PHARMACEUTICAL WATER (PW AND WFI) IN STABLE QUALITY

A CRUCIAL MATERIAL FOR VACCINE PRODUCTION

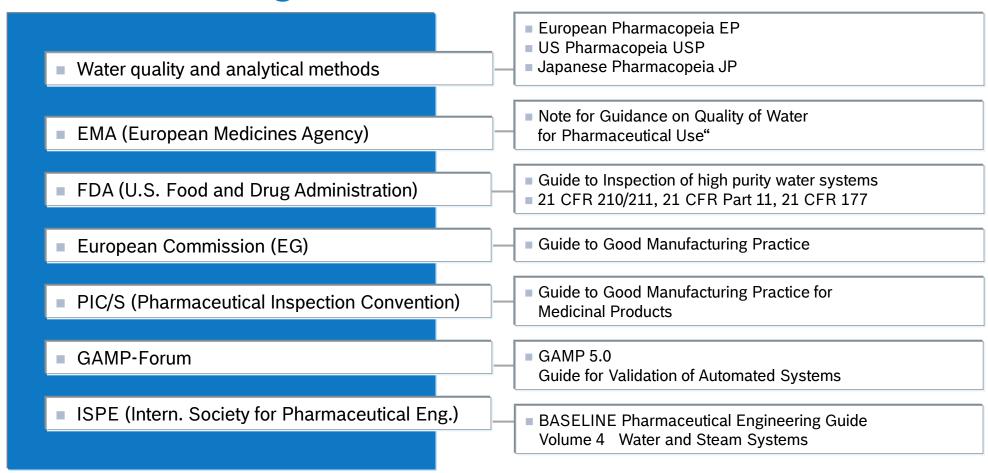


Water for Pharmaceutical Use

The use of Pharmaceutical water in vaccine production

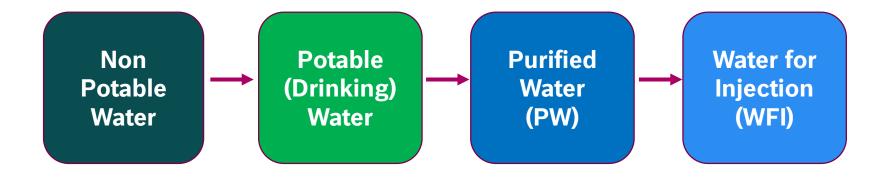
- Purified water (PW)
 - Oral liquid dosage forms
 - Solid dosage forms
 - Feed water for WFI and PS generation

- Water for injection (WFI)
 - For injectables



REGULATORY ASPECTS OF WATER FOR PHARMACEUTICAL USE

Water for Pharmaceutical Use


International Regulations and Guidelines

Water for Pharmaceutical Use

Regulated Water Qualities

National regulations

National regulations WHO

Pharmacopoeias

Pharmacopoeias

Water for Pharmaceutical Use Basic Criteria & Principles

- □ Like any starting material, production of water for pharmaceutical use should conform to Good Manufacturing Practice (GMP) norms
- ☐ Criteria and generation methods defined by National Pharmacopeias (EP/USP/JP/WHO/...)
- Main Target is avoiding of potential of microbial growth
- Systems must be properly validated / qualified
- Water for parenteral use should not be contaminated with pyrogene or endotoxins
- ☐ Specifications and **periodic testing** are required

Water for Pharmaceutical Use

Requirements for Water for Pharmaceutical Use

Purified Water (PW)	Ph.Eur	USP
TOC Conductivity Nitrates Heavy metals Aerobic bacteria Endotoxins	≤0,5mg/l ≤4.3 µS/cm at 20°C ≤0.2 ppm ≤ 0.1 ppm < 100 CFU/ml <0.25 EU/ml (only for bulk water for dialysis)	500 ppb ≤1.3 μS/cm at 25°C* < < 100 CFU/ml

Water for Injection (WFI)	Ph.Eur.	USP
TOC	≤0,5mg/l	500 ppb
Conductivity	≤1.1 µS/cm at 20°C	≤1.3 µS/cm at 25°C*
Nitrates	≤0.2 ppm	
Heavy metals	≤ 0.1 ppm	
Aerobic bacteria	< 10 CFU/100ml	< 10 CFU/100ml
Endotoxins	<0.25 IU/ml	<0.25 EU/ml

Water for Pharmaceutical Use Requirements for Water for Pharmaceutical Use

□ Requirements for feed water

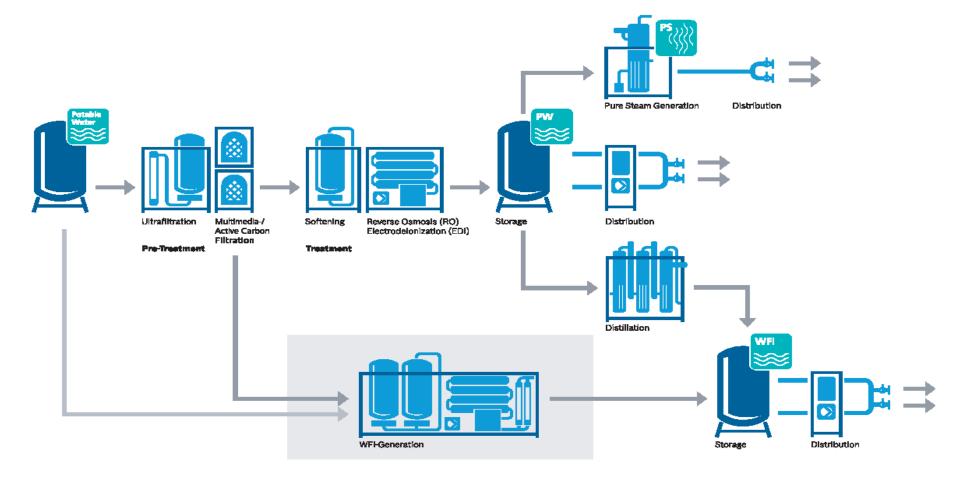
All Pharmacopoeias recommend **potable (drinking) water quality** as feed water based on the requirements of national legislations or the specifications of WHO

☐ Requirements for generation methods

Purified Water (PW)

Normally the Pharmacopoeias like EP, USP, WHO permit production by distillation, reverse osmosis, deionization, filtration, or equivalent means.

Water for Injection (WFI)


USP/JP permits "distillation or a purification process that is equivalent or superior to distillation in the removal of chemicals or microorganisms"

EP and WHO permit distillation with droplet separation only, but EP permit since from 2017 membrane based processes (RO + UF) (direct influence to PIC and ICH)

Water for Pharmaceutical Use

BOSCH Solutions

PRETREATMENT OF FEED WATER

FILTRATION & DIVERSE TECHNOLOGIES

Pretreatment

Feed water is not always drinking water quality

- According to WHO, ISO and national or regional agencies the drinking water must comply with regulated specifications and need regular testing.
- But the reality shows that the potable water could be from public water supply system or natural sources, natural sources could include springs, wells, rivers and lakes
- Although reasonably pure, it is always variable due to seasonal variations, regional variation in water quality is influenced by, e.g. rainfall, erosion, pollution, dissolution, sedimentation, decomposition
- Must remove impurities and control microbes to avoid contaminating products

Pretreatment

Contaminants of source water

- Inorganic compounds
- Organic compounds
- Solids
- Gases
- Microorganisms
- Minerals
 - Calcium, magnesium, copper, aluminum, heavy metals, arsenic, lead, cadmium, nitrates
 - Iron, manganese, silicates, carbon dioxide
 - Hydrogen sulfide
 - Phosphates

Pretreatment Information required for Design

- ▶ **Detailed water analysis** to determinate water impurities and contaminants
- ► TSS (Total Suspended Solids) or Turbidity to determinate suspended solids
- ► **SDI** (silt density index) to fouling potential of suspended solids

Pretreatment

Pretreatment Systems offered by BOSCH

Untreated water substances	Iron and manganese	Calcium and magne- sium (hardness components)	Barium and strontium	Suspended solids > 50 µm	Colloids	Solute silicon dioxide (SiO ₂)	Carbonic acid (CO ₂)	Chlorine and ozone	Organic impurities (TOC)	Germs (CFU)
Alternative pretreatmen	t									
Reversible flow filter		=	-			-2	9	Δ-	-	-
Multi-layer filtration	- 11	-	-			-	-8	9	-	-
Precoat filtration	-	-	-		2.00	-	16	-	-	-
Microfiltration		4	-	==	-	-	*	-	-	-
Ultrafiltration		-	-		***	-	2	-		
Water softening			***		-		÷		-	-
Acid dosage (HCI, H ₂ SO ₄ or CO ₂)	+		(4)	÷	-21	-	0	19	-	-
Anti-scalant dosage				+	+	(@)	e	*	-	-
Active carbon filtration	-2	-	-	-	-	-	-	-		-
Sulphite dosage (NaHSO ₃ , Na ₂ SO ₃)	-	5	-	-	-	-	9		-	-
UV radiation	-		~	-	-	-	-	- 50	-	
Brine dosage (NaOH)	-	-	-	-	-	THE REAL PROPERTY.		-		-
Membrane degasification	-	-	-	-	-	-		-		-

Pretreatment Membrane Filtrations

Microfiltration > 0,1 µm

- Turbidity
- Particles
- Plankton
- Algae

Ultrafiltration 0,1 - 0,01 µm

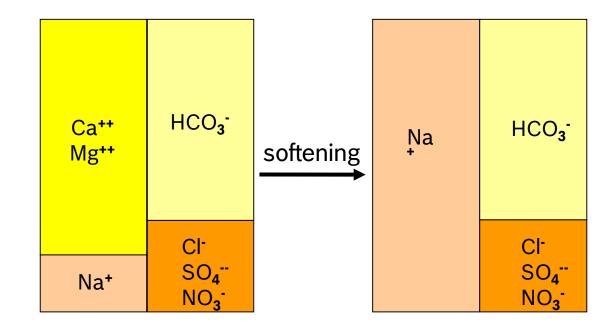
- Colloids
- Bacteria
- Viruses
- Macromolecules
- Iron & Manganese

Pretreatment

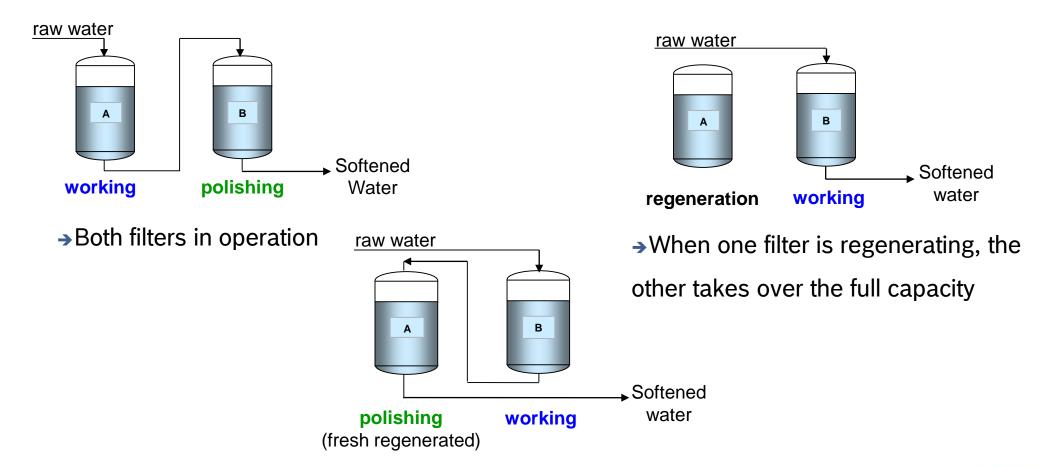
Membrane Filtrations - the benefits clearly outweigh

Characteristics

- No addition of chemicals during the process
- Robust, simple and safe to operate and manage
- Thermal and chemical sanitization possible
- Relatively low energy consumption
- Filter systems can be adapted to the different requirements and water qualities
- □ The quality of the treated water remains the same regardless of the degree of contamination of the original water


SOFTENING OF FEED WATER

SALT-BASED WATER SOFTENER (ION-EXCHANGE)


Generation of Purified Water (PW) Softening - Salt-based Water Softener (Ion-Exchange)

Salt-based Water Softener removes water hardness builders such as calcium ions (Ca2+) and magnesium ions (Mg2+) as well as metals like divalent iron (Fe⁺⁺) and replaces them by sodium ions.

Softening – Various operation conditions

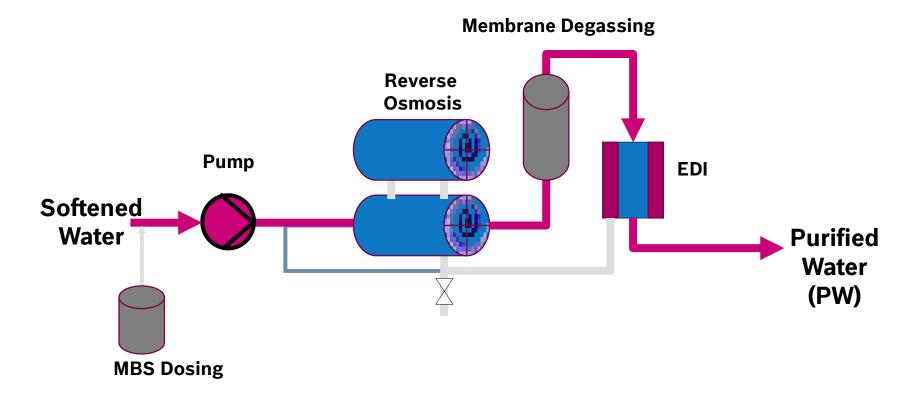
Softening Operation Steps

Purified Water Generation

Generation of Purified Water (PW) Softening

Characteristics & Advantages

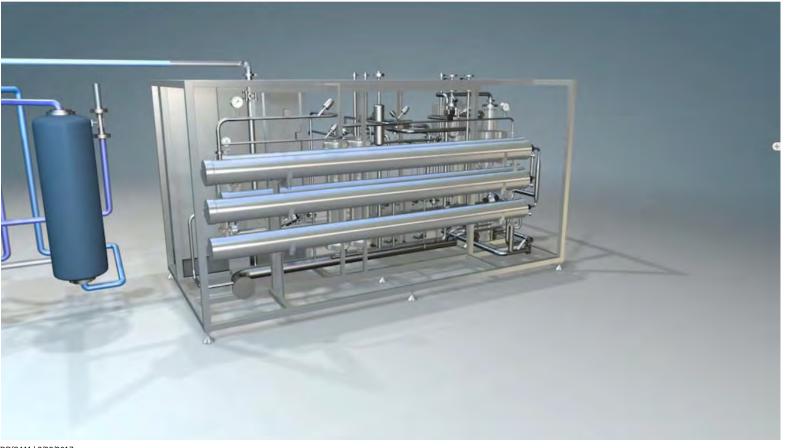
- Reliable and permanent protection of the downstream RO and EDI against precipitation
- Minimized risk of microbiological contamination due to serial operation (continuous flow)
- Polisher minimizes the risk of hardness breakthrough
- Robust, simple and safe to operate and manage
- Chemical and thermal Sanitization possible
- Sanitization during regular operation possible



PURIFIED WATER GENERATION REVERSE OSMOSIS & EDITECHNOLOGY

Purified Water Generation

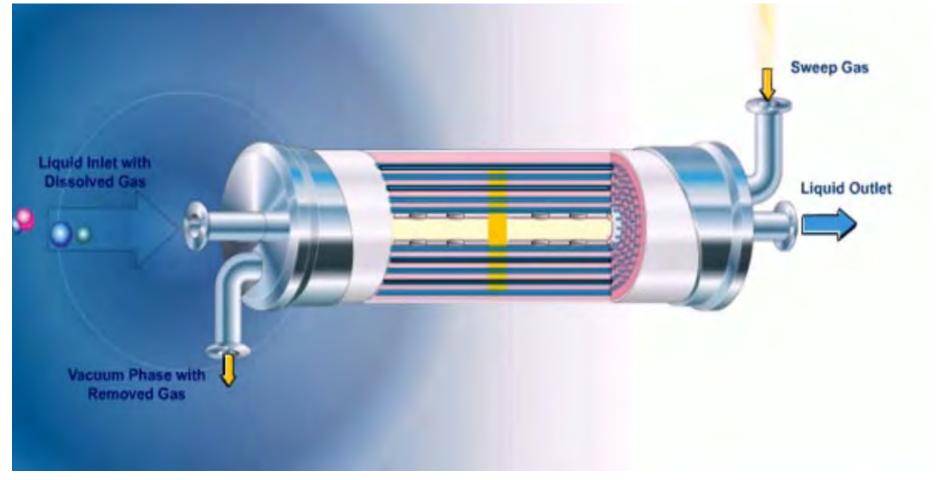
▶ Design of the Reverse Osmosis with Electrodeionisation (EDI)



Reverse Osmosis

Purified Water Generation

Reverse Osmosis


Characteristics & Advantages

- Water ingredients (salt ions, particles, colloids, Bacteria, endotoxins) are held back
- Removal of Salt ions approx. 98-99%
- Removal of Organics > 90%
- Minimised risk of microbiological contamination due to serial operation (continuous flow)
- Robust, simple and safe to operate and manage
- Chemical and Thermal Sanitization possible
- Lifetime of modules approx. 3 up to 5 years

Generation of Purified Water (PW) Membrane Degasification (CO2 Reduction)

Membrane Degasification

Characteristics & Advantages

- ■Chemical-free CO2-removal
- No risk of bacterial contamination
- Robust, simple and safe to operate and manage
- Chemical and Thermal Sanitization possible
- Lifetime of modules up to 5 years

Electro-Deionization (EDI)

This process separates electrically charged water components (ions, ionizable particles) from a feed stream into a product stream (dilute) and a concentrate stream using the driving forces of an electrical DC-field.

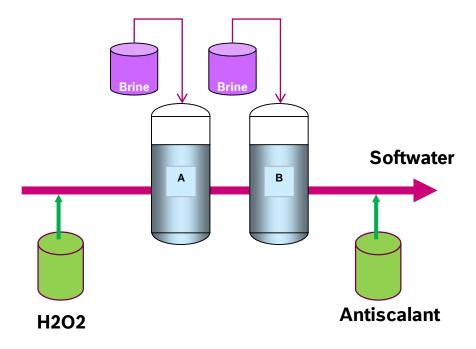
Electro Deionization (EDI)

Characteristics & Advantages

- Removal of ions and ionizable particles
- Chemical free, combination of Membraneand Ion Exchanger technology
- Minimised risk of microbiological contamination due to serial operation (continuous flow)
- Robust, simple and safe to operate and manage
- Chemical and Thermal Sanitization possible
- Lifetime of modules up to 5 years

Water for Pharmaceutical Use

Sanitization of Purified Water Generation System


- ► The microbiological control (number of germs) of water treatment systems is mainly achieved by sanitization
- ▶ Depending on the method, sanitization should reduce viable organisms by 50 to 99.9%
- ► The systems are either chemically or thermally sanitized

Configurations	Softening	RO + EDI
C (Chemical)	С	С
H (thermal)	Н	Н
C/H (chemical / thermal)	С	Н

Sanitization	Medium	Conditions
Chemical	Hydrogen peroxide (H ₂ O ₂)	2000 – 10000 ppm > 1h
Thermal	Hot water	80°C – 85°C > 1h (4h total) Heating and cooling rate 2°C/min

Softening - Chemical Sanitization

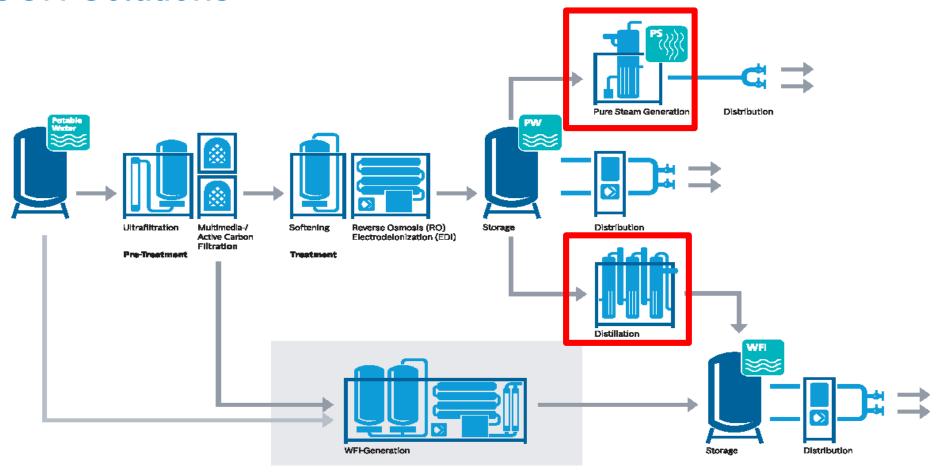
disinfection of the system
 (Concentration 2000 – 10000 ppm)
 Antiscalant - hardness stabilizer / Scaling inhibitor

Generation of Purified Water (PW) Softening – Hot Sanitization

- ► Highest Sanitization effect with hot water (85°C)
- ► Fully Automatic Sanitization
- ► No chemicals used in process

Reverse Osmosis with Electrodeionisation (EDI)

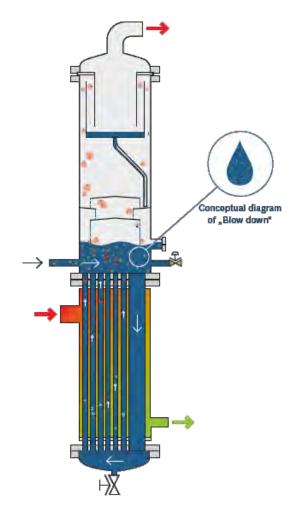
PWGU Typ	400	1 100	2000	3 300	6 600	9 900	13 300	16 500
Performance from	220	550	1 250	2 500	4 500	7 500	10 500	11 500
Up to I/h PW	550	1 250	2 500	4 500	7 500	11 500	14 500	20 000



PURE STEAM & WFI GENERATION NATURAL CIRCULATION TECHNOLOGY

Water for Pharmaceutical Use

BOSCH Solutions



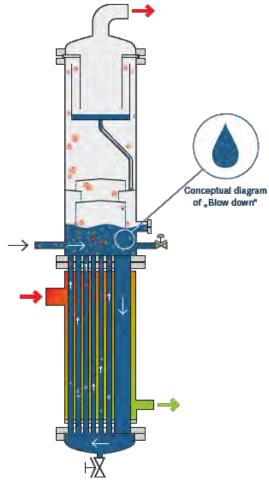
Water for Injection (WFI) and Pure Steam (PS)

WFI and PS generation

Characteristics

- PSG and Still work by the principle of the natural circulation evaporator
- Segregation of endotoxins and pyrogene during transition to the pure steam phase
- Continuous separation of droplets
- Special shell-and-tube heat exchanger to avoid cross contamination
- Single or Multistage Distillation

Water for Injection (WFI) and Pure Steam (PS) Pure Steam Generation (natural circulation evaporator)



Water for Injection (WFI) and Pure Steam (PS)

Advantages of natural circulation process

Characteristics

- Maximal performance by optimized design
- High Efficiency, less than 4% blow down
- Reducing of consumption of utilities
- Low mechanical stress and maximum leakage protection on heat exchanger
- Optimized droplet separator
- Robust, simple and safe to operate and manage

Water for Injection (WFI) and Pure Steam (PS)

WFI Generation (Distillation Process)

Water for Injection Generation

Water for Injection (WFI) and Pure Steam (PS)

WFI and PS generation

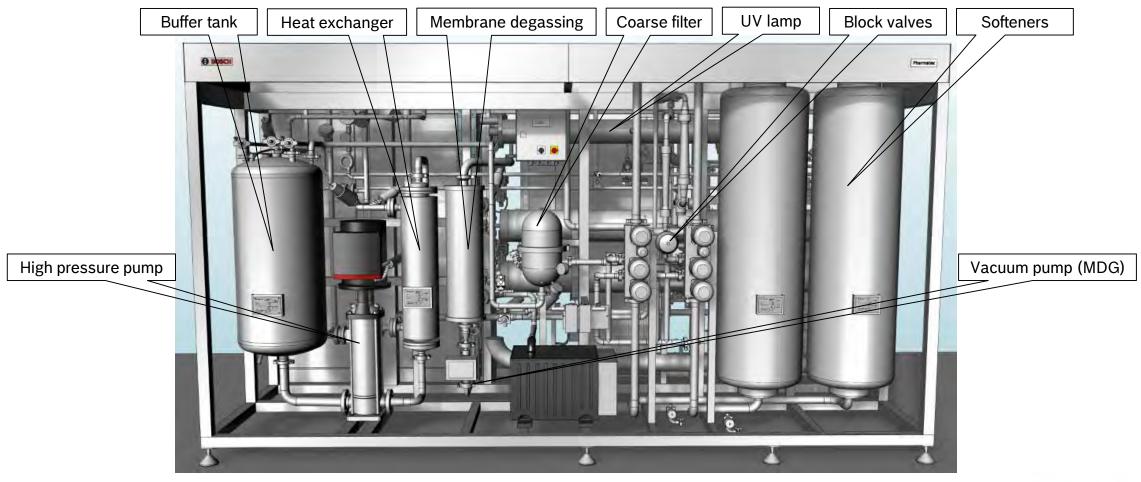
PSG

Multiple-Effect	Distillation Unit	501	1101	1501	2201	3301	5001	6001	8001	10001	12001
Output I/h of WFI	Heating steam pressure										
	4 bar(g)	350	750	950	1600	2000	3 000	3 600	5 200	6 000	7 200
	6 bar(g)	450	950	1 250	1 900	2800	4 000	5 000	7 000	8 200	9 600
	8 bar(g)	500	1100	1 500	2 200	3300	5 000	6 000	8 000	10 000	12 000

MWFI – COLD WFI PRODUCTION RO + EDI + UF

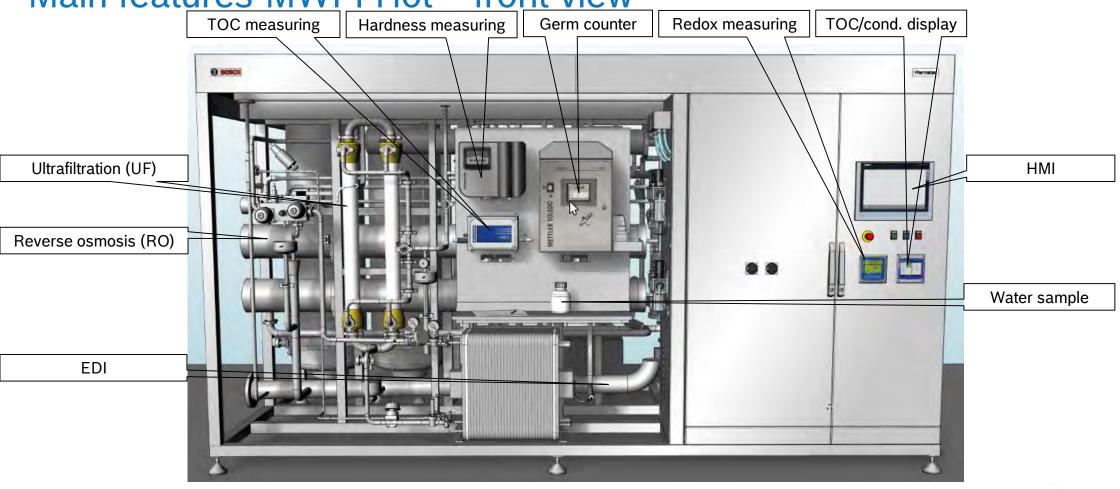
Cold Generation of Water for Injection (WFI) Regulatory requirements – background information

- ► REGULATORY CHANGE of the water for injection (WFI) MONOGRAPH* (0169) of the European Pharmacopeia (Ph. Eur.)
- ► From 2017 water for injection may be produced by a "...purification process equivalent to distillation such as REVERSE OSMOSIS, COUPLED with APPROPRIATE TECHNIQUES. ..."
- ► Until now PH. Eur. required DISTILLATION as the SOLE PROCESS for the generation of WFI
- ► Purified water (PW) which has been treated (e.g. by ultrafiltration) to achieve the **same quality** as WFI was HPW acc. to Ph. Eur.


Cold Generation of Water for Injection (WFI) Regulatory requirements – different design

- ► COLD MEMBRANE based processes bear the RISK of water CONTAMINATION and the development of BIOFILM
- ► Therefore, Ph.Eur. set **SPECIFIC REQUIREMENTS** for membrane based WFI generation
 - 1. Specific TREATMENT STEPS of feed water (= potable water) to achieve WFI quality
 - 2. Use of **HIGH QUALITY MATERIALS** and **sub-assemblies** which allow routine **HOT SANITIZATION** of the entire system and additionally the possibility of **CHEMICAL SANITIZATION**
 - 3. MONITORING of the water quality throughout the generation process (not only at the end)
 - 4. STORAGE AND DISTRIBUTION of WFI needs to fulfil certain sanitization requirements

Cold Generation of Water for Injection (WFI)


Main features MWFI - Hot - back view

Cold Generation of Water for Injection (WFI)

Main features MWFI Hot - front view

Cold Generation of Water for Injection (WFI) Microbiological control – sanitization and UV

- ► Ph.Eur. requires **hot water** sanitization of the treatment system incl. **storage + distribution**
 - ▶ Softeners
 - ► RO
 - ► EDI
 - **▶** UF
- ► Additional **chemical sanitization** needs to be available
- ► RO water has to be treated by UV light for TOC reduction

Cold Generation of Water for Injection (WFI) Microbiological control – process monitoring

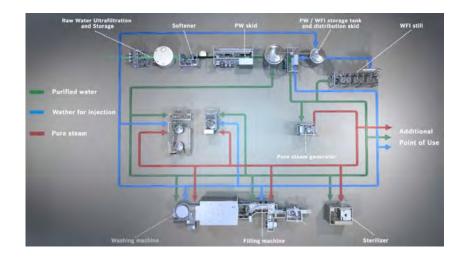
- ► Microbiological **risks**
 - ► Water contamination
 - ► Developing of **biofilm**
- ► Ph.Eur requires
 - ► Online **TOC** measuring
 - ► Online **conductivity** measuring
 - ► Rapid biological methods
 - SOP's (standard operating procedures)
 - Automatic germ counter
 - ► Statistical data analysis

Cold Generation of Water for Injection (WFI) MWFI

Characteristics & Advantages

- According to the new regulatory requirements
- Thermal (periodical) and UV (permanent)Sanitization
- Minimised risk of microbiological contamination due to double sanitization
- Conductivity, TOC and online germ counter for trends
- Permanent sanitization of softener
- Robust, simple and safe to operate and manage

STORAGE & DISTRIBUTION OF WATER FOR PHARMACEUTICAL USE



Storage & Distribution

Advantages of S&D Systems

Characteristics

- Continuous recirculation system with turbulent flow (turbulent flow (Re>10000) in the return line)
- Eliminate piping dead-legs (0 ≤ "6 D"; suggestion ≤ "3 D") and use zero dead-leg outlet valves
- Establish standard operating procedures (SOP) for frequent draining, flushing, sampling and sanitizing
- Smooth, clean surface for wetted parts
- Positive system pressure to avoid external contamination
- Robust, simple and safe to operate and manage

Design criteria for a state of the art pure media system

- ► Evaluation of total consumption at all points of use (POU)
- ► Simultaneous consumption and interlocking (POUs points of use management)
- ► Generation capacity as small as possible
- ► Coverage of peaks by storage vessel
- ► Permanent circulation of water (V>1 m/s in the return pipe)
- ▶ Online monitoring of quality critical parameters (Flow, Temperature, Pressure, conductivity, TOC)
- ► Slope min 1%
- ► No dead legs 3d-rule
- ► Complete drainability
- ► Sanitization concept

Storage conditions for water for pharmaceutical use

TYPE OF STORAGE	CONDITIONS	WATER QUALITY	OZONE CONCENTRATION	ADVANTAGES
Cold storage	4° - 10°C	PW	N/A	Low operating costsacceptedeasily controllable
Hot storage	75 - 80°C	WFI	N/A	 High operating costs "no chemicals" high safety accepted easily controllable
Cold storage with ozone	4° - 10°C	PW	0,02 - 0,05 ppm Continuously	 Higher investment costs (Ozone generator + sensors + UV light) high safety accepted easily controllable

Types of Sanitization

TYPE OF SANITIZATION	CONDITIONS	PERIOD	WATER QUALITY	FREQUENCY
Ozonisation	>90 min >20 ppb	8h total	PW	Weekly (1-2 times)
Hot water sanitization	Hot water sanitization > 85 °C > 90 min		PW	Periodically as required / opening of system
High pressure hot water sanitization	> 121 °C > 60 min	7-8 h total (long heating process)	WFI	Periodically as required / opening of system
Sanitization with steam	> 122 °C > 20 min	7-8 h total (long heating process)	WFI	Periodically as required / opening of system

Storage & Distribution

Distribution skid

Characteristics

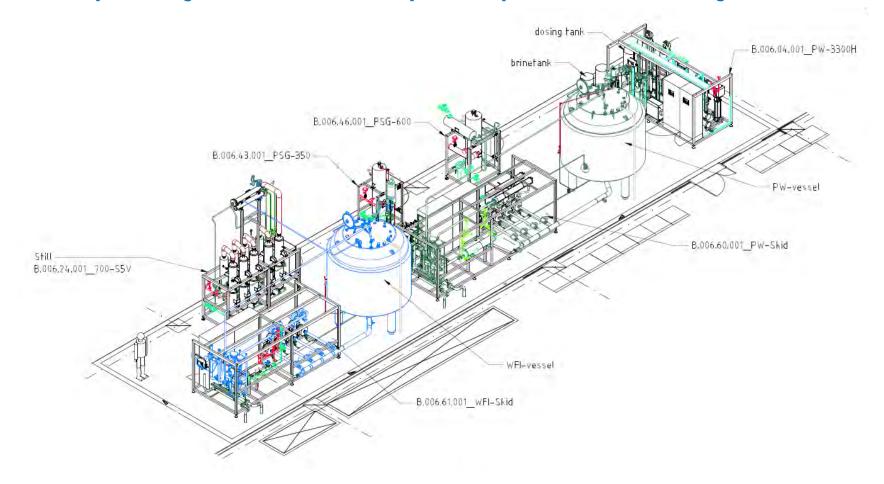
- Compact skid- mounted system
- Variable speed-drive pumps
- Heat exchanger for cooling / heating
- Hot water sanitization, Ozone sanitization and steam sterilization available
- Measurement of quality relevant parameters (Flow, Conductivity, Temperature and TOC [optional])
- Robust, simple and safe to operate and manage

S&D	4.500	10.000	20.000	30.000
Performance up to I/h	4.500	10.000	20.000	30.000

Storage & Distribution

Storage and Distribution of PW and WFI

Characteristics


- Control system for complete storage and distribution
- Tanks in 316 L in different dimensions
- Points of use (cold and hot)
- Additional skid for cold PoU by hot distribution system
- PoU in 3 automation levels
 - Manual
 - Automatic with panel with push buttons
 - Automatic with control panel
- Installation of loop at site
- Supervision of loop installation by local company

Water for Pharmaceutical Use Sample layout of a complete pure media system

Storage & Distribution

Storage and Distribution of PW and WFI

Points of Use Loop

video

Summary - Pre-conditions for good quality of pharma water production

State of the art design of water generation equipment Appropriate pre-treatment technologies (=> feed water analysis) State of the art design of storage and distribution system Close pure media system and process monitoring Regular maintenance and routine sanitization Skilled operating and maintenance personnel

