer

- ► O₂ & O₃ transfer within low head oxygenators (LHOs)
 - ✓ Ozone transfer efficiency can approach 100% in a good oxygen transfer unit, because:
 - Ozone is 13 times more soluble than oxygen (Henry's Law);
 - Gas residence time in LHO can be up to 45 min;
 - Nitrite & TOC rapidly react with ozone.

(Summerfelt & Hochheimer, 1997)

Ozone Transfer

- Gas transfer within oxygen cones
 - ✓ also called downflow bubble contactors

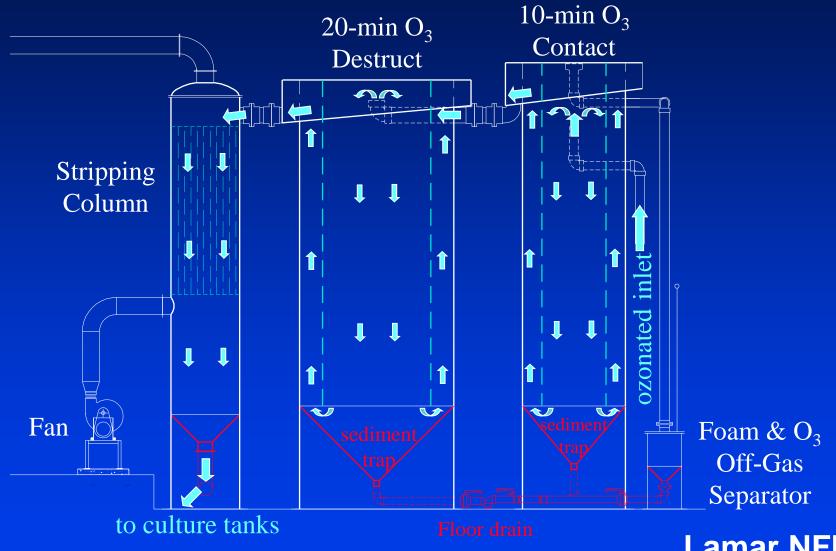
9th Annual Recirculating Aquaculture Systems Short Course

Ozone Transfer

- Gas transfer within oxygen cones
 - ✓ also called downflow bubble Contactors

(Fingerlakes Aquaculture LLC)

(Target Marine)


Ozone Transfer

Gas transfer within aspirator-type venturi injectors.

(Mazzei injectors made from Kynar for ozone resistance)

Ozone Contacting

Lamar NFH (PA)

Methods to Remove Dissolved Ozone

- Provide extended contact time & let ozone react away;
- Aerate to strip ozone into air;
 - ✓ G:L of 10:1 to 20:1
- Expose to high intensity UV light:
 - ✓ wavelength of 250-260 nm;
 - \checkmark 60-120 mW-s/cm² to remove 0.5 mg/.
- React with hydrogen peroxide;
- Pass through an activated carbon bed or biofilter.

UV Disinfection

- ➤ DNA is denatured by UV electromagnetic radiation at wavelengths of 100-400 nm,
 - ✓ kills or inactivates microorganisms,
 - ✓ 255-265 nm are most effective destroying DNA & RNA and are most lethal wavelengths,
 - ✓ 280 nm wavelength denatures proteins and enzymes
- ➤ The quantity of energy transmitted at a wavelength of 254 nm is the standard used to estimate UV inactivation potential.

UV Dose

Achieving UV disinfection requires maintaining a minimum UV dose:

UV dose = (UV intensity) \cdot (exposure time)

 $= (mW/cm^2) \cdot (sec)$

 $= \text{mW} \cdot \text{sec/cm}^2$

> 10-30 second contact times are typical (White, 1992).

UV Dose

- ➤ Actual UV dose applied to water flow depends on:
 - ✓ Water flowrate (Q) and operating volume within UV vessel;
 - ✓ Lamp intensity (including losses at quartz sleeve);
 - ✓ UV transmittance of water (% Transm.).

UV dose = (UV int ensity) · (exposure time) · (transmit tance factor)
$$\cong (UV \text{ int ensity}) \cdot (\frac{V_{vessel}}{Q}) \cdot a \cdot \exp^{(b \cdot \% Transm)}$$

$$= \# \text{ mW} \cdot \sec/\text{cm}^2$$

Dose to inactivate 99.9% of BACTERIA from Wedemeyer (1996) and Liltved (2001):

	mW-sec/cm ²
✓ Aeromonas salmonicida	4
✓ Aeromonas hydrophila	5
✓ Vibrio anguillarum	4
✓ Yersinia ruckeri	3
✓ Pseudomonas fluorescens	5

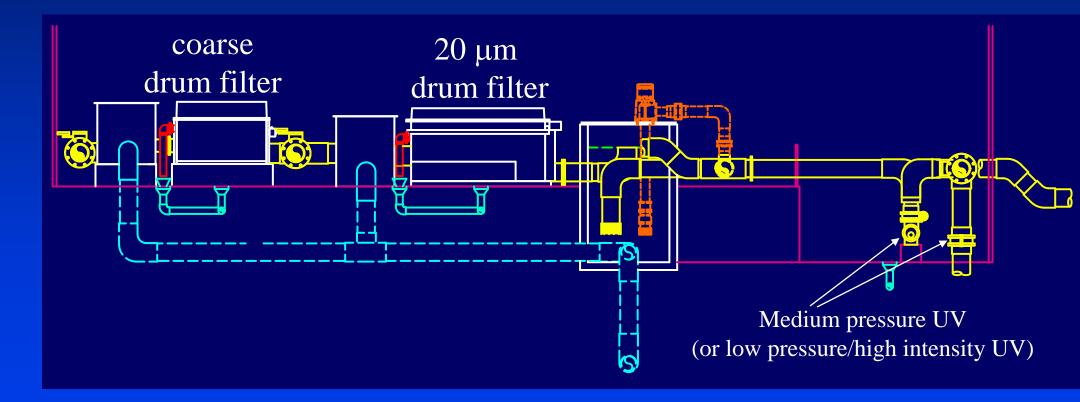
➤ Dose to inactivate 99.9% of VIRUSES from Wedemeyer (1996) and Liltved (2001):

	mW-sec/cm ²
✓ ISA	4-10*
✓ IHN	1-3
✓ IPN	100-200
✓ Channel catfish virus	2
✓ Herpesvirus salmonis	2
✓ White spot syndrome baculovirus	900*

^{*}loss of infectivity

➤ Wedemeyer (1996):

Oose to inhibit growth of Saprolignia	230
Oose to decrease infectivity of <i>myxobolus cerebralis</i>	28
Recommended dose for recirculated wa	ter 30


Recommended dose for hatchery wastewater

mW-sec/cm²

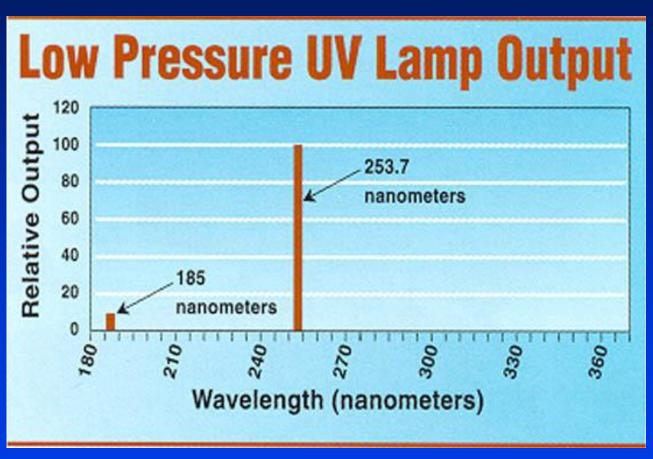
- Prefiltration through 50 μm screens can improve bacterial inactivation with UV by 3.0 log₁₀ units.
 - ✓ Liltved and Cripps (1999)

Filtration & UV Disinfection

➤ Pittsford NFH Surface Water Disinfection

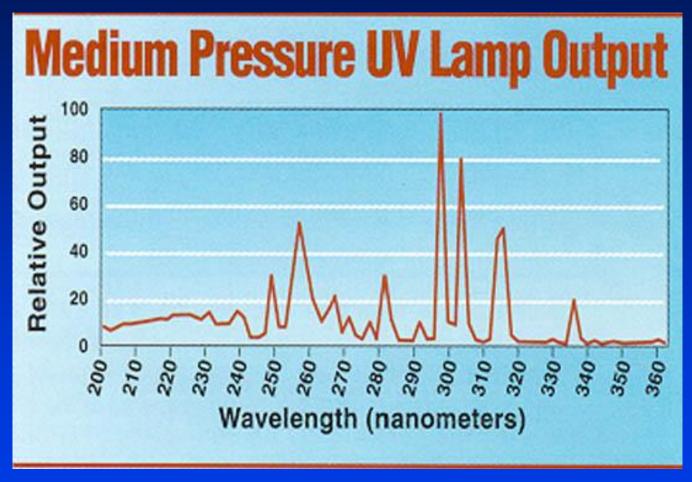
Types of UV Lamps

Mercury Lamps:


- ➤ Low pressure, low intensity (old technology)
- ► Low pressure, high intensity (newest technology)
- Medium pressure, high intensity (new technology)

UV Systems Compared

A. Kolch. 1999. *Pollution Engineering*. pp: 34-36.


	Low/Low	Low/High	Medium/High
Lamp power	15-70 W	120-260 W	4000 W
Efficiency	40%	35-40%	10-15%
Lamp output @ 254 nm	0.1-0.2 W/cm	0.5-1.0 W/cm	3 W/cm UVC tot
Lamp temperature	39°C	100°C	600°C
Lamps needed for 0.8 m³/s flow	~100	~30	~5
Total power cons	7.5 kW	7.8 kW	20 kW

Low-Pressure UV Output

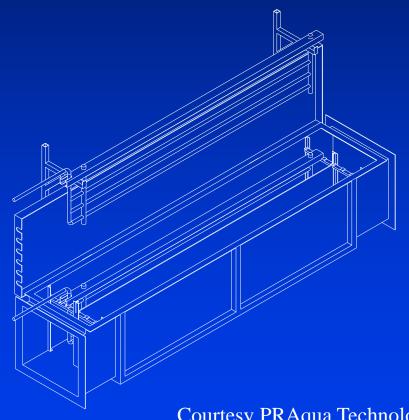
(courtesy of Trojan Technologies)

Medium-Pressure UV Output

(courtesy of Trojan Technologies)

Medium-Pressure UV

- In addition to disinfection, medium-pressure UV can:
 - ✓ photo-oxidize organic carbon at 185 nm wavelengths,
 - produces hydroxy radicals (HO-) to break apart organic molecules
 - ✓ convert nitrate into nitrite if special quartz sleeve filtering is not applied.


Vessel Design

- Pressurized "Tube-and-Shell" design
 - ✓ Selected when water pressure needs to be conserved in a pipeline
 - ✓ Ttypically operates at > 0.2-1 m of water headloss
- ➤ Non-pressurized "Open Channel" Design
 - ✓ Selected in situations with little available water head

Horizontal Channel UV Filter

Freshwater Institute's Grow-out System

Courtesy PRAqua Technologies (BC)

9th Annual Recirculating Aquaculture Systems Short Course

Horizontal Channel UV Filter

Courtesy of Trojan Technologies, Inc.

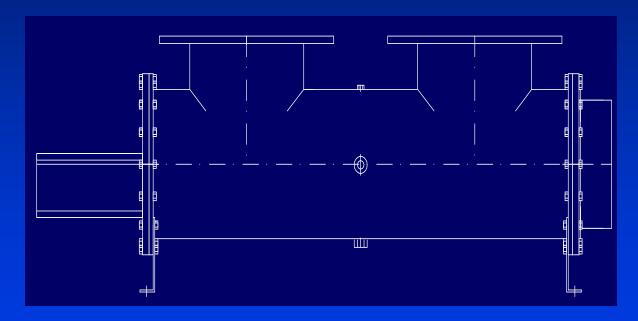
Vertical Channel UV Filters

➤ Three salmon smolt systems (~3000 gpm/system) at Nutreco's Big Tree Creek Hatchery (BC)

(system designed by PRAqua Technologies)

9th Annual Recirculating Aquaculture Systems Short Course

Medium-Pressure UV Unit


➤ Tube-and-shell design

(courtesy of Trojan Technologies)

Medium-Pressure UV Unit

➤ Tube-and-shell design.

(courtesy of Ozonia)

Ozone Followed by UV Filtration

> Freshwater Institute's Grow-out System.

Ozone Followed by UV Filtration

Three salmon smolt systems (~3000 gpm/system) at Nutreco's Big Tree Creek Hatchery (BC)

(system designed by PRAqua Technologies)

9th Annual Recirculating Aquaculture Systems Short Course