

Preparation and characterization of multiwall carbon nanotubes (MWCNT) mixed matrix membranes for the treatment of aqueous solutions and desalination

Janos B. Nagy, Mohammed A. Bahattab

Feb 23, 2014

Suggested Outlines

Part 1

- □ Synthesis and purification of CNT.
- □ Functionalization of CNT.
- **CNT** orientation
- □ Preparation of CNT for membrane application

Part 2

- **D** Polymeric materials used in membrane preparation.
- □ Mixed matrix membranes (MMM).
- Effect of the membrane preparation conditions on the morphology and transport properties of the MMM.
- **Conclusion**
- **Team work**
- □ Acknowledgment

Part 1

Synthesis, purification and functionalisation of Multiwalled carbon nanotubes

Arc Discharge

Chemical Vapour Deposition

Techniques of synthesis for CNTs production

Pulser Laser Vaporisation

q

□ Synthesis of MWCNTs □ Purification process of MWCNTs

Synthesis of MWCNT

Sunnary of synthesis conditions UNICAL

✓ Synthesis temperature: 700°C ✓ Amount of catalyst. 0.25 g \checkmark Gas flow: C_2H_4 800ml/min, N₂ 416 ml/min (optimal conditions) ✓ Synthesis time: 20 min

The CNTs production

Carbon deposit (Cd) and Carbon yield (Cy) obtained from syntheses as a function of gas flows using constant amount of catalyst and 20 min of reaction time.

	C ₂ H ₄ flow	N_2 flow	Cd*	Су		
	(ml/min)	(ml/min)	(%)	(%)		
	1,534.00	798.00	1,205.26	6.97		
	1,000.00	520.00	1,329.41	10.55		
	800.00	416.00	1,447.06	14.35		
	600.00	312.00	1,204.76	19.68		
	400.00	208.00	1,065.22	28.58		
•Cd = •*Cv	100.00 = (CNTs weight/Weigh = (CNTs weight/C	52.73				
c, control and a second and a						

The CNTs production

(a) Tg and DTg curves and (b) DTA curve of the CNTs obtained from the synthesis.

The CNTs production

SEM images of the as made (a) and purified samples (b).

The CNTs production

(a) Tg and DTg curves and (b) DTA curve of the purified sample.

□ Synthesis of MWCNTs □ Purification process of MWCNTs

Purification process of MWCNTs

Functionalisation

a. NH₃ gas treatment b. Oxidation

Functionalisation

a. NH3 gas treatment b. Oxidation

The CNTs production

TEM images of CNTs with different functional groups: (a) purified product; (b) and (c) Oxidised; (d), (e) and (f) functionalised with NH₂ groups.

The CNTs production

(a) Tg and DTg curves and (b) DTA curve of CNTs functionalised with NH_3 gas.

The CNTs production

The CNTs production

FTIR spectra of the purified and NH₃ treated CNTs.

□ Synthesis of aligned MWCNTS

Preparation method of the catalyst

Impregnation method

SEM ímage of alumína pellet

Thermal characterísatíon of CNTs produced at 20 mín (reactíon tíme).

Gas flow: 800 ml/mín C_2H_4 , 416 ml/mín N_2

Long reaction times (20 min)

Degeneration of the morphology at high reaction times.

CNTs preparation for membrane applications

THANK YOU

Part 2

Preparation and Testing Membranes

Powermatic material used for membrane preparation

polyvinylidene fluoride (PVDF) (c)

36

Synthetic Membranes Importance's

- Potable water starting from sea water.
- Treat the waste water in industrial processes.
- Purify the air.
- Application in biomedical fields.

Filtration ranges of membranes separation processes

Membranes classification

Structure classification

Symmetric membrane vs Asymmetric membrane

Material classification

Polymeric membranes vs. the inorganic membranes

Advantages of both polymeric and inorganic membranes

Disperse CNTs fillers into polymer

Characteristic parameters of a membrane

Flux decline due to concentration polarization and fouling,

To limit this problem by

Reduction of TMP

Increasing feed velocity

Use of turbulence promoters

Solution pre-treatment

Composite organic-inorganic membranes

Composite organic-inorganic membranes

Increase Hydrophilicity

High permselectivity

Fouling resistance

Macrovoids-free structure

General Steps to Prepare Polymers Membranes

STEP1: Preparation of membrane polymer solution

STEP 3: Immersion of the film in the water bath

Membrane permeation and Retention Experiments

Dead-end mode with SteriltechTM HP4570 stirred cell having an active membrane area of 14.6 cm²

Flux (J)

$$J = \frac{Vp}{t * A}$$
Permeance (Pe)

$$Pe = \frac{J}{TMP}$$
The membrane
rejection (R)

$$R\% = \left(1 - \frac{C_p}{C_r}\right) * 100$$

SEM images of P84 membranes

44

SEM images of P84 membranes

SEM images of PEEK-WC hybrid members

SEM images of the of the PEEK-WC hybrid membrane (loading MWCNTs: 2 wt%) prepared from a DMF:THF 60:40 wt% solution

SEM Images of PVDF Membranes

SEM images of the polymeric PVDF membrane prepared without LiCl (similar to protocol A, but without the MWCNTs) : cross-section (A) particulars of the cross sections (B, C, D), up surface (E) and down surface (F)

SEM images of the polymeric PVDF membrane prepared with LiCl (similar to protocol B, but without the MWCNTs) and the hybrid membranes prepared following the protocol B with 0.5wt% (B), 1wt%(C) and 2 wt% of MWCNTS loading.

Transport properties of the MMM (Rejection and Flux of P84 membranes)

Flux and rejection of the not-cross-linked polymeric and hybrid PI membranes.. TMP 20 bar

Flux and rejection of the cross-linked polymeric and hybrid PI membranes. TMP 20 bar

48

Transport properties of the MMM (Rejection and Flux of PVDF membranes)

Flux and rejection of the PVDF membranes prepared following the protocol A (a) and B (b)

Transport properties of the MMM (Rejection and Flux of PEEK-WC membranes)

Membrane code	Water Permeance (L/hm ² bar)	
P84(N)	254	
P84(N)+MWCNTs(OX-1)	359	
P84(N)+MWCNTs(NH ₂ -1)	295	
P84(N)+MWCNTs(NH2-2)	175	
Matrimid	18.4	
Torlon	0.25	
P84(D)	207	
P84(D)+MWCNT(OX-1)	157	
P84(D)+MWCNT(NH2-1)	211	
P84(D)+MWCNT(NH2-2)	233	
P84(D)+MWCNT(NH2-3)	290	
UTC-20	4.26	
MPF-44	1.43	
DESAL-5	7.6	
DESAL-DR	5.2	
PSH-100	(what type this membrane why it is high) 402	
RC-100	537(what type this membrane why it is high)	

Membrane code	Orange II sodium salt Permeance solution (L/hm ² bar)	Rejection %
P84(N)	254	55.84
P84(N)+MWCNTs(OX-1)	359	31.43
P84(N)+MWCNTs(NH ₂ -1)	295	49.08
Matrimid	18.4	60.57
Torlon	0.25	55.71
UTC-20	3.5	Why high here100
MPF-44	0.8	what type of material 100
DESAL-5	4.8	95Why high here
DESAL-DR	3.6	Why high here97

Mechanical results of some membranes

Membrane	Tensile Strenath	Ultimate Elongation	Toughness
code	(MPa)	%	(Mpa)
PVDF	0.06	97.4	0.045
PVDF 0.5% LiCl	0.2	24.9	1.1
PVDF 0.5% MWCNTs 0.5% LiCI	5.91	32.8	1.6
PVDF 0.5% MWCNTs 2% LiCl	4.3	22.0	1.5
PVDF 1% MWCNTs 2% LiCl	1.4	18.4	1.5

Preparation of Oriented CNT Membrane

SEM images of the aligned CNTs growth on the support pellet (A-CNT): (A) Crosssection of A-CNT;(B) Particular of the interface between the support and the aligned CNTs.

SEM images of the PEEK-WC membrane prepared by Dip coating + NIPS: (A) Crosssection; (B) Particular of the "lower surface"; (C) Particular of the "lower surface" at higher magnification.

Preparation difficulty: compatibility between the carbon nanotubes and the polymeric matrices

Difficulty of removing the support from the membrane

Future work

Increase the dimension of the samples to approach practical use Examine the dispersion of carbon nanotubes within the membranes

Conclusions

The CNT membrane reduced fouling and improved transport properties The CNT membrane improved the mechanical properties of the membrane Carbon nanotubes increased the retention of salts

Future work

Prepare MMM containing aligned carbon nanotubes Examine the influence of the various functions on the carbon nanotubes

Acknowledgment

King Abdulaziz City for Science & Technology

Team work

From Italy

- ✓ Prof. E. Drioli
- ✓ Prof. J. B.Nagy
- ✓ Dr. E. Fontananova
- ✓ PhD Danilo Vuono
- ✓ Valentina Grosso
- ✓ Francesco Artusa
- 🗸 Giovanna Rinaldi
- Giuseppina Cerenzia

From Saudi Arabia

- ✓ Dr. Mohammed Bahattab
- ✓ Dr. Saad AlJilil
- ✓ F. M. Alsubaie
- ✓ M. A. Alowirdy
- ✓ Mohammed Alfifi
- ✓ Abdulrahman Alabdulwahad
- ✓ Moray Alqhtani