

American Water Chemicals, Inc.

High Performance Membrane Antiscalants and Cleaning Chemicals

ISO 9001:2000 Certified Company

The Concept of Reverse Osmosis

Semi-Permeable Membrane

- Allows only water and gas to pass through
- Does not allow dissolved Salts to pass through

- The Laws of Nature dictate that concentrations are always equal in solutions that are in contact with each other.
- Water will pass from the low TDS side through the semipermeable membrane in order to dilute the salts on the high TDS side. This phenomenon is known as osmosis.
- The concentration of dissolved salts is now equal on both sides of the membrane.

Osmosis

- Osmosis requires an increase in volume of water on the higher salinity side while reducing the volume on the lower salinity side.
- Since the higher volume of water will be heavier, a force is created in the direction of the lower salinity side.
- Nature overcomes this force through a phenomenon known as osmotic pressure (Po)

Osmosis

Pressure =
$$\frac{\text{Force}}{\text{Area}}$$

$$= \left(\frac{\text{Pound}}{\text{Inches}^2}\right) = \text{PSI}$$

Head =
$$\pi$$
 = Height x Density
= $\frac{\text{(Pound)}}{\text{(Inches)}} \frac{\text{(Pound)}}{\text{(Inches)}^2}$
= $\frac{\text{Pound}}{\text{Inches}^2}$ = PSI
Pressure = Head = π

Pressure = Head = π

Osmotic Pressure

The pressure (P_a) applied to the concentrated solution to prevent Osmosis must be equal to the osmotic pressure (P_o)

Reverse Osmotic Flow

where: P_{net} = Net Driving Pressure

 P_a = Applied Pressure

 $\Delta \pi$ = Osmotic Pressure Differential

 ΔP = Hydraulic Pressure Losses

 $P_p = \pi_1$ = Permeate Back Pressure

American Water Chemicals, Inc.- Copy Right 2008

Relative Osmotic Pressures

Material	Concentration	Osmotic	
Pressure	(ppm)	(psi)	
Sugar	1,000	1.5	
NaCl	1,000	11.5	
NaHCO ₃	1,000	12.8	
Brackish Water	5,000	52.0	
Seawater	35,000	355.0	

Flow Balance

where: $Q_F = Flow of Feed Water$

Q_P = Flow of Permeate

 Q_C = Flow of Concentrate

Permeate Flow

$$Q_p = K_p . S. P_{net} . K_t$$

```
where: Q_D = Permeate Flow Rate
```

K_p = Water Permeation Coefficient

of Membrane

S = Membrane Surface Area

P_{net} = Net Driving Pressure

K_t = Temperature Constant

Effect of Membrane Surface Area on Permeate Flow

Flux =
$$\frac{\text{Permeate Flow}}{\text{Membrane Area}} = \frac{\text{(Gallon)}}{\text{(ft^2) (Day)}} = \text{GFD}$$

The flow of permeate water through a unit surface area of membrane per unit of time.

Effect of Water Permeation Coefficient on Permeate Flow

Water Permeation Coefficient is also knows as the (K_p) Value

Sometimes it is called the "Specific Productivity."

Usual units of measure are: ml / cm2 / sec / bar

The Kp value is a characteristic of the membrane that determines how easily water can pass through the membrane.

Flux Decline

The Water Permeation Coefficient (K_p) should be expected to decrease with time due to compression and irreversible fouling

This is usually accounted for in all Membrane Projection Programs

Effect of Net Driving Pressure on Permeate Flow

Permeate Flow Rate increases with Increased Net Driving Pressure

American Water Chemicals, Inc.- Copy Right 2008

Effect of Temperature on Permeate Flow

Permeate Flow Rate increases with Increased Water Temperature due to reduced viscosity

American Water Chemicals, Inc.- Copy Right 2008

Permeate Flow

Q_D ∝ Water Permeation Coefficient

Q_D ∝ Membrane Surface Area

 $Q_p \propto Net Driving Pressure$

Q_p ∝ Water Temperature

System Recovery

The Ratio of the Permeate Flow to the Feed Flow, expressed as a percentage.

Cross Flow

- Cross-Flow is the velocity of the concentrate stream across the membrane surface.
- At lower recoveries, less of the feedwater goes to the permeate side
- This means that the water in the reject stream flows across the membrane surface at a higher velocity
- The higher velocity reduces rate of deposition of foulants, scalants and buildup of biofilm due to its aggressive flushing action

Salt Passage

RO program licensed to:

Calculation created by: Tarek El-Shafie Project name: 2 MGD BWRO

2000000.0 gpd Permeate flow: HP Pump flow: 1851.9 gpm Raw water flow: 2666666.7 gpd

Permeate recovery:

Recommended pump press.: 212.8 psi Feed pressure: 195.5 psi

Feedwater Temperature: 25.0 C(77F) Feed water pH: 7.0 0.0 H2SO4

Chem dose, ppm (100%): Acidified feed CO2: 17.72 Average flux rate: 15.4 gfd

Element age: 3.0 years Flux decline % per year: 7.0 Salt passage increase, %/yr: 10.0

75.0 %

Feed type: Well Water

Perm. Flow/Vessel Flux Beta Conc.&Throt. Element Elem. Array Flow Feed Conc Pressures Type No. gpm gpm gfd psi gpm 1-1 1036.6 51.4 22.6 17.3 1.17 170.3 0.0 CPA3 216 36x6 352.3 CPA3 45.3 11.7 1.10 143.8 0.0 108 18x6

	Rawv	water	Feed	water	Perm	neate	Concer	ntrate
Ion	mg/l	CaCO3	mg/l	CaCO3	mg/l	CaCO3	mg/l	CaCO3
Ca	120.0	299.3	120.0	299.3	0.583	1.5	478.3	1192.6
Mg	35.0	144.0	35.0	144.0	0.170	0.7	139.5	574.0
Na	350.0	760.9	350.0	760.9	8.090	17.6	1375.7	2990.7
K	12.0	15.4	12.0	15.4	0.346	0.4	47.0	60.2
NH4	0.0	0.0	0.0	0.0	0.000	0.0	0.0	0.0
Ва	0.000	0.0	0.000	0.0	0.000	0.0	0.000	0.0
Sr	0.000	0.0	0.000	0.0	0.000	0.0	0.000	0.0
CO3	0.1	0.2	0.1	0.2	0.000	0.0	0.4	0.7
HCO3	120.0	98.4	120.0	98.4	3.575	2.9	469.3	384.7
SO4	110.0	114.6	110.0	114.6	0.461	0.5	438.6	456.9
CI	713.9	1006.9	713.9	1006.9	11.892	16.8	2819.9	3977.3
F	0.0	0.0	0.0	0.0	0.000	0.0	0.0	0.0
NO3	0.0	0.0	0.0	0.0	0.000	0.0	0.0	0.0
В	0.00		0.00		0.000		0.00	
SiO2	0.0		0.0		0.00		0.0	
TDS	1461.0		1461.0		25.1		5768.7	
рН	7.0		7.0		5.6		7.5	

	Raw water	Feed water	Concentrate
CaSO4 / Ksp * 100:	3%	3%	15%
SrSO4 / Ksp * 100:	0%	0%	0%
BaSO4 / Ksp * 100:	0%	0%	0%
SiO2 saturation:	0%	0%	0%
Langelier Saturation Index	-0.46	-0.46	1.23
Stiff & Davis Saturation Index	-0.46	-0.46	0.96
Ionic strength	0.03	0.03	0.12
Osmotic pressure	14.6 psi	14.6 psi	57.5 psi

Salt Passage

where: C_{AVG} = Average Concentration of Feed

C_P = Concentration of Permeate

The ratio of TDS in the permeate water to the average TDS across the feed side of the membrane, expressed as a percentage.

Average Concentration

Arithmetic Average

$$C_{AVG} = \frac{C_F + C_C}{2}$$

where: C_{AVG} = Average Concentration in System

C_F = Feed Water Concentration

C_C = Concentrate Concentration

- Satisfactory for recovery rates less than 20%.
- It might result in large errors at higher recoveries.

Average Concentration

Log Mean

$$C_{AVG} = \frac{C_F \times In(\frac{C_C}{C_F})}{1 - (\frac{C_F}{C_C})}$$

where: C_{AVG} = Average Concentration in System

C_F = Feed Water Concentration

C_C = Concentrate Concentration

The most accurate method of calculating the average concentration in the system.

Salt Rejection

% Rejection = 100% - % Salt Passage

The ratio of Total Dissolved Solids (TDS) in the feed water that do not pass through the membrane to the Feed TDS.

Salt Diffusion

The movement of molecules from a high area of concentration to a low area of concentration due to random Motion.

Salt Diffusion

 $D_s = K_s \cdot S \cdot \Delta C \cdot K_t$

where: $D_s = Salt Diffusion$

 K_S = Salt Permeation Coefficient

S = Membrane Surface Area

K_t = Temperature Constant

 ΔC = Average Concentration Difference across the Membrane

 $(C_{AVG} - C_{Permeate})$

Effect of Temperature on Salt Diffusion

As temperature rises, salt molecules gain energy and move at a faster speed. This increases the rate of diffusion across the membrane erican Water Chemicals, Inc.- Copy Right 2008

Effect of Average Dissolved Solids Concentration on Salt Diffusion

Salt Diffusion is directly proportional to the Average Dissolved Solids Concentration (ppm) across the membrane

Improved Salt Rejection with Increased Feed Pressure

Salt Diffusion is Independent of Applied Pressure. As permeate production increases diffused salts are diluted

American Water Chemicals, Inc.- Copy Right 2008

Salt Diffusion

Ds

C Average Dissolved Solids Concentration (ppm)

Ds X Applied Pressure (PSI or Bar)

✓ ~ Independent from

✓ ~ Directly proportional to

Salt Permeation Coefficient

- The Salt Permeation Coefficient is also known as (K_s) value.
- The Salt Permeation Coefficient is a characteristic of the membrane that determines the rate of diffusion of dissolved solids across membrane.

Factors Affecting Salt Permeation

Greatest Influence: Electrical Charge

Moderate Influence: Molecular Weight

Slight Influence: Molecular Structure

Charge Balance

- For each positive charge that passes through the membrane, a negative charge must also pass.
- The permeate water will always be electrically neutral, there will be a charge balance.

Factors Affecting Salt Permeation

Influence of Electrical Charge

Monovalent Ions = 1 X 10⁻⁵ cm/sec

Divalent lons = 1 X 10⁻⁶ cm/sec

Trivalent Ions = 1×10^{-7} cm/sec

American Water Chemicals, Inc.- Copy Right 2008

Factors Affecting Permeation

Influence of Molecular Weight

- Dissolved non-ionized molecules are not easily rejected by the membrane
- Only molecules with a molecular weight greater than
 the MW cut off will be rejected

 American Water Chemicals, Inc.- Copy Right 2008

Permeation Coefficient of Weak Acids

- Many Dissolved Organics are weak acids.
- Weak acids are those acids that do not become completely ionized in water
- Rate of permeation of weak acids will depend on degree of ionization.
- Boric Acid is an example of an inorganic weak acid

$$H_3BO_3 \implies H^+ + H_2BO_3^-$$
(MW = 62)

Acetic Acid is an example of an organic weak acid

$$HC_2H_3O_2 \rightarrow H^+ + C_2H_3O^2$$

(MW = 60)

Permeation Coefficient of Gases

Dissolved Gases such as CO2 and H2S pass freely through the membrane

1-1

1036.6

352.3

51.4

45.3

22.6

17.3

11.7

Concentration Factor

RO program licensed to: Calculation created by: Tarek El-Shafie 2000000.0 gpd Project name: 2 MGD BWRO Permeate flow: HP Pump flow: 1851.9 gpm Raw water flow: 2666666.7 gpd Recommended pump press.: 212.8 psi Feed pressure: 195.5 psi Permeate recovery: 75.0 % 25.0 C(77F) Feedwater Temperature: Feed water pH: 7.0 Element age: 3.0 years Chem dose, ppm (100%): 0.0 H2SO4 Flux decline % per year: 7.0 Acidified feed CO2: 17.72 Salt passage increase, %/yr: 10.0

Average flux rate: 15.4 gfd Feed type: Well Water Perm. Flow/Vessel Flux Conc.&Throt. Element Elem. Array Flow Feed Pressures Type No. gfd psi gpm gpm gpm

170.3

143.8

0.0

CPA3

CPA3

216

108

36x6

18x6

1.17

1.10

	Raw v	vater	Feed \	water	Perme	eate	Concer	ntrate
Ion	mg/l	CaCO3	mg/l	CaCO3	mg/l	CaCO3	mg/l	CaCO3
Ca	120.0	299.3	120.0	299.3	0.583	1.5	478.3	1192.6
Mg	35.0	144.0	35.0	144.0	0.170	0.7	139.5	574.0
Na	350.0	760.9	350.0	760.9	8.090	17.6	1375.7	2990.7
K	12.0	15.4	12.0	15.4	0.346	0.4	47.0	60.2
NH4	0.0	0.0	0.0	0.0	0.000	0.0	0.0	0.0
Ва	0.000	0.0	0.000	0.0	0.000	0.0	0.000	0.0
Sr	0.000	0.0	0.000	0.0	0.000	0.0	0.000	0.0
CO3	0.1	0.2	0.1	0.2	0.000	0.0	0.4	0.7
HCO3	120.0	98.4	120.0	98.4	3.575	2.9	469.3	384.7
SO4	110.0	114.6	110.0	114.6	0.461	0.5	438.6	456.9
CI	713.9	1006.9	713.9	1006.9	11.892	16.8	2819.9	3977.3
F	0.0	0.0	0.0	0.0	0.000	0.0	0.0	0.0
NO3	0.0	0.0	0.0	0.0	0.000	0.0	0.0	0.0
В	0.00		0.00		0.000		0.00	
SiO2	0.0		0.0		0.00		0.0	
TDS	1461.0		1461.0		25.1		5768.7	
pН	7.0		7.0		5.6		7.5	

	Raw water	Feed water	Concentrate
CaSO4 / Ksp * 100:	3%	3%	15%
SrSO4 / Ksp * 100:	0%	0%	0%
BaSO4 / Ksp * 100:	0%	0%	0%
SiO2 saturation:	0%	0%	0%
Langelier Saturation Index	-0.46	-0.46	1.23
Stiff & Davis Saturation Index	-0.46	-0.46	0.96
Ionic strength	0.03	0.03	0.12
Osmotic pressure	14.6 psi	14.6 psi	57.5 psi

Concentration Factor

$$CF = \frac{C_C}{C_F} \approx \frac{Q_F}{Q_C}$$

$$= \frac{100\%}{100\% - \% \text{ Recovery}}$$

where: $C_F = Concentration Factor$

 C_C = Concentration of Brine

C_F = Concentration of Feed Water

 $Q_{\rm F}$ = Feed Flow Rate

Q_C = Brine Flow Rate

Mass Balance

$$Q_{F} \cdot C_{F} = Q_{P} \cdot C_{P} + Q_{C} \cdot C_{C} \\
\left(\frac{\varkappa}{\min}\right) \left(\frac{mg}{\varkappa}\right) = \left(\frac{\varkappa}{\min}\right) \left(\frac{mg}{\varkappa}\right) + \left(\frac{\varkappa}{\min}\right) \left(\frac{mg}{\varkappa}\right)$$

Assuming 1 min, units will be in mg

where: $Q_F = Flow of Feed Water$

C_F = Concentration of Feed Water

Q_P = Flow of Permeate

C_P = Concentration of Permeate

Q_C = Flow of Concentrate

C_C = Concentration of Concentrate

Spiral Wound Membranes

Membrane Structure

Membrane Structure

Thin Film Composite (TFC)

Cross Sectional View

Flow Directions

