

CPET, Continued
Professional
Education
Education
Training

Water Globe Consulting

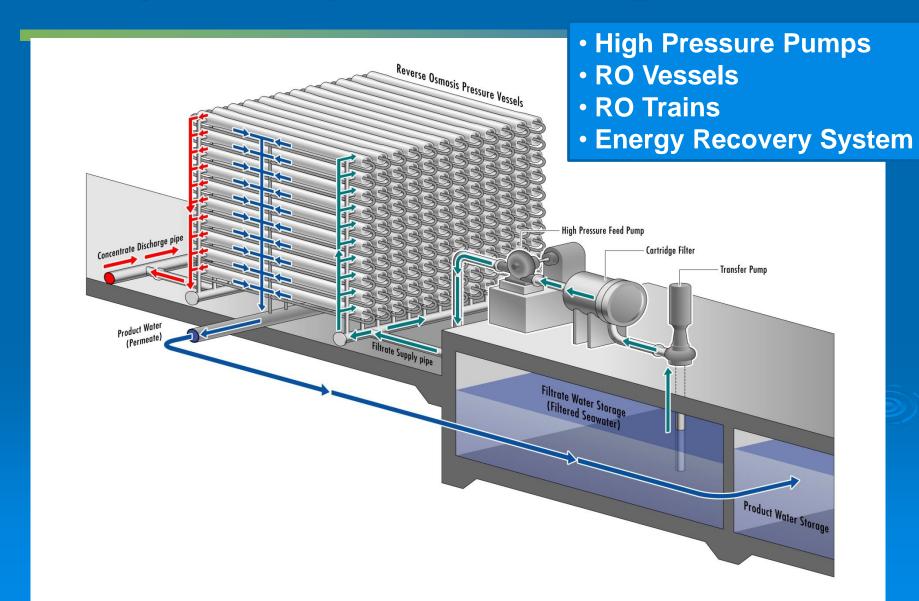
Cost Estimating of SWRO Desalination Plants

Day 1: Plant Cost Fundamentals

June 25, 2013

14:45-15:45

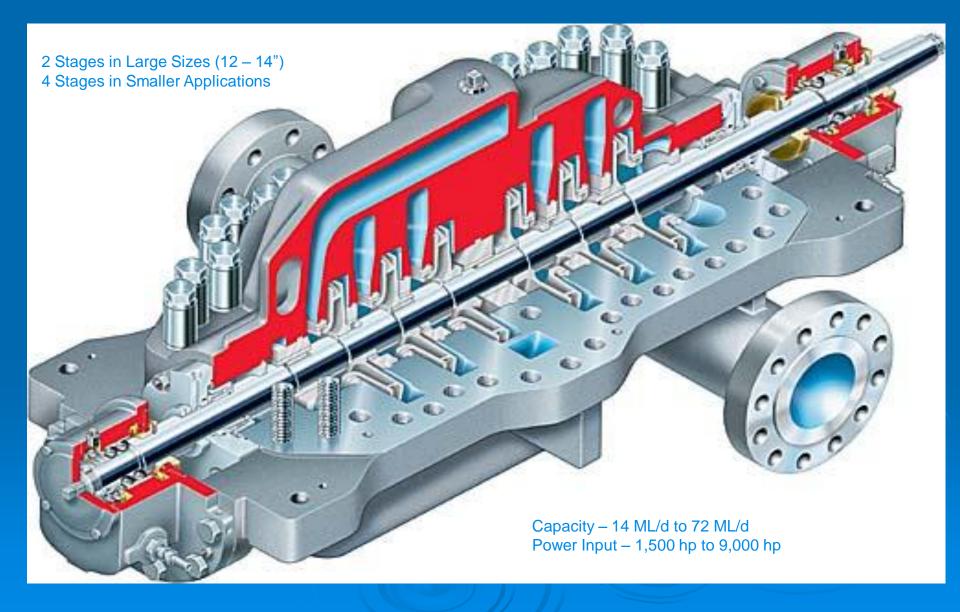
1.4 RO System Construction Costs


Nikolay Voutchkov, PE, BCEE

RO System Construction Costs - Outline

- Key SWRO System Components
- High Pressure Pump Costs
- Costs of Membrane Racks

Energy Recovery System Costs


Key RO System Components

Types of SWRO Feed Pumps

- Reciprocating (Positive Displacement/Piston) Pumps;
 - Applications Typically Limited to 1.0 MGD;
 - 90 % to 95 % Efficiency;
 - Flat Pump Curve Efficiency and Flow Constant at Changing Membrane Pressures.
- Centrifugal Pumps:
 - Available in All Sizes;
 - 82 to 88 % Efficiency;
 - Pump Efficiency Varies with Changing Membrane Pressure.

Horizontally Split-Case Pumps

Ashkelon - Largest Horizontally-Split High Pressure Pumps In Use Today

- Two Sets of 3+1 Two-stage Horizontal Split-case Pumps – 60 ML/d each
- Pump Motors 5.2 MW
- 5-year Pump Efficiency Guarantee
- All Wet Parts Made of Duplex Stainless Steel
- Gold Coast Similar
 Configuration (3+1/4.8 MW)

Radially Split Case Pumps

- Occupy Less Space;
- Easier to Maintain;
- Less Vibrations;
- Only One Mechanical Seal on the Drive End (Horizontally Split Case Pumps Have2 seals);
- Internal Fiber-Composite Bearings (Water Lubricated) – vs. External Grease Lubricated;
- Largest Pumps First Installed for Expansion of Dhekelia SWRO Plant (Cyprus) to 50 ML/d;
- Unit Capacity 25 ML/d (2,800 hp) 87 % Efficiency.

Segmental-Ring Pumps

- Individual Pump Stages Located Between Pump Suction and Discharge Casings.
- Impellers Mounted on Common Shaft.
- Smaller Diameter;
- Lighter Construction;
- > Lower Cost.

Maximizing Pump Efficiency – Bigger Pumps Rule!

> Pump Efficiency ~ $n \times (Q/H)^{0.5} \times (1/H)^{0.25}$

Where:

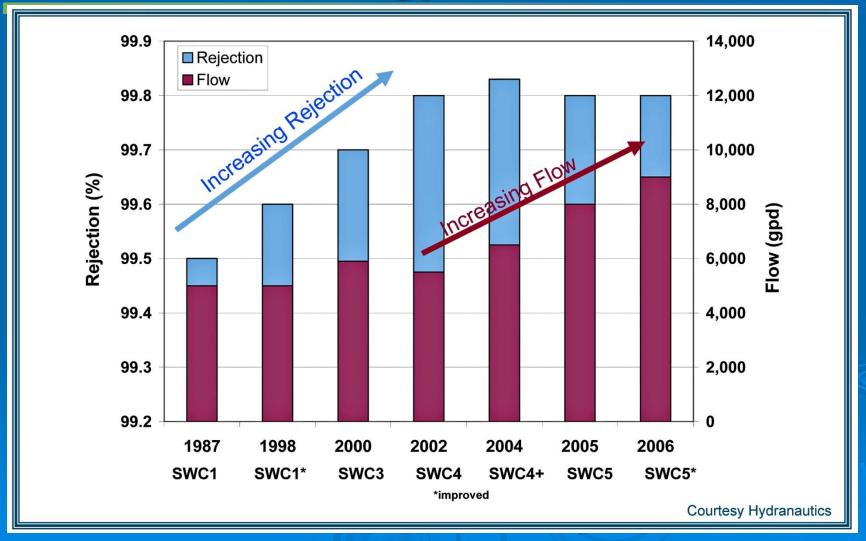
n = pump speed (min -1);

Q = nominal pump capacity (m³/s);

H = pump head (m).

Pump Efficiency:

One Pump Per Train – 83 %; One Pump Per 2 Trains – 85 %; Three Pumps Per 16 Trains – 88 %.


RO Trains – Alternative Configurations

Key SWRO System Components

- Membrane Elements:
 - Diameter 4" to 16" (8" most widely used);
 - Length 40-in (60-in also available).
- Membrane Vessels:
 - Fiberglass Reinforced Plastic;
 - 6 to 8 Membranes per Vessel;
 - Installed on Welded Steel or FRP Support Racks.
- Membrane Process Trains:
 - Membrane Vessels Connected with Ports to Feed, Concentrate and Product Water Lines.

SWRO Membrane Elements – Technology Evolution

Large SWRO Membrane Elements

16" RO Membrane Element

Potential Disadvantages

- Loading Requires Special Equipment and Extra Space;
- Special Costlier Vessels & End Caps Needed;
- More Costly Foundations and Structure May Be Needed
- Membranes Costlier to Manufacture.

Large Size RO Membranes – Advantages

- Potential Space Savings 10 to 15 %.
 - Capital Cost Savings 5 to 10 %.
- Total Cost of Water Savings 4 to 6 %

Large Size SWRO Elements -Productivity

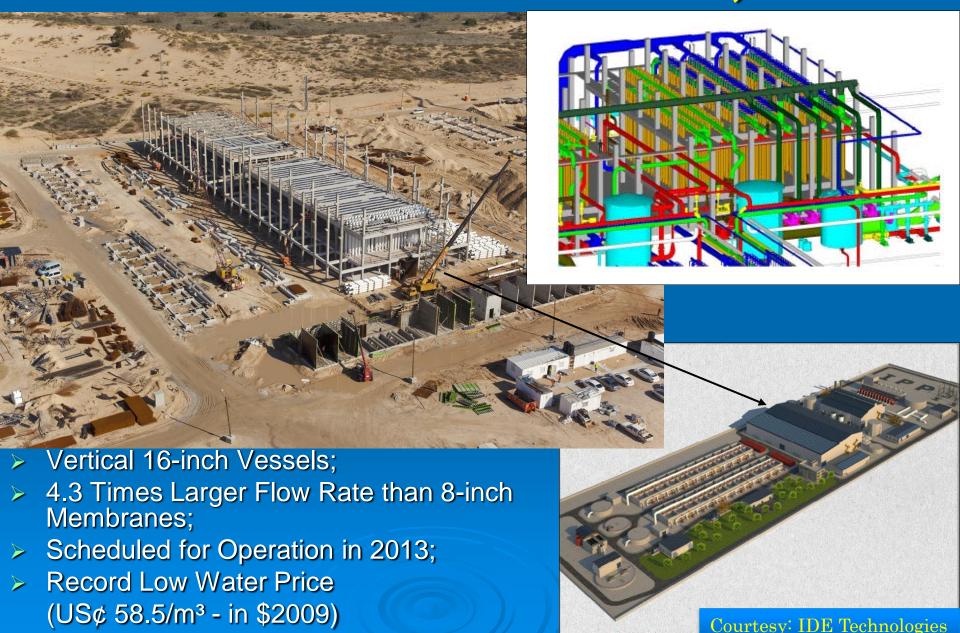
Membrane	Typical Number	Product Water Capacity per Vessel (MGD)	
Manufacturer/	of Elements per		
Membrane Element	Vessel	BWRO & Water	SWRO
Size		Reuse	
Dow/Filmtec	7	0.28-0.30	0.22
16-in x 40-in			
Hydranautics	4	0.12-0.15	0.10-0.14
16-in x 40-in			
Toray	7	0.28	0.19-0.21
16-in x 40-in			
Woongjin Chemical	4	0.15	0.10-0.15
16-in x 40-in			
KMS - MegaMagnum	5	0.33-0.43	0.26-0.35
18-in x 61-in			
KMS - MegaMagnum	5	0.40-0.50	0.30-0.40
Plus – 19-in x 61-in			

Note: $1 \text{ MGD} = 3,785 \text{ m}^3/\text{day}$

Projects with Large RO Elements

	Location	Project Name	Capacity (MLD)	Start-Up Date
	USA, Yuma, Ariz.	Metropolitan Water District of Southern California, BWRO demonstration	1.9	2005
	Australia	Industrial Maltery, water reuse	1.5	April 2006
_S	USA, Goodyear, Ariz.	City of Goodyear, Ariz., BWRO	1.9	May 2007
System	Australia	Bundamba AWT Plant, Stage 1A, water reuse	29.9	Aug. 2007
ane	USA, Waupun, Wisc.	City of Waupun, Wisc. (ULP)	7.6	Dec. 2007
Koch Membrane Systems	Australia	Bundamba AWT Plant, Stage 1B, water reuse	36.0	April 2008
Koch	USA, Moscow, Ohio	Tate-Monroe Water Association, US52 WTP Project, TFCS Softening	7.6	3rd Quarter 2008
	Ukraine	Alchevsk Steel Mill, wastewater treatment	15.1	4th Quarter 2008
	Canary Islands	Hotel—SWRO Demonstration	N/A	N/A
	Singapore	PUB: Bedok NEWater, water reuse ESPA BWRO (GrahamTek) pilot	N/A	Aug. 2006
S	Singapore	PUB: Bedok NEWater, water reuse ESPA2 BWRO (GrahamTek)	54.9 (~39.4 Phase 1 and ~15.5 Phase 2)	Phase 1: May 2008 Phase 2: Dec. 2008
nan	UAE, Layyah	SWC3 SWR0 Pilot (GrahamTek)	1.0	April 2007
Hydranautics	Canary Islands	SWC5 SWR0 Pilot (GrahamTek)	N/A	Oct. 2007
=	Singapore, PowerSeraya	SWC3 Seawater RO (GrahamTek)	10.0	Jan. 2008
	Saudi Arabia	SWR0 Pilot	N/A	2009
	Spain	SWR0 Pilot	N/A	2009
Toray	Singapore	Changi, water reuse (TML40-160) pilot	N/A	N/A
ᇋ	Malta	Sabha III, SWRO demonstration	N/A	2009
Woongjin Chemical	Singapore	PUB: Bedok NEWater , water reuse (RE16040) (GrahamTek) pilot	1.4	Oct. 2006
	Singapore	PUB: Bedok NEWater, water reuse (RE16040-BLR) (GrahamTek)	29.9	May 2008
	Australia	Yabulu, SWRO	6.0	2009
Dow	Singapore	PUB: Bedok NEWater, water reuse pilot	1.2	Sept. 2007

N/A = Not available SWRO = Seawater RO BWRO = Brackish water RO

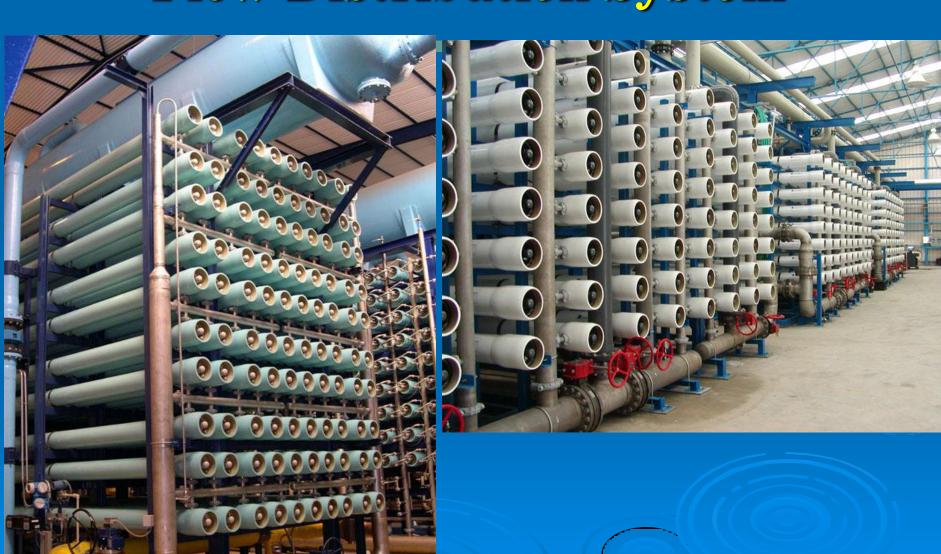

Horizontal vs. Vertical Pressure Vessel Configuration

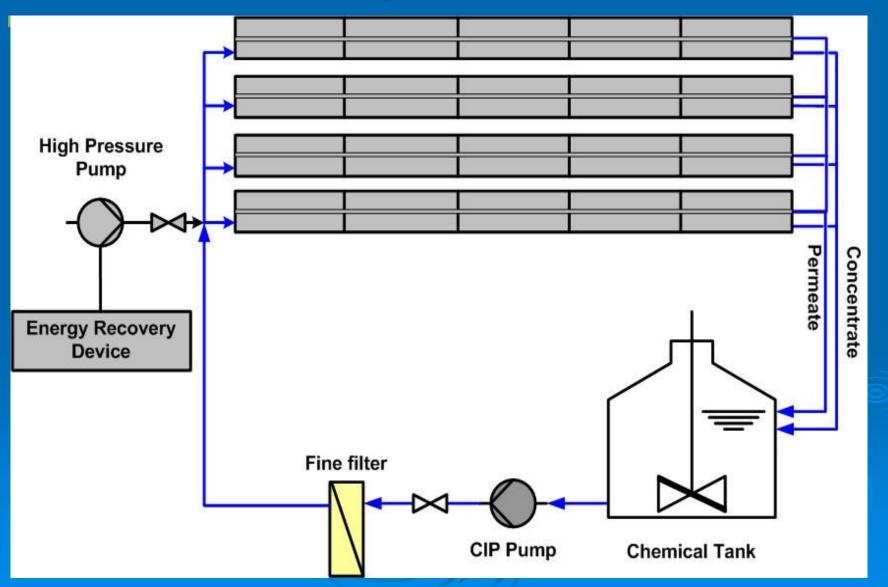
- Horizontal Pressure Vessels Dominate SWRO Plant Configurations with 8-inch Elements:
 - Easier Manual Handling;
 - 1.5 Times Lower Height Buildings;
 - Lower Cost Foundations.
- Vertical Pressure Vessel
 Configuration Found More
 Attractive for 16-inch Elements
 Where Manual Membrane Handling
 is Not Possible.
 - 1.5 Times Smaller Footprint;
 - 1.2 Times Less Super Duplex Piping & Fittings;
 - 15 % Lower Plant Construction Costs.

410 MLD Sorek SWRO Plant, Israel

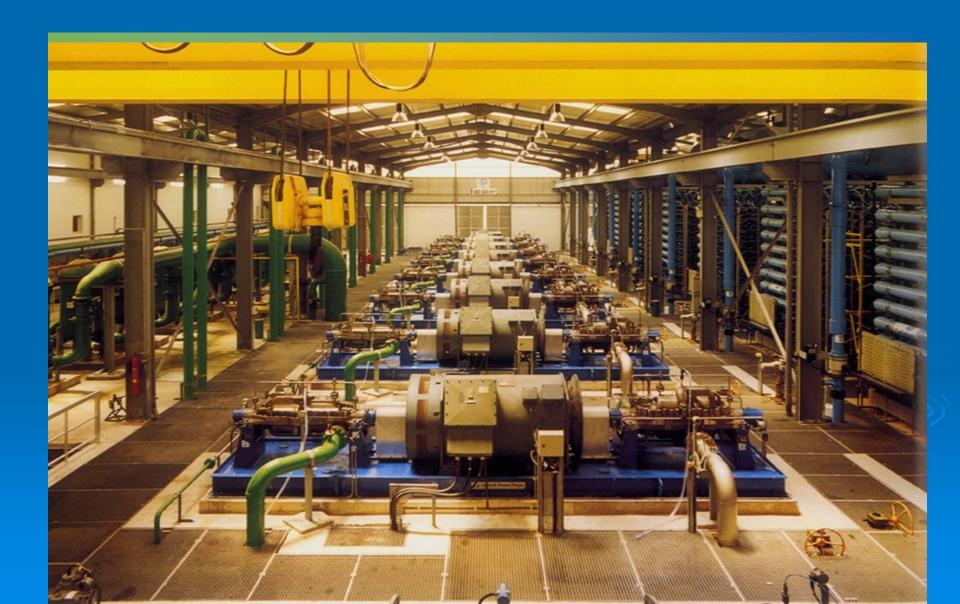
Membrane Vessels

- Key Manufacturers:
 - Pentair (Codeline) –
 www.codeline.com
 - BEL Composite
 America, Inc. –
 www.belvessels.com
 - Bekaert Progressive Composites, Corp.
 www.bekaert.com



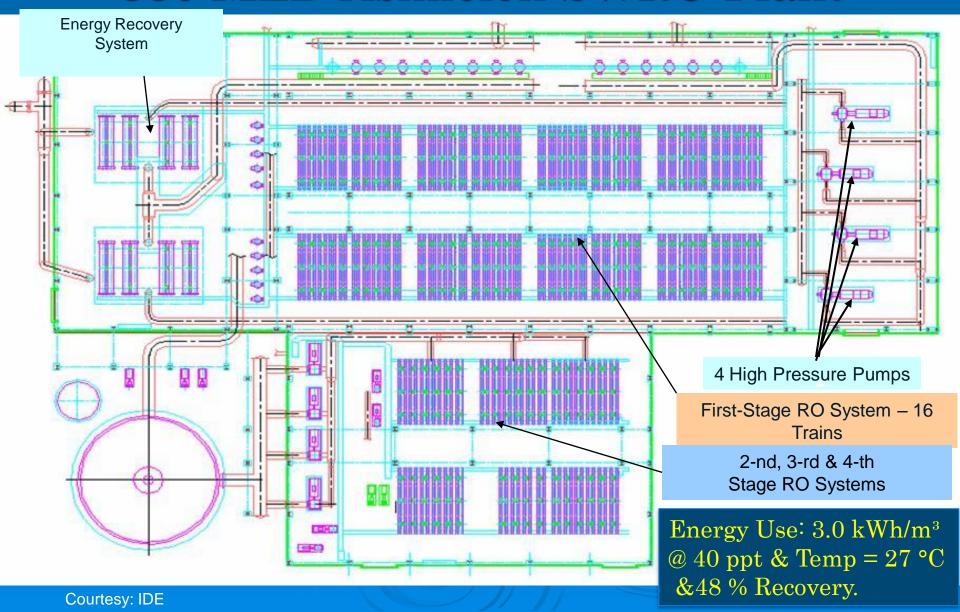

Membrane Vessels – Multiple Ports

Membrane Vessels – Flow Distribution System

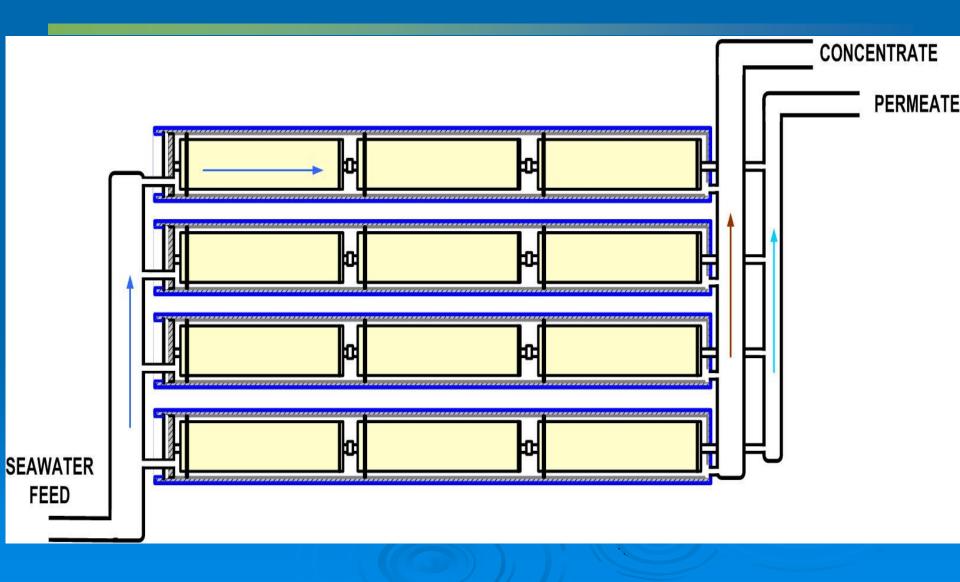

RO Membrane Cleaning System

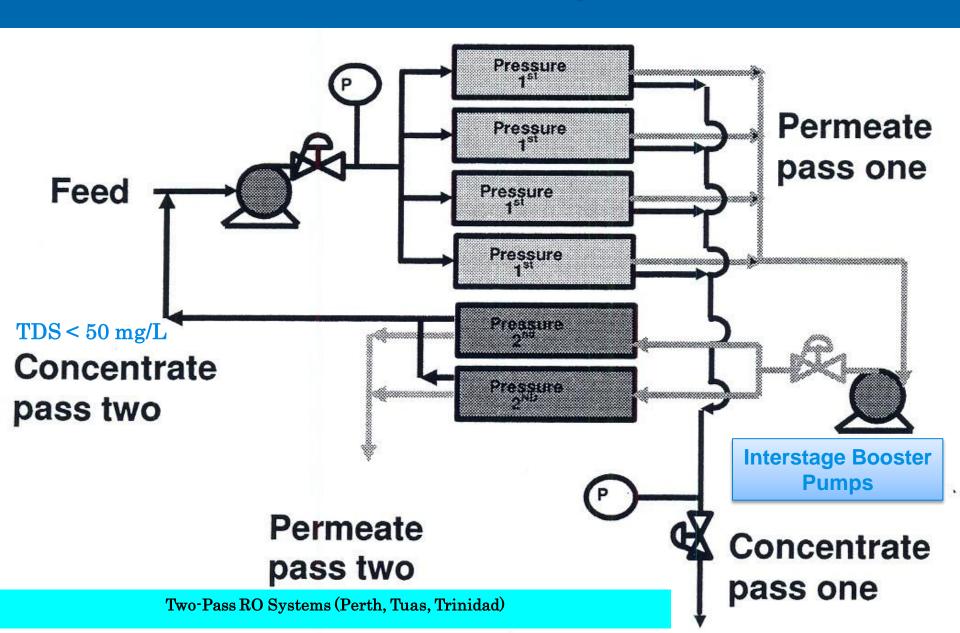
RO Membrane Trains – Alternatives

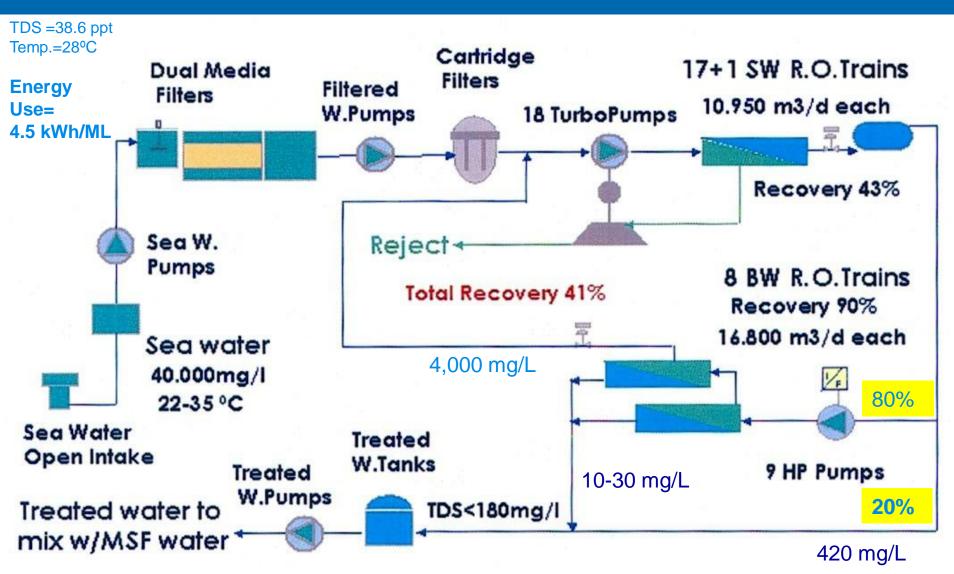
- One High Pressure Pump Per One RO Train
- One High Pressure Pump per Two RO Trains
- One High Pressure Pump Serving 50 % of the Trains


One HP Pump - One RO Train

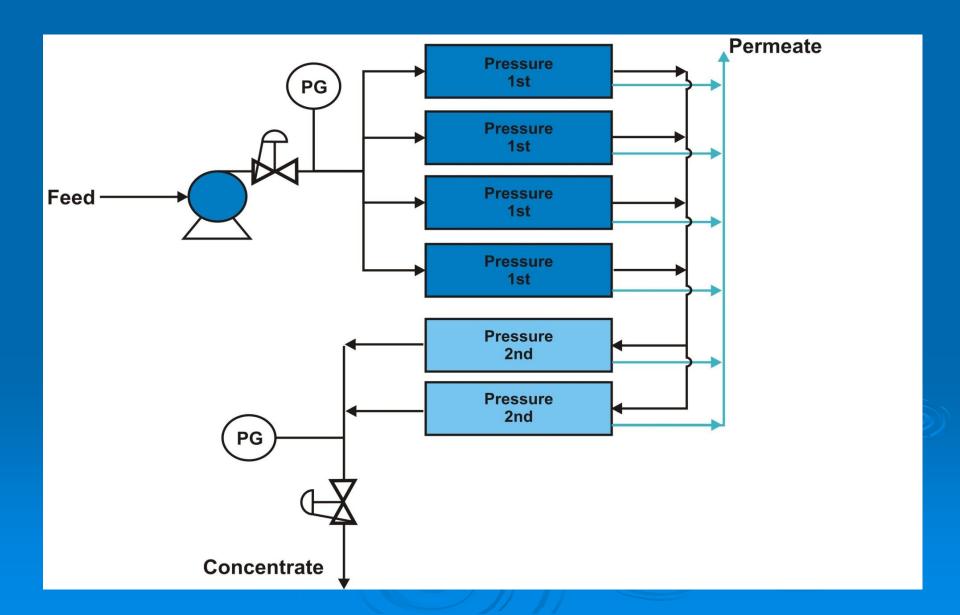
One HP Pump – Two RO Trains (Carboneras, Spain)


Three-Center RO System Configuration – 330 MLD Ashkelon SWRO Plant

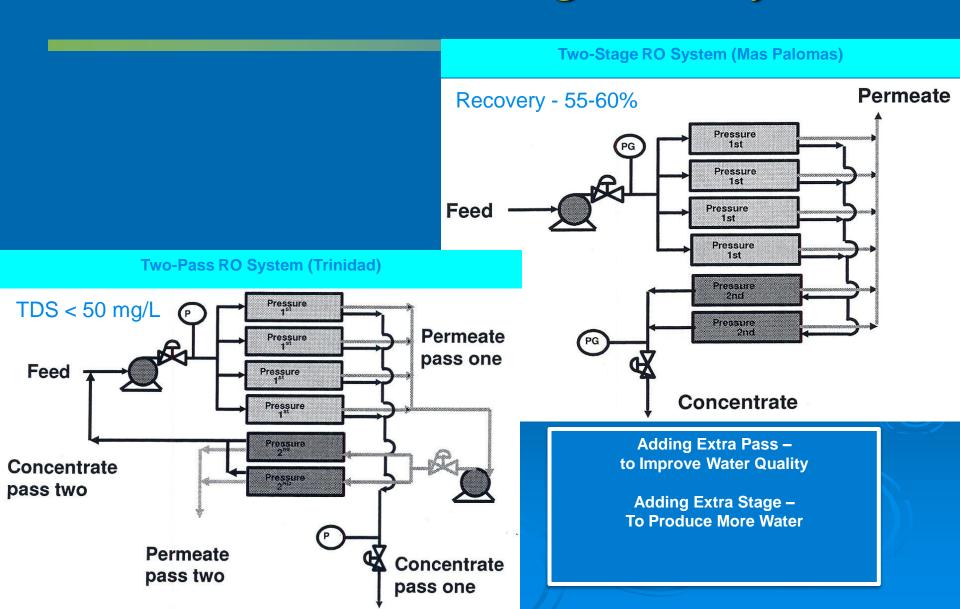

Alternative RO System Configurations

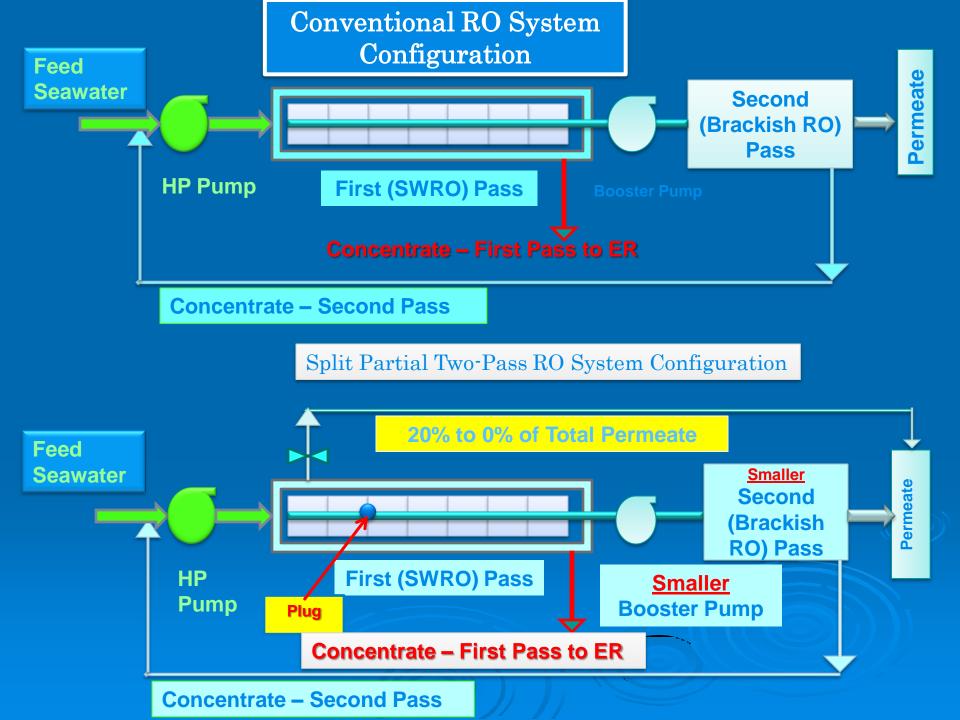

Single-Pass SWRO System

Two-Pass RO Systems



Partial Second Pass System (Fujiarah SWRO Plant)




Source: Degremont

Two-Stage RO Systems

Two-Pass vs. Two-Stage RO Systems

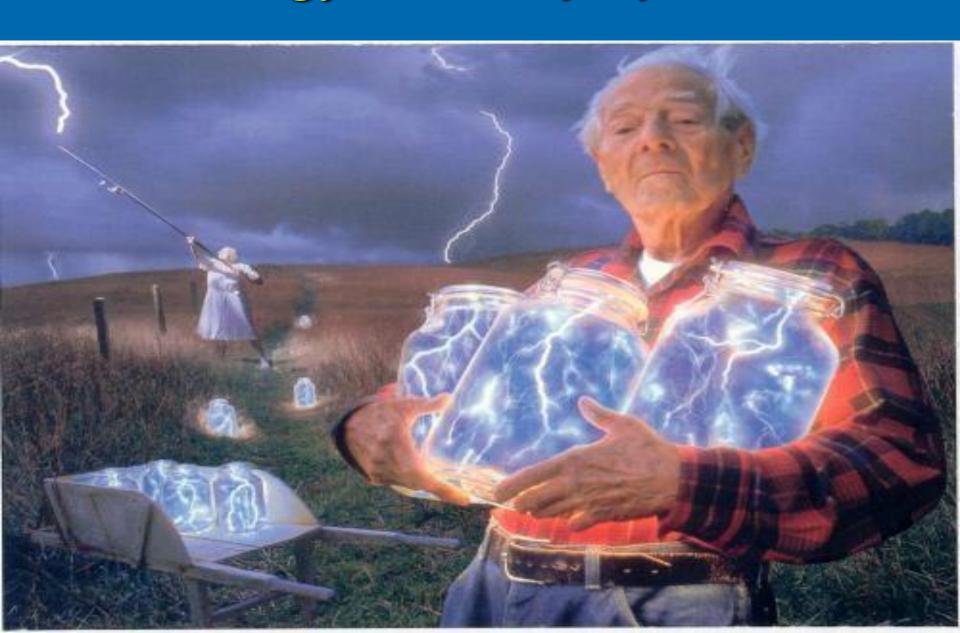
Product Water from Mediterranean Sea

Reverse Osmosis Permeate Water Quality Seawater Source – Mediterranean Sea

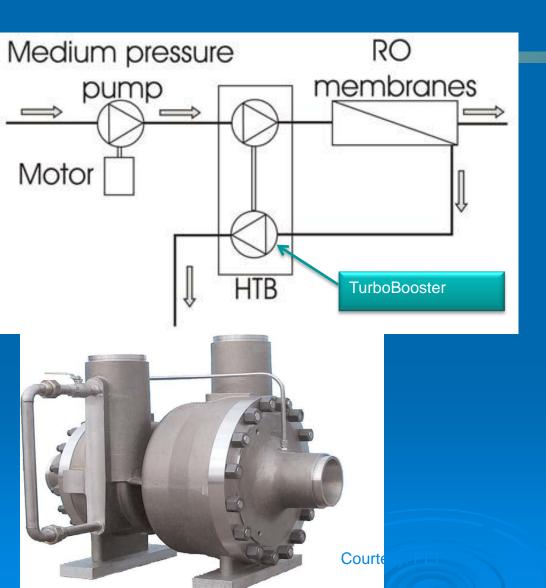
Water Quality	Mediterranean	Permeate Water Quality	
Parameter	Source Seawater	Single Pass SWRO	Split Partial Two
	Quality	System	Pass RO System
Temperature,0C	16-28	17-29	18-30
рН	8.1	6.3-7.2	7.9-8.1
Ca ²⁺ , mg/L	480	1.0-2.0	0.35-0.45
Mg²+, mg/L	1,558	1.9-2.8	0.5-1.0
Na+, mg/L	12,200	98-196	15-34
K+, mg/L	480	3.0-5.5	0.8-1.8
CO ₃ 2-, mg/L	5.6	0.0	0.0
HCO ₃ -, mg/L	160	1.7-2.4	0.5-0.8
\$O ₄ 2-, mg/L	3,190	2.9-6.3	1.4-2.95
Cl-, mg/L	22,340	169-260	25-52
F-, mg/L	1.4	0.7-1.1	0.5-0.8
NO ₃ -, mg/L	0.00	0.00	0.00
B-, mg/L	5.0	0.9-1.5	0.4-0.6
Br-, mg/L	80	0.9-1.3	0.35-0.6
TDS, mg/L	40,500	280-480	45-95

Product Water from Arabian Gulf

Reverse Osmosis Permeate Water Quality Seawater Source – Arabian Gulf


Water Quality	Persian Gulf	Permeate Water Quality	
Parameter	Source Seawater	Single Pass SWRO	Split Partial Two
	Quality	System	Pass RO System
Temperature,0C	18-35	19-36	20-37
рН	6.0 – 7.0	5.1-6.0	5.1-6.0
Ca ²⁺ , mg/L	570	1.4-2.6	0.6-0.8
Mg²+, mg/L	1,600	2.0-3.6	0.9-1.3
Na+, mg/L	14,100	142-228	25-45
K+, mg/L	530	4.3-6.8	1.5-2.2
CO ₃²-, mg/L	4.2	0.0	0.0
HCO ₃ -, mg/L	155	1.8-2.3	0.6-0.9
SO ₄ 2-, mg/L	3,300	3.1-6.5	2.1-3.2
Cl-, mg/L	24,650	222-305	37.5-64
F-, mg/L	1.5	0.9-1.2	0.5-0.8
NO ₃ -, mg/L	0.00	0.00	0.00
B-, mg/L	6.3	1.3-2.5	0.7-1.0
Br-, mg/L	83	1.2-1.5	0.60-0.80
TDS, mg/L	45,000	380-520	70-120

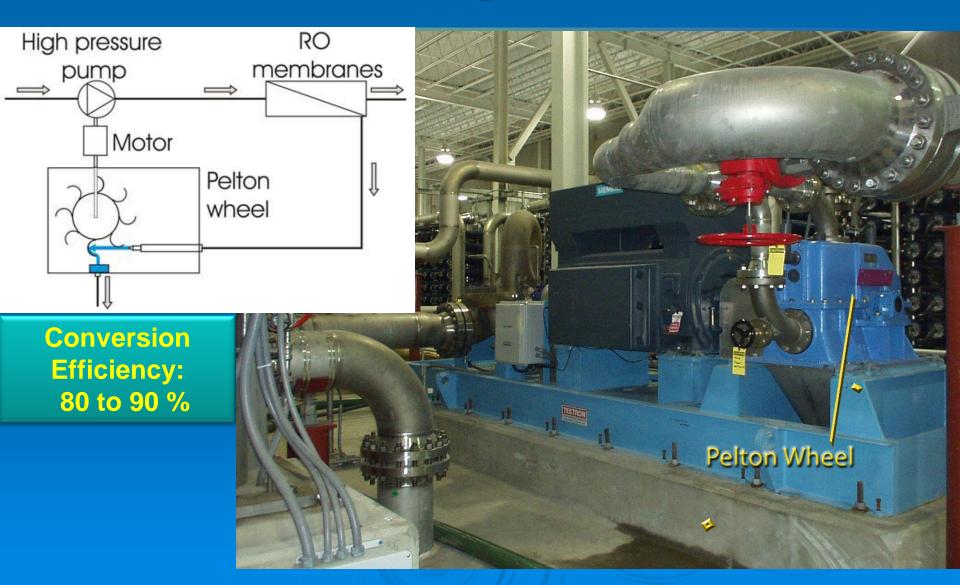
Product Water from the Red Sea


Reverse Osmosis Permeate Water Quality Seawater Source – Red Sea

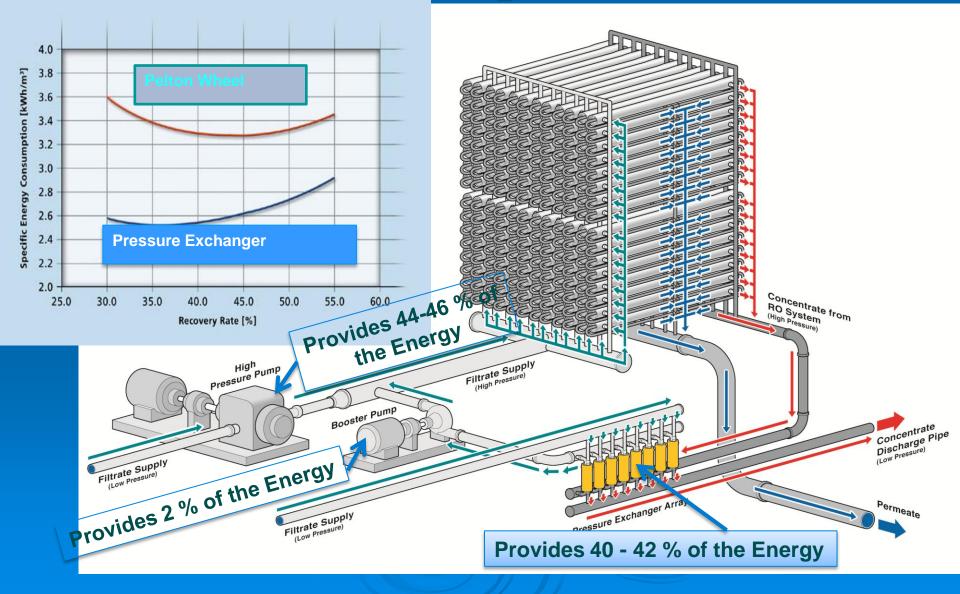
Water Quality	Red Sea	Permeate Water Quality	
Parameter	Source Seawater	Single Pass SWRO	Split Partial Two
	Quality	System	Pass RO System
Temperature, OC	22-33	23-34	24-35
рН	7.0-8.0	6.8-7.8	7.6-8.0
Ca ²⁺ , mg/L	500	1.1-2.1	0.5-0.7
Mg ²⁺ , mg/L	1,540	1.8-3.4	0.7-1.0
Na+, mg/L	13,300	142-220	20-38
K+, mg/L	489	3.2-6.5	1.2-1.8
CO 3 ² -, mg/L	2.4	0.0	0.0
HCO ₃ -, mg/L	142.4	1.4-2.0	0.5-1.0
\$O ₄ 2-, mg/L	3,100	2.8-6.2	1.9-2.6
Cl-, mg/L	22,840	195-276	29-58
F-, mg/L	0.9	0.5-0.7	0.3-0.5
NO ₃ -, mg/L	0.00	0.00	0.00
B-, mg/L	5.3	1.2-1.7	0.45-0.80
Br-, mg/L	80	1.0-1.4	0.45-0.60
TDS, mg/L	42,000	350-520	55-105

Energy Recovery Systems

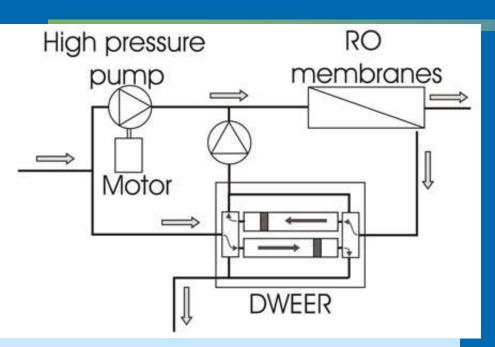
Hydraulic Turbocharger


- Turbocharger Popular for Small and Medium Size Plants (20 to 40 % pressure boost).
- Available for Low & High Pressures.
- Used for High-Recovery (Brine Conversion) Systems to Achieve 60 65 %.
- Low Maintenance & Brine Leakage Into Feed Stream.
- Lower Cost and Space Requirements than Other Energy Recovery Systems.

Hydraulic Turbocharger – Large Installations (2.35 to 2.65 kWh/m³)

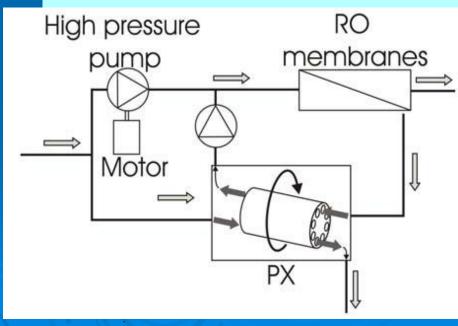


- > 114 ML/d Plant in Jebel Ali, UAE
 - 9 RO Trains;
 - 16 Single-stage HP RO Pumps;
 - Up to 525 psi (40 bars) of Boost;
 - HP RO Pumps Operating @ Full Flow @ ½ Pressure –
 5-7 % Extra Efficiency.
- 35 ML/d Plant in Thailand (PT Chemicals) – 2.6 kWh/m³.
- 145 ML/d NEWater Ulu Pandan Plant, Singapore

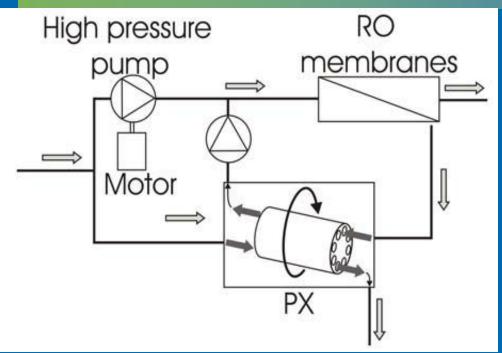

Pelton Wheels – Majority of Existing Plants

Pressure Exchangers Allow the Use of Larger Pumps/RO Trains

DWEER and ERI Pressure Exchangers



DWEER Exchanger


- Positive Displacement Pistons Instead of Rotor;
- LinX Valves Cause the Two Vessels to Exchange Functions before The Piston Completes Stroke.

ERI PX Pressure Exchanger

- 96% Energy Conversion Eff.
- Smaller Footprint;
- One Moving Part –
 Shaftless Rotor;
- Rotor Hydrostatically Suspended in Ceramic Sleeve.

ERI System – Current Status

- Largest In Operation Hamma (Algeria) – 190 ML/d;
- Largest in Construction Hadera (Israel) – 275 ML/d;
- Base Unit PX 220;(1.4 ML/d) in ops since 2002;
- 10 to 16 Units per RO Train (9.5 – 15 ML/d RO Train).

Challenges:

- Mixing 5 to 7%;
- Efficiency Decreases w/ Increase in Plant Recovery.

DWEER System – Current Status

- Used in Ashkelon (330 ML/d), and Singapore (130 ML/d);
- 5 ML/d SWRO Train One DWEER System – Model 1100;
- Ashkelon 2 x 40 DWEER 2200 Systems;
- RO w/ DWEER 0.5 to 0.7 kWh/M3 Less Energy than Pelton Wheel @ (45 % Recovery).

DWEER – Recent Large Projects

- ➤ Gold Coast, Australia 133 ML/d
- Sydney, Australia 125/250 ML/d
- Aguilas, Spain 180 ML/d

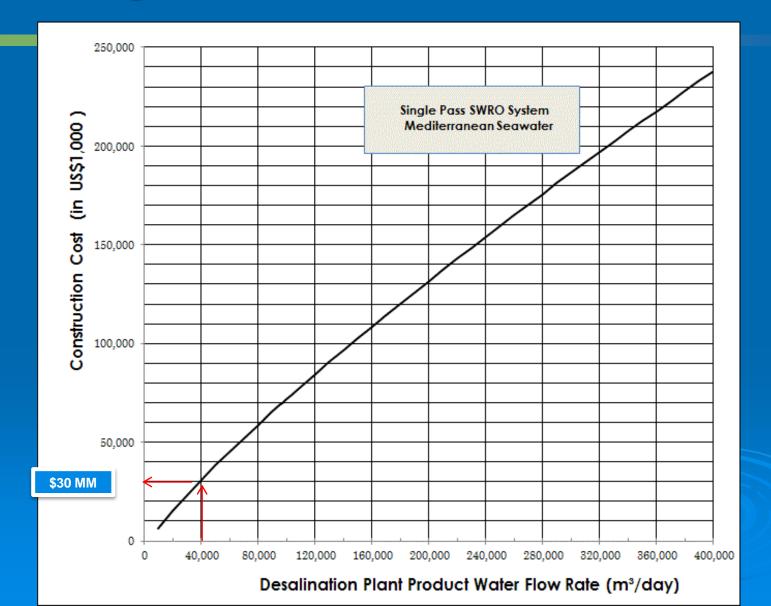
Calder AG (Flowserve) – DWEER GA

25 % Higher Capacity Than DWEER 1100

FRP Instead of Steel Vessels

New LinX Valve With Two Seal Rings for Lowest Leakage

Specific Power Consumption Losses Reduced by 26 %


SWRO System Construction Costs

- Dependent on Source Water Quality & Target Product Water Quality
- ➤ Usually Between US\$300 and 1,000/m³/day
- Single-stage/Single Pass SWRO System is Least Costly
- Additional Costs for Two-Pass/Two-Stage RO System May Vary Between 15 and 30 % of the These of Single Pass/Single Stage SWRO System

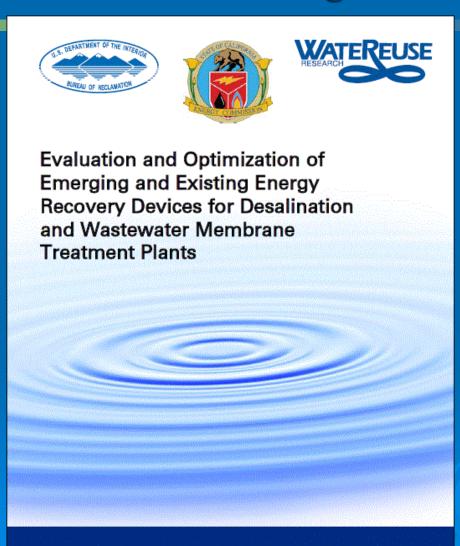
Costs of Key RO System Components

Item	Construction Cost		
	(US\$/item or as indicated)		
8-inch Brackish RO Membrane Elements	US\$250 - US\$350/element		
8-inch SWRO Membrane Elements	US\$400 – US\$600/element		
16-inch SWRO Membrane Elements	US\$2,800 – US\$3,300/element		
Brackish RO Pressure Vessels for	US\$1,000 – US\$1,300/vessel		
8-inch Elements			
SWRO Pressure Vessels for 8-inch Elements	US\$1,300 – US\$1,800/vessel		
SWRO Pressure Vessels for 16-inch Elements	US\$3,600 – US\$5,000/vessel		
RO Train Piping	US\$250,000 - US\$750,000/RO		
	Train		
RO Train Support Frame	US\$150,000 – US\$550,000/RO		
	Train		
RO Train Instrumentation and Controls	US\$30,000 – US\$150,000/RO		
	Train		
TI: 1 D	1100150 000 11000 400 000 DO		
High Pressure Pumps	US\$150,000 – US\$2,400,000/RO		
	Train		

RO System Construction Cost – Single Pass Mediterranean Water

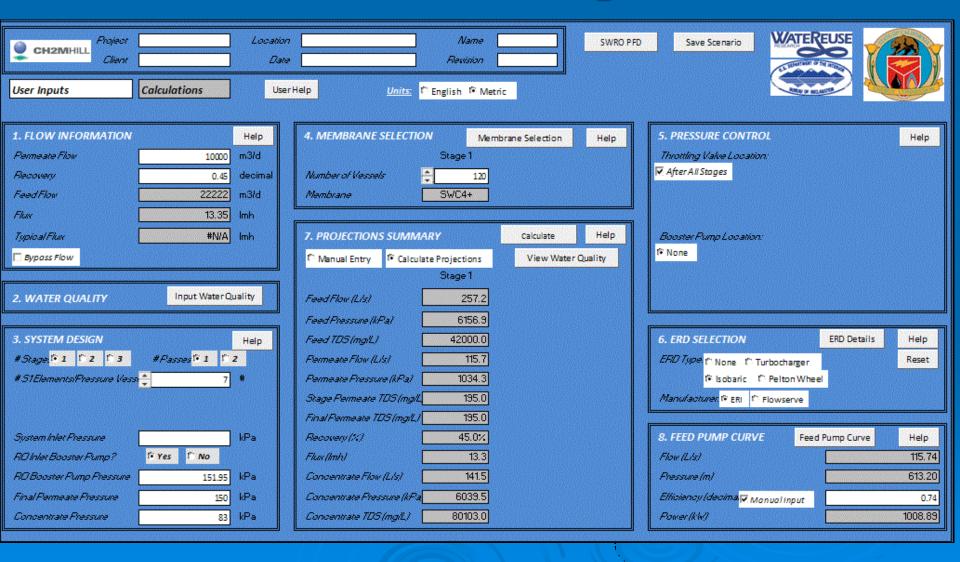
Source Water Quality — Cost Impacts

Seawater Source	Unit Construction Costs	Unit O&M Costs	Unit Water Costs
Mediterranean	1.0	1.0	1.0
Gulf of Oman	1.09	1.07	1.08
Red Sea	1.12	1.10	1.11
Arabian Gulf	1.16	1.14	1.15


Effect of Product Water Quality on RO System Costs

Effect of Target Product Water Quality on Water Costs					
Target Product Water	Construction Costs	O&M Costs	Cost of Water		
Quality					
TDS = 500 mg/L					
Chloride = 250 mg/L					
Boron = 1 mg/L	1.00	1.00	1.00		
Bromide = 0.8 mg/L	Single Pass RO System				
TDS = 250 mg/L					
Chloride = 100 mg/L					
Boron = 0.75 mg/L	1.15 - 1.25	1.05 - 1.10	1.10 - 1.18		
Bromide = 0.5 mg/L					
	Partial Second Pass RO System				
TDS = 100 mg/L					
Chloride = 50 mg/L					
Boron = 0.5 mg/L	1.27 - 1.38	1.18 - 1.25	1.23 - 1.32		
Bromide = 0.2 mg/L					
	Full Two-Pass RO System				
TDS = 30 mg/L			,		
Chloride = 10 mg/L					
Boron = 0.3 mg/L	1.40 - 1.55	1.32 - 1.45	1.36 - 1.50		
Bromide = 0.1 mg/L		D DOG	***		
	Full Two-Pass RO System + IX				

Example of SWRO Cost Estimates for 40 MLD Plant


- Construction Cost of Single-Pass 40 MLD SWRO System using Mediterranean Seawater = US\$30 MM (see RO Cost Graph)
- Construction Cost of Single-Pass 40 MLD SWRO System using Arabian Gulf Seawater = US\$30 MM x 1.16 = US\$34.8 MM
- Construction Cost of Two-pass 40 MLD SWRO System Using Arabian Gulf Seawater = US\$34.8 x 1.3 = US\$45.24 MM

New Software for ERD Selection and Cost Estimating

WateReuse Research Foundation

Software Input

ERD Selection and Cost Estimate

Isobaric Energy Recovery Device

Help

Summary Sheet

Device Information

Device injoination			
Select Device	○ Dweer		
Model	PX-300		
Manufacturer	Energy Recovery Inc.		
Application	SWRO		
Efficiency	96%		
Max Working Pressure (kPa)	8274		
Min Flow (L/s)	12.62		
Max Flow (L/s)	18.93		
Salinity Leakage (%)	2.81%		
Min Concentrate Pressure (kPa)	83		
Cost	\$ 35,000		
User-Override Cost			

System Information

# of Devices per Train	8	#
Train Feed Flow	257.20	L/s
Concentrate Flow	141.46	L/s
Isobaric Feed Flow per Device	17.54	L/s
LP Concentrate Pressure	83	kPa
HP Concentrate Pressure	6039.47	kPa
System Feed Pressure	152	kPa
Stage 1 Feed Pressure	6156.85	kPa
Boosted Pressure	5798.37	kPa
Circulation Pump Needed?	Yes	Y/N
Circulation Pump Pressure	358	kPa
Interstage Booster Pump Needed?	No	Y/N

