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ABSTRACT OF THE DISSERTATION 

 

Planning and Design of Desalination Plants Effluent Systems 

 

By 

 

Sami Maalouf 

Doctor of Philosophy in Civil Engineering 

University of California, Los Angeles, 2014 

Professor William W-G. Yeh, Chair 

 

Increasing demand for water in urban areas and agricultural zones in arid and semi-arid 

coastal regions has urged planners and regulators to look for alternative renewable water 

sources. Seawater reverse osmosis desalination (SWRO) plants have become an essential 

supply source for the production of freshwater in such regions. However, the disposal of 

hypersaline wastes from these plants in many of these regions has not been fully and 

properly addressed. This study aims to develop and present a strategy for the analysis and 

design of an optimal disposal system of wastes generated by SWRO desalination plants.  

After current disposal options were evaluated, the use of multiport marine outfalls is 

recommended as an effective disposal system. Marine outfalls are a reliable means for 
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conveying wastes from process plants, to include wastewater treatment and power plants, 

into the coastal waters. Their proper use, however, in conjunction with SWRO 

desalination plants is still in its beginning stage. 

A simulation-optimization approach is proposed to design a system for safe disposal 

of brine wastes. This disposal system is comprised of a marine outfall that is equipped 

with a multiport diffuser structure. A hydrodynamic model (CORMIX) is used to assess 

the initial dilution of hypersaline effluent discharged into coastal waters. A regression 

model is developed to relate the input and output parameters of the simulation model. 

This regression model replaces the simulation model. A mixed-integer linear 

programming (MILP) optimization model is then formulated to determine the design of 

the multiport marine outfall. The design parameters are the length, diameter and number 

of ports of the disposal system. Given the uncertainty of some parameter, such as current 

speed, wind speed and ambient temperature, a chance-constrained programming model is 

used to properly incorporate these stochastic parameters into the model. This simulation-

optimization framework provides planners with effective tools that preserve a healthy 

coastal environment, meet environmental permitting requirements and restrictions, while 

achieving cost savings and adequate hydrodynamic performance. A case study 

demonstrates the applicability of the proposed methodology. 
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It rains, drop by drop 

and the melted snow leaves the mountaintop 

the mountains embrace the wandering fog 

…but later springs bleed 

water with no color 

and then water leaves the streams 

to embrace the tributaries  

and join the river. 

 

In poetry, water leaves the river  

to embrace the tributaries  

and later hide  

inside the springs 

but then, onto surfaces,  

the springs bleed water in different colors.  

 

–Anonymous 
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1. INTRODUCTION 

As the world’s population has drastically grown throughout the 20th century and into 

the current decades, existing renewable water resources are jeopardized by the rising 

demand for potable water. This is especially true in regions whose climates are 

characterized as arid and semi-arid, such as California (Green, 2007) as well as other 

regions (e.g., Australia, the Mediterranean Basin, Persian Gulf Countries, etc.). In 

addition, with rapid expansion of industries and urban centers around the globe, 

compounded by more frequent droughts caused by climate change, freshwater has 

become increasingly scarce. 

 

Figure 1.1. Freshwater availability in m
3
 per capita per year, from data by the Food and 

Agriculture Organization and the United Nations Environment Programme (modified 

from Rekacewicz, 2008; grida.no/graphicslib/). 
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However, since the majority of the world’s population (approximately 70%) lives 

within a distance of about 70 km from coastlines (El-Dessouky and Ettouney, 2002), and 

given the abundance of seawater (approximately 70% of the earth’s surface), seawater 

has begun to be considered a viable source in the water supply portfolios in many of these 

aforementioned regions.  

Seawater contains high levels of total dissolved solids (TDS). These constituents have 

concentrations that range between 7,000 and 50,000 mg/L (or parts per million), with 

sodium and chloride accounting for approximately 86% of these constituents (El-

Dessouky and Ettouney, 2002; World Bank, 2004). Due to such high levels, desalting of 

seawater is necessary so that safe levels of drinking water are attainable. The World 

Health Organization, for example, states that TDS levels between 300 and 600 mg/L are 

considered good (World Health Organization, 2003). In addition, the US Environmental 

Protection Agency (USEPA) states that a TDS of 500 mg/L is a recommended safe level 

for potable drinking water (water.epa.gov/drink/contaminants/).  

Thus, to transform seawater into potable water, TDS levels have to be reduced by 

orders of magnitude. This can be accomplished using desalting technologies that have 

traditionally included multi-stage flash (MSF) distillation, multi-effect distillation 

(MED), and seawater reverse osmosis (SWRO) (Bleninger and Jirka, 2010). Recent 

advances in SWRO membrane desalination, such as the development of pressure 

recovery units, have enhanced the distribution of this technology worldwide (Voutchkov, 

2011). These advances, illustrated in Figure 1.2, enable SWRO desalination plants to 



3 

produce potable water more economically than thermal desalting methods (Zhu et al., 

2008).  

 

Figure 1.2. Schematic of a typical seawater reverse osmosis (SWRO) desalination plant. 

 

The configuration illustrated in Figure 1.2, typical of current process designs, reduces 

TDS levels to produce potable freshwater (permeate). In the process, however, large 

volumes of hypersaline brine (concentrate) are also produced and subsequently redirected 

to coastal waters. This creates brine disposal challenges, due to elevated TDS 

concentration levels of about two times that of the receiving seawater body, and densities 

higher than the ambient seawater density (Jirka, 2008; Bleninger and Jirka, 2010). Due to 

rapid developments which increase threats to shorelines worldwide (Figure 1.3), it 

follows that SWRO technology may further degrade the coastal environment, if brine 

disposal challenges are not met. 
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Figure 1.3. Shoreline degradation due to coastal population and developments, from data 

by the World Resources Institute and the United Nations Environment Programme 

(modified from Rekacewicz, 2002; grida.no/graphicslib/). 

 

Some SWRO desalination plants use open channels to directly discharge brine loads 

into coastal waters (Bleninger and Jirka, 2010). This may adversely affect the marine 

environment (Lattemann and Höpner, 2008). Modern SWRO plants have been 

increasingly making use of more reliable means, such as marine outfalls, to discharge 

their brine wastes into coastal waters. Such usage can minimize the impacts on marine 

fauna and flora, if strict environmental regulations are adhered to. 

Current environmental regulations, however, vary dramatically among nations and 

regions (Bleninger and Jirka, 2010; Jenkins et al., 2012). Furthermore, most of these 
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regulations were originally established as controls for municipal waste discharges that are 

usually positively buoyant (i.e., the effluent’s density is less than the receiving seawater 

density) and may not be suitable for regulating discharges from SWRO desalination, 

which are negatively buoyant (i.e., the effluent’s density is greater than the receiving 

ambient seawater density). Consequently, environmental regulatory requirements must be 

revisited frequently to address ongoing findings, and any variations between the planning 

stage and site-specific conditions after construction of SWRO plants and their outfalls. 

Marine outfalls with multiport diffusers have proven to be quite efficient in 

maximizing initial dilution (Fischer et al., 1979; Bleninger and Jirka, 2010). Although 

costly to construct, they are considered to be among the most economical measures that 

guarantee proper disposal of waste, depending on several factors such as bathymetry and 

discharge capacity (Alameddine and El-Fadel, 2007; Grace, 2009; Bleninger and Jirka, 

2010). An outfall system is generally designed using simulation models. These models 

represent the physical behavior of the outfall system by means of governing mathematical 

relationships (Fischer et al., 1979; Jirka, 2008; Bleninger and Jirka, 2010). In contrast, 

optimization models rarely have been used in outfall design. Such models are 

mathematical formulations that use one or more selected algorithms to minimize (or 

maximize) an objective function over the proper choice of decision variables, subject to a 

set of specified constraints. These models also have the ability to link with simulation 

models to ensure optimal designs (Chang et al., 2009).  
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The goal of this research is to develop a simulation-optimization model in order to 

find an optimal design for brine disposal, address dilution and regulatory constraints, and 

deliver the most cost-effective answer to the development of SWRO desalination 

multiport outfalls. A hydrodynamic simulation model (CORMIX) is used to assess the 

initial dilution of hypersaline effluent that is discharged into coastal waters. The response 

surface of CORMIX is approximated by a regression model that relates the initial dilution 

to various input parameters. This regression model replaces CORMIX in the mixed-

integer linear programming (MILP) optimization model that is formulated to determine 

the design of the multiport marine outfall. The design parameters are the length, diameter 

and number of ports of the disposal system. 

Given the uncertainty of some input variables, such as: current speed, wind speed, 

and ambient temperature, this study also demonstrates how these variables are 

incorporated into the development of the simulation-optimization framework. A chance-

constrained programming model is used to properly incorporate these stochastic 

parameters into the model. 

The simulation-optimization framework, depicted in this study, provides planners and 

design engineers with effective tools that meet environmental permitting requirements, 

while achieving adequate hydrodynamic performance and considerable cost savings. As a 

case example, the model is applied to a planned SWRO brine outfall along the California 

coastline. 
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2. DESALINATION – OVERVIEW AND BACKGROUND 

Seawater Reverse Osmosis (SWRO) desalination has emerged as one of the 

technologies of choice to alleviate the problems of freshwater shortages. Since the 1990s, 

reverse osmosis (RO) has been adopted in most arid and semi-arid regions around the 

world. Frequent droughts, climate changes and seasonal shifts worldwide, in addition to 

population growth and depleted traditional water resources, are among a myriad of 

factors that have forced many coastal communities to seek reliable alternative sources of 

potable water. As shown in Table 2.1, the abundance of seawater (about 97% of the 

volume of water on earth) makes it an attractive supply source, at least for communities 

living in the vicinity of coastlines. 

Table 2.1. Data on approximate volumes of global water resources (modified from 

Shiklomanov, 1993). 

Water Source 

 

Water Volume 

(km
3
) 

Freshwater 

(%) 

Total Water 

(%) 

Oceans, seas, bays 

Ice caps, glaciers, permanent snow 

Groundwater, fresh 

Groundwater, saline 

Soil moisture 

Ground ice and permafrost 

Lakes, fresh 

Lakes, saline 

Atmospheric water 

Swamp water 

River flows 

Biological water 

 

Total freshwater 

Total water reserves 

1.338 × 10
9
 

2.406 × 10
7
 

1.053 × 10
7
 

1.285 × 10
7
 

1.650 × 10
4
 

3.000 × 10
5
 

9.100 × 10
4
 

8.540 × 10
4
 

1.290 × 10
4
 

1.147 × 10
4
 

2.120 × 10
3
 

1.120 × 10
3 

 

3.503 × 10
7 

1.386 × 10
9 

– 

68.700 

30.060 

– 

0.047 

0.857 

0.260 

  – 

0.037 

0.030 

0.006 

0.003 

 

100 

– 

96.539 

1.7364 

0.7598 

0.9272 

0.0012 

0.0216 

0.0066 

0.0062 

0.0009 

0.0008 

0.0002 

0.0001 

 

– 

100 
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Given the ubiquity of oceans and seas around the globe, and the industrial scale 

production of potable water via desalination, seawater has transformed into a reliable 

“source.” Desalinated seawater seems to provide a draught-resistant and constant supply 

of high quality potable water (UNEP, 2008). It has proven to satisfy the shortages of 

water demands in some of these regions.  

Aside from its rich content of nutrients, bacteria and viruses, seawater contains high 

concentration levels of total dissolved solids (TDS). A typical composition of seawater is 

shown in Table 2.2. 

Table 2.2. Typical seawater constituents and their concentrations (Heitmann, 1990). 

Constituent Chemical 

Symbol 

Concentration 

(mg/L) 

Chloride 

Sodium 

Magnesium 

Sulfate 

Calcium 

Potassium 

Bromide 

Bicarbonate 

Other solids 

Cl
-
 

Na
+
 

Mg
2+

 

SO4
2-

 

Ca
2+

 

K
+
 

Br
-
 

HCO3
-
 

– 

18,980 

10,561 

1,272 

2,649 

400 

380 

65 

142 

34 

 

Total Dissolved Solids (TDS) 

  

34,483 

 

While this is a typical concentration level in most oceans, TDS levels vary among 

different oceans and seas. Although seawater TDS concentration shown here totals 

34,483 mg/L (or parts per million), these levels fluctuate considerably. This largely 

depends on the seasonal variations during the hydrologic cycle and geographical regions. 
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Seawater TDS concentrations range between 7,000 and 45,000 mg/L (and sometimes 

higher), as shown in Table 2.3. 

Table 2.3. Seawater sources and their respective TDS concentrations (World Bank, 2004). 

Source 

 

Concentration 

(mg/L) 

Baltic Sea 

Oceans 

Closed Seas 

Red Sea 

Arabian Gulf 

Aral Sea 

7,000 

35,000 

38,000 

41,000 

45,000 

29,000 

 

Water is classified in terms of different ranges of TDS concentration, as shown in 

Table 2.4 (World Bank, 2004). Additionally, potable water may be categorized with 

respect to its organoleptic properties (predominantly taste quality), in a manner shown in 

Table 2.5 (World Health Organization, 2003). Water with TDS of 500 mg/L is considered 

pure and is recommended as a safe level for drinking (USEPA). 

Table 2.4. Water, classified in terms of TDS (World Bank, 2004). 

Concentration (mg/L) Classification 

TDS 1,000 

1,000 TDS 5,000 

5,000 TDS 15,000 

7,000  TDS 50,000 

Potable water 

LSB water
†
 

HSB water
‡
 

Seawater 
            †

LSB: Low Salinity Brackish; 
‡
HSB: high Salinity Brackish. 

In order to transform seawater into safe drinking water, TDS levels have to be 

reduced. This is achieved by using desalting technologies that have traditionally included 
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thermal processes such as multi-effect distillation (MED) and multi-stage flash (MSF) 

distillation. 

Newer technologies include membrane and ion-exchange processes such as seawater 

reverse osmosis (SWRO) desalination, electrodialysis (ED) as well as electrodeionization 

(EDI) (Lattemann and Höpner, 2008a; Bleninger and Jirka, 2010; desalination.com). 

Some of these processes are also combined together in some instances, creating a hybrid 

setup to achieve optimal desalination and reduce energy consumption. 

Table 2.5. Potable water organoleptic properties (World Health Organization, 2003). 

Concentration (mg/L) Classification 

TDS 300 

300 TDS 600 

600 TDS 900 

900 TDS 1,200 

TDS 1,200 

Excellent 

Good 

Fair 

Poor 

Unacceptable 

 

 

2.1. Historical highlights 

The quest for desalinating seawater (or brackish water) and transforming it to potable 

freshwater has challenged human beings for a long time. Early recorded accounts on 

desalination appear in Exodus 15:25, where Moses cast a tree into brackish (or bitter) 

waters. This turned the bitter water supply to a potable one and the people quenched their 

thirst (Einav, 2002; mechon-mamre.org/p/pt/pt0215.htm). Aside from mythic and 

religious accounts, a list of some milestones in the history and developments of 
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desalination processes is shown in Table 2.6 (UNESCO, 2008). In the US, statesman 

Thomas Jefferson published a report that addressed a distillation process in 1791. Figure 

2.1 shows a copy of an excerpt of his document (memory.loc.gov/ammem; Jefferson, 

1791 – republished in 1943 by the Journal of Chemical Education). Also in the US, 

UCLA researchers Sidney Loeb and Srinivasa Sourirajan reported on their development 

of the first asymmetric cellulose acetate membrane for desalination in 1960. This 

facilitated the birth of industrial scale SWRO desalination. 

 

Figure 2.1. A copy of the original hand-written notes describing a desalination method 

by Thomas Jefferson, 1791 (Library of Congress archives). 
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Table 2.6. Brief desalination timeline showing some milestones leading to major 

advancements in various processes (modified from UNESCO, 2008). 

Year Event 

320 BC 

70 AD 

200 AD 

975 AD 

 

1748 

1772 

1791 

 

1828 

1840 

 

1855 

1869 

1881 

1886 

1900 

 

1910 

1927 

1946 

1950 

1958 

 

1960 

 

1960 

1963 

1965 

1977 

Aristotle writes about seawater distillation 

Pliny the Elder describes seawater distillation (condensation) 

Alexander of Aphrodisias describes seawater distillation 

Muwaffaq Harawī  writes that distillation is a suitable method of 

seawater conversion to freshwater 

Nollet discovers the osmosis phenomenon in natural membranes 

James Cook begins successful use of seawater stills in his voyages 

Thomas Jefferson publishes “Report on the Method of Obtaining Fresh 

Water from Salt” 

Péclet discusses multi-effect evaporator 

Swiss firm Escher Wyss installs vapor compression distiller in British 

Columbia, Canada 

Fick creates the first synthetic cellulose nitrate membrane 

Schoenbein produces the first synthetic commercial polymer  

Seawater distiller is installed on Malta 

Yaryan introduces rising film vertical tube evaporators 

Addison Waterhouse receives US patent for multistage flash 

distillation process  

Frank Normandy publishes a book entitled “Sea Water Distillation” 

Sartorius Company makes membranes commercially available 

Kuwait Oil Company installs the country’s first evaporator 

Hassler introduces the first concept of membrane desalination 

Reid and Breton show that cellulose acetate is an effective membrane 

material for water desalination 

Loeb and Sourirajan develop the first practical membranes for reverse 

osmosis (RO) water desalting process at UCLA  

Londsdale develops thin film composite type membranes  

Mahon developed the first capillary (Hollow Fibre) membranes 

The world's first commercial RO plant is built in Coalinga, California 

Cadotte patents thin film composite membrane 

 

Desalination technologies grew rapidly in the 20th century as arid and semi-arid 

regions have sought solutions to potable water scarcity. As of 2011, more than 300 
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million people in 150 countries rely on desalination daily. There are 15,988 desalination 

plants worldwide (idadesal.org). These plants are responsible for generating 

approximately 66.5×10
6
 m

3
/day (about 17.60×10

3
 MGD). Seawater is the most prevalent 

source of these daily volumes (Figure 2.2). 

 
Figure 2.2. Desalination capacity worldwide (%). This breakdown is organized by 

feedwater category. BW: Brackish Water; PW: Pure Water; RW: River Water; SW: 

Seawater; WW: Wastewater (Modified from desaldata.com). 

 

2.2. Brief description of some desalination technologies and processes 

Several technologies are used to transform saline water into safe drinking water. The 

most prevalent technology is reverse osmosis (RO). It accounts for 60 percent of installed 

capacity. Multi-stage flash follows at 26 percent (Figure 2.3). 

The technologies and processes shown in Figure 2.3 above are briefly described in the 

following subsections. Three membrane technologies will be described first (subsections 

2.2.1 – 2.2.3) and two thermal processes follow (subsections 2.2.4 and 2.2.5). 

SW, 
62.87%

WW, 
5.06%

RW, 
7.53%

Brine, 
0.22%

BW, 
19.85%

PW, 4.47%
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Figure 2.3.  Desalination capacity worldwide (%). This breakdown is organized by the 

technology used. ED: electrodialysis; EDI: electrodeionization; MED: multi-effect 

distillation; MSF: multi-stage flash; RO: reverse osmosis (Modified from desaldata.com). 

 

2.2.1. Reverse Osmosis 

Reverse Osmosis (RO) is a membrane-based technology. Nowadays, it represents the 

fastest growing sector in desalination worldwide. RO desalination plants are able to 

produce potable water more economically than other desalting methods, due to recent 

advances in membrane technology. Brackish water or seawater flows through semi-

permeable RO membranes under the influence of a pressure head that exceeds the 

osmotic pressure of the solution, as depicted in Figure 2.4. 

Most RO membrane materials are aramids, polyamides, cellulose acetate and 

triacetate. They have either a spiral wound or hollow fiber configuration. The membranes 

are set in series within a pressure vessel in a typical RO process. Pressure vessels that 

house the RO membranes are usually set in parallel. Saline water (inflow) is pumped 

though these vessels under pressure. As freshwater permeates through these membranes, 

RO, 60%MSF, 
26.8%

MED, 8%

EDI, 0.3%
ED, 3.6%

Hybrid, 
0.8%

Other, 
0.5%
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the hypersaline brine solution is left behind (Heitmann, 1990; El-Dessouky and Ettouney, 

2002). A typical modern SWRO process is shown in Figure 1.1 above. 

 

Figure 2.4. Principle of reverse osmosis (RO) (Modified from Heitmann, 1990). 

 

Important design parameters in SWRO plants design and operation are the water 

recovery ratio, feed and osmotic pressures. The water recovery ratio wR  is defined as the 

ratio of produced freshwater (permeate) flow to the inflow. It is predicated on the number 

of pressure vessels and their respective membranes within the RO desalination plant. 

Most SWRO desalination plants are able to achieve a water recovery ratio of about 40% 

to 65% (Mauguin and Corsin, 2005; Voutchkov, 2011). The feed pressure is 

approximately two to three times greater than the osmotic pressure (lenntech.com). 

2.2.2. Electrodialysis 

Electrodialysis (ED) is another membrane-based technology with limited industrial 
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applications. The process is used to remove salt ions from water. Salt ions in this process 

are transported through permselective (semi-permeable) membranes, where the driving 

force is an electrical field that is applied across these membranes (Heitmann, 1990). A 

typical ED unit is comprised of a number of anion-selective and cation-selective 

membranes that are placed between the anode (positively charged electrode) and the 

cathode (negatively charged electrode). Thus, by placing multiple alternating membranes 

in a row and allowing positively or negatively charged ions to flow through, the salt ions 

can be separated from saline water. Conversely, particles that do not carry an electrical 

charge are not removed. (El-Dessouky and Ettouney, 2002). 

2.2.3. Electrodeionization 

Electrodeionization (EDI) is another membrane-based technology. It is usually used 

to remove residual constituents after an RO process takes place. The EDI process 

combines membrane separation technology with an ion-exchange medium to accomplish 

salt removal. A typical EDI unit has the basic components of a deionization (ion removal) 

system. In a manner similar to that of the ED process above, the deionization chamber 

consists of anion-selective and cation-selective ion exchange membranes. The spaces 

between these membranes are filled with electrically-active media (ion exchange resin). 

Unlike other ion exchange processes, where the resin is usually regenerated with acid and 

caustic chemicals, the electrical field in EDI “splits” water at the surface of the resin bed, 

producing hydrogen and hydroxide ions. These ions act as continuous regenerating agents 

of the ion exchange resin, without the use of chemicals. This process makes EDI more 
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reliable and far more economical than other ion exchange processes in terms of energy 

and operating costs (lenntech.com; watertechonline.com). 

2.2.4. Multi-Effect Distillation 

Multi-effect distillation (MED) is an old technology where the salt removal process is 

achieved by directing seawater to a series of chambers or effects. These effects operate at 

progressively lower temperatures and pressures, and vapor that is formed in one effect is 

used in the following effect. Initially, heat exchanger tubes are heated then cooled by 

spraying them with seawater. 

As the flowing vapor within these tubes condense into pure water, the sprayed 

seawater outside the tubes begins to boil due to the absorbed heat. Vapor from the 

seawater is then introduced into the heat exchanger tubes in the next effect. Reusing 

vapor in MED reduces brine volumes and lowers the temperature as the process 

continues until the last effect (El-Dessouky and Ettouney, 2002; Bleninger and Jirka, 

2010). 

2.2.5. Multi-Stage Flash 

Multi-stage flash distillation (MSF) is another thermal technology where seawater is 

heated up to vapor levels and directed to flow into a series of chambers (stages) of 

successively lower temperatures and pressures. 

Seawater is heated as it flows through heat exchangers in the stages within the plant. 

The hot seawater is further heated by means of a heater that is referred to as brine heater. 
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The very hot liquid is now allowed to flow freely and flash (i.e., boil) in a series of stages. 

Pressure is reduced as liquid flows from one stage to another. The steam condenses and 

cools around the heat exchanger tubes. It also heats up the incoming seawater that flows 

towards the brine heater. As seawater becomes very hot, it is directed to a series of stages, 

as discussed above (El-Dessouky and Ettouney, 2002; Bleninger and Jirka, 2010). 

 

2.3. Benefits and impacts of SWRO desalination plants 

Compared to other desalting methods, SWRO desalination has gained popularity, 

because of its lower energy consumption (Jirka, 2008; Sobhani et al., 2012). Additionally, 

due to some attractive features that are mainly related to advancements in membrane 

technology, desalination is economically able to satisfy desired safe drinking water levels 

(Voutchkov, 2011). 

Aside from their benefit as a reliable supply source of potable water, transforming an 

abundant supply of seawater to freshwater, SWRO desalination plants also discharge 

large volumes of high salinity concentrate or brine into the sea.  

2.3.1. Brine volumes and concentration 

High salinity brine volumes depend on the water recovery ratio wR of the SWRO 

desalination plant that is defined as: 

 1
p p e

w

i p e i

Q Q Q
R

Q Q Q Q
  (2.1) 
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where 
pQ  is defined as permeate (or produced freshwater due to the SWRO process, with 

p i eQ Q Q ). iQ and eQ are the influent (intake or feed) and effluent (concentrate) flow 

rates, respectively. The concentrate has salinity levels that are approximately double of 

that of ambient seawater. In addition, the concentrate contains products that include 

chemicals for biofouling control, antiscalants and corrosion inhibitors, among others. 

Some of these products are biodegradable, whereas others may be considered harmful to 

the marine environment (Lattemann and Höpner, 2008a, 2008b). 

Brine must be discharged properly so that the ambient coastal waters’ TDS 

concentration levels are maintained unaltered. Once wR is determined using Equation 

(2.1), and assuming that the entire brine effluent (concentrate) is leaving the SWRO plant 

(100% rejection), we can compute the brine TDS levels as 

 
1

1
e b

w

C C
R

 (2.2) 

where eC and bC are the effluent and ambient (background) TDS concentrations, 

respectively. For example, if wR is equal to 50%, the effluent TDS concentration is 

double the ambient concentration. 

2.3.2. Seawater and SWRO brine densities 

The seawater equation of state is expressed as (UNESCO, 2010): 

 ( , , )S T p  (2.3) 



20 

where  is the density of saline water, S is salinity, T  is temperature and p  is pressure. 

Temperature is an important variable in determining density. However, temperature 

differences between SWRO effluent temperature and that of coastal waters are usually 

negligible. On the other hand, pressure effects may be eliminated in shallow coastal 

waters (Kämpf, 2009a), as SWRO desalination discharges mostly take place in the 

ocean’s upper layer (depth of 0–50 m). 

Unlike sea surface temperature or brine temperature that can be directly measured, 

salinity is not directly measured. The salinity of the medium in question has to be 

computed to determine . Absolute salinity AS  is defined as the mass fraction of salt 

dissolved in seawater. It is defined as: 

 s
A

w s

m
S

m m
 (2.4) 

where 
sm  is the mass of salt and 

wm  is the mass of water (UNESCO, 2010). Ambient 

TDS concentration in grams per one kilogram (or parts per thousand) of seawater is equal 

to AS . 

Traditionally, salinity is defined as the total amount of solid materials in grams 

dissolved in one kilogram of sea water when all the carbonate has been converted to 

oxide, all organic matter completely oxidized and the bromine and iodine replaced by 

chlorine. Consequently, salinity of the ocean can be computed empirically as a function 

of chlorine as 1.80655S Cl (Stewart, 2008). Salinity is also computed in terms of 

conductivity and a modern measure to express it as a dimensionless parameter is called 
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Practical Salinity PS . This is defined in terms of the Practical Salinity Scale of 1978 

(UNESCO, 1983; Kämpf, 2009a, 2009b). Detailed discussion on such definitions is 

found elsewhere in published literature (UNESCO, 2010; Boerlage, 2011, 2012). 

UNESCO (1983, 2010) offers algorithms that compute seawater and effluent 

densities that are between 2,000 mg/L and 42,000 mg/L (or 2 and 42 parts per thousand). 

For ranges where brine concentration is greater than 42,000 mg/L (or 42 parts per 

thousand), El-Dessouky and Ettouney (2002) provide methods to compute the effluent 

density. A seawater density calculator that uses these methods can be downloaded from: 

www.ifh.uni-karlsruhe.de/science/envflu/research/brinedis/ (Bleninger and Jirka, 2010). 

For example, if the ambient salinity S is equal to 35,000 mg/L (35 parts per thousand) 

and the ambient temperature is 25 °C, the ambient density is equal to 1,023.03 kg/m
3
. If 

the brine effluent TDS concentration is double the ambient concentration (i.e., if brine 

effluent S =70,000 mg/L) and given the brine temperature is the same as that of ambient 

seawater, brine density is equal to 1,049.56 kg/m
3
. 

 

2.4. Brine disposal, mixing zones, and simulation models 

With brine TDS concentration levels approximately double of that of ambient 

seawater (as shown in the example of subsection 2.3.1 above), and with an associate 

brine density higher than ambient water density (as shown in the example of subsection 

2.3.2 above), this negatively buoyant effluent rapidly sinks and spreads over the sea bed 
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(Figure 2.5). Subsequently, this may also lead to increased stratification effects that may 

in turn reduce vertical mixing. These effects may harm the benthic community adversely 

due to reductions in dissolved oxygen (DO) levels (Lattemann and Höpner, 2008a). 

 

Figure 2.5. SWRO brine discharge and mixing characteristics. This configuration depicts 

a submerged dense effluent (concentrate) that is released to shallow coastal waters using 

a marine outfall with a multiport diffuser system. The concentrate rapidly sinks and 

spreads over the sea bed. 

 

2.4.1. Brine disposal 

Disposal of liquid brine waste into coastal waters usually is done by means of marine 

outfalls equipped with a single port or a multiport diffuser system. These outfalls are 

designed to maximize initial dilution so that environmental regulations, set by regulatory 

agencies, are met at the edge of a mixing zone (Fischer et al., 1979; Grace, 2009).  

Figure 2.6 illustrates an example of a multiport outfall system. The system consists of 

the following main components: the onshore headworks (designated here as SWRO 
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Desalination Plant), a feeder pipe 
fL  and the diffuser section .dL  

 

Figure 2.6. Schematic of a submerged multiport marine outfall (modified from Jirka et 

al., 1996; Bleninger, 2006). 

 

The diffuser section is equipped with a number of ports that disperse brine discharge 

into coastal waters within the mixing zone. These ports are arranged either in a 

unidirectional, staged or alternating manner. Overall, marine outfalls vary considerably in 

terms of their construction material, installation techniques, pipeline and port diameters, 

as well as other design and construction related functions. The literature contains 

comprehensive reviews of design, construction costs and methods (Wallis, 1979; Wood 

et al., 1993; Grace, 2009). Online resources include mwwd.org, emisarios.unican.es, 

iwahq.org and www.ifh.uni-karlsruhe.de/science/envflu/research/ww-discharges/. 
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2.4.2. Mixing zones 

The mixing zone (or zone of initial dilution) is defined as a limited ‘sacrificial area or 

volume’ within the coastal waters where the impacts to marine life are deemed minimal 

(Jirka et al., 2004). This negotiated area or control volume usually is limited to a region 

around the outfall where the initial dilution takes place. Figure 2.7 shows an example 

specified by the US Environmental Protection Agency (USEPA, 1991). 

 

Figure 2.7. Example of a regulatory mixing zone, specified by the US Environmental 

Protection Agency (USEPA, 1991). 

 

Given the conservative (non-reactive) nature of this hypersaline effluent, the mass of 

brine waste (i.e., constituent mass) within the mixing zone may be defined as: 

 
c e

V

m C dV  (2.5) 

where 
cm is the constituent mass,

eC is the effluent TDS concentration and V is the 

volume of mixing zone. 
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According to USEPA regulations, the concentration within the outer zone shown in 

Figure 2.7 (designated here as chronic criteria met), is a multi-day average concentration 

of a pollutant in ambient water that should not be exceeded more than once every 3 years 

on the average (4 – 30 days). However, within the inner zone (designated here as acute 

criteria met), the one-hour average concentration in the ambient water should not exceed 

the criterion maximum concentration (regulatory required concentration) more than once 

every 3 years.  

Mixing zones were originally enacted to delineate the boundaries of an allocated 

impact zone and initiate discussions that help planners and engineers on the one hand, 

and regulators on the other hand, in meeting environmental quality standards. Originally 

regulated to deal with positively buoyant wastewater releases into coastal waters, these 

administrative measures may be utilized for negatively buoyant brine discharge 

applications, but may need to be revisited or modified accordingly to reflect buoyancy 

variations (Jenkins, et al., 2012). 

In the vicinity closest to the outfall’s diffuser section within the mixing zone, the 

seawater equation of state shown above may be extended to include new brine volumes 

as follows: 

 ( , , ) ( , , )mz c eS T p m S T p V C  (2.6) 

where mz  is seawater density within the mixing zone closest to outfall’s ports. 

Local and national regulatory agencies with jurisdictions over the receiving coastal 
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area usually set the standards, procedures, and limitations of such zones. In the United 

States, for example, the USEPA has established national standards that focus on drifting 

organisms, migrating fish populations and routes to the growth and livelihood of such 

populations. Current national discharge regulations (in the US) are not specific to brine 

waste, but do limit chronic and acute toxicities at the mixing zone, as explained above 

(USEPA, 1991). Similarly, local and state regulations do not specifically address brine 

waste. Reports on operational SWRO desalination plants in California indicate that 

discharges from these plants are either released directly into coastal waters or blended 

with wastewater discharges prior to their release. Several additional SWRO desalination 

plants have been proposed in California due to rising water demand (Cooley et al., 2006; 

Green, 2007; Jenkins, et al., 2012). A variety of discharge methods, including direct 

surface discharge, use of evaporation ponds and salt-brine capillary crystallization, 

blending brine with other effluents, and subsurface disposal, have been proposed for 

these new SWRO desalination plants (Cooley et al., 2006; Sobhani et al., 2012). In 

addition, recent efforts to address brine discharge have led to the establishment of 

recommendations that may be adopted and later enforced as regulations (Jenkins, et al., 

2012).  

Other regulations also have been implemented, including those established by the 

European Union and other governing entities. The literature contains comprehensive 

reviews of such regulations in many countries where desalination is prevalent (Jirka et 

al., 2004; Bleninger and Jirka, 2010; Jenkins et al., 2012). 
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2.4.3. Simulation models 

Unlike other treated municipal waste discharges that are usually positively buoyant, 

the mixing characteristics of brine disposal are directly affected by the physical nature of 

this dense conservative (non-reactive) effluent. In addition, blending with other 

discharges from nearby power plants, ambient density, temperature, and current speed of 

the receiving water body, as well as other factors, play an important role in the mixing 

process (Kikkert et al., 2007; Kämpf, 2009a; Bleninger and Jirka, 2010). While affecting 

the drifting organisms, migrating fish populations and routes to living and growing of 

such populations, brine discharges also impact the benthic flora within the mixing zone 

and the path of the hypersaline plume. As of 2012, many local and international efforts 

have been undertaken to include these impacts (Jenkins et al., 2012), clarify certain 

definitions and consider narratives that account for the negatively buoyant plumes—

specifically from SWRO desalination plants—as they plunge into the bottom of a mixing 

zone (California EPA, 2011).  

Jets and plumes have been studied for the last eighty years (Brown, 1935; List, 1982). 

Negatively buoyant jets and plumes characteristic of SWRO desalination brine discharges 

have been addressed thoroughly in the past four decades (Jirka, 2006). Early models and 

experiments included numerical simulations, design considerations (Zeitoun, et al., 1970, 

1972) and disposal of brine into estuaries leading to coastal waters (Pincince and List, 

1973). List (1982), Del Bene et al. (1994), Roberts et al. (1997), and Jirka (2004, 2006, 
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2008) provided elaborate reviews, developed models and conducted experiments that 

effectively address the behavior of dense and negatively buoyant discharges. 

When used to release brine wastes into coastal waters, a marine outfall equipped with 

a multiport diffuser section dramatically reduces pollutant levels of concentrate 

discharges. These discharges follow mass and momentum conservation, as well as 

transport (advection-dispersion) principles, when their flow and mixing are assessed. The 

constituents in SWRO brine are, for the most part, the same as in seawater, and we may 

assume that these constituents are conservative (non-reactive) in nature. Consequently, 

their mass movements are induced by the effluent and coastal water velocities, as well as 

diffusion. Such movements are approximated and represented mathematically by 

simulation models that evaluate the fate and transport of waste discharges. These models 

also assess impacts on coastal water quality. 

Numerous simulation models that address advection and diffusion of waste discharge 

into coastal waters have been developed (Palomar and Losada, 2010). Some of these 

models are referred to as mixing zone models, since they simulate mixing conditions and 

attempt to satisfy the often stringent regulations associated with the identification and 

enforcement of discharges into a mixing zone. Mixing zone simulations are performed 

using many methods, including empirical and analytical models, integral models, 

numerical models, physical models, random walk particle tracking (RWPT), and other 

models (Jirka, 2004, 2006; Palomar and Losada, 2010; Zhao et al., 2011). Overall, 

modeling of positively and negatively buoyant discharges has been employed effectively 
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to perform dilution and mixing studies (Bleninger and Jirka, 2010). Loya-Fernández et al. 

(2012) and Palomar et al. (2012) independently validated some of the mixing zone 

models by comparing measurements from SWRO discharges to predict results 

determined by some of these models. 

The empirical, analytical, integral and numerical models are briefly described in the 

following subsections (2.4.3.1 – 2.4.3.4). 

2.4.3.1. Empirical Models 

Empirical models aim to establish relationships between the mixing zone, its size, 

dilution and other related parameters, on the one hand, and effluent and discharge 

parameters as they entrain the large body of receiving coastal waters, on the other hand. 

These models are also referred to as length-scale approaches. They are usually expressed 

in terms of simple equations and monograms, and they are useful tools to study the 

mixing behavior in the near-field primarily. Empirical models, coupled with laboratory 

observations, have been in use for more than 30 years (Fischer et al., 1979; Roberts et al., 

1989; Jirka, 2008). They are relatively easy to implement, but are applicable to simple 

discharge scenarios. Their use is, therefore, limited (Stolzenbach, 2000; Zhao et al., 2011). 

2.4.3.2. Analytical Models 

Analytical models or “closed-form” solutions use many assumptions to simplify and 

later solve the rather complex governing hydrodynamic and water quality equations 

(McCutcheon, 1990; Smith et al., 1999; Purnama and Al-Barwani, 2005; Al-Barwani and 
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Purnama, 2008). Such assumptions limit the applications of these models to simple 

mixing cases (Martin and McCutcheon, 1998; Kämpf, 2009a). Analytical models may be 

also used to validate and check solutions that were determined utilizing other techniques 

(Riddle et al., 2001; Israelsson et al., 2006). 

2.4.3.3. Integral Models 

Basic mass and momentum conservation principles, and other physical laws, can be 

expressed by means of integral models. This is normally done through cross-sectional 

integration of volume momentum and buoyancy fluxes. Subject to initial conditions and 

some parameters that were determined by means of observation (i.e., empirically), 

integral models solve for a wide range of loading conditions, depending on the effluent 

properties and release configurations (Stolzenbach, 2000; Jirka, 2004, 2006). 

2.4.3.4. Numerical Models 

Numerical models employ numerical techniques such as finite difference methods 

(FDMs), finite element methods (FEMs), finite volume methods (FVMs), among others. 

Numerical models solve the equations of state that express the physical laws and include 

mixing parameters. Such models are often combined with other techniques and methods 

to produce a holistic approach that predicts the fate and transport of pollutants and 

assesses ocean hydrodynamics. Although these models are applicable to a wide range of 

mixing problems in a variety of dimensions, many limitations exist. These limitations 

include computational costs and other associated challenges (Zhao et al., 2011). 
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2.5. Simulation-optimization tools 

Optimization tools have played an important role in the planning, design, operation, 

and performance of various processes in desalination plants. These tools have proven to 

be useful in improving efficiency, minimizing operation cost and increasing overall plant 

reliability (Abdul-Wahab and Abdo, 2007). However, the tools only have been applied to 

processes within plant boundaries, i.e., excluding the marine outfall and its surrounding 

mixing zone. Marcovecchio et al. (2005) developed an optimization model that 

considered a hybrid RO-MSF desalination method with an objective of determining the 

optimal process design and operating conditions for a given water production level. 

Abdul-Wahab and Abdo (2007) presented a model that helps in the troubleshooting of 

brine heater faults in MSF installations and enhancing their performance. Kim et al. 

(2009) provided a thorough review of available literature on the use of systems 

engineering in RO desalination plant design and operation. They also presented a mixed-

integer non-linear programming (MINLP) model to minimize the total cost of a SWRO 

desalination plant design.  

Most coastal waste disposal design endeavors have used hydrodynamic simulation 

models. Optimization models rarely have been employed to identify satisfactory outfall 

design layouts. Early efforts by Bonazountas et al. (1988) aimed to develop a multi-

objective programming model that applied to three separate coastal wastewater treatment 

plants. Chang and Wang (1995) integrated a wastewater treatment plant and ocean outfall 
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subsystems into an optimization framework in Tainan County, South Taiwan, using Grey 

non-linear programming. In addition, Chang et al. (2009) presented a simulation-

optimization approach to assess a cost-effective and reliable expansion strategy for a 

wastewater treatment plant in Kaohsiung, Taiwan. Alvarez-Vázquez et al. (2005, 2010) 

developed a general multi-objective optimal control system with applications to 

wastewater management. However, none of this work addressed the negatively buoyant 

flow characteristics of SWRO brine. 
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3. MODEL DEVELOPMENT 

SWRO desalination discharges, as mentioned above, mostly take place in the ocean’s 

upper layer (depth of 0–50 m). This layer is influenced by many random variables that in 

turn affect the mixing of these discharges with coastal waters and add to modeling 

complexity. These variables include currents, ambient temperature and wind variations 

(Sorensen, 1997; Blumberg and Georgas, 2008). Other bathymetric features, including 

bottom topography of the coastal ocean and its corresponding slope and friction, also play 

an important role in the mixing processes that take place between coastal waters and 

effluent discharges (Kämpf, 2009a; Bleninger and Jirka, 2010).  

Atmospheric effects and wind are equally important features in generating coastal 

currents. Coriolis force contributes to these currents and wind drives these currents 

alongshore. Wind also creates downward spiral motion in shallow coastal waters (known 

as the Ekman spiral) as a consequence of the Coriolis effect. Coastal morphology, usually 

varying between one coastal area and another, impacts the speed of these currents. 

Thermohaline circulation, driven by density differences within the upper layer, generates 

currents of low velocity. Ambient high temperature may enhance the thermohaline 

circulation and may also increase the evaporation and salinity of coastal waters. 
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3.1. Governing equations 

Effluent discharges into coastal waters follow mass and momentum conservation, as 

well as transport (advection-dispersion) principles when their flow and mixing are 

assessed. Some assumptions are made in this study, and are briefly described below.  

3.1.1. General assumptions 

This research deals with the discharge and mixing problem as a single-phase flow. 

Therefore, interfacial equilibrium is not considered. To simplify the modeling efforts, 

interactions with the air-water interface and exchanges between particles and seawater 

are ignored. All hydrodynamic regions of brine discharges within this study are 

concentrated in an open boundary system of ambient seawater. The effluent is 

characterized as a conservative (non-reactive) fluid. Although many reactive chemicals 

are included within the composition of SWRO discharges, these will be ignored as the 

main focus is the fate and transport of hypersaline brine and optimization of its conveying 

system. The brine effluent is also characterized as a continuously released incompressible 

Newtonian fluid from the SWRO desalination plant and its salinity and density are 

always higher than that of ambient seawater. 

Within the outfall pipe, however, it is assumed that brine density is constant, given 

the system follows a turbulent regime. The flow is steady with a Reynolds number

Re 2300uD   , where u is the discharge velocity, D  is the internal diameter of 

the pipe section and   is the effluent’s dynamic viscosity. 
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3.1.2. Mass continuity 

Assuming that the control volume is infinitesimally small, the continuity equation 

(mass conservation) can be expressed as follows: 

   0u
t





 


 (3.1) 

where   is the mass density of fluid, t is the time, and   is the gradient operator. 

Equation (3.1) is coordinate-free but can be transformed into a form that is specific to a 

coordinate system, such as a Cartesian, local cylindrical or spherical system (Ferziger and 

Perić, 2002). 

3.1.3. Momentum conservation 

The momentum (Navier-Stokes) equation can be written as: 

 
    2

,2
2

j ii i
i i e

j i j

u uu up
u g F

t x x x


  

 
       

   
 (3.2) 

in which 
iu and 

ju (i, j=1,2,3) are the Cartesian components of the velocity vector u ,   

is the earth rotation vector, p is the pressure, 
ix and

jx are the Cartesian coordinates, g is 

the gravitational acceleration, and 
,i eF is a representation of the external forces, 

respectively. 

3.1.4. Transport (advection-dispersion) equation 

Effluent flow and mixing follow general turbulent transport principles, coupled with 



36 

basic hydrodynamic mass and momentum conservation laws. The transport equation can 

be shown as (Zhao et al., 2011): 

    m

C
uC D C Q R

t


    


 (3.3) 

where C  is the concentration of constituent, 
mD  is the diffusivity tensor, and Q  and R

are the source and sink terms, respectively. 

3.1.5. Negatively buoyant jet fluxes 

A typical single round port discharging brine effluent is illustrated in Figure 3.1.  

 

Figure 3.1. Schematic of a negatively buoyant jet discharging in the longitudinal and 

vertical directions (Jirka, 2008). 
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In this illustration, the receiving water body is assumed unstratified with a constant 

ambient density
a . The port has a diameter .D  Its height above the ocean bottom is ,oh  

and its inclination angle above the horizontal axis is 
oθ .  The discharged brine effluent 

forms a negatively buoyant jet in the ambient coastal waters. Originating from a single 

port, this jet has a discharge velocity 
oU and density

o a  . This gives the following 

fluxes: 

 
o oQ U A  (3.4) 

 
co o eQ U C A  (3.5) 

 
o o oM U Q  (3.6) 

 
o o oJ g Q  (3.7) 

in which 
oQ  is the volume (discharge) flux leaving a single round diffuser port orifice 

that has a cross-sectional area 2π 4.A D coQ  is the mass flux and 
eC is the effluent TDS 

concentration, defined earlier in Chapter 2. 
oM and 

oJ are the momentum and buoyancy 

fluxes, respectively.  o og g      is referred to as the buoyant acceleration at 

discharge. 0og    for negatively buoyant jets  (Fischer et al., 1979; Jirka, 2004, 2008). 

3.1.6. Initial and boundary conditions 

Given the brine effluent is being discharged in an almost unbounded volume (Figure 

2.5), where the boundary surface width is rather large, the initial condition may be 

defined as: 
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where 0.ot  ,oC ou and 
ov  are the initial effluent concentration, longitudinal and vertical 

velocities, respectively. 

The boundary condition can be expressed as: 

 

: 0, 0

0

j

j B

x u C

C

x

  






 (3.9) 

where ( , )B f x z is a function representing the longitudinal and vertical boundary 

surfaces, as shown in Figure 3.1 above. 

 

3.2. Mixing zone model structure 

Hydrodynamic simulations in this study are performed using an expert system to 

ensure that the assumptions outlined previously are valid. A summary of input and output 

variables is shown in Figure 3.2. 

The Cornell Mixing Zone Expert System (CORMIX) is used in this study. CORMIX 

is a USEPA-approved hydrodynamics model and decision support system that aids in 

assessing and simulating impacts of point source discharges on the coastal environment 

(Jirka, 2008). This expert system is comprised of three main subsystems: CORMIX1, to 

model submerged single-port discharges (Doneker and Jirka, 1991); CORMIX2, to model 
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submerged multiport discharges (Akar and Jirka, 1995); and CORMIX3, for buoyant 

surface discharges (Jirka, et al., 1996; Nash and Jirka, 1997). It is also able to analyze 

internal multiport diffuser hydrodynamic behavior (Bleninger, 2006). 

 

Figure 3.2. Modeling brine effluent discharges into coastal waters using an expert system. 

 

Although CORMIX has been used predominantly for municipal wastewater 

applications in the past, it is also capable of performing SWRO brine flow simulations 

(Jirka, 2008). CORMIX uses integral equations in modeling turbulent jets (Jirka, 2004, 

2006, 2008). This capability is directly applicable to the analysis of near-field mixing 

processes. As such, it has been recently used, calibrated and validated under many 

scenarios for a wide range of SWRO brine discharge cases (Loya-Fernández, et al., 2012; 

Palomar, et al., 2012). 
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At the outset, CORMIX classifies the possible flow regimes for waste discharges into 

several categories that are based on depth, stratification, crossflow velocity, and density 

of the receiving waters; the flow rate and density of the concentrate; and the type of 

diffusers and design patterns of their ports (nozzles). Flow classification in CORMIX 

determines plume boundary interaction and the physical processes that control initial 

mixing along the plume trajectory. Once flow has been classified, integral, length scale, 

and passive diffusion simulation modeling methods are used to predict the flow process 

in greater detail. Design features, such as the length and diameter of outfall, as well as the 

number of ports in the diffuser section, now can be modified to perform sensitivity 

analyses and verify that regulatory requirements are satisfied. 

3.2.1. Effluent hydrodynamics and preliminary multiport diffuser design considerations 

Brine that is released continuously from SWRO desalination plants is an 

incompressible Newtonian fluid that is, as noted earlier, of higher salinity (and thus 

higher density) than ambient seawater. A multiport diffuser section is an integral part of 

an optimal effluent discharge system. It must be properly designed and adequately 

equipped with ports (nozzles) as defined in the configuration shown in Figure 3.3. This 

may help avoid rapid plume sinking, improper mixing and stratification problems. 

To avoid intrusion of ambient seawater into the diffuser section and ascertain that all 

ports operate properly, we set the port Densimetric Froude Number oF  to be at least equal 

to 10 (i.e., oF 10 ). It is defined as: 
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 oF o oU g D  (3.10) 

 

Figure 3.3. Schematic of a submerged multiport marine outfall, defining the riser and 

ports (nozzles) in the diffuser section (modified from Bleninger, 2006). 

 

 In a multiport diffuser environment, the discharged brine effluent forms a negatively 

buoyant plane (slot) jet in the ambient coastal waters. This slot has an alignment oγ  

relative to the x-axis. The plane (slot) buoyant jet has an area
dA BL and discharge 

velocity 
oU . This gives the following fluxes: 

 
, ,o o i o i i oQ Q U A U A     (3.11) 

 
, , ,co co i o i e i i o eQ Q U C A U C A     (3.12) 

 2

o o o oM U A U Q   (3.13) 

 
o o o o oJ U g A g Q    (3.14) 
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where 
oQ  is the volume (discharge) flux leaving the diffuser system. 

coQ  is the mass flux. 

oM and 
oJ are the momentum and buoyancy fluxes, respectively. These fluxes are 

forcing the entire plane buoyant jet (Jirka, 2006). 

 

Figure 3.4. Schematic defining a plane buoyant jet with a global three-dimensional 

Cartesian coordinate system (x,y,z).The jet motion is represented by a local axisymmetric 

two-dimensional cylindrical system (r,s), although this motion exhibits a three-

dimensional geometry (r,s,n)along the trajectory (modified from Jirka, 2006). 

 

CORMIX determines the jet trajectory’s spatial and temporal variations. The jet 

trajectory shown in Figure 3.4 is defined by a local two-dimensional cylindrical 

coordinate system. This system has an axial distance s  and transverse distance r  that is 

inclined with the local horizontal angle θand a horizontal angle σ. The initial condition 

for the local system becomes: s 0 : , , .o o oC C u u v v    The boundary condition is: 
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r : 0, 0, 0, 0.u C u v c v         CORMIX also solves for the local velocity ,u

density ,  plume concentration C and dilution S  differences along the trajectory. 

Detailed discussions on this topic, including complete jet properties and transition 

between jets and plumes, can be found elsewhere in published literature (Fischer et al., 

1979; List, 1982; Akar and Jirka, 1995). Complete formulation of the integral model that 

solves for the jet and plume problems is also found in published literature (Jirka, 2004, 

2006). 

For the purpose of a preliminary design size, the required port diameter is computed 

by combining the brine flow rate 
oQ  (leaving a diffuser port), defined in Equation (3.4) 

above, with oF .  We have: 

 
 

2/5

o

4 π

F

o

o

Q
D

g

 
 
 
 

 (3.15) 

3.2.2. Dilution 

Negatively buoyant effluent releases (such as the concentrate from SWRO 

desalination plants) can achieve optimal initial dilution by means of multiport diffusers 

during the near-field mixing process (Fischer et al., 1979; Akar and Jirka, 1995). Dilution 

generally is defined as the ratio of total volume to the effluent’s volume within the total 

volume. Within the mixing zone, dilution S  begins when effluent discharges 

immediately leave the marine outfall and start mixing with coastal waters.  
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Because SWRO brine is essentially seawater with higher TDS concentration levels, 

dilution S is expressed as: 

 e b

b

C C
S

C C





 (3.16) 

where C  is the brine concentration after the initial dilution and mixing has taken place. 

Rearranging the equation above yields: 

 e b
b

C C
C C

S


   (3.17) 

Brine concentration C  cannot exceed an upper concentration limit 
rrC , which may be 

defined as the required regulatory concentration at the mixing zone’s outer edge (see 

Figure 2.7, for an example). In other words: 

 rrC C  (3.18) 

Equation (3.16) therefore can be rearranged and written as: 

 e b e b

b rr b

C C C C
S

C C C C

 
 

 
 (3.19) 

 

3.3. Optimization model 

Optimization models, as noted in Chapter 2 above, have been used only rarely in 

conjunction with marine outfall designs. To our knowledge, these models never have 

been used in designing economically sound SWRO desalination effluent discharge 

systems, nor have they been employed to evaluate their performance. We present an 
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optimization approach with the goal of minimizing the construction cost of an outfall 

system, while also ensuring that all environmental requirements and regulations are met 

or exceeded. Although these regulations are not addressed explicitly in many countries 

where SWRO desalination is gaining popularity, we assume there are governmental or 

administrative measures that intend to prevent harmful impacts on the marine 

environment at the edge of a mixing zone.  

Addressing other uncertain aspects in design and optimization, such as current speed, 

ambient temperature and wind speed, is also important. 

The design of a marine outfall with a multiport diffuser structure that discharges brine 

wastes has an objective function of maximizing the initial dilution while meeting 

regulatory measures in a cost-effective manner. For this problem, the decision variables 

are the outfall’s length, diameter and number of ports (nozzles) in the diffuser section. To 

meet the objective, our goal is to determine the shortest outfall length and smallest cross-

sectional diameter, as well as the fewest number of deployed ports in the diffuser section. 

This will minimize cost. 

The outfall’s construction cost can be expressed in terms of the following linear 

function: 

 
1 2 3 = w w wZ L D N   (3.20) 

where Z is the total construction cost, L  is the length of outfall pipe, and D  and N are 

the internal port diameter and the corresponding number of ports in the diffuser section of 
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the outfall system, respectively. The terms 
1 2w ,w  and

3w are linear cost coefficients, 

respectively.  

For this study, it is assumed that the SWRO desalination plant has no brine storage 

capacity and is continuously discharging all the concentrate as soon as it is generated. 

Accordingly, the total brine flow rate 
totQ  flowing out of the SWRO desalination plant 

and into the marine outfall is expressed as: 

 
,

1

n

tot o i

i

Q Q


  (3.21) 

in which 
,o iQ is the flow leaving the ports and 1,...,i n  is the number of ports (nozzles). 

In addition to the dilution constraints shown in Equations (3.18) and (3.19), the 

following constraints are imposed: 

 ,l u

p p pL L L p    (3.22) 

  1 2, , , mD D D D    (3.23) 

  1 2, , , nN N N N    (3.24) 

Where 
pL  is a decision variable representing the continuous feeder pipe section within 

the length of outfall. The variables 
l

pL  and 
u

pL  are the lower and upper bounds of ,pL  

respectively;  1 2, , , mD D D is a set of feasible port diameters that meets the 

hydrodynamic requirements outlined in Equation (3.15);  1 2, , , nN N N is a set of 

feasible number of ports in the diffuser section; m  and n  are the dimensions of D  and 

,N  respectively; and D  and N are integers. 



47 

In Equation (3.19), the concentration C used to compute the dilution S is obtained 

from the hydrodynamic simulation model CORMIX. This causes great difficulty as C

depends on the design parameters , L D  and N as well as other uncertain input parameters. 

Below, we will explain how to resolve this difficulty. In addition, to ensure that the 

benthic communities are safe and meet environmental requirements, the outfall must 

maximize the dilution constraint. S is enhanced or deterred by many factors and 

parameters to include the diameter of outfall and diameters of ports in the diffuser section. 

These affect the effluent flow velocity. Other factors include the stochastic variables 

described above and the physical location where brine is being discharged. The dilution 

constraint, therefore, is a function of length and diameter of pipe and total discharge from 

all diffuser ports in this model, as well as variables such as current speed, ambient 

temperature and wind speed. It may be expressed as follows: 

 ( , )S f x   (3.25) 

where x  is the decision variables vector and  is a vector representing stochastic 

variables. The constraint on S must always meet or exceed the lower level of regulatory 

dilution 
ridS . In other words, 

ridS S . 
ridS  is defined as: 

 e b
rid

rr b

C C
S

C C





 (3.26) 

Chance-constrained programming (CCP) is used in this study to assess the risks 

associated with the presence of stochastic variables. CCP offers measures to help 

evaluate the reliability of the variables. This method initially was proposed by Charnes 

and Cooper (1959) and since has been used frequently in association with many water 
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resources and environmental management problems. The method is powerful, given an 

assumption that a stochastic constraint will hold for a prescribed reliability level. 

3.3.1. Current speed 

Ocean current speed is driven by wind, temperature variations and tides. Combined 

with the rotational effects discussed above (Coriolis force, Ekman spiral), along with the 

gravitational interactions between seawater masses and other bodies within our solar 

system (primarily the sun and moon), the ocean surface rises and falls. The effects of the 

moon are naturally greater than those of the sun, due to the moon’s proximity to our 

planet (oceanservice.noaa.gov; Nash and Jirka, 1997).  

The vertical rise and fall oscillation of ocean surface generates tidal currents that 

move in the horizontal direction. The rise and fall periods or cycles are characterized as 

diurnal (one high and one low tide per one lunar day), semidiurnal (two high and two low 

tides of approximately equal heights per one lunar day) and mixed semidiurnal (two high 

and two low tides of variable heights every lunar day). At full or new moon tidal current 

velocities are strong and are referred to as spring tidal currents. However, when the moon 

is at its first or third quarter phases, tidal currents are referred to as neap tidal currents and 

their velocities are usually weak (Nash and Jirka, 1997). Dilution processes of brine 

waste discharges, as they mix with coastal waters, may be affected by the variations in 

velocities of tidal currents. 
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The horizontal motion due to these oscillations is referred to as flood when it is 

directed towards the coastline and as ebb when this motion is directed away from land 

and towards the ocean. When tidal currents are alternating between ebb and flood and 

vice versa, slack water or slack tide occurs. Although ephemeral, this period of stagnation 

may range from a few seconds to several minutes, and may also cause a reduction in the 

dilution process of brine waste discharges as they mix with coastal waters.  

Aside from alternating tidal currents, other factors such as freshwater discharges from 

rivers, stormwater runoff and other episodic plumes may also lengthen the period of slack 

tide. This may cause large pools of brine wastes to possibly take place near the ocean’s 

bottom. Therefore, the choice of where to locate a proposed outfall system relies 

primarily on ambient current speed which ensures that proper mixing and dilution will 

take place.  

Using CCP, the current speed constraint, can be expressed as: 

  Pr
ii max iw w    (3.27) 

where 
imaxw is a reasonable upper bound for current speed that is guaranteed to be 

available 99%  0.99p 
 
of the time within a monthly current speed dataset i

( 1,...,12)i  ; and 
iw is a reduced current speed, referred to here as the design current 

speed. It can be used to design the marine outfall system in a reliable manner, such that 

ii maxw w .  Finally, 
i  is the monthly reliability level, where 0 1.i   

The deterministic equivalent to Equation (3.27) can be expressed as: 
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where  F  is the cumulative distribution function (cdf);  iE w is the expected value; 

and  iVar w is the variance, respectively, of a monthly current speed dataset. Let 

    
0.5

i i iw E w Var w     be a stochastic variable that can be used to deduce 

confidence intervals for a non-standardized stochastic variable (Kataria, et al., 2010). We 

now can write the above equation as: 

 
 

 
0.5

1
i i

i

i

w E w
F

Var w
 
 
   
    

 (3.29) 

Taking the inverse of Equation (3.29), we obtain: 

      
0.51(1 )i i i iw E w F Var w        (3.30) 

where 1(1 )iF    is the percent point function. Replacing 
iw with 

iw in the LHS of 

Equation (3.30), we can formulate 
iw as: 

    
0.51( )maxw w F Var w       (3.31) 

To apply the findings above to an actual design problem, an example is proposed. An 

area representing a small coastal community in central California is chosen for this 

example. The ocean’s upper layer current speed data, retrieved from online sources 

(National Data Buoy Center at www.ndbc.noaa.gov and the Central and Northern 

California Ocean Observing System at www.cencoos.org), reveal that within the same 

space or control volume (mixing zone) where similar continuous effluent discharges are 
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taking place, current speed exhibits high temporal variations (Figure 3.5 illustrates 

current speed data for the months of January and July). 

   
Figure 3.5. Current speed for the months of January and July, measured at locations in 

the vicinity of a study area representing a small coastal community in central California 

(data retrieved from  www.ndbc.noaa.gov). 

 

The dataset for monthly ocean current speed is summarized in Table 3.1. In addition, 

the data show that the underlying current speed distributions do not appear to be normal 

(Gaussian), but rather are positively skewed (i.e., skewed to the right). This asymmetric 

temporal behavior may be approximated statistically (Figure 3.6) as a two-parameter 

Weibull probability distribution function (pdf) (Chu, 2008). 
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Table 3.1. Current speed data based on historical records (open-source data from 

www.ndbc.noaa.gov/ and www.cencoos.org/). 

Month minw  maxw   E w   Var w   
0.5

Var w    

 (cm/s) (cm/s) (cm/s) (cm/s)2 (cm/s) 
 

June 

July 

August 

September 

October 

November 

December 

January 

February 

March 

April 

May 

 

0.00 

0.00 

0.10 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.10 

 

31.60 

34.90 

33.60 

30.50 

37.30 

36.60 

43.20 

36.40 

37.80 

49.30 

41.70 

35.60 

 

7.39 

7.22 

7.63 

7.71 

7.60 

8.06 

9.19 

7.73 

7.60 

8.24 

10.00 

8.52 

 

19.95 

17.71 

17.54 

20.25 

17.02 

22.84 

31.45 

18.89 

18.88 

27.38 

29.72 

24.90 

 

4.47 

4.21 

4.19 

4.50 

4.13 

4.78 

5.61 

4.35 

4.34 

5.23 

5.45 

4.99 

 

Given the current speed’s daily and seasonal variations, the optimization problem is 

formulated to include the uncertainty caused by this random variable. Within the 

seawater body that is surrounding the outfall, a reasonable upper bound for current speed 

is established. This upper bound is guaranteed to be available 99%  0.99p   of the 

time within a monthly current speed dataset, as shown above. The reduced monthly 

maximum current speed maxw  is computed, considering normal and Weibull distributions. 
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Figure 3.6. Comparisons among observational current speed data (histogram), normal 

and Weibull probability distribution functions for January and July. 
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3.2 and 3.3 show maxw  and iw  results. These results will be discussed further in Chapter 4.  

Table 3.2. Reduced maximum current speed, considering normal and Weibull 

distributions. 

Month maxw  

(cm/s) 

Normal  Weibull 

i  

 

maxw  

(cm/s) 
i  

 

maxw  

(cm/s) 

June 

July 

August 

September 

October 

November 

December 

January 

February 

March 

April 

May 

31.60 

34.90 

33.60 

30.50 

37.30 

36.60 

43.20 

36.40 

37.80 

49.30 

41.70 

35.60 

0.95 

0.96 

0.97 

0.96 

0.97 

0.95 

0.95 

0.96 

0.96 

0.94 

0.97 

0.96 

14.78 

14.44 

15.27 

15.42 

15.20 

16.12 

18.39 

15.45 

15.20 

16.48 

20.00 

17.04 

0.81 

0.82 

0.84 

0.82 

0.84 

0.81 

0.81 

0.83 

0.83 

0.80 

0.84 

0.82 

11.10 

10.96 

11.77 

11.70 

11.74 

12.18 

13.76 

11.84 

11.60 

12.15 

15.43 

12.92 

 

Table 3.3. Deterministic equivalent upper limit design current speed ,w  considering 

Weibull distribution. 

Month i  

 

maxw  

(cm/s) 

w  

(cm/s) 

June 

July 

August 

September 

October 

November 

December 

January 

February 

March 

April 

May 

0.81 

0.82 

0.84 

0.82 

0.84 

0.81 

0.81 

0.83 

0.83 

0.80 

0.84 

0.82 

11.10 

10.96 

11.77 

11.70 

11.74 

12.18 

13.76 

11.84 

11.60 

12.15 

15.43 

12.92 

3.38 

3.30 

3.48 

3.52 

3.47 

3.68 

4.21 

3.53 

3.47 

3.77 

4.56 

3.89 
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Overall, using 
iw ensures that the outfall design does not necessarily rely only on 

remote episodes of very high current speeds, as denoted above. The design is also 

economical as it does not only follow 0minw , which is a stagnant and rarely occurring 

case. 

3.3.2. Ambient temperature 

Ambient temperature may enhance or deter the thermohaline circulation. High 

temperature may increase the evaporation and salinity of coastal waters. This impacts the 

outfall’s optimal performance and must be assessed during planning and design. Using 

CCP, the ambient temperature constraint, can be expressed as: 

  Pr
ii max iT T    (3.32) 

Where 
imaxT  is a reasonable upper bound for sea surface temperature (SST) that is 

guaranteed to be available 99%  0.99p 
 
of the time within a monthly SST dataset i

( 1,...,12)i  ; and 
iT is a reduced SST, referred to here as the design SST. It can be used 

to design the marine outfall system in a reliable manner, such that .
ii maxT T  Finally, 

i  

is the monthly reliability level, where 0 1.i   

The deterministic equivalent to Equation (3.32) can be expressed as: 

 
 

 
0.5

i i

i

i

T E T
F

Var T
 
 
  
    

 (3.33) 
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Where  F  is the cumulative distribution function (cdf);  iE T is the expected value; 

and  iVar T is the variance, respectively, of a monthly SST dataset. Assuming 

    
0.5

i i iT E T Var T      is a stochastic variable that can be used to deduce 

confidence intervals for a non-standardized stochastic variable, we now can write 

Equation (3.33) above as: 

 
 

 
0.5

1
i i

i

i

T E T
F

Var T
 
 
   
    

 (3.34) 

Taking the inverse of Equation (3.34), we obtain: 

      
0.51(1 )i i i iT E T F Var T        (3.35) 

where 
1(1 )iF    is the percent point function. Replacing 

iT with 
iT  in the LHS of 

Equation (3.30), we can formulate 
iT  as: 

    
0.51( )maxT T F Var T       (3.36) 

An example is presented here to demonstrate the use of Equation 3.36 above. For this 

example, the same area along California’s central coast, as the one used in the preceding 

subsection, is chosen. The dataset for monthly ambient sea surface temperature (SST) is 

retrieved from online sources (National Data Buoy Center at www.ndbc.noaa.gov, SLO 

Science and Ecosystem Alliance at slosea.org and the Central and Northern California 

Ocean Observing System at www.cencoos.org). The data reveal that temperature exhibits 

temporal variations. A summary of temperature data is shown in Table 3.4. 
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Table 3.4. Sea surface temperature data based on historical records (open-source data 

from www.ndbc.noaa.gov/, slosea.org and www.cencoos.org/). 

Month minT  maxT   E T   Var T   
0.5

Var T    

 (°C) (°C) (°C) (°C)2 (°C) 
 

June 

July 

August 

September 

October 

November 

December 

January 

February 

March 

April 

May 

 

27.10 

26.50 

27.90 

26.50 

21.60 

15.50 

10.20 

5.00 

7.90 

9.50 

15.90 

21.40 

 

31.90 

32.50 

32.40 

31.10 

27.00 

23.80 

16.50 

16.00 

12.00 

18.40 

22.60 

28.00 

 

29.52 

30.00 

30.89 

28.79 

23.53 

18.06 

13.91 

8.31 

9.92 

13.30 

20.17 

25.63 

 

1.16 

1.57 

0.67 

0.55 

1.25 

3.73 

1.74 

5.33 

1.17 

4.00 

1.85 

2.05 

 

1.08 

1.25 

0.82 

0.74 

1.12 

1.93 

1.32 

2.31 

1.08 

2.00 

1.36 

1.43 

 

In addition, the data show that the underlying SST distributions appear to be normal 

(Gaussian) probability distribution function (pdf). Figure 3.7 illustrates temperature data 

pdf for the months of December and June. 

 Given the temperature’s daily and seasonal variations, the optimization problem may 

be formulated to include the uncertainty caused by this random variable. Within the 

seawater body that is surrounding the outfall, a reasonable upper bound for temperature is 

established. This upper bound is guaranteed to be available 99%  0.99p  of the time 

within a monthly temperature dataset, as shown above. The reduced monthly maximum 

temperature 
maxT  is computed, considering normal distribution. The temperature is further 

reduced such that ,
ii maxT T  per Equation (3.36) above, considering the monthly 
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reliability level   that varies from one month to another. Tables 3.5 and 3.6 show 
maxT

and 
iT results. 

 

Figure 3.7. Comparisons between observational current speed data (histogram) and 

normal probability distribution functions for December and June. 
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Table 3.5. Reduced maximum temperature, considering normal distribution. 

Month maxT  

(°C) 

Normal  

i  

 

maxT  

(°C) 

June 

July 

August 

September 

October 

November 

December 

January 

February 

March 

April 

May 

31.90 

32.50 

32.40 

31.10 

27.00 

23.80 

16.50 

16.00 

12.00 

18.40 

22.60 

28.00 

0.99 

0.98 

0.97 

0.99 

0.99 

0.99 

0.98 

0.93 

0.97 

0.99 

0.96 

0.95 

31.90 

32.50 

32.40 

31.10 

27.00 

23.80 

16.50 

16.00 

12.00 

18.40 

22.60 

28.00 

 

Table 3.6. Deterministic equivalent upper limit design temperature ,T  considering 

normal distribution. 

Month i  

 

maxT  

(°C) 

T   

(°C) 

June 

July 

August 

September 

October 

November 

December 

January 

February 

March 

April 

May 

0.99 

0.98 

0.97 

0.99 

0.99 

0.99 

0.98 

0.93 

0.97 

0.99 

0.96 

0.95 

31.90 

32.50 

32.40 

31.10 

27.00 

23.80 

16.50 

16.00 

12.00 

18.40 

22.60 

28.00 

27.14 

27.50 

29.39 

26.49 

20.07 

12.32 

11.31 

5.00 

7.85 

8.20 

17.74 

23.27 
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 Using 
iT  properly ensures that the outfall design is not ignoring temperature 

variations or relying only on very high or extremely low SST. Temperature differences 

affect ambient density and cause increased or decreased stratification of the water column.  

3.3.3. Wind speed 

 

Surface waves and shear stresses on the sea surface are generated by sea surface 

winds. Due to wind speed, these waves and stresses create in turn surface currents. 

Surface winds are generally characterized as unsteady and non-uniform (Monahan, 2006; 

Bleninger, 2006). Therefore, proper wind speed parameterization is required to realize its 

impacts on surface currents and to adequately incorporate this stochastic variable in the 

outfall design endeavors. 

 Using CCP, the wind speed constraint, can be expressed as: 

  Pr
ii max iW W    (3.37) 

where 
imaxW is a reasonable upper bound for wind speed that is guaranteed to be available 

99%  0.99p  of the time within a monthly wind speed dataset i ( 1,...,12)i  ; and 
iW is 

a reduced wind speed, referred to here as the design wind speed. It can be used to design 

the marine outfall system in a reliable manner, such that .
ii maxW W  Finally, 

i  is the 

monthly reliability level, where 0 1i  .  

The deterministic equivalent to Equation (3.37) can be expressed as: 
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 

 
0.5

i i

i

i

W E W
F

Var W
 
 
  
    

 (3.38) 

where  F  is the cumulative distribution function (cdf);  iE W  is the expected value; 

and  iVar W  is the variance, respectively, of a monthly wind speed dataset. Let 

    
0.5

i i iW E W Var W      be a stochastic variable that can be used to deduce 

confidence intervals for a non-standardized stochastic variable. Equation (3.38) can be 

expressed as: 

 
 

 
0.5

1
i i

i

i

W E W
F

Var W
 
 
   
    

 (3.39) 

Taking the inverse of Equation (3.39), we obtain: 

      
0.5

1(1 )i i ii iW E W F Var W       
 (3.40) 

where 1(1 )iF    is the percent point function. Replacing 
iW with 

iW in the LHS of 

Equation (3.40), we can formulate 
iw as: 

    
0.51( )maxW W F Var W       (3.41) 

To apply the findings above to an actual design problem, an example is proposed. The 

same area that represents a small coastal community in central California is chosen again 

for this example. The dataset for monthly sea surface wind speed is summarized in Table 

3.7. The data, retrieved from online source (National Data Buoy Center at 

www.ndbc.noaa.gov), reveal that wind speed may exhibit some temporal variations, 

depending on the time of year. Figure 3.8 shows wind speed data for the months of 
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January and July, respectively. 

Table 3.7. Sea surface wind speed data based on historical records (open-source data 

from www.ndbc.noaa.gov/). 

Month minW  maxW   E W   Var W   
0.5

Var W    

 (m/s) (m/s) (m/s) (m/s)2 (m/s) 
 

June 

July 

August 

September 

October 

November 

December 

January 

February 

March 

April 

May 

 

0.00 

0.10 

0.00 

0.00 

0.10 

0.10 

0.00 

0.00 

0.00 

0.00 

0.10 

0.30 

 

15.00 

15.10 

13.60 

13.80 

18.20 

15.70 

15.40 

17.80 

15.60 

16.20 

15.10 

14.40 

 

5.12 

7.04 

5.95 

6.78 

7.20 

6.16 

4.52 

5.09 

5.49 

5.82 

7.19 

7.66 

 

11.75 

14.65 

9.99 

13.29 

15.81 

14.98 

12.03 

11.85 

10.08 

14.79 

16.45 

18.55 

 

3.43 

3.83 

3.16 

3.65 

3.98 

3.87 

3.47 

3.44 

3.18 

3.85 

4.06 

4.31 

 

 

 

 
Figure 3.8. Wind speed for the months of January and July (data retrieved from 

www.ndbc.noaa.gov). 
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The data above were measured at locations in the vicinity of an area representing a 

small coastal community in central California. The data show that the underlying wind 

speed distributions do not appear to be normal (Gaussian), but rather are positively 

skewed (i.e., skewed to the right). This asymmetric temporal behavior may be 

approximated statistically as a two-parameter Weibull probability distribution function 

(pdf), as shown in Figure 3.9 (Monahan, 2006; Chu, 2008). 

 Given the wind speed’s daily and seasonal variations, the optimization problem may 

be formulated to include the uncertainty caused by this random variable. A reasonable 

upper bound for wind speed is established. This upper bound is guaranteed to be 

available 99%  0.99p   of the time within a monthly wind speed dataset, as shown 

above. The reduced monthly maximum wind speed maxW  is computed, considering normal 

and Weibull distributions.  

The wind speed is further reduced such that ,
ii maxW W  per Equation (3.41) above, 

considering the monthly reliability level   that varies from one month to another. Tables 

3.8 and 3.9 show maxW  and iW results. These results will be discussed further in Chapter 4. 

Using 
iW ensures that the outfall design does not necessarily rely only on remote 

episodes of very high wind speeds. The design will be economical as it does not only 

follow 0minW , which rarely takes place. 
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Figure 3.9. Comparisons among observational wind speed data (histogram), normal and 

Weibull probability distribution functions for January and July. 
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Table 3.8. Reduced maximum wind speed, considering normal and Weibull distributions. 

Month maxW  

(m/s) 

Normal  Weibull 

i  

 

maxW  

(m/s) 

i  

 

maxW  

(m/s) 

June 

July 

August 

September 

October 

November 

December 

January 

February 

March 

April 

May 

15.00 

15.10 

13.60 

13.80 

18.20 

15.70 

15.40 

17.80 

15.60 

16.20 

15.10 

14.40 

0.93 

0.97 

0.97 

0.97 

0.97 

0.94 

0.90 

0.93 

0.96 

0.93 

0.96 

0.96 

10.23 

14.07 

11.90 

13.56 

14.40 

12.31 

9.04 

10.19 

10.99 

11.64 

14.38 

14.40 

0.77 

0.84 

0.85 

0.84 

0.84 

0.80 

0.73 

0.77 

0.82 

0.78 

0.83 

0.83 

7.37 

10.86 

9.23 

10.49 

11.08 

9.11 

6.00 

7.30 

8.36 

8.44 

11.00 

11.73 

 

Table 3.9. Deterministic equivalent upper limit design wind speed ,W  considering 

Weibull distribution. 

Month i  

 

maxW  

(m/s) 

W  

(m/s) 

June 

July 

August 

September 

October 

November 

December 

January 

February 

March 

April 

May 

0.81 

0.82 

0.84 

0.82 

0.84 

0.81 

0.81 

0.83 

0.83 

0.80 

0.84 

0.82 

7.37 

10.86 

9.23 

10.49 

11.08 

9.11 

6.00 

7.30 

8.36 

8.44 

11.00 

11.73 

2.35 

3.21 

2.71 

3.10 

3.29 

2.82 

2.08 

2.34 

2.51 

2.67 

3.28 

3.50 
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3.4. Simulation–optimization framework 

The simulation model CORMIX is used to run numerous design alternatives for all 

possible combinations of length, diameter and number of ports. This is first achieved by 

determining lower and upper bounds for each design parameter. These bounds must be 

hydrodynamically feasible and must also meet the established environmental 

requirements at the edge of the mixing zone and satisfy all constraints. In order to 

determine the lower bound, these constraints have to be initially relaxed. Next, a set 

( , , )TL D N  of feasible length, diameter and number of ports that complies with the 

hydrodynamic criteria above must be found. Once this is done, the design parameters 

must be varied systematically, from the lower bound to the upper bound. Other important 

input parameters (such as the current speed, wind speed and temperature) must be 

adjusted, as well.  

CORMIX is used to simulate the output for all possible parameter combinations 

 1 1 1, , , , , ,
T

n n nL D N L D N  and other stochastic variables, such as the reduced current 

speed, temperature and wind speed  1 1 1, , , , , , ,
T

m m mw T W w T W under approximately 

similar flow rate loading conditions.  

A large number of simulations are executed and the input and output results, that 

satisfy all constraints, are then stored in a database. The upper bound is reached when no 

significant changes in the dilution output values are noticed. Once the upper limit is 

identified, linear regression analyses are performed using the stored input and output 

results from the CORMIX simulations. The following linear regression model is assumed: 
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3

0

1 4

 = b b b
k

i i j j

i j

S x  
 

     (3.42) 

where 
0 1b , b , ,bk

 are linear regression coefficients, ( , , )Tx L D N  is the decision 

variable vector and  , , ...
T

w T W   is a vector representing stochastic variables. This 

random vector n includes wind-driven, tidal and other randomly varying currents, 

represented here as w . It may also include ambient temperature T  and the wind speed 

,W  among other stochastic variables. The term   is a random error that is assumed to 

have a zero mean. 

 

Figure 3.10. General flowchart for the simulation–optimization framework used in this 

study. 
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The following mixed-integer linear programming (MILP) optimization model is now 

formulated, in which CORMIX is replaced by the linear regression model shown in 

Equation (3.42).  The model can be expressed as: 

 
1 2 3min  = w w wZ L D N   (3.43) 

subject to: 

 ,l u

p p pL L L p    (3.44) 

 ,l u

m m mD D D m     (3.45) 

 ,l u

n n nN N N n     (3.46) 

 
0 1 2 3 4 5 6 = b b b b b b bS L D N w T W          (3.47) 

 
ridS S  (3.48) 

  Pr ,
ii max iw w i    (3.49) 

  Pr ,
ii max iT T i    (3.50) 

  Pr ,
ii max iW W i    (3.51) 

  0,1 ,i i    (3.52) 

  0,1 ,i i    (3.53) 

  0,1 ,i i    (3.54) 

where the minimum cost function in Equation (3.43) is the objective function; l

mD and u

mD

are the lower and upper bounds, respectively, of the m
th

 port diameter from an integer set 

of feasible port diameters, as shown in Equation (3.23); l

nN and u

nN are the lower and 



69 

upper bounds, respectively, of the n
th

 number of ports from an integer set of feasible 

number of ports in the diffuser section of the outfall system, as shown in Equation (3.24); 

and ,i iw T  and 
iW  are among many random variables that are assumed to follow a 

suitable probability distribution function (pdf) and reduced to ensure that the outfall 

design is conservative. The deterministic equivalent to Equation (3.49) is computed using 

Equations (3.28)–(3.31). The deterministic equivalent to Equation (3.50) is computed 

using Equations (3.33)–(3.36). The deterministic equivalent to Equation (3.51) is 

computed using Equations (3.38)–(3.41). The deterministic equivalents to other present 

stochastic variables (not demonstrated here) may be computed in a similar manner, given 

a pdf is defined properly. 

 

3.5. Case study 

The proposed method is demonstrated by presenting an example that is based on an 

actual SWRO desalination facility planned for a small community in central California. A 

site plan of the area is shown in Figure 3.11, depicting the approximate location where 

the project was planned to be constructed in the 1990s. 

 Although the original plans to build a SWRO desalination plant were suspended, in 

light of water supply deficiencies the possibility of designing and constructing the same 

project recently has been reconsidered. The final area of the project, however, has not yet 

been identified. The proposed SWRO desalination plant was originally planned to have a 
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design capacity of approximately 3.80 ML/d (1 MGD) of freshwater. While such capacity 

is relatively small compared to centralized traditional SWRO desalination plants in 

megacities around the world, planners currently are redefining new process plant sizes, 

locations and other regulatory procedures (for example, the International Water 

Association’s work on decentralized systems). As a result, it is prudent to apply the 

method described to a decentralized smaller plant that fits within the framework and 

goals of water professionals worldwide. 

 The 3.80 ML/d (1 MGD) flow rate, considering an assumed recovery ratio wR  of 40% 

(as per discussions in subsections 2.2.1 and 2.3.1 above), requires no less than 9.50 ML/d 

(about 2.50 MGD) of seawater. Brine discharge subsequently will be about 5.7 ML/d 

(1.50 MGD). The plan calls for effluent discharge via a multiport diffuser marine outfall. 

Preliminary hydrodynamic computations help define the lower bound of the length of 

outfall pipe section .L  This is predicated upon many factors that are site-specific 

(topography, bathymetry) and hydrodynamic (the highest vertical position of the upper jet 

boundary). Although the final location of the SWRO desalination facility and outfall has 

not yet been agreed upon, an upper bound is designated and it is based on environmental 

restrictions. Within the coastal region there exists an adjoining zone that is classified as a 

marine sanctuary and a kelp canopy (not shown in figure 3.11). Encroaching upon these 

two areas is assumed prohibited for this study. Consequently, the edge of the mixing zone 

must not be in close proximity to these environmentally protected regions. 
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Figure 3.11. Location of a proposed SWRO desalination facility, planned for a small 

community in Central California. The project area is about 270km (168miles) south of 

San Francisco and approximately 312km (194miles) north of Los Angeles. 

 

3.5.1. Geographical data 

 Topographic and bathymetric data, for preliminary assessments in this example, were 

retrieved using three sources: NASA World Wind (worldwind.arc.nasa.gov), Virtual 

Ocean (www.virtualocean.org), Google Earth (www.google.com/earth/), and ArcGIS 

(www.arcgis.com/). The dataset for monthly ocean current speed is summarized in Table 

3.1. The raw hourly dataset is retrieved from three different stations in the vicinity of the 

proposed project. The stations are owned and operated by the National Data Buoy Center 

(NDBC, www.ndbc.noaa.gov), the Coastal Data Information Program (CDIP, 
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cdip.ucsd.edu) and the Monterey Bay Aquarium Research Institute (MBARI). They are 

located at 35.741°N 121.884°W, 36.340°N 122.102°W and 36.751°N 122.335°W, 

respectively. Data coverage varies from one station to another. Operation is not active at 

all times and some interruptions exist. Ocean current speeds (January and July) are shown 

in Figures 5a and 5b. Other data, such as wave height and direction, seawater salinity, 

temperature and other meteorological data (not shown here) are also available for the 

one-year time period used in this study. Such data is available, in addition to the sources 

above, from the Central and Northern California Ocean Observing System (CeNCOOS, 

www.cencoos.org). Although seawater TDS concentration levels fluctuate in the project’s 

general area, a constant TDS concentration of 33,340 mg/L is used for this example. 

3.5.2. Input parameters 

 Once the topographic and bathymetric information is gathered, other data are 

organized and initial and boundary conditions are established. Multiple simulations are 

performed using CORMIX, with key input parameters shown in Table 3.10. 

Table 3.10. Lower and upper bounds used in analysis and design. 

Variable 
Unit Lower 

Bound 

Upper 

Bound 

Feeder pipeline (L) 

Port diameter
*
 (D) 

Number of ports (N) 

Current speed (w) 

Seawater temperature (T) 

Effluent flow rate 

Effluent concentration 

(m) 

(mm) 

– 

(cm/s) 

(°C) 

(m
3
/d) 

(mg/L) 

275 

32 

13 

0 

7 

5.7×10
3
 

54 400 

312 

50 

21 

Varies 

19 

6.5×10
3
 

54 400 
  * 

This refers to existing standard diameter sizes in the industry. 
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 As shown in subsections 3.3.1 through 3.3.3, that within the same space or control 

volume where similar continuous effluent discharges are taking place, current speed, 

ambient temperature and wind speed exhibit temporal variations. The ocean’s upper layer 

current speed data and sea surface winds revealed that the underlying distributions do not 

appear to be normal (Gaussian) but rather are positively skewed (i.e., skewed to the right). 

This asymmetric behavior was approximated statistically as a two-parameter Weibull 

probability distribution function (pdf). On the other hand, the ambient temperature data 

revealed that the underlying distributions appear to be normal (Gaussian). 

 A significant input is the wave direction. This helps determine the definitive 

orientation of  the outfall’s diffuser section. Figure 3.12 shows the wave rose of the entire 

year taken into consideration (June through July). The units are degrees from true North, 

increasing clockwise, with North as 0 (zero) degrees and East as 90 degrees. Therefore, 

the waves are predominantly traveling towards the coastline from the Northwest direction 

(the quadrant between 270 degrees and 360 degrees), based on Figure 3.12. 

 CORMIX solves for brine concentration variations and assesses dilution ,S starting 

at the lower bound. The design parameters are varied systematically, one at a time, from 

the lower bound to the upper bound. A total of 8,209 possible combinations are generated, 

combining different possibilities of decision and stochastic variables. CORMIX simulates 

the output using all possible parameter combinations as well as the prescribed initial and 

boundary conditions. Each simulation features a unique plume cumulative travel time 

between the marine outfall’s diffuser section and the outer edge of the mixing zone. 
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These travel time differences among simulations depend on each design parameter 

combination as well as stochastic variables. Out of all combinations, 1,990 total cases 

comply with the prescribed dilution criteria at the outer edge of mixing zone. These cases 

constitute a dataset used to perform linear regression analyses as described in Equation 

(3.47) above. 

 

 

Figure 3.12. Wave rose showing dominant wave direction, frequency of occurrence and 

significant wave height for the entire year of study (June – July). Data were measured at a 

location in the vicinity of the small coastal community, discussed in this case study, in 

central California (retrieved from the Coastal Data Information Program at cdip.ucsd.edu). 
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 Given these daily and seasonal variations, the optimization problem must be 

formulated to include the uncertainty caused by these stochastic variables. However, for 

this case study, only current speed is incorporated to demonstrate the use of uncertainty, 

while other random variables are ignored. 
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4. RESULTS AND DISCUSSION 

In Chapter 3, Chance-constrained programming (CCP) was used to deal with the 

impact of uncertainty caused by the presence of one of the stochastic variables. 

Investigation of the current speed, ambient temperature and wind speed indicated that 

these random variables are sensitive to distributional assumptions. These variables are 

also sensitive to monthly reliability values.  

To demonstrate this for the current speed variable, a set of monthly reliability values 

( )iα  between 0.5 and 0.99 is chosen and the corresponding design current speed iw is 

computed (Figure 4.1). It is observed that the design current speed varies drastically 

(mean iw values ranged between 7.4 and 0.7 cm/s), given the reliability assumptions 

made. While such current speed values are valid, given the historical dataset shown in 

Chapter 3, this range impacts the outfall design and contributes to increasing uncertainty. 

A more consistent method for assessing iα  was therefore essential. 

A better way to deduce the monthly reliability values was presented by using the 

coefficient of variation of the monthly dataset (i.e., the ratio of the square root of 

( )iVar w to the expected value ( )iE w ). Depending on the distributional assumptions 

posited to determine the cdf ( )Fψ ⋅ , the values of monthly reliability iα  vary, as shown in 

Table 3.3. By comparing the reliability results determined from the normal and Weibull 

distributions, it was noticed that the normal distribution tends to give higher monthly 

reliability values than those computed using the Weibull distribution (Table 3.3).  
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Figure 4.1. Design current speed iw  vs. reliability values taken between 0.5 and 0.99. iw
is very sensitive to such reliability variations. 
 

Once the values of iα  were established following the method above, computing the 

monthly reduced maximum current speed maxw  became possible (Table 3.2). By 

assuming the normal distribution, maxw  tends to be higher. This erroneously indicated that 

higher current speeds were reliably present within a time period. On the other hand, the 

Weibull distribution assumption tends to warrant lower reliability values and, 

subsequently, lower current speed values. The monthly reduced maximum speed maxw  is 

lower when the Weibull distribution is adopted, implying that the initial dilution S  is 

going to be achieved under more conservative conditions (lower current speed). Due to 

lower monthly reliability values (using the Weibull distribution assumption), and 

subsequently lower current speed values, a more conservative outfall system design can 
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be achieved. These values were used for the case study example shown in Chapter 3. 

The design current speed’s deterministic equivalent iw was then computed once the 

monthly reduced maximum current speed maxw  was known. Using Equation (3.31), the 

monthly iw values were calculated. These values were presented in the last column of 

Table 3.3 above. The design current speed was observed not to vary drastically between 

one month and another. Given the reliability computations made, and taking the lower of 

the two or more values of iw given the same iα , the design current speed values ranged 

between 3.30 and 3.77 cm/s. This range appears to be more appropriate for the design of 

an outfall system (Figure 4.2). 

 

Figure 4.2. Design current speed iw  vs. reliability values that are determined using 

monthly current speed data. iw varies slightly between 3.30 and 3.77 cm/s, as shown in 
Tables 3.2 and 3.3 above. 
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The outfall design is carried-out by running multiple simulations of the CORMIX 

model to solve for brine concentration variations and assess dilution S values, taking into 

consideration the deterministic equivalent current speed iw and a cohort of decision 

variables ( , , ).L D N  The output results aided in generating a response surface that was 

used to deduce the following linear equation (Khuri, and Mukhopadhyay, 2010): 

 ( )275.49 1.07 5.54 5.05 67.95 0.93S L D N w R= + − − + =  (4.1) 

This response surface was statistically examined (Figure 4.3). It was validated by 

performing the analysis of variance (ANOVA) shown in Table 4.1.  

 

Figure 4.3. CORMIX and regression model cumulative frequencies. 
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Table 4.1. Analysis of variance for the model. 

Reference DF SS MS F 2R  2
.adjR  

Model 
Error 
 
Total 
 

      4 
1985 

 
1989 

7.96×107 
6.15×106 

 
8.57×107 

1.99×107 
3.10×103 

 
1.99×107 

6.42×103 
 

0.93 0.93 

 

The high coefficient of determination 2R value indicates that approximately 93% of 

dilution data deduced from the CORMIX simulations are within the developed response 

surface, represented as a linear model in Equation (3.42) of the preceding chapter. In 

addition, the 2R value is identical to the adjusted coefficient of determination 2
.adjR .  This 

indicates that non-significant terms were excluded from the linear model. Figure 4.4 

presents the associated performance of dilution simulated values compared to model fits, 

and Table 4.2 compares dilution results computed by CORMIX to those determined by 

the linear model. 

Overall, the model demonstrates a good fit with the CORMIX output. While it is not 

in full agreement with the CORMIX output at low dilution, the model demonstrates a 

very good fit with the CORMIX output at higher dilution values, as shown in Figure 4.4 

as well as Tables 4.2 and 4.3. This is acceptable because in this case study we primarily 

rely on higher dilution values to achieve the objectives of meeting regulatory 

requirements at the mixing zone’s outer edge. The model and CORMIX agree very 

closely at these higher dilution values. Therefore, this model may be coupled with the 

optimization model described in Section 3.3 above.  
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Figure 4.4. CORMIX vs. regression model and the relevant statistics for the 
regression equation presented in Equation (4.1). 

 

Table 4.2. Dilution simulation values and model fits. 

 S  (CORMIX) S  (Model) 
 Min. 4 1   
 Max. 787 807  
( )E S  410 410  

( )Var S  43,095 40,001  

 

The mixed-integer linear programming (MILP) optimization model was invoked to 

determine a set of optimal solutions considering the random behavior of current speed. 

For this case study, a criterion for the initial dilution that guarantees that S  is no less 

than 100 at the edge of mixing zone was used. LINGO 13.0 (by LINDO Systems, Inc. 

100 200 300 400 500 600 700 800
0

100

200

300

400

500

600

700

800

Dilution (Model)

D
ilu

tio
n 

(C
O

R
M

IX
)

 

 

2R
n

  = 0.93
RMSE = 0.07



82 

2012), an optimization solver, was used to solve the MILP problem. Table 4.3 provides a 

summary of the optimal length of the outfall, diameter and number of ports in the diffuser 

section, corresponding to different design current speed values. 

Table 4.3. Optimal solutions considering randomness in current speed. 

iα  
 

w  
(cm/s) 

L  
(m) 

D  
(mm) 

N  
(-) 

0.80 
0.81 
0.82 
0.83 
0.84 
0.99 

3.77 
3.38 
3.30 
3.47 
3.47 
≈ 0 

275 
277 
278 
277 
277 
309 

40 
50 
50 
40 
40 
50 

13 
14 
14 
16 
16 
14 

 
 

Once the optimization model was executed, the CORMIX simulation model was 

employed again to perform a post-optimization analysis and ensure that all constraints 

were satisfied. The results indicated that, after assessing the risks associated with the 

presence of the current speed’s stochastic features, the proposed marine outfall should 

have a feeder pipeline length of no less than 275m and diffuser section length of 33m. 

These lengths are associated with the 13 ports that have an internal diameter of no less 

than 40mm. This configuration was evaluated under a reliability of 0.8 (80%) and a 

design current speed of 3.77 cm/s. Other results are shown in Table 4.3. CORMIX 

results, using the optimal solution shown in Table 4.3 and treated as input, confirmed that 

the dilution meets or exceeds 100 at the edge of the mixing zone. This further supports 

the validity of using the regression model to represent the response surface of CORMIX. 
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As smaller and more decentralized SWRO desalination plants are becoming more 

popular in many arid and semi-arid coastal areas around the world, a brine disposal 

approach similar to the one demonstrated here may be applied to regions other than 

California’s coastal small communities. In addition, as higher water recovery and better 

separation processes in SWRO technology are on the rise and alternative means of 

supplying reduced energy are being explored in SWRO desalination plant operations, 

maximizing potable water supply, reducing energy costs and minimizing brine disposal 

volumes remain the primary objectives of all regulatory agencies, planners and design 

engineers. Consequently, it is necessary to enhance existing optimization models and 

approach the SWRO system from a holistic point of view. In other words, simultaneously 

evaluating all the above objectives is essential and will remain an area of further research. 

Hypersaline brine discharge may have potential environmental impacts. As a result, a 

monitoring program is recommended, so that the models used can be calibrated further 

and field data from the receiving coastal waters and the concentrate discharge can be 

assimilated into simulation and optimization efforts. Such a program also should include 

guidelines to collect data on short- and long-term effects of the concentrate discharge on 

the benthic marine environment (marine plants and animals). 
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5. SUMMARY AND CONCLUSIONS 

The work here addressed discharges arising from SWRO hypersaline brine effluent 

that is negatively buoyant in nature. Marine outfalls with multiport diffusers, if used 

properly, are very efficient in maximizing dilution levels of these negatively buoyant 

plumes. The study also demonstrated that optimization techniques can be applied to 

minimize the total costs of these outfalls. To accomplish this, CORMIX (a USEPA-

approved hydrodynamics model and decision support system) was used to assess and 

simulate the impacts of SWRO brine discharges from the outfall into the coastal waters. 

CORMIX is capable of directly performing SWRO brine flow simulations and analyzing 

near-field mixing processes. The input and output from CORMIX were modeled with a 

linear regression model. This was achieved by parametrically varying all the input 

parameters in CORMIX to simulate the output. An optimization model was then 

formulated in which CORMIX was replaced by the linear regression model.  

A mixed-integer linear programming (MILP) optimization model took into account 

the continuous nature of the outfall’s pipe section as well as the discrete nature of the 

diameter and number of discharge ports. In addition, due to the stochastic characteristics 

of some variables within coastal waters—namely, current speed, ambient temperature and 

wind speed—the optimization model also evaluated the uncertainty of these input 

variables using chance-constrained programming (CCP). 

Considering all these variables, our findings indicate that it is feasible to construct 

cost-effective marine outfalls that are efficient in maximizing dilution levels while 
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confirming that all environmental requirements and regulations have been met or 

exceeded. The model was applied to a hypothetical SWRO brine outfall along the 

California coastline.   

A technique that reduces current speed, based on some distributional assumptions, to 

a reasonable maximum upper bound maxw
 
that is always guaranteed (given a dataset) was 

presented. The value of maxw was further reduced to what was referred to as the design 

current speed, w , using CCP. Similar techniques that reduced the ambient temperature 

and wind speed were also presented. 

While it is possible to consider current speed as a realistic and constantly available 

(albeit variable) driver that may enhance the concentrate’s initial dilution ,S  it is critical 

not to rely solely on current speed to achieve dilution. Overall, it is important to place the 

SWRO brine outfall in coastal zones where an abundance of ambient mixing and 

advective transport exists. 
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6. FURTHER RESEARCH 

The Goal of this research was to provide planning and design tools to help construct 

SWRO marine outfall systems that meet environmental economic constraints. This was 

accomplished by presenting an integrated simulation-optimization model. The Following 

are suggestions for future research areas. 

1. Most current environmental regulations do not have a specific policy that addresses 

negatively buoyant discharges directly. Therefore, it is vital to include elements within 

the regulatory framework that directly deal with site-specific conditions, and redefine 

existing mixing zone criteria. 

2. Further research is required to monitor existing marine outfalls, enforce field studies 

and further validate simulation models, optimization models and confirm efforts that 

integrate these models. 

3. The method presented in this study did not consider the possibilities of reusing the 

SWRO concentrate in other processes, such as evaporation ponds. These ponds may be 

employed to produce salt that can in turn be sold for commercial and culinary usages. 

While some studies have addressed the positive contribution of evaporation ponds in 

minimizing the volumes of SWRO brine discharge, further research is needed to 

investigate such contributions vis-à-vis optimization techniques. 

4. The method presented did not consider threats from harmful algal blooms (HAB) 

outbreaks. These threats have been emerging around some operating large-scale SWRO 
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desalination plants around the world. HAB outbreaks may affect SWRO membranes, 

compromise the integrity of the SWRO plant and cause effluent discharge problems. 

Further research is needed to investigate the cause of these outbreaks and their effects on 

simulation-optimization models. 

5. The method presented here did not take into consideration blending with other 

effluents (for example, blending SWRO brine with other effluents from power plants or 

wastewater treatment plants—a common practice in some regions). Such action alters the 

plume’s characteristics and subsequently modifies the dilution process. While some 

studies have discussed the impacts of blending on dilution of SWRO brine discharge, 

further research is needed to investigate such impacts using optimization techniques. 
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