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Abstract 
 

Improved methods of providing safe drinking water are essential in an era in which 

demand for water is increasing but surface water supplies remain scarce.  Desalination 

of brackish groundwater via membrane filtration with nanofiltration and reverse 

osmosis (NF/RO) offers a solution to this problem.  As such, the overall motivation of 

this study was to improve mechanistic understanding of NF/RO.  The first main aim 

was to evaluate the performance of a renewable energy membrane system previously 

tested with real groundwater and varying energy conditions.  Given sufficient solar 

availability, the system reliably removed salts and inorganic contaminants, although 

solute retention varied with energy (and consequently pressure and flow) and pH, 

depending on dominant retention mechanisms.  The second main aim was to assess the 

specific impact of pH on inorganic contaminant removal in a bench-scale filtration 

system.  The speciation of boron, fluoride and nitrate was linked with ion retention as a 

function of pH, with results suggesting that there may be important mechanisms such as 

ion dehydration controlling transport in NF/RO, which would explain the high retention 

of fluoride when compared to nitrate.  The third main aim was to determine the 

importance of ion hydration in determining transport using molecular dynamics 

simulations of monovalent anions transporting through an idealized pore.  Simulations 

demonstrated that energy barriers of transport were strongly dependent on ion properties 

and pore size and were directly attributable to dehydration.  The final aim was to 

experimentally verify molecular dynamics simulations by quantifying energy barriers 

for ion transport in NF membranes.  Experimentally-determined energy barriers were 

also solute and membrane-specific, with fluoride having a higher barrier than other 

solutes.  Comparison of results with expected dehydration trends and molecular 

dynamics corroborated that energy barriers in nanofiltration may be due to dehydration.  

The results obtained in this thesis provide new insight into NF/RO transport 

mechanisms, which may contribute to improvements in current technologies and 

predictive models. 
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Chapter 1  
 
 
Introduction 
 
 
 

“Water is fundamental for life and health.  The human right to water is 

indispensable for leading a healthy life in human dignity.  It is a pre-requisite to 

the realization of all other human rights” – United Nations Committee on 

Economic, Cultural and Social Rights, 2002 

 

This chapter introduces the broad context of this research project.  The provision of 

safe drinking water is critical in an era in which the world’s population is increasing 

rapidly but safe water supplies remain scarce.  Further, in a number of remote 

locations, water and energy are inextricably linked and, thus, the synergy between them 

must be addressed when considering either.  Often the only water available in these 

areas is brackish groundwater which requires treatment before consumption in order to 

reduce levels of bacterial and chemical contaminants to safe levels.  Nanofiltration and 

reverse osmosis (NF/RO) membranes are able to effectively remove a number of 

contaminants from drinking water.  NF/RO systems powered by renewable energy 

provide a promising technology for water treatment in remote areas due to their 

independence from grid electricity, generally high removal of contaminants, low energy 

consumption and modularity.  This chapter provides the context and motivation for the 

rest of the work presented in this thesis and concludes with a description of the overall 
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thesis structure.  This introduction sets the stage for a detailed literature review of ion 

transport in NF/RO membranes, which is the subject of Chapter 2. 

 

1.1 Motivation: The World Water Crisis 
 
The world population is increasing at an alarming rate which has been significantly 

higher in the last hundred years than ever before (Figure 1-1) [1].  The population 

achieved seven billion in 2011 and is expected to exceed nine billion by 2040.  As 

shown on Figure 1-1, this population growth is not equally distributed between 

developed and developing countries.  In fact, growth in developing regions of Africa 

and the Middle East is often more than three times greater than in other parts of the 

world (Figure 1-2).  A major concern with population growth arises because the earth’s 

resources are limited and also unequally distributed, and thus it is becoming 

increasingly difficult to match resources with the growing demand.  In particular, this is 

a concern for resources such as water, oil and food.  Water scarcity is the focus of the 

work presented in this thesis. 
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Figure 1-1. World population from 1750 to 2050, adapted from [1]. 
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Figure 1-2. Population growth distribution [2]. 
 
 

Water scarcity is already a significant global concern, and the current population growth 

will only exasperate the problems if nothing is done.  Currently, 884 million people lack 

access to an improved drinking water source [3], which is only defined as a public 

standpipe within one kilometre of one’s dwelling.  The people affected by the lack of 

access to drinking water are often disproportionately women and children, who are 

generally responsible for water collection.  This is furthered because men sometimes 

take employment in places away from the home with more-developed infrastructure.  

The great majority of people without access to improved water sources, 84%, live in 

rural areas where generally infrastructure is lacking and poverty is prevalent [4].  An 

estimated 3,900 children are killed every day from illness related to unsafe drinking 

water and inadequate sanitation [5].  The statistics are even worse for the number of 

people living in water-stressed areas.  An astounding 2.3 billion people  live in water-

stressed areas (Figure 1-3), and this number is expected to climb to 3.5 billion by 2050 

[6].  In addition to direct effects on human health [7], increased concerns about water 

scarcity are also linked to ecological effects such as threatened river biodiversity [8].  

These harrowing statistics highlight the severity and urgency of the current water crisis 

and put forward a call to action for a concerted effort to do everything we can to help 

ourselves and our global community. 
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Figure 1-3. Areas of physical and economic water scarcity.  Red: physical water 
scarcity (more than 75% of river flows are allocated); Light red: physical water 
scarcity (more than 60% of river flows are allocated); Orange: Economic water 
scarcity; Blue: Abundant water resources relative to use (less than 25% of water 
from rivers is withdrawn for human purposes); Grey: not evaluated [9]. 
 

As a result of this global water crisis, the United Nations has declared the years 2005 to 

2015 to be the International Decade for Action ‘Water for Life’ [10].  The purpose of 

this declaration was to promote efforts to fulfil international commitments made on 

water and sanitation issues by the year 2015.  At the largest-ever gathering of world 

leaders at the United Nations Millennium Summit in 2000, an integrated set of time-

bound targets were developed to be met by 2015.  These targets are collectively called 

the Millennium Development Goals and their overall aim was to extend the benefits of 

globalization to the world’s poorest citizens.  The specific objective of Target 10 was to 

cut in half the proportion of people without sustainable access to safe drinking water 

[4].  In 2002, this target was further expanded to include basic sanitation, as water as a 

resource was recognized as being critically integral to meet each and every one of the 

Millennium Development Goals.  While progress has been made in achieving these 

goals, significant work is still necessary, particularly in sub-Saharan Africa where goals 

will not be met if current trends continue.  A very positive note is that improvements in 

drinking water and sanitation are currently estimated to reduce the number of children 

who die each year by 2.2 million [3]. 
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1.2 The Synergy Between Water and Energy 
 
In rural communities, where the majority of people are lacking access to clean water, 

natural water sources such as groundwater, surface water (rivers and lakes) and 

rainwater are often used to meet water requirements.  These sources of water often 

contain bacterial and chemical contaminants which can be dangerous for human 

consumption [11], and frequently, these water sources are left untreated.  There are a 

number of reasons for this, a significant one being that the location away from 

population centres makes remote areas naturally prone to reduced infrastructure and 

management capabilities.  In the absence of water infrastructure, community or house-

hold level solutions are necessary, which often do not effectively happen due to high 

costs (economies of scale cannot be exploited at the household/community level), lack 

of materials (eg. for chemical treatment), technical difficulty, lack of maintenance plans 

or know-how, lack of education, inappropriate storage techniques leading to re-

contamination or other socio-cultural factors [12].  Problems are compounded by the 

fact that rural areas are frequently not considered during central energy planning, either.  

Of the 1.5 billion people with no access to electricity, 85% live in rural areas in 

developing countries [13].  This leaves a significant population who live in remote areas 

without access to either electricity or clean water.  In these areas, which also overlap 

with regions of highest population growth, water and energy must be addressed together 

and addressed urgently. 

 

The synergy between water and energy is not limited to remote communities.  In fact, 

the concerns are wide-spread and relevant to industrial areas too, where water demand is 

higher.  With the increasing population and increasing demand of all resources, water 

needs to be secured in different ways than has been done previously, in remote and 

populated areas alike [6, 14].  In arid parts all over the world, groundwater resources are 

dwindling and thus the supplies that remain are becoming increasingly brackish as 

withdrawal continues to increase.  The increasing withdrawal of water is clearly see 

when a comparison is made between 1995 and projected data in 2025 (Figure 1-4) [6], 

and a challenge remains in defining and managing location-specific sustainable 

extraction rates for groundwater.  Consequently, increasing interest in the desalination 

of brackish groundwater and seawater has led desalination to be at the forefront of 

current research efforts [6, 15].  A particular research interest is to increase the 
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performance and decrease the energetic expense of desalination by novel technologies 

such as more efficient membranes and carbon nanotubes [16]. 

 

 
Figure 1-4. Water withdrawal in 1995 and 2025 [6]. 
 
 

1.3  Contaminants in Drinking Water 
 
As previously mentioned, the presence of potentially health-threatening bacterial and 

chemical contaminants is an important concern with remote drinking water supplies.  

Surface water (lakes, rivers and streams) is one common source of drinking water in 

developing countries.  Raw surface water often contains bacteria, protozoa or larvae 

which make the water unsafe for drinking without treatment [11], however chemical 

disinfection or filtration can be effective in removing these contaminants.  Bacterial 

surface water contaminants were not dealt with in this study, but a brief mention 

remained warranted. 

 

As a safer alternative to surface water, groundwater is frequently used and considered to 

be the most affordable, sustainable and secure water supply in rural areas [17]. 

Groundwater constitutes more than 97% of global fresh water [18].  Groundwater is 

stored beneath the earth’s surface in underground aquifers, rock, and soil, and thus must 

be pumped up to the surface for access.  Boreholes of depths roughly around 100 m are 

required to reach deep water aquifers and many types of pumps (electrical, hand, bike) 
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have been used to deliver water from boreholes [19].  A major advantage of 

groundwater is that it is generally protected from contamination by microbial pollutants 

[20, 21].  Additionally, because it is stored deeply in the earth, groundwater is less 

affected by drought and seasonable variations than surface or rain water.  Another 

advantage is that a groundwater well, if there is sufficient water, can be located 

relatively close to its point of use, as compared to a surface water resource which can 

require hours of collection time in dry regions such as sub-Saharan Africa. 

 

However, the use of groundwater also has disadvantages and associated concerns.  

Although groundwater does not typically have microbial contaminants, it does contain a 

number of inorganic salts and trace contaminants which can be health-threatening if 

consumed.  These will be discussed specifically in the next paragraph.  The majority of 

these inorganic contaminants are naturally-occurring; however anthropogenic activities 

such as agriculture and mining can also cause leaching of nitrogen-rich fertilizers, 

dangerous pesticides and other chemical contaminants into groundwater.  A significant 

concern is the contamination of wells, in particular from shallow aquifers, from 

sanitation facilities like pit latrines.  Rapid industrialization and population expansion 

are leading to the contamination of shallow aquifers being an increasingly widespread 

problem [21].  A major issue with groundwater is that current sources are becoming 

depleted and increasingly saline, due to over-withdrawal in certain areas.  Higher salt 

levels in the groundwater may become even more serious due to climate change which 

is predicted to affect groundwater supplies by increased salt intrusion due to rising sea 

levels [22]. 

 

Many naturally-occurring inorganic compounds can be present in groundwater.  

Because groundwater characteristics depend on a complex combination of geology, 

weather patterns and geomorphology (the processes which shape landforms), the 

chemical composition and availability of groundwater is highly variable throughout the 

world [23].  Some groundwater contaminants are dangerous for human consumption, 

and in light of this the World Health Organization (WHO) and other individual 

governments have developed drinking water standards to advise of adverse health 

concerns and acceptable levels of contaminants [11].  Consumption of solutes such as 

arsenic, boron, copper, fluoride, nitrite and nitrate above recommended guideline values 

can lead to significant health impacts [11, 24, 25].   For example, millions of people 
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worldwide are at risk of acute chronic arsenic poisoning due to arsenic naturally found 

in groundwater [26-28].  Well-known high arsenic groundwater areas include 

Argentina, Chile, Mexico, China, Hungary, West Bengal, Bangladesh and Vietnam – 

with more than 40 million people drinking water containing excessive arsenic 

concentrations in the Bengal Basin alone [29].  In Ghana, concentrations of iron, 

manganese, arsenic, fluoride, lead and chromium all have been found to exceed the 

WHO drinking water guidelines [28].  These contaminants may be naturally present in 

the groundwater, or may be caused by land-use and industry.  Most notably, Ghana has 

a long history of gold mining, and an undesired consequence of the mining is the 

contamination resulting from the release of contaminants such as arsenic and mercury 

into both water and air in the surrounding and downstream areas [28, 30].  Other 

compounds, such as calcium, chloride, magnesium, manganese, phosphate, potassium, 

sodium, and sulphur, have no currently known negative health impacts at the 

concentrations typically found in drinking water but may have aesthetic consequences 

such as taste and smell that make the water less desirable for consumption [11, 24, 25].  

In order for remote drinking water supplies to be most beneficial to communities, it is 

important that the water is desirable from both health and aesthetic perspectives. 

 

The inorganic contaminants boron, fluoride, nitrate and nitrite are of particular 

relevance to this project so the potential health-threats of these natural groundwater 

constituents will be discussed individually.  Boron exposure is associated with short-

term irritant and organ effects, however chronic toxicity in humans has not been clearly 

defined.  The recommended guideline value for boron is 2.4 mg.L-1, but as boron is very 

difficult to remove using conventional water treatment processes, the recommendation 

is that local regulatory and health authorities should consider a value in excess of 2.4 

mg.L-1 by making a rough estimate of exposure from other sources [31].  Fluoride 

exposure via drinking water of concentrations above 1.5 mg.L-1 can lead to dental 

fluorosis (which affects teeth enamel), and greater than 10 mg.L-1 can lead to skeletal 

fluorosis (which affects bones) [32].   Nitrate in drinking water is of concern mainly due 

to its reduction to nitrite, a toxic contaminant leading to methaemoglobinaemia (baby 

blue syndrome), which causes reduced oxygen transport to bodily tissues and is 

particularly dangerous for infants [11].  The guideline value for nitrate in drinking water 

is 50 mg.L-1 and for nitrite is 3 mg.L-1 (short-term exposure) and 0.2 mg.L-1 (provisional 

long-term exposure) [11, 33].  A summary of the chemical contaminants which were the 
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focus of the work in this thesis is shown on Table 1-1.  The presence of inorganics in 

groundwaters is spread over the world, and as an example, the distribution of fluoride in 

concentrations exceeding the guideline value of 1.5 mg.L-1 is shown in Figure 1-5. 

 

Table 1-1.  Summary of selected chemical drinking water contaminants with WHO 
guidelines and associated health concerns [11].  Fluoride, nitrate and nitrite were 
the primary focus of the work completed in this thesis. 

Contaminant WHO Guideline  
(mg/L)  

Health Concern 

Arsenic 0.01a toxicity, dermal legions, vascular disease, 
carcinogenic (skin, bladder, lung).  Arsenic is 
most commonly present in water as As+5 but is 
likely to be As+3 in anaerobic conditions.  As+3 

is considered the most toxic form. 
Barium 0.7 hypertension 
Boron 2.4b short-term irritant and organ effects 

Chromium 0.05a possible carcinogen 
Fluoride 1.5 dental and skeletal fluorosis 

Manganese 0.4 none, guideline is aesthetic-based 
Nitrate 50 reduces to nitrite 
Nitrite 3 (short-term); 0.2 

(provisional long-term) 
toxic, leads to methaemoglobinaemia 
(particularly dangerous for infants) 

Selenium 0.01 long-term toxic effects in humans (hair, liver, 
nails) 

Uranium 0.015a possible carcinogen 
aProvisional guideline due to scientific uncertainties regarding toxicology/epidemiology and/or due to 
difficulties regarding technical achievability; bRecommended guideline 
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Figure 1-5. Locations where the fluoride levels in groundwater exceed the 
guideline value of 1.5 mg.L-1 (taken from [34]). 

1.4 The Case for Membranes 
 
A number of conventional and advanced water treatment technologies exist which can 

reduce concentrations of both bacterial and chemical contaminants in drinking water.  

Conventional treatment methods generally involve a combination of coagulation, 

flocculation, clarification, filtration and disinfection [35], which are effective for some 

chemical contaminants but less-so for others.  A broad comparison of different 

processes and the water quality problems addressed is shown on Table 1-2.  Advanced 

water treatment technologies include methods such as advanced oxidation, ultraviolet 

disinfection and membrane processes.  Advanced water treatment technologies have 

been developed in order to achieve better performance or efficiency (in terms of 

energetic, economic or physical space) than conventional treatment processes.  One type 

of advanced water treatment technology, membrane processes, is the focus of this work. 
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Table 1-2.  Summary of main water treatment processes and the water quality 
problems addressed [35].  Membrane processes are shown in bold. 
 Primary Treatment Objective* 
Process  1 2 3 4 5 6 7 8 9 10 11 12 13 
Coarse screening x             
Fine screening x             
Raw-water storage  x        x    
Preliminary settlement  x            
Aeration     x x        
Air stripping         x     
Coagulation and flocculation   x x  x    x  x  
Gravity clarification   x x  x    x  x  
Dissolved Air Flotation   x x  x    x  x  
Slow sand filtration   x x  x    x  x  
Rapid gravity filtration   x x  x    x  x  
Microfiltration   x  x      x  x  
Ultrafiltration    x      x    
Reverse 
osmosis/Nanofiltration        x x x  x   
Activated carbon adsorption    x x   x      
Pre-ozonation    x x   x x   x  
Post-ozonation        x x     
Ion exchange       x       
Chemical oxidation      x        
pH control      x       x 
Phosphate dosing              
Chlorination      x       x 
Ultraviolet Disinfection          x  x x 
*1: Debris; 2: High sediment load; 3: Turbidity; 4: Color; 5: Taste and odor; 6: Iron and manganese; 7: 
Nitrate; 8: Pesticides; 9: Volatile organic compounds; 10: Cryptosporidium; 11: Salinity; 12: Algae; 13: 
Microbiological quality 

 

The term “membrane processes” collectively refers to a number of different types of 

membrane technology, namely reverse osmosis (RO), nanofiltration (NF), ultrafiltration 

(UF) and microfiltration (MF).  Membranes are essentially a selective barrier which 

separates different dissolved solutes or particles in water to varying degrees.  Particles 

or solutes removed range in size from tiny single ions (as small as 1·10-10 to  3·10-10 m 

radius) to molecules, bacteria, and even larger particles (up to 100 µm) [35].  A 

schematic showing these different membrane types and their general distinctions 

follows in Figure 1-6.  Because the primary interest in this project was to remove 

dissolved salts and inorganic contaminants, as are relevant to desalination, the 

discussion will focus on RO and NF.  RO membranes are roughly defined as those 

which near-completely remove all mono- and multi-valent ions.  NF membranes are 
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roughly defined as those which are slightly more open than RO, having slightly higher 

fluxes and letting most monovalent ions pass.  The distinctions between RO and NF are 

certainly not hard and set, but RO is generally accepted to be a denser material with 

higher retention and lower flux, as compared to NF which is more porous and has lower 

retention and higher flux.  A point of controversy remains in the field about where 

actual nanofiltration “pores” lie in the spectrum between discrete pore 

(micro/ultrafiltration) and dense material (reverse osmosis) [36-38], but the presence of 

“void space” within membrane polymers is generally accepted.  These differences are 

clearly seen on the scanning electron microscopy surface images of a microfiltration and 

reverse osmosis membrane (Figure 1-7). 

 

 
Figure 1-6. Schematic of membrane types. 
 

RO membranes were originally developed for seawater desalination in the 1960s [39].  

Shortly after, they were also applied to brackish water for desalination [40].  These early 

RO membranes produced very good quality permeate, but required high pressures and 

had high energy consumption (>10 kWh.m-3) [40].  Numerous improvements were 

made to the membranes, and in the 1980s, NF membranes were developed with higher 

water permeability, reduced energy consumption and lower solute rejection [41-43].  

The technologies have continued to improve dramatically, with the aim for the ultimate 

membrane to be able to provide very high water flux, very high solute rejection, low 

specific energy consumption and low cost. Currently, even though properties have 

become much more desirable in recent years, there is still much potential and ongoing 

effort in improving and developing new membrane materials (such as carbon nanotube 
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Figure 1-7. Scanning electron microscope images of (A) microfiltration membrane 
Sartorius SM 11127 (0.2 µm) at 5000x magnification [44] and (B) reverse osmosis 
membrane LP21 at 5000x magnification [45]. 
 

membranes).  In particular, the development of ultralow pressure membranes has 

allowed the specific energy consumption of some membranes to become closer to the 

minimum theoretical thermodynamic limit, when the applied pressure is equal to the 

osmotic pressure of the concentrate (around 1.0 kWh.m-3 for seawater at 50% recovery) 

[15, 46]. In fact, an energy consumption rate of 1.8 kWh.m-3 using new, high-

permeability SWRO membrane elements at 50% recovery has recently been 

demonstrated [15]. 

 

RO/NF membranes were initially made from cellulose acetate and variations thereof, 

but subsequently a wide range of polymer materials are in use, such as polyamide, 

polysulfone and polyurea [35].  Thin film polyamide materials have been particularly 

successful because their thin nature creates less head loss across the membrane, thus 

lowering the pressure required.  The two most common forms of membranes used are 

spiral wound modules and hollow fibre modules.  Spiral wound modules are flat sheet 

membranes layered with spacers and then wound tightly and contained in a module.  

Hollow fibre modules encase a group of cylindrical membrane “straws” which contact 

feed water on one side (usually the outside) and clean water permeates through the 

membrane material.  The differences are shown on Figure 1-8. 

(A) Microfiltration (B) Reverse Osmosis 
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Figure 1-8. Diagram of a membrane module which is (A) spiral wound [47] and (B) 
hollow fibre [48]. 
 

Membranes have several distinct advantages compared to conventional water treatment 

processes involving a combination of coagulation, flocculation, clarification, filtration 

and disinfection, as previously shown on Table 1-2.  Further specific advantages are that 

membranes have: 

 

• Higher inorganic trace contaminant removal, in particular for boron [49, 50], 

fluoride [32, 51, 52], nitrate and nitrite [43, 53-55]; 

• Effective removal of salt for the desalination of brackish groundwater and sea 

water, which has become increasingly important [40, 56, 57]; 

• Possibility for single-stage treatment of some surface and groundwaters; 

• Modular in design; and 

• Smaller physical foot-print as compared to equipment for conventional water 

treatment. 

 

A common misconception of membranes is that a major disadvantage is cost, however 

significant improvements have been made in this area and are expected to continue as 

materials further develop.  The unit cost of water from large-scale seawater RO 

production has decreased from nearly 5.00 USD.m-3 in the late 1970s to less than 1.00 

USD.m-3 in 2004 [40].  A recent plant in Israel (Ashkelon plant) produces water costing 

only 0.53 USD.m-3 in 2005 [40].  Brackish water desalination costs less than seawater 

due to less electrical power required for production, and ranges from 0.10 USD.m-3 to 

1.00 USD.m-3 [40].  Especially when economies of scale are considered for larger 

systems, cost is no longer a major barrier to the use of NF/RO [40, 58].  Cost for 

(A) spiral wound (B) hollow fibre 
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membrane desalination plants can be broken into capital cost and operation and 

maintenance costs (eg. membrane replacement, energy consumption, labor, and 

chemicals).  In the Ashkelon seawater desalination plant in Israel, the capital costs were 

59% of the total expenditure, whereas the capital cost of a comparable brackish water 

plant (Metropolitan plant in California) was 43%.  The capital costs of the seawater 

plant were five times greater than the brackish water plant due to more extensive pre-

treatment equipment and higher pumping requirements.  Energy costs were also five 

times greater for the brackish plant due to higher pressures and lower recovery, but 

chemical costs were similar.  Membrane replacement costs were higher for the seawater 

plant because seawater membranes typically have shorter lifetimes due to higher fouling 

[40].  Disadvantages of membranes include potential membrane fouling (eventually 

leading to membrane replacement and thus additional cost) and the requirement of 

occasional chemical cleaning (and associated costs).  A concern with utilizing 

membranes in remote locations is the lack of local availability of suitable materials.  

Another concern is the relatively high energetic requirement of desalination, however, 

as discussed above, energy consumption of membrane processes has drastically 

improved recently.  Further, renewable energy powered membrane systems/plants avoid 

the negative environmental consequences of an energetically expensive process and are 

gaining great momentum.  These systems are discussed in the next section. 

 

NF/RO membranes utilize a number of different mechanisms to create the separation 

between water and dissolved solutes, which will be discussed in detail in Chapter 2.  

The basic principle of NF/RO is that a hydrostatic pressure must be applied which is in 

excess of the osmotic pressure of the feed water, which reverses the natural drive of 

osmosis, as shown in Figure 1-9 [40, 59].  This drives water through the membrane 

barrier but leaves certain solutes behind.  Specific separation mechanisms are dependent 

on solute and membrane properties and can include size exclusion, charge repulsion, 

convection, diffusion and adsorptive interactions. 
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Figure 1-9. Basic principle of RO [59]. 
 
 
One key parameter in understanding specific separation (or retention) mechanisms is 

solute speciation.  Speciation refers to the chemical form in which a solute is present in 

solution, and one particular solute (calcium or fluoride, for example) can take on 

different forms in solution depending on environmental factors such as ionic strength 

and pH.  Specifically, pH has a complex effect on retention mechanisms because it not 

only affects the speciation of a solute, but also the properties of a membrane.  This is 

very important to understanding charge interactions in membrane processes.  The 

literature surrounding the effect of pH on solute speciation and retention is discussed in 

detail in Chapter 2.1.3 and 2.3.5, and this topic is the subject of the experimental work 

presented in Chapter 5. 

 

Information about retention mechanisms can be further gathered experimentally by 

accessing the specific impact of parameters such as ion type, pressure, temperature, 

flow and concentration on solute retention.  These operating parameters affect system 

hydrodynamics, conditions at the membrane surface, and the chemical properties of the 

solution, thus affecting retention mechanisms.  This topic is reviewed in detail in 

Chapter 2.2 and 2.3 and is the subject of experimental results in Chapter 7. 

 

Molecular dynamics is a powerful tool that can be used to understand fundamental 

chemical and physical interactions.  This has direct applications to membrane processes, 
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where mechanisms can be difficult to understand from experimental results due to very 

complex interactions and limitations in measurement capabilities.  Molecular dynamics, 

as will be discussed in Chapter 2.5, has been used to understand the transport of ions in 

ion channels and carbon nanotubes, but the techniques have not yet been directly 

applied to understanding the removal of health threatening contaminants in NF/RO.  

This is the subject of Chapter 6. 

 

1.5 Renewable Energy Powered Membrane Systems 
 
The majority of membrane development has focused on large scale application, 

hindering it largely inaccessible for small-scale systems in developing countries [60].  

However, this is quickly changing as recent effort has focused on the development of 

renewable energy powered membrane systems (RE-membrane) [61-64].  The 

integration of renewable energy with membrane technology has the dual benefit of 

being more resource-friendly and the potential to be located in remote locations that are 

away from grid electrical connections [61-64]. 

 

There are several key factors commonly described when developing a secure and 

suitable water supply for a remote community [17]: 

 

• the water is of sufficient quality for human consumption; 

• the supply is sufficient and reliable throughout the year (including changes in 

availability as well as in demand); 

• the water is accessible to the whole community and within a reasonable distance 

from households; 

• the supply is affordable; and 

• the supply can be easily maintained. 

 

A well-designed and well-integrated RE-membrane system would meet most of the 

criteria for use in a remote community in developed and developing regions alike.  In 

fact, RE-membrane systems offer one of the most promising options for removing salts, 

microbial and chemical pollutants from groundwaters in communities in off-grid 

locations [16].  However, it should be noted that acquisition of equipment such as 
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membrane modules and renewable energy equipment such as solar panels can be more 

challenging in developing areas.  RE-membrane systems were first used approximately 

30 years ago [65] and technology has developed since the first protocols into systems 

for remote areas which are now cost-competitive with other water supply technologies 

[58, 63, 64].  Systems of varying sizes operated with photovoltaic (PV) and/or wind 

energy have now been tested across the world in Australia [66], Saudi Arabia [67], 

Jordan [68], Hawaii [69] and Gran Canaria [68].  PV-membrane systems are now at the 

applications and advanced research and development stages, and total costs for brackish 

water and seawater desalination range from 6.50 – 9.0 USD.m-3 and 11.60 – 15.50 

USD.m-3, respectively [70].  Costs are higher than grid-powered systems both because 

the systems are generally much smaller (and thus cannot take advantage of economies 

of scale) and more capital is required for renewable energy equipment.  Recently, 14 

leading European organizations have been brought together in a project called ProDes 

(Promotion of Renewable Energy for Water Production through Desalination) to 

support the market development of renewable energy desalination [70]. 

 

In order to avoid the effect of energy fluctuations on operational performance, most RE-

membrane systems have used batteries to provide a constant energy source [66-68, 71].  

However, batteries are also undesirable for several reasons: decreased system 

efficiency; decreased performance at high temperatures and thus higher maintenance 

costs; difficulty and expense of replacing batteries in remote locations; and higher life-

cycle costing [72].  Additionally, not using batteries eliminates the chance of the 

system’s batteries being used for other purposes and thereby rendering such a drinking 

water production system useless.  Therefore, it is better for system cost and efficiency to 

operate the system with no energy storage and such systems have subsequently been 

developed [66, 69, 72-75].  A RE-membrane system is the focus of the results presented 

in Chapter 4. 

 

1.6 Thesis Overview 
 
In summary, there is a great need for improved water treatment solutions with the 

increasing demand on resources and the changing climate.  NF/RO membranes are 

excellent treatment options because of their ability to remove contaminants at the ionic 
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level, which is appropriate for desalination of sea and brackish water.  However, there 

are still improvements to be made with these technologies such as widespread 

integration of renewable energy with membrane processes, improved materials and 

better mechanistic understanding (which will be discussed in Chapter 2).  This therefore 

makes the area of NF/RO an exciting research area with the potential for real 

contribution to the challenges presented by the world water crisis. 

 

The overall aim of this research project was to contribute to the understanding of 

NF/RO processes, with the motivation that the technical knowledge obtained could 

contribute to solutions to the water problem.  A broad description of the four core parts 

of this project follows (and will be described in more technical detail after the relevant 

literature is reviewed in Chapter 2): 

 

• The performance of a renewable energy powered membrane system was 

evaluated with real varying energy conditions and natural groundwater.  This 

was be achieved by determining (i) the impact of varying energy on the retention 

of inorganic solutes; (ii) the role of pH in this process; (iii) the dominant 

mechanisms of ion retention; and (iv) system performance at different locations.  

The data evaluated by the PhD candidate was previously produced during a field 

trial in Australia in 2005 (Chapter 4). 

• The specific impact of pH on the removal of selected inorganic contaminants 

was determined, as pH is a very important parameter to NF/RO performance and 

varies naturally widely.  This was achieved by completing a study initiated by a 

previous student that linked solute speciation of boron, fluoride and nitrate with 

retention with six different NF/RO membranes (Chapter 5). 

• The importance of ion hydration on determining the transport of monovalent 

anions (fluoride, chloride, nitrate and nitrite) was analyzed using molecular 

dynamics simulations.  This is a very poorly understood mechanism in NF/RO 

and new information in this area would provide insight into what determines 

separation.  This was achieved by determining hydration structure and energy 

barriers as a function of pore size, ion type and surface charge (Chapter 6). 

• Experimental evidence of the proposed mechanism of partial ion dehydration 

was sought.  This was achieved by determining solute flux and Arrhenius 
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activation energy barriers for each ion type and two membranes, and linking 

results to molecular dynamics simulations (Chapter 7). 

 

This thesis is structured as shown in Figure 1-10.  The purpose of this introduction 

chapter was to paint a broad overview of the topic at hand.  A specific, in-depth, 

literature review of principles and mechanisms of ion transport in NF/RO will follow in 

Chapter 2.  Chapter 2 will conclude with the detailed research objectives undertaken in 

this research project.  Experimental methods and materials are described in Chapter 3.  

The first results are presented in Chapter 4, which discusses the field performance of a 

renewable energy membrane system with specific regard to varying energy and pH.  

Simplified bench-scale experiments were conducted to assess the effect of pH on the 

retention of inorganic contaminants and boron, and these are discussed in Chapter 5.  

Chapter 6 presents molecular dynamics results that assessed the specific impact of ion 

hydration/dehydration when ions transport through pores.  The final experimental 

chapter, Chapter 7, attempts to link experimental energy barriers according to ion and 

membrane type with expected trends for dehydration determined with the molecular 

dynamics simulations.  The thesis concludes with a summary of results obtained and 

recommendations for future work (Chapter 8).   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chapter 1. Introduction 

Chapter 2. Ion Transport Principles: A Review 

Chapter 3. Experimental Methods and Materials: 

Chapter 4. Renewable Energy Powered Membrane Systems 
 

Key Points 
• System effectively removed inorganic contaminants over real 

energy and pH conditions 
• Energy fluctuations affected operating parameters and hence 

retention where diffusion/convection mechanisms dominated 
• Groundwater pH was important for contaminants dominated by 

charge mechanisms 
 
Relevant Publications: Richards et al., Desalination (2009); Richards et 
al., Journal of Membrane Science (2011); Richards et al., Membrane 
Water Treatment (2011) 
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Figure 1-10. Thesis structure. 
 
 

Chapter 5. Impact of pH on Inorganic Contaminant Removal 
 

Key Points 
• Chemical speciation in different water matrices was predicted for 

boron, fluoride and nitrate 
• Retention trends strongly correlated to speciation and membrane 

properties as a function of pH 
• The selectivity of fluoride and nitrate cannot be explained by 

charge interactions alone nor size exclusion according to the size 
of the bare ion 

 
Relevant Publication: Richards et al., Desalination (2010) 

Chapter 6. The Importance of Dehydration in Determining Ion 
Transport in Narrow Pores 

 
Key Points 

• Energy barriers are strongly dependent on pore size 
• Energy barriers are strongly dependent on ion type (and hence 

hydration properties) 
• Molecular dynamics simulations show that dehydration is the 

main barrier to anion transport in narrow pores 
 
Relevant Publications: Richards et al., Small (2012, accepted); Richards 
et al., Physical Chemistry Chemical Physics (in preparation) 

Chapter 7. Experimental Determination of Energy Barriers to Ion 
Transport 

 
Key Points 

• Energy barriers can be determined experimentally using 
Arrhenius activation energies 

• Energy barriers depend on ion type and membrane type 
• Energy barriers are compared to those determined using 

molecular dynamics simulations 
 
Relevant Publication: Richards et al., Journal of Membrane Science (in 
preparation) 

Chapter 8. Conclusions and Future 
Recommendations 
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Chapter 2  
 
 
Ion Transport Principles: A Review 
 
 

Having highlighted the water crisis and synergetic energy crisis in Chapter 1, 

membrane technology was offered as a solution to partially help address this urgent 

need.  This chapter offers a more thorough description of the current state of knowledge 

surrounding nanofiltration and reverse osmosis (NF/RO).  Firstly, ion properties in 

bulk water are described, as this is fundamental to understanding the behaviour of these 

ions in more complicated membrane processes.  Secondly, a description of various 

NF/RO mechanisms is given, followed by an explanation of how various operating 

parameters affect NF/RO performance.   A discussion of current NF/RO models is then 

given, including their limitations, and suggestions on how these models may be 

improved by use of molecular dynamics.  Finally, this chapter describes, with more 

detail, the specific research aims and objectives that were originally outlined in 

Chapter 1. 

2.1 Ion Properties in Aqueous Solutions 
 

In order to understand how the mass transport of inorganic ions works in membrane 

processes, first the ion properties in bulk aqueous solutions must be understood.  When 

ions are in aqueous solution, they interact with the solution around them and thus 

exhibit properties that are different than if the ion was alone.  For the purposes of this 
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research, only ion properties in water (eg. not other aqueous solutions) will be 

discussed.  The basic principles of ion behaviour in bulk water follow. 

 

2.1.1 Ion Hydration 
 

To understand the role membranes have in removing contaminants from water it is first 

necessary to understand the interactions of ions and water molecules. When ions are in 

water, they are surrounded by a “shell” of water molecules due to the dipole nature of 

water [76].  This shell of water is referred to as a hydration shell or hydrated layer.  A 

generic schematic of hydration layers around a large and small anion is shown on 

Figure 2-1 [77]. This process of hydration results in the kinetic entity no longer being 

the bare ion but the ion accompanied by its associated hydrated shell [76].  When the 

hydrated shell is considered, the effective ion size is larger than the bare ion alone, and 

the radius of the entity is known as the hydrated radius. 

 

The strength of the attractive interactions between the bare ion and the hydrated shell is 

known as the Gibbs free energy of hydration (∆Ghydration, kcal.mol-1) 

 

hydrationhydrationhydration STHG ∆∆∆ −= , Equation 1 
 

where H represents enthalpy (kcal.mol-1) and S entropy (kcal.mol-1).  The free energy of 

hydration is defined as the change in chemical potential of a solute molecule, upon 

formation of an infinitely dilute aqueous solute from components in their standard states 

(eg. gaseous for the solute and pure liquid for the solvent).  This parameter therefore 

represents how favourable the interactions are between a dissolved solute (eg. fluoride) 

and water, and has both enthalpic and entropic energetic contributions [78].  A highly 

negative ∆Ghydration indicates very strong attractive forces and less negative ∆Ghydration 

means the ion is more weakly hydrated.  Small ions have strong hydration energies 

because their charge density is higher, which causes stronger attractive interactions with 

the water molecules.  There can be more than one distinct hydration shell around an ion 

if the attractive forces are strong enough to affect more-distant water molecules. 
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Figure 2-1. Generic schematic of the hydration around a large and small anion 
(adapted from Tansel et al. [77]).  A small ion such as fluoride has a much higher 
hydration energy than a relatively large ion such as nitrate due to the higher 
charge density and thus stronger interaction energies with surrounding water 
molecules. 
 

 
Figure 2-2. Generic schematic of the hydration comparing a small cation with a 
small anion (adapted from Tansel et al. [77]).  Note that the water molecules orient 
their oxygen atom towards the cation, and their hydrogen atoms toward the anion. 
 

Cations and anions are hydrated differently because they attract the water towards 

themselves in different manners (Figure 2-2) [79].  With mono-atomic cations, which 

are positively charged, water molecules orient with their oxygen atom (containing lone 

pairs of electrons) pointing towards the cation.  In this case, the oxygen atoms in the 

water molecules act as electron donors and the cations as acceptors.  Conversely, with 

- + 

small cation (eg. sodium, 
∆Ghyd = -88.6 kcal.mol-1) 

small anion (eg. fluoride, 
∆Ghyd = -119.7 kcal.mol-1) 

- - 

large anion (eg. nitrate 
∆Ghyd = -71.6 kcal.mol-1) 

small anion (eg. fluoride, 
∆Ghyd = -119.7 kcal.mol-1) 
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anions, the water molecules orient one or both of their hydrogen atoms towards the 

anion and hydrogen bonds can be created, as shown on Figure 2-1.  The size, shape, and 

charge all affect how the interactions between ion and water molecule occur [79].  

Hydration involves complicated interactions, with contributions from all 

thermodynamic functions such as entropy, enthalpy and available volume [76, 79-81]. 

 

Significant effort has been made over a number of years, starting in the 1900s, to 

quantify what the kinetic entity of an ion is in electrolyte solutions, as this has 

importance to a number of applications in chemistry, biology and medicine [76].  

However, this has proven very challenging, time consuming, and at times ambiguous 

because of the difficulty in experimentally measuring or simulating these free energies 

of hydration and/or structures.  Experimental measurements can be made using 

crystallographic techniques including vibration potentials and Volta potentials [79].  

Much of the difficulty arises because a single correlation or model to exactly represent 

the hydration phenomena is not expected [82], although some models have been 

developed that match reasonably well with a wide number of similar ion types [79, 80].  

These early correlations characterized an ion by its charge and radius, and made no 

distinction between cations and anions with the same radius and charge. They also 

divided the surrounding water into two regions: (1) a hydration shell where water is 

immobilized and electro-restricted and (2) bulk water which is under the influence of 

the electric field [79, 80].  With these models, elongated, non-spherical ions (such as 

nitrate or nitrite) are approximated by a sphere [79]. 

 

Determining accurate hydration information remains a challenge, and although vast 

steps forward have been made in this arena, recent efforts are still ongoing to accurately 

represent even monovalent ions in solution [83, 84].  To properly understand ionic 

interaction in solution, it is necessary to be able to simultaneously reproduce many 

properties such as ionic structure, dynamics, solvation, ion-ion interaction and ion-

molecule interaction.  Some of the best current models employ a simple additive, 

nonpolarizable and pairwise potential for atomic interaction [83], and the most recent 

updates involve further developing the ion-interactions within the pairwise Couloumbic 

and Lennard-Jones framework which give more accurate representations of interactions 
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between the ion of interest and surrounding water molecules [83].  A particular focus 

has been placed on alkali (Li+, Na+, K+, Rb+ and Cs+) and halide ions (F-, Cl-, Br- and I-) 

which are most relevant to biological phenomena.  A lack of updated information 

remains for many contaminants relevant to drinking water treatment such as nitrate and 

nitrite. 

 

Despite the fact that values for hydrated radius and strength can vary according to the 

type of experiment or simulation and point of reference, the general order of the ions 

properties remains the same.  A summary of available hydration data for ions relevant to 

NF/RO follows in Table 2-1.  This shows that some hydration information exists in the 

literature for a number of ions, but the information is often not comprehensive nor 

consistent [77, 80, 82, 85].  Ideally, a consistent source is best for comparison.  As such, 

hydrated radii provided by Nightingale [82] are used to discuss the results in Chapter 4 

and 5, as there is information provided for most of the ions of interest.  Data from 

Nightingale [82] is listed as the first line for each ion in Table 2-1.  In Chapter 6 and 7, 

more detailed parameters about hydration structure are required and thus updated 

information is used for chloride and fluoride from the current literature [83] and 

developed from scratch for nitrate and nitrite from crystallographic experimental 

hydration energies [80] (details discussed where appropriate).  The theory of ionic 

hydration and obtaining consistent information remains a challenge and some scientists 

claim that final answers may never be reached [86, 87]! 

 

Table 2-1. Molecular weight, ionic and hydrated radii for relevant ions, arranged 
according to valence charge and number. 

Species 
Molecular 

Weight 
(g.mol-1) 

Ionic 
Radius 

(10-10 m) 

Hydrated 
Radius  

(10-10 m) 

Gibbs Free 
Energy of 
Hydration 

(kcal.mol-1) 

Ref. 

Cl- 35.45 1.81a 3.32 -- [82] 
  1.98 3.24   -- [88] 
  1.81 1.95 -- [89] 
  1.81 2.24b -81.2c [80] 
  1.81 -- -82.9 [90] 
  -- 3.13 -89.6 [83] 
  -- -- -89.1 [86] 
  -- 3.29 -89.2 [84],[83]d 
  -- 3.187 -81.2 [79],[83]d 
  1.81 -- -88.0 [91] 
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F- 19.00 1.36 a 3.52 -- [82] 
  1.28 3.48 -- [88] 
  1.19 2.84 -- [89] 
  1.33 2.12b -111.0c [80] 
  1.26 -- -112.7 [90] 
  -- 2.63 -119.7 [83] 
  -- -- -119.7 [86] 
  -- 2.80 -115.8 [84],[83]d 
  -- 2.63 -111.0 [79],[83]d 
  1.36 -- -126.1 [91] 

NO3
- 62.00 2.64a 3.35 -- [82] 

  1.79 2.23b -71.6c [80] 
  2.00 -- -73.1 [90] 

NO2
- 46.01 1.92 2.29b -78.8c [80] 

  1.87 -- -81.0 [90] 

MoO4
2- 159.94 3.23a 3.85 -- [82] 

SeO4
2- 142.96 3.05a 3.84 -- [82] 

SO4
2- 96.06 2.90a 3.79 -- [82] 

  2.15 3.00 -- [89] 
  2.30 2.73b -257.9c [80] 
  2.18 -- -260.3 [90] 

K+ 39.10 1.33a 3.31 -- [82] 
  1.48 2.75 -- [88] 
  1.38 2.01 -- [89] 
  1.38 2.12b -70.5c [80] 
  -- 2.75 -70.7 [83] 
  -- -- -71.2 [86] 
  -- 2.86 -61.5 [84],[83]d 
  -- 2.798 -70.5 [79],[83]d 
  1.33 -- -66.0 [91] 

Na+ 22.99 0.95a 3.58 -- [82] 
  0.99   2.99 -- [88] 
  1.02 1.78 -- [89] 
  1.02 2.18b -87.2c [80] 
  -- 2.38 -88.7 [83] 
  -- -- -88.6 [86] 
  -- 2.49 -78.8 [84],[83]d 
  -- 2.356 -87.2 [79],[83]d 
  0.95 -- -82.7 [91] 

Sr2+ 87.62 1.13 a 4.12 -- [82] 
  1.36 2.80 -- [89] 
  1.13 2.63b -329.5c [80] 

Ni2+ 58.69 0.70a 4.04 -- [82] 
  0.60 3.11 -- [89] 
  0.69 3.02b -472.8c [80] 

Ca2+ 40.08 0.99a 4.12 -- [82] 
  1.23 2.53 -- [89] 
  1.00 2.71b -359.4c [80] 

Cu2+ 63.55 0.72a 4.19 -- [82] 
  0.73 2.97b -480.0c [80] 
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Zn2+ 65.39 0.74a 4.30 -- [82] 

  0.74 2.80 -- [89] 
  0.75 2.95b -466.9c [80] 

Mg2+ 24.31 0.65a 4.28 -- [82] 
  0.72 3.00 -- [89] 
  0.72 2.99b -437.0c [80] 

Mn2+ 54.94 0.80a 4.38 -- [82] 
  0.83 2.86b -420.3c [80] 

aCrystal radii reported by Nightingale [82] 
b Manually calculated as ionic radius plus the width of shell from Table 1 in [80] 
cExperimental values that were converted to absolute values with the choice of 
∆hydG°[H+]=-252.2 kcal.mol-1 
dAs reported by [83] using TIP3P water model 

 

2.1.2 Definitions of Solute Radius 
 
A major challenge in understanding ion behaviour in bulk solution, and subsequently in 

understanding membrane processes, lies in the definition of solute radius.  As shown on 

Table 2-1, there can be considerable discrepancy in reported values, even of the same 

type, due to differences in measurement techniques and assumptions.  Generally 

reported values of ionic radius (or “crystal” radius if determined with crystallography) 

are fairly consistent; however this is an inaccurate representation of the effective size 

when in water due to hydration.  Even the definition of “hydrated” radius varies.  For 

example, when determined with molecular dynamics simulations that reproduce 

experimental hydration energies, sometimes the hydrated radius is defined as the first 

peak of the oxygen density profile away from the centre of the ion (called a Radial 

Distribution Function, as shown on Figure 2-3), and other times it is defined as the first 

base of the first oxygen density profile.  This further supports that it is best to use data 

reported by one source so that trends are consistent. 



Chapter 2. Ion Transport Principles: A Review 

29 
 

 

0 2 4 6 8
0

2

4

6

8

Base

 

 

R
ad

ia
l D

is
tr

ib
ut

io
n 

F
un

ct
io

n 
( 

--
 )

Distance from Ion Center (
Å
)

First Peak

Anion

Water

Oxygen

 

Figure 2-3. Example radial distribution function showing the possible definitions of 
hydrated radius made from the first peak (most common) or base of the oxygen 
density profile away from the centre of an ion. 
 

For membrane applications, the Stokes radius is commonly used to describe the 

effective ion size [36, 92, 93].  Stokes radius represents the effective size of a theoretical 

solid sphere that diffuses at the same speed as the ion of interest [81].  An ion with high 

mobility will have a small Stokes radius and vice versa.  Although Stokes radius 

represents mobility, it is inherently unrealistic as it is not a measurement of the physical 

size of the hydrated entity. Stokes radius, rs (m) is calculated as  

 

,
6

B
s

k T
r

Dπη
=  Equation 2 

 

where kB is the Boltzmann constant (J.mol-1.K-1), η is viscosity (kg.m-1.s-1), T is 

temperature (K) and D is the solute diffusion coefficient (m2.s-1).  Other radii which are 

sometimes reported are Born’s radius, cavity radius and Pauling radius, but as these are 

not used anywhere in this thesis they will not be described. 

 

Obviously, this discrepancy in understanding the effective size of a solute has major 

implications for understanding fundamental ion behaviour.  Hussain et al. [92] 

evaluated the effect of different ion sizes on the prediction of NF systems and found that 

it, unsurprisingly, has a considerable effect.  Understanding how ions interact at a 

fundamental level, and in particular with membranes, remains a challenge.  

Improvements in this area would provide a valuable contribution to the field. 
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2.1.3 Impact of pH on Ion Properties 
 
Inorganic contaminants are significantly impacted by water quality characteristics, and 

in particular, pH.  Solution pH has a significant role in the speciation of elements as the 

number of hydrogen atoms available for interaction as well as oxidation-reduction 

transformations will determine what type, relative amount, charge, and form of a 

species is present [72, 94].  For example, Smedley and Kinniburgh determined two 

main triggers leading to arsenic release in natural waters.  First, the development of high 

pH conditions (pH >8.5) in semi-arid or arid environments leads to desorption of 

adsorbed arsenic (especially As+5) from mineral oxides.  The second trigger occurs at 

near neutral pH values with strongly reducing conditions, which again results in the 

desorption of arsenic (As+3 is relatively abundant in this case) [29].  Typical pH values 

of groundwaters vary significantly globally, and thus an understanding of how inorganic 

trace contaminants behave at varying pH levels is important to understanding how to 

best reduce them to safe levels [72].  The specific effect of pH on contaminant 

speciation and filtration with NF/RO will be discussed in Section 2.3.5 and will be the 

subject of results presented in Chapters 4 and 5. 

 

2.1.4 Ion Pairing 
 

Another phenomenon worth mentioning about the interaction of ions in bulk water is 

ion pairing.  Ion pairing occurs when oppositely-charged ions are close together and the 

energy of their mutual electrical attraction is considerably greater than their thermal 

energy (2kT, for a 1:1 electrolyte). The electrical attraction pulls the ions together while 

the thermal energy causes the motion of the ions.  Therefore, when the electrical 

attraction is attractive enough, a new entity is formed which is which is stable enough to 

persist through a number of collisions with solvent molecules [76].  For a 1:1 

symmetrical electrolyte, like sodium chloride, the resulting ion pair has no net charge, 

but is still has a dipole moment due to its polarization [76].  For this type of electrolyte, 

the rule of thumb for the critical distance where ion pairing can potentially occur is at a 

distance of q = 2kT = 3.57·10-10 m (at 25 °C).  At distances greater than this, the 

attractive forces between the ions are not strong enough for pairing to occur [76].  Of 
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course, like all ion interactions, this becomes complicated because ion pairing is more 

likely for some electrolytes than others [76].  Optimal conditions for ion pairing occur 

when a cation is weakly hydrated (potassium is much more likely to pair than sodium), 

and an anion, especially polyatomic, has an inherently polarizable structure.  In this 

situation with a weakly hydrated cation and very polarizable anion, the attractive forces 

between the ions can more easily overcome the hydration forces of each individual ion.  

Given these optimal conditions, pairing is likely for potassium nitrate in water.  This is 

because nitrate has a planar configuration which may allow a cation (in particular 

weakly hydrated potassium) to approach in one direction with distances less than the 

critical distance of roughly 3.57·10-10 m.  It has been roughly estimated that about 3% of 

0.1 M potassium nitrate is paired in bulk solution, but this is very difficult to measure 

[76]. 

 

Molecular dynamics simulations have been used to examine potential ion pairing in 

alkali halide solutions to overcome the limitations of experimental measurements [95-

97].  Fennell et al. [95] showed that there are a number of different ways in which alkali 

halides can be paired: contact ion pairing, solvent-shared ion pairing and solvent-

separated ion pairing, which are shown in Figure 2-4 [95, 97].  Different types of 

pairing involve different interactions with the hydrated later of the paired ions and are 

driven by the most energetically favourable arrangement.  Although ion pairing is not 

the focus of this work, it is mentioned as it is directly related to ion hydration, ion 

interactions and ion properties in water. 

 
Figure 2-4. Different types of ion pairing adapted from [97]. 
 
 
The properties of ions in water were described in order to provide a basis for 

understanding transport mechanisms of NR/RO.  Ion properties are affected by 

contact pair 

+ - + - + - 

solvent-shared pair solvent-separated pair 
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interactions with water molecules and environmental factors such as pH and the 

presence of other ions.  As such, these parameters will also affect the transport of ions 

through membranes.  The next section discusses the use of NF/RO for the removal of 

inorganic contaminants. 

 

2.2 Nanofiltration and Reverse Osmosis for Inorganic Contaminant 
Removal 

 
 

NF/RO membranes are well-accepted water treatment technologies capable of 

desalination and reducing concentrations of other compounds found in natural waters.  

NF removes multivalent ions and has high organics removal, while RO retains both 

mono- and multivalent ions.  NF/RO membranes are typically hydrophilic, negatively-

charged polymers, and removal of ions tends to be specific to the particular membrane 

and ion characteristics and speciation [94].  NF/RO membranes can be quite effective at 

reducing nitrate, arsenic, aluminium, fluoride, boron, and uranium concentrations in 

natural waters [53, 57, 98-103]. 

 

The underlying separation principles of NF/RO membranes involve the combination of 

electrostatic and steric interactions associated with charge shielding, Donnan exclusion, 

and ion hydration as well as other effects such as diffusion and convection [54, 94, 98].  

Ion transfer through NF/RO is therefore affected by membrane characteristics, operation 

parameters, and feed water characteristics.  Specifically, membrane surface charge, 

chemistry, thickness, pore size and age of membrane, transmembrane pressure, and 

hydrodynamics regimes as well as feed water composition, pH, and temperature all 

contribute in varying degrees to ion passage through the membrane [104].  

 

This section will discuss the primary mechanisms of NF/RO and how operating 

conditions affect them. 
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2.2.1 Steric Hindrance 
 
Size exclusion, or steric hindrance, is an important mechanism of ion retention that is 

based on the physical size of a solute.  Size exclusion refers to the process in which the 

size of a solute is larger than the pore size.  Thus, the solute can not fit through the 

membrane pore and is retained, as shown on Figure 2-5.  In this case, both ions are too 

large to “fit” into the membrane pore.  This is like a sieving phenomenon, but in reality 

the interactions are complex because the neither the size of the solutes nor pores is 

uniform [105].  The transport and removal of ions during the membrane process is 

significantly impacted by hydrated radii and strength of hydration shells because the 

variations in hydrated ion size determine which ions will be able to pass through the 

membrane pores via convection or diffusion [77, 106, 107].  Ions with relatively small 

crystal radii have higher charge, higher hydration numbers, larger hydrated radii, and 

hold hydration shells more strongly [77].  Conversely, ions with larger crystal radii have 

weaker hydration shells and smaller hydrated radii, and hence may be able to detach 

from their hydration layer when passing through the membrane [77].  In Figure 2-5, 

both the ions alone and the ions with their associated first hydration shell are larger than 

the pore, but this is not always the case. 

 

 
Figure 2-5. Simplified schematic of ions retained by the steric hindrance 
mechanism in a membrane with uniform pore sizes. 
 

Tansel et al. showed that the ion permeability through NF is strongly correlated with 

hydrated radii (shown on Table 2-1) [77].  Ions with relatively small crystal radii, high 

hydration number, strong energies of hydration and large hydrated radii (eg. Mg2+ and 

Ca2+) were effectively removed by both dead-end and cross flow NF modules.   

+ - 
membrane 

pore 
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Alternatively, ions with larger crystal radii such as K+ and Na+ have weaker hydration 

shells and smaller hydrated radii, and hence may be able to detach from their hydration 

layer while passing through the NF membrane unretained [77].  For example, Favre-

Réguillon et al. explain that higher rejection of Mg2+ compared with Ca2+ in a NF 

experiment may be due to the fact that magnesium ions, although smaller, display larger 

hydrated diameters than those of calcium ions [100].  The strength of hydration is 

impacted by ionic structure and water composition as well as environmental factors 

such as pH, ionic strength, and temperature [77, 108].  Results from another study 

indicate that if retention trends are not consistent with the size of the hydrated ions, 

charge exclusion is likely the predominant mechanism [108].  Thus, the effective solute 

size directly impacts size exclusion and it is very important to understand the role of 

hydration in this process in order to know which ions may be excluded under what 

conditions.  If dehydration occurs during transport, this reduces the effective solute size 

and hence reduces retention due to size exclusion. 

 

2.2.2 Charge Interactions 
 
 
Another prevailing NF/RO mechanism, and the only established non-sieving 

mechanism, is charge interactions.  Charge interactions between the charged membrane 

and ions in solution occur [77, 109-111].  This results in charge exclusion between the 

typically negatively-charged membrane surface and the ions present in solution.  This 

phenomenon is called the Donnan potential.  Anions are repelled from the membrane’s 

surface, thus increasing anion rejection by the membrane, as shown on Figure 2-6 [77, 

98, 101, 104].  The Donnan potential is impacted by surface charge and chemistry 

(membrane specific), feed water composition (including pH, electrolyte concentrations, 

and ionic strength), as well as flux and hydrodynamic conditions [77, 111-113].  The 

membrane charge density depends on ionic strength and concentration, and can be 

partially attributed to ion adsorption on the membrane surface [114].   
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Figure 2-6. Simplified schematic of an anion repelled from a negatively charged 
membrane surface. 
 

 

In the Donnan exclusion model, the rejection of the multicharge anions by a negatively 

charged membrane is highest, whereas that of the bivalent or monovalent cations is the 

lowest [100].  The Donnan potential is impacted by the membrane surface charge and 

chemistry as well as the feed water composition [77, 98, 101, 104].  Membrane surface 

charge in particular is an important parameter impacting compound retention.  Most thin 

film composite membranes have a negative surface charge at neutral pH due to 

deprotonated acidic functional groups, but surface charge has been found to vary 

between membranes and is dependent upon feed water chemistry including pH, 

electrolyte concentrations, and the presence of natural organic matter.  The rejection of 

inorganic ions is reported to increase during conditions favouring a membrane surface 

charge that can electrostatically repulse the ion being studied [111].  Increased feed 

water ionic strength, especially in the form of divalent cations such as calcium and 

magnesium, results in a reduced negative surface charge since the ions can bind to the 

negatively charged membrane surface, subsequently resulting in a reduced rejection of 

inorganic ions [111].  Bellona and Drewes [111] hypothesized that charged organic 

compounds with molecular weight similar to the molecular weight cut-off of a 

membrane are less affected by these decreased electrostatic interactions due to the 

dominant role of steric exclusion in the rejection of these compounds.  However, the 

removal of charged compounds of smaller molecular weight than the molecular weight 

cut-off can be affected by the reduced negative surface charge of a membrane [111].  

Minimum salt rejection has been observed at the isoelectric point (point of zero charge) 

of the NF membrane surface [115] which is likely due to the minimal ionic interactions 

between the membrane surface and the solutes at that point.  This demonstrates that 

+ 
- 

pore 

repulsion 

- - - - - - - - negatively-charged membrane 
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charge interactions are very important for membrane filtration and depend both on 

membrane and solute properties. 

 

The electroneutrality condition requires that charge must be balanced on either side of 

the membrane.  This means that in the case of a negatively charged membrane, the 

negatively charged co-ion would be the limiting concentration here (because of 

repulsion) and thus the transport of positively charged ions will have to balance that of 

the co-ions.  Thus, ions with a higher or lower permeability affect the permeability of 

other ions in order to maintain electrostatic neutrality.  A similar principle could be 

linked to dehydration, where transport may be limited according to solute properties 

such as hydrated size or strength, while electroneutrality requirements must still be 

maintained. 

 

Dielectric exclusion is another charge interaction that is a proposed cause for ion 

rejection in NF.  Dielectric exclusion occurs due to the polarization at the 

water/membrane interface [109, 116, 117].  It is caused by the interactions of ions with 

the bound electric charges induced at the interfaces of media of different dielectric 

constants (eg. water and polymer).  Dielectric exclusion can actually enhance Donnan 

exclusion making these net charge interactions significant under certain conditions. 

 

Charge interactions will be considered throughout this thesis, and particularly in 

Chapters 4 and 5 where pH is a key variable (pH directly impacts charge interactions as 

will be discussed in Section 2.3.5). 

 
 

2.2.3 Diffusion and Convection 
 

Diffusion is a balance of two forces: (1) the gradient of chemical potential for a 

particular ionic species and (2) an electric field created by the motion of oppositely 

charged ions [76].  Electroneutrality requires that anions and cations must move at the 

same overall speed.  Thus, less mobile ions must speed up and more mobile ones must 

slow down in order to keep the forces balanced [76].  Even in bulk solutions, diffusive 

interactions become very complicated in non-dilute (>0.01 M) solutions because the 

motion of solvent molecules must be considered as well as that of the solute [76]. 
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Diffusion is a concentration driven process that follows the general form of Fick’s first 

law: 

dx

dc
DJdiffusive −= , Equation 3 

 

where Jdiffusive is the diffusive flux (mol.h-1.m-2), dc/dx is the concentration gradient 

across the membrane (mol.m-4) and D is the diffusion coefficient (m2.s-1) of the solute 

of interest.  In NF models, the diffusion coefficient is corrected for the hindered nature 

of the pore and this will be described in Section 2.4. 

 

Diffusion in membranes is hindered but the fundamental process remains the same: for 

ions to move from a concentrated side (the feed) to a dilute side (the permeate).  The 

difference is that there now is a membrane in between.  Interactions with the membrane 

affect diffusion [118], and also the concentration of water in the membrane (degree of 

swelling) [119, 120].  This is obviously membrane-specific and because it depends on 

the structure and chemical nature of the polymer, there is significant variation [119].  

The predictive ability of theoretical models remains very limited because they are not 

able to account for the very individual character of polymer-solvent-solute interactions 

and the exact polymer composition of commercial membranes is proprietary [119].  

Diffusion is a dominant salt transport mechanism in many NF/RO membranes. 

 

Convective transport involves the solutes being “carried” in the solvent stream through 

the membrane.  In convection, larger solutes are better retained via steric hindrance.  

Convective transport is directly related to permeate flux (and thus applied pressure) and 

concentration. 

 

Diffusion and convection are difficult to separate from each other in pressure driven 

systems because both occur simultaneously.  Both are affected by the solute properties 

and concentration.  However, different operating conditions, and in particular pressure, 

lead conditions to be more conducive to the dominant effect of one over the other.  This 

will be discussed in more detail in Section 2.2.8. 
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As both diffusion and convection are strongly influenced by solute size, again the 

necessity for a better understanding of the effective size of a hydrated ion during 

membrane transport is highlighted. 

 

2.2.4 Precipitation 
 
Accumulation of solutes on the membrane surface can result from precipitation due to 

concentrations at the membrane surface exceeding solubility limits [121].  Deposit 

formation and the possible consequent variation of membrane characteristics affect 

apparent retention.  The actual concentration at the surface (or boundary layer 

concentration) depends on membrane characteristics, solution chemistry (eg. feed 

concentration and pH), and operating conditions (eg. pressure, cross flow velocity, 

hydrodynamics), and cannot be measured.  Deposition on the membrane surface can 

result in membrane scaling, which reduces permeate flux and quality, requires chemical 

cleaning, and may lead to physical damage of the membranes and hence a reduced 

lifetime.  This is of particular interest for the filtration of natural groundwaters, which is 

the subject of Chapter 4, because carbonate-based solutes (eg. MgCO3), common in 

natural waters, are highly insoluble and thus may precipitate during filtration which can 

affect both retention and flux. 

 

2.2.5 Dehydration 
 
The specific role of hydration in controlling transport in NF is not yet well-understood.   

A number of studies have correlated ion transport with hydrated radius [77, 122] or 

hydration energy [122], rather than ionic radius.  It has been observed several times that 

ions with smaller ionic radii have higher hydration energy and larger hydrated radii 

which retards their transport through the membrane [77, 85, 100, 122-124].  As such, it 

is not the ionic size that dictates transport, but the hydrated size.  Further, ions with less 

strongly bound shells may actually detach from their hydration layer while passing 

through membrane [77, 125].  This has direct implication on the size exclusion 

mechanism (Section 2.2.1) if the effective size of the ion is actually changing during the 

transport process.  The effective ion size (and hydration state) thus directly impacts all 

mechanisms of transport. 
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Due to the inability to measure this effect directly experimentally, some simulations 

have been conducted to study the effect of potential dehydration through narrow pores.  

This effect has been simulated in carbon nanotube membranes, where ions were shown 

to have different energy barriers depending on ion type, pore size and pressure when 

entering hydrophobic pores as a consequence of dehydration [126, 127].  The energetic 

expense of chloride transport in cylindrical Si3N4 nanopores was also related to the 

stripping of ion hydration layers [128].  Most of the work in this area has focused on 

ions relevant to biological channels such as potassium and sodium [129, 130].  The 

results of the relevant simulations will be discussed in Section 2.5.  A primary objective 

of this thesis is to explore the effect of dehydration on ions relevant to drinking water 

purification, namely fluoride, chloride, nitrate and nitrite, which will provide new 

understanding of membrane selectivity. 

 

Understanding the role of hydration/dehydration in ion transport is very important 

because it essentially affects all of the retention mechanisms discussed.  Namely, the 

effective size will be affected according to hydration state (hydrated, dehydrated or 

partially hydrated), and thus steric interactions will be impacted.  Diffusion and 

convection will also be affected by hydration state.  Charge interactions may also be 

affected as strong hydration layers may shield charge repulsion. 

 

2.2.6 Ion Pairing 
 
An NF/RO mechanism which has been proposed is that ions can transport through 

membranes paired together [131].  The rationale for this is that the difference conditions 

near the membrane surface (in particular the increased concentration) can make ion 

pairing more amenable for certain ions (such as potassium nitrate).  If 1:1 ions are 

paired, the net charge of the paired entity is neutral so charge repulsion would be 

minimized. Matsumoto et al. [131] demonstrated that ion pairing was substantial in a 

charged, low-water-content membrane both theoretically and experimentally.  Ion 

pairing was used to explain the greater rejection of Na2SO4 (< 1% paired) as compared 

to MgSO4 (16 – 17 % paired)  [132].  However, another study concluded that ion-

pairing was not responsible for the transport of NaCl, Na2SO4, MgCl2 or CdSO4 in 

commercial polar RO and NF membranes [133].  Rather, it was suggested that coupled 
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transport occurs where individual ions partition and transport in a way that maintains 

the electroneutrality requirement [133].  This remains an area which is not yet well-

understood, and although it is not the focus of this work, it is relevant to fundamental 

ion transport in membranes. 

 

2.2.7 Sorptive Interactions 
 
Although sorptive interactions are not a focus of this work, it is important to mention 

them for the sake of completeness.  Adsorption is primarily related to the organic 

solutes and generally occurs when they have a high hydrogen bonding capacity and are 

sparingly soluble in water [134].  This allows them to have attractive interactions with 

the membrane material.  Water flux in RO membranes is also believed to be due in part 

to a sorption-diffusion process and thus greatly dependent on the waters ability to form 

hydrogen bonds with the hydrophilic groups of the membrane polymer [135].  This 

adsorptive water binding to the membrane can hinder the flux.  Although usually 

associated with organic solutes, higher partitioning of nitrate compared with chloride on 

a thin film composite membrane has been observed [136].  For inorganic contaminants, 

sorptive interactions are generally much smaller than dominate charge and size 

interactions which are the focus of this work. 

 

2.2.8 Interplay Between Mechanisms 
 
In pressure driven NF/RO, there is rarely only one mechanism that affects transport.  

The interplay between mechanisms is complex and strongly depends on operating 

parameters, solute properties and membrane properties. The dominant retention 

mechanism depends on the specific compound characteristics, feed solution chemistry, 

membrane characteristics (especially charge), and operational parameters (in particular 

applied pressure) [37, 107, 108, 137-143].  Theoretical models using the extended 

Nernst-Planck (ENP) equation have been used to predict the relative influence of 

contributing mechanisms, namely convection (pressure gradient), diffusion 

(concentration gradient) and electromigration (electric potential gradient) [109, 144-

147] and these models will be explained in more detail in Section 2.4.  If dehydration 

occurs as a part of transport, it will directly impact the effective solute size and thus 
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directly contribute to both convective and diffusive interactions.  A summary of the 

mechanisms discussed is shown in Table 2-2 with general guidelines of when one 

particular mechanism may be dominant.  In practice, the dominant mechanism is highly 

dependent on operating parameters, solute properties and membrane properties and thus 

this general summary is not applicable to every circumstance. 

 

Table 2-2. NF/RO mechanism and conditions which are amenable to that 
particular mechanism.  Note that this is meant to be qualitative and general, as 
conditions for a particular mechanism to be dominant are highly dependent on 
operating parameters, solute properties and membrane properties. 
Mechanism Conditions When Dominant 
Steric Hindrance when the size of the solute (both hydrated and ionic size) are 

much larger than the narrowest part of the pore 
Charge Repulsion/ 
Electromigration 

when the membrane is highly charged (typically at high pH 
values) and multivalent ions are freely present in solution, at 
high membrane thickness to porosity ratios 

Diffusion when the size of the solute (both hydrated and ionic size) are 
smaller than the narrowest part of the pore (or in non-porous 
membranes), at low pressure conditions, at low membrane 
thickness to porosity ratios. 

Convection at high pressure and flow conditions (eg. high flux), especially 
when pore is larger than the solute, at high membrane thickness 
to porosity ratios.  The contribution of convection to salt 
transport in the active layer of most thin film composite NF/RO 
membranes is small [148-152]. The relative contribution of 
diffusion and convection can be estimated by the Peclet (Pe) 
number.  Typical values for NF membranes for volumetric flux 
and the thickness to porosity ratio, respectively, are on the order 
of 10-5 m.s-1 and 10-6 m.  If Pe is calculated from the typical 
value of ion diffusivity in bulk water (on the order of 10-9 m2.s), 
Pe ≈ 10-2, suggesting that the contribution of convection is small 
and diffusion dominates (since Pe < 1).  However, if pore 
diffusivities are used in this calculation (on the order of 10-11 to 
10-13, as determined using diffusion cell experiments), Pe is in 
the range of 0.1 to 10, and the conclusion about if diffusion or 
convection dominates may be different.  The balance between 
diffusion and convection is thus complex and cannot be 
generally concluded for every case. 

Precipitation at concentrations above saturation level at the membrane surface 
for insoluble solutes such as Ca2CO3 or Mg2CO3 

Dehydration yet to be evaluated, but expected to be dependent on hydrated 
size to pore size ratio, and hydration strength of the solute 

Ion Pairing yet to be evaluated, but expected only at very high 
concentrations 

Sorptive Interactions when there are highly favourable interactions between 
membrane polymers and organic solutes 
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Szymczyk et al. [144] conducted a thorough review of the impact of specific parameters 

(pore size, membrane charge density, volumetric flux, and thickness to porosity ratio) 

on the relative contributions of convection, diffusion and electromigration to electrolyte 

transport.  This review used the framework of the Donnan steric pore model (DSPM) 

based on the ENP equation (the details of the model will be discussed in Section 2.4).  

In summary, it was found that diffusive transport is expected to be dominant under 

conditions with low permeate flux, low membrane thickness to porosity ratio, and high 

membrane charge.  Convection is expected to be dominant with high permeate flux and 

membrane thickness to porosity ratio and/or low membrane charge density.  

Electromigration never dominated transport when cations and anions had identical 

diffusion coefficients.  With unequal diffusion coefficients (the case in practice) 

electromigration was the dominant mechanism for certain values of membrane charge. 

 

A schematic of how convection, diffusion and electromigration all occur at the same 

time is shown in Figure 2-7 [145].  Here, there is a positive convective and diffusive 

drive from a pressure and concentration gradient for both co-ions (same charge as the 

membrane) and counter-ions (opposite charge as the membrane).  The electromigration 

attraction of the counter-ions to the membrane surface results from attractive charge 

interactions between, for example, a membrane with fixed negatively charged groups 

and positive ions (or vice versa).  Thus, co-ions are excluded from the membrane and 

counter-ions are attracted, resulting in lower concentration of co-ions than counter-ions 

in the membrane.  Note that all transport is in the direction of the permeate side with the 

exception of the electromigration of counter-ions oriented towards the feed solution.  

For any electrolyte, the sum of the total co-ion flux (Jco-ion, mol.h-1.m-2) must be equal to 

the total counter-ion flux (Jcounter-ion, mol.h-1.m-2) [145].  Because the total flux of co-

ions must equal that of the counter-ions to maintain electroneutrality, the convective 

flux of counter-ions must be larger in magnitude in order to balance the charge 

repulsion. 
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Figure 2-7. Schematic of interplay between diffusion, convection and electrostatic 
interactions in the case of positive retention and attraction of counter-ions to fixed 
charge groups on the membrane (adapted from [145]). 
 

To illustrate potential interactions schematically in a different way, Figure 2-8 is 

provided.  This figure shows a number of different interactions and mechanisms that 

can occur during transport.  For example, the negative surface attracts positive cations 

towards it and repels negative ions (charge repulsion and Donnan equilibrium).  

Attractive forces can occur between fixed charge groups on the membrane material and 

positive cations.  An ion may become dehydrated while transporting through the 

narrowest part of the pore (dehydration and/or size exclusion).  Ion pairing can occur in 

free solution, while transporting or with fixed charged groups on the membrane.  This 

shows the complexity of the interactions which are even further complicated when 

driving forces such as pressure, concentration and temperature are involved (which 

affect convection, diffusion and electromigration simultaneously, as shown on Figure 

2-7). 
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Figure 2-8. Exaggerated schematic of potential interactions (adapted from [131]).  
A tortuous pore with fixed negative functional groups interacts with ions in 
solution, which are driven in the direction of flow due to an applied pressure. 
 

2.3 Impact of Operating Parameters on Inorganic Mass Transport in 
NF/RO  

 
Operating parameters such as pressure, flow, concentration, pH and temperature 

strongly affect mass transport.  They affect the dominant mechanisms, the properties of 

the membrane, the properties of the solute and conditions at the membrane surface.  The 

effect of each key operating parameter will be reviewed.  Pressure, flow and 

concentration are discussed as these are relevant to Chapter 4, where changing 

renewable energy conditions impact each of these things.  The importance of pH is 

discussed, as this is the subject of parts of Chapter 4 and Chapter 5.  The impact of 

temperature and energy barriers on ionic transport are the subject of Chapter 7. 
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2.3.1 Impact of Pressure 
 
Applied pressure directly influences the performance of NF/RO.  Pressure is the driving 

force for convective flux and thus strongly impacts both flux and retention of solutes.  

Volumetric flux (Jv) is directly related to pressure by  

 

tot

membrane
v R

P
J

η
π∆∆ −

=  Equation 4 

 

where ∆P is the applied hydrostatic pressure (bar), ∆π is the osmotic pressure difference 

across the membrane (bar) (dependent on concentration and temperature), η is viscosity 

(mol.m-1.s-1) and Rtot (m) is the total resistance which includes the membrane itself and 

resistance due to other factors such as concentration polarization or fouling.  The 

applied pressure must be larger than osmotic pressure at the membrane surface to 

induce transport. 

 

Concentration polarization is a phenomenon that occurs in pressure-driven processes 

such as NF/RO [153, 154].  The retained, or partially retained, solutes can accumulate at 

the membrane surface where their concentration gradually increases.  A schematic of a 

concentration profile is shown in Figure 2-9. Concentration polarization results in the 

concentration at the membrane surface (cm) being higher than the concentration in the 

bulk (cb).  This effect is most significant at low flow and high pressure conditions.  

Backwards diffusion then occurs from the concentration at the membrane surface 

towards the bulk solution. 
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Figure 2-9. Generic schematic of concentration polarization (adapted from [153]).  
Note that the membrane support later is much thicker than the active layer in 
NF/RO but this was not shown on this schematic as the concentration drop occurs 
in the active layer when pressure is applied. 
 
The concentration at the membrane surface can be calculated [153].  This is derived 

from film theory considering the steady state conditions which occur when the 

convective transport of the solute to the membrane equals the sum of the permeate flow 

and the diffusive back transport of the solute, as in 

  

pvv cJ
dx

dc
DcJ =+ , Equation 5 

 

where c is concentration (mol.L-1), D is the diffusion coefficient (m2.s-1), dc/dx is the 

change in concentration across the membrane (mol.L-1), and cp is permeate 

concentration (mol.L-1).  When Equation 5 is integrated across the boundary layer with 

the boundary conditions of c = cm at x = 0 and c = cb at x = δ, this yields  
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−
− δ

 Equation 6 

 
 
where δ/D is the mass transfer coefficient kf (m.s-1) which can be experimentally 

determined [154].  The relationship provided in Equation 6 can be used to correct 
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experimentally measured retention (using bulk and permeate concentrations that can be 

measured) for concentration polarization. 

 

Concentration polarization results in increased osmotic pressure, which reduces the 

pressure driving force across the membrane.  Thus, flux decreases and there can be an 

increased risk of scaling, which is an operational problem that can reduce membrane 

life.  The conditions where concentration polarization is greatest is for high pressures 

and low crossflow velocity [155]. 

 

The impact of pressure on retention has been well-documented in the literature [38, 108, 

140, 156-160].  In most cases, a increase in retention with pressure is reported [38, 108, 

140, 156, 158-160], which can be explained by the increased flux at higher pressures.  

At infinite fluxes, intrinsic retention approaches the reflection coefficient and observed 

retention tends to zero, according to film theory.  The contribution of diffusion remains 

constant with pressure and the increase in water flux surmounts the increase in 

convective transport of the solute, and as such retention increases.  Occasionally a 

decrease in retention with pressure is reported [38] or constant retention with pressure 

[108, 156] which can occur for relatively large solutes (as compared to the pore size), 

which are excluded due to their large size. 

 

2.3.2 Impact of Concentration 
 
The impact of concentration is closely linked to the impact of pressure due to 

concentration polarization.  The retention of NaCl decreases with increasing 

concentration, which can be explained by the fact that the increased osmotic pressure 

difference results in a decrease in flux (and thus higher concentrations in the permeate).  

Another explanation is that at high concentrations of NaCl (and thus high ionic 

strengths), the electrical double layer of the membrane becomes thinner [143, 161].  

This, in effect, implies that the membrane charge (and thus charge repulsion) has less 

influence as the concentration of salt increases [143, 161].  The thickness of the double 

layer is called the Debye length (κ-1), and is defined as the thickness of the mobile layer 

where the potential has decreased to a value of the potential at the Stern plane (ψD) 

divided by e (e = 2.718).  Debye length represents the distance from a charged surface 

where the electrical energy and thermal energy are balanced, and the physical 
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significance of this is shown on Figure 2-10.  Debye length is concentration dependent.  

Detailed discussion of Debye length and the corresponding theories can be found in 

aquatic chemistry textbooks such as Stumm and Morgan [162].  For membranes with 

small pore sizes (such as Dow Filmtec BW30 or NF90), the effect of increasing 

concentration on retention is very small [143, 161].  On the other hand, the normalized 

flux of these same membranes was strongly reduced when concentration was increased 

[161].  This was explained because due to the shielding of the membrane charge by high 

ionic strength, the repulsion in the pores will decrease.  This results in more pore 

blocking and hence lower fluxes.  The most hydrophilic membrane still had the highest 

fluxes.  In addition, increasing concentration increases the diffusive driving force across 

the membrane.  It’s important to consider the impacts of concentration both in bulk 

solution and at the membrane surface. 

 

 

Figure 2-10.  Physical significance of Debye length (κ-1, nm) represented by 
chemical potential decreasing with distance away from the membrane surface 
(adapted from [94, 110, 153]). Surface potential is ψ0; the Stern potential is ψD, the 
transition from fixed to mobile charge, the actual potential affecting charged 
solutes and cannot be measured; and κ-1 is defined as the thickness of the mobile 
layer where ψ = ψD/e. 
 

2.3.3 Impact of Flow 
 
Flow impacts concentration polarization in addition to pressure.  Crossflow velocity 

directly affects hydrodynamic conditions.  Mass transport at the membrane surface is 
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theoretically related to fluid mechanics parameters such as crossflow velocity, solution 

viscosity, diffusion coefficients and dimensions of the inlet.  These interactions can be 

represented by empirical hydrodynamic relationships such as the Sherwood, Reynolds 

and Schmidt number [153, 154, 163, 164], however they are highly dependent on 

equipment setup due to hydrodynamic variability.  In order to avoid this discrepancy, 

the concentration polarization level can be determined experimentally using a simple 

method described by Sutzkover et al. [154] which represents a net impact of all of the 

conditions affecting the membrane surface (flow, pressure and concentration).  This 

method is described in Chapter 3.5 because it is based on experimental measurements.  

Koyuncu and Topacik [165] observed that increased crossflow velocity resulted in 

higher rejection of NaCl, which is attributed to less concentration polarization under 

high-flow conditions.  This was most noticeable for low salt concentrations [165]. 

 

2.3.4 Impact of Varying Energy 
 
As shown in the previous sections, operating conditions (in particular pressure, flow and 

concentration) significantly affect membrane performance and mechanisms.  When a 

renewable energy source is used to directly power NF/RO (without battery storage), the 

fluctuations in power input consequently lead to direct changes in pressure and flow.  

Therefore, conditions at the membrane surface are continually changing and all 

mechanisms are subsequently affected.  Consequently, varying energy leads to 

complicated non-steady state interactions and it becomes very difficult to isolate 

particular mechanisms. 

 

There is minimal information in the literature that describes what impacts fluctuating 

energy may have on the effectiveness of the NF/RO membranes, particularly with 

regard to inorganic trace contaminants.  One early study showed that variable feed flow 

velocities have very little effect upon the quality or quantity of the water, provided that 

the feed velocity is not reduced to zero [166].  Another study suggests that if flow 

through the membrane was discontinued for any great length of time (not formally 

assessed), the pressure dropped considerably when the system was restarted and the 

permeate salt concentration would overshoot to high values before returning to normal 

[167].  Park et al. [168] used wind energy to power a reverse osmosis system over 
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fluctuating conditions (wind speed, wind turbulence intensity and period of oscillation).  

For a feed water containing 2750 mg.L-1 NaCl, the system produced good quality 

permeate (< 600 mg.L-1) for all conditions.  At a higher feed concentration of 5500 

mg.L-1 NaCl, fluctuations had a larger impact on performance and an average wind 

speed of > 7 m.s-1 was required to produce adequate permeate (< 1000 mg.L-1).  The 

studies which have been conducted on fluctuating energy have not evaluated the impact 

on trace contaminants.  The area of RE-membrane systems opens an exciting realm of 

research questions and has importance in application-based design. 

 

2.3.5 Impact of pH 
 
As already discussed, NF/RO retention highly depends on both solute and membrane 

characteristics as well as operating conditions [169, 170].  Solution pH is very important 

because it affects not only the different forms (species) in which a solute is present in a 

solution (changing properties such as size, charge and hydration), but membrane 

characteristics (such as charge and pore size) as well [143].  Thus, pH can impacts both 

water flux and solute retention mechanisms (namely charge and size interactions), 

making pH an important parameter for ion retention in NF/RO [107, 112, 141, 171, 

172].   

 

Solute speciation depends on the specific conditions of the feed solution, including pH, 

ionic strength, total elemental concentrations, temperature, and pressure [173].  

Different species of the same solute have different characteristics such as size and 

charge, which affect retention mechanisms.  For example, if an uncharged solute is 

deprotonated at its acid dissociation constant (pKa), charge exclusion may become 

significant.  A change in species affects hydration state and consequently hydrated 

radius, thus impacting retention when size exclusion is important [37, 77]. 

 

Membrane characteristics such as zeta potential [174] and hence retention properties are 

affected by pH.  Solution chemistry, in particular the presence of salts containing 

divalent ions, impacts zeta potential due to the preferential adsorption of divalent 

cations rather than divalent anions to the membrane surface especially in the higher pH 

range [174].  Generally, increasing feed water pH results in an increasingly negative 
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surface charge for most polymeric membranes.  Subsequently, electrostatic interaction 

between ionic compounds and the membrane surface vary according to solution pH 

[143], with minimal retention typically occurring around the isoelectric point of the 

membrane surface due to the minimized electrostatic effects [104, 111, 138, 141, 172].  

Additionally, pH impacts the dissociation of the functional groups on the membrane 

surface which can impact the “openness” of the pores [143].  A study by Childress and 

Elimelech [143] observed NaCl retention was directly related to membrane pore charge 

(rather than the membrane surface), with minimum retention at the isoelectric point of 

the membrane pores.  However, this is not the case for all membranes [143].  The 

importance of pore charge is particularly important for “loose” membranes, when the 

hydrated radius of the solute is smaller than the pore radius [124, 143].  These studies 

show that pH can affect both the charge and pore size of the membrane. 

 

Many of the current research efforts towards understanding pH impact have focused on 

evaluating arsenic removal specifically because of increased attention to this particular 

contaminant as millions of people worldwide are at risk of acute or chronic arsenic 

poisoning due to arsenic naturally occurring in groundwater [27, 28, 175].  One study 

concluded that pH control for RO membrane feed water is essential for the successful 

removal of arsenic but that the effect of solution pH on antimony removal is negligible, 

largely due to the chemistry of both compounds’ species in natural waters [176].  

Another study looked at arsenic species individually, determining that the removal of 

arsenate (As5+) was nearly steady from pHs in the range of 3 to 10, but that arsenite 

(As3+) rejection increased approximately above pH 7.  These results were explained by 

the chemical equilibrium of arsenic compounds [177].  Other studies have also 

concluded that pH affects arsenic removal, with total arsenic rejection increasing with 

increasing pH [175, 178, 179]. 

 

Several studies have also assessed the impact of pH on the removal of other trace 

contaminants.  A study evaluating the rejection of anionic model substances with NF 

determined that the extent of retention of multivalent salts significantly depends on pH 

and membrane characteristics [38].  Other studies have focused specifically on boron 

removal, and have determined that the rejection of boron also depends greatly on pH, 

with highest rejection occurring at pH above approximately 10.5 to 11 [99, 180].  
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Nitrate rejection was shown to increase with pH between 5 and 9 for some membranes 

in a study that varied pH, nitrate and sulphate ion concentration [54].  Ballet et al. 

concluded that phosphate retention increased from 40% to 95% when the pH of solution 

increases from 2.8 to 6 and then the phosphate rejection remained almost constant from 

pH 6 to 10 [108].  The large increase in rejection observed at low pHs is likely caused 

by a combination of the increase of phosphate ions (mostly H2PO4
-) and the membrane 

charge becoming increasingly positive [108].  The subsequent levelling-off of retention 

is explained because an increasingly negative surface can only reject negatively charged 

solutes to a certain level before the effect is offset by pore expansion or membrane 

swelling [108].  Bellona and Drewes made a similar observation when they assessed the 

impact of pH on the retention of several organic acids [111].  Increasing feed water pH 

from 3 to 7 resulted in a significant increase in rejection of organic acids which closely 

follows the percentage of the deprotonated species for each of the compounds and can 

be explained by a combination of the solutes becoming more deprotonated and the 

membrane charge becoming increasingly negative resulting in an increased degree of 

electrostatic repulsion [111].  The maximum rejection of lactate was found at a neutral 

pH, since the increase of charge repulsion at higher pH was cancelled by a decreased 

sieving effect through membrane swelling as the pH increased [111].  Bellona and 

Drewes hypothesized that the increase in permeability as a result of increased surface 

electronegativity may offset the expected increase in electrostatic repulsion between the 

membrane and solute [111].  Based on their experiments, it appears that an increasingly 

negative surface charge can only reject negatively charged solutes to a certain level 

before the effect is offset by pore expansion or membrane swelling [111].  Other studies 

have also reported that rejection of organic acids increased as the pH approached the 

pKa [181, 182].  All of these results emphasize the importance of pH on trace 

contaminant removal.  This will thus be the subject of Chapter 4, where the impact of 

pH on the retention of real groundwater is evaluated, and subsequently the subject of 

Chapter 5 where the impact of pH specifically on the removal of nitrate, fluoride and 

boron is addressed. 
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2.3.6 Impact of Temperature  
 
Temperature also affects transport in NF/RO.  Primarily, temperature increases the 

process of diffusion because molecules at higher temperature have more internal energy.  

By increasing energy, the proportion of solutes with energy greater than the activation 

energy of transport is significantly higher, so the overall transport increases.  The 

activation is due to the hindered nature of transport that occurs when membrane pores 

are similar to the ionic and/or hydrated size of water and dissolved solutes.  Because 

transport through the pores can be substantially hindered, transport is subsequently an 

“activated process”.  Each of the mechanisms contributes to the net activation energy, 

which is the energy barrier that needs to be overcome in order for transport to occur.  

Because of the strong influence of temperature on internal energy, temperature is a 

driver which easily affects the proportion of ions with sufficient energy to overcome the 

barrier to transport.  The increase in ion transport with temperature is usually explained 

by a reduction in solvent viscosity, an increase in solvent diffusion coefficient, an 

increase in polymer chain mobility [163, 183-185] or a change in pore size/membrane 

structure (eg. swelling) [136, 183, 185-187]. 

 

Although NF/RO are conventionally operated at ambient temperatures, a rapid increase 

in proposed NF/RO applications such as water treatment in the sugar and textile 

industry and purification of condensate water from power generators have instilled 

interest in understanding the effect of temperature on NF/RO transport phenomena 

[163].  Further, temperature can be an important parameter if a membrane system is run 

in the field due to the ambient temperature and pumping heat. 

 

2.3.7 Arrhenius Energy Barriers 
 
Because temperature directly impacts NF/RO performance by increasing diffusion and 

changing polymeric properties, Arrhenius theory has been applied to NF/RO.  This is 

important because Arrhenius theory allows a relationship to be established between 

temperature and mass transport or reaction rate by the determination of activation 

energy barriers.  The temperature dependence of water and solute transport through 
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membranes and dense films has been described by the Arrhenius relationship in a 

number of cases [118, 119, 184, 186, 188-193].  The Arrhenius relationship relates 

temperature and solute flux, allowing a determination of the energy barrier from flux 

and temperature measurements [78] according to  

 








 ⋅−=
TR

E
Ak a 1

)ln()ln( , Equation 7 

 

where k is solute flux (mol.h-1.m-2), A is a pre-exponential factor (--), R is the gas 

constant (kcal.mol-1.K-1), T is temperature (K) and Ea is the activation energy or energy 

barrier (kcal.mol-1).  The slope of a linear plot of ln(k) versus T-1 gives the energy 

barrier. 

 

Activation energies for the transport of water and various solutes have been reported.  

However, thus far, energy barriers for NF have not been linked to energy requirements 

for the partial of full dehydration of an ion.  This is important because experimentally 

determined energy barriers can be compared with fundamental energetics of ion 

hydration and ion transport.  This is the interest of the current work (Chapter 7).  A 

review of the activation energies that have been reported in the literature for transport in 

NF follow. 

 

Activation energies of pure water permeation for RO and inorganic NF membranes have 

ranged from around 4.3 to 7.2 kcal.mol-1 [118, 163, 183, 188].  Another study reported 

energy barriers for pure water varied from that for Poiselle pore flow (4.6 kcal.mol-1) for 

membranes with little or no salt rejection to nearly 6 kcal.mol-1 for membranes with salt 

rejections in the order of 99% [188].  For an aromatic polyamide membrane (Filmtec 

NF-200B), activation energy for pure water was around 6.0 kcal.mol-1 and about 8.4 

kcal.mol-1 for a mixture of 9% (w/v) NaCl and 2% (w/v) lactate at pH 3 [190].  The 

increase in activation energy with concentrated solutions was explained by the degree of 

swelling of the polymeric membrane decreasing, thus becoming more geometrically 

constrained [119]. 

 

Energy barriers have also been reported for the transport of some neutral organic 

solutes.  Neutral solutes were selected because they are well defined and lack complex 
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charge interactions [183].  Consistent with free volume theory of activated gas 

transport, activation energies of the permeability of neutral organic solutes (eg. sucrose, 

dextrose, glycerol, ethanol, methanol) in aqueous systems increased with Stokes radius 

and molecular weight indicating hindered diffusion in membrane pores [183].  

Rejection of neutral solutes (raffinose) decreased with temperature due to steric 

hindrance/molecular sieving (resulting in relatively large energy barriers) [163]. 

 

For salt transport, apparent activation energies of salt transport in RO membranes have 

been reported in the range of 4.8 to 7.2 kcal.mol-1 [118, 188].  The energy barrier of 

potassium chloride ranged from 11.9 to 12.9 kcal.mol-1 in NF (NF200) from an ion-

exchanged solution containing potassium clavulanate [193].  Tsuru et al. [163] 

compared the activation energy of different neutral and charged solutes in nanoporous 

titania membranes on the basis of molecular sieving and charge effects.  They 

determined that the energy barrier for neutral solutes is actually larger than for 

electrolytes because neutral solutes have a more tortuous path through the membrane, 

where as charged solutes are “protected” by a double layer so they just pass quickly 

through the membrane.  The electrolytes NaCl and MgCl2 remained constant with 

temperature, which indicated charge effect (Donnan exclusion) was approximately 

constant and resulted in comparatively small energy barriers [163]. 

 

Energy barriers experimentally determined represent the net transport process, although 

some efforts have been made to split these into enthalpic and entropic thermodynamic 

contributions [136].  Enthalpy values were 3 – 5 times larger than entropic, suggesting a 

enthalpy-driven process [136].  Viscous and non-viscous contributions to energy 

barriers can be also be calculated [163, 183, 184].  If the activation energies are greater 

than just the viscous contribution to bulk diffusion, transport across the membrane is 

considered hindered [163, 183].  Non-viscous contributions to activation energies for 

pure water transport across two polymeric thin film composite NF membranes were 

calculated to be 0.931 and 1.53 kcal.mol-1 [183].  Although energy barriers have been 

looked at in a number of cases, there has been no link made yet to the potential 

dehydration of ions during pore transport. 
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2.4 Modelling of Ion Transport in Nanofiltration and Reverse Osmosis 
 
A number of models are used to attempt to understand and predict ion transport in 

NF/RO, and a brief review of the typical descriptive models follows.  There are 

different categories of NF/RO models, namely the irreversible thermodynamic model 

[194, 195], the Stefan-Maxwel model [196], and the hydrodynamic model (which has 

many slight variations based upon the same core principles).  By far, the most widely 

used is the hydrodynamic model, which is based off the extended Nernst Planck (ENP) 

equation.  A summary of available models is shown on Table 2-3. 

 

The irreversible thermodynamic model and the Stefan-Maxwel model, although 

represented by different equations, are equivalent and consider the membrane to be a 

black box when deriving phenomenological equations [196].  The hydrodynamic model 

differs by assuming a geometrical model of the membrane, thus deriving all of the 

transport equations based on this geometry [105].  The hydrodynamic model has been 

widely used for NF pore size characterization because of its direct derivation from 

physical geometry [197-199] and reasonable ability to described NF performance [198].  

The hydrodynamic model was used in this thesis to characterize membrane pore sizes 

(Chapter 3.2.3), and the details are discussed in the next section. 

 

Alternatively, RO membranes are often considered to be dense, non-porous materials.  

As such, the pore assumption made in the hydrodynamic model is not applicable.  

Permeation is slower and rejection is not due to sieving but instead the solution 

diffusion mechanism.  In these circumstances, sorption-diffusion is the most widely 

accepted explanation of water transport in RO membranes, and the solution diffusion 

model is commonly used to explain transport [135].  Some argue that in tight NF 

membranes of pore radius between 0.25 and 0.5 nm, both pore flow and sorption 

diffusion can occur [135].  However, the majority of the work presented in this thesis 

deals with NF and assumes that a pore (of some definition is present), and thus the 

hydrodynamic model is best because it accounts for this geometry. 
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Table 2-3. Summary of available models for transport in NF/RO. 
Transport 
Model 

Primary 
Application 

Basis Comments Reference 

Irreversible 
thermodynamic 
model 

RO Black 
box 

Membrane assumed to be a 
black box, not possible to 
characterize structural or 
electrical properties 

[194, 195] 

Solution-
diffusion model 

RO Black 
box 

Solutes dissolve in the 
membrane material and then 
diffuse through the 
membrane according to a 
concentration gradient.  
Assumes uniform pressure 
within membrane and 
chemical potential is 
expressed only as a pressure 
gradient. 

[135] 

Stefan-Maxwell 
model 

RO Black 
box 

Force balance conducted 
where sum of force on a 
molecule is balanced by 
friction.  Based on diffusion.  
Application is low due to 
mathematical complexity. 

[196] 

Hydrodynamic 
model: 
Electrokinetic 
space-charge 
model 

NF ENP Describes creeping flow of 
charged species through 
charged capillaries.  Ions are 
treated as point charges 
defined by Poisson-
Boltzmann equation.  Ion 
transport across pore guided 
by the extended Nernst 
Planck equation.  
Application is limited by the 
numerical complexity of the 
calculations. 

[200-203] 

Hydrodynamic 
model: 
Improvements 
to the space-
charge model 

NF ENP Derived from space-charge 
models but with the 
approximation of radially 
homogenous ion 
concentration and potential 
across the pore (valid when 
surface charge density is 
relatively small and pores 
are sufficiently narrow, eg. 
normal NF conditions).  
There are many similar 
versions of this model. 
 

[36, 199, 
204-206] 
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Hydrodynamic 
model: Donnan-
Steric Pore 
model 

NF ENP Ion transport described by 
extended Nernst Planck, 
slightly modified to include 
hindered transport and 
equilibrium partitioning to a 
combination of electrical 
(Donnan) and sieving 
(steric) mechanisms.  Most 
commonly used NF model. 

[36] 

Hydrodynamic 
model: Donnan-
Steric Pore 
model with 
Dielectric 
Exclusion 

NF ENP Based on DSPM model with 
incorporation of non-
ideality of electrolyte 
solutions and concentration 
polarization at the 
membrane/feed solution 
interface.  A program for 
numerical integration is 
provided by Geraldes and 
Brites Alves [164] 

[164] 

 

2.4.1 Extended Nernst Planck (ENP) Hydrodynamic Model 
 

NF is often studied using models originally built on fundamental principles of hindered 

transport [207] and solution diffusion [135].  Currently, most NF models are based on 

numerically solving the ENP equation and include separate terms for diffusive, 

convective and electrostatic contributions [143, 144, 198, 208-211].  Detailed effects 

such as concentration polarization [212] and charge adsorption inside pores [213] are 

now being included in transport models.  These models assume that NF membranes 

have pores [36, 37], yet a point of controversy remains about where actual NF ‘pores’ 

lie in the spectrum between discrete pore and dense material [38]. 

 

The Donnan steric partitioning pore model (DSPM), originally developed by Bowen et 

al. [210], is recognized as the most commonly used and has proven to be useful in 

describing relatively simple systems in NF [198].  This model is based on the ENP 

equation and accounts for ionic contributions from convection, diffusion and 

electromigration through cylindrical membrane pores.  It is coupled with an assumption 

of electroneutrality within the membrane as well as Donnan equilibrium at both 

interfaces between the solution and membrane (eg. bulk and permeate side).  The 

membrane is assumed to be a charged porous structure characterized by pore radius, 
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thickness to porosity ratio and charge density.  The volumetric flux within the pore is 

assumed to follow a Hagan-Poiseuilli parabolic profile.   

 

The principle of ENP is that solute flux (j i,total, mol.m-2.s-1) of a particular solute i results 

from the sum of contributions from diffusion (j i,diffusion, mol.m-2.s-1), convection 

(j i,convection, mol.m-2.s-1) and electromigration (j i,charge, mol.m-2.s-1) as in 

 

convection,ieargch,idiffusion,itotal,i jjjj ++= . Equation 8 
 

The detailed form of this equation, where the first term is diffusive, the second 

electrostatic and the third convective, is 
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Here, Di,p (m
2.s-1) represents hindered diffusivity as defined by  

 

∞⋅= ,id,ip,i DKD , Equation 10 
 

where Di,∞ (m2.s-1) is the diffusion coefficient in bulk water and Ki,d (dimensionless) is 

the diffusive hydrodynamic coefficient, which is dependent on the ratio of Stokes radius 

to pore radius (λi, dimensionless).  It is very important to note that the solute size here is 

based on Stokes radius.  In Equation 9, the difference in concentration across the 

membrane active layer is dci/dx (mol.m-4).  The charge term contains ionic valence (zi, 

dimensionless), concentration in the membrane (ci, mol.m-3), Faraday’s constant (F, 

C.mol-1), the gas constant (R, J.mol-1.K-1), temperature (T, K) and the change of the 

potential across the active layer (dφm/dx, V.m-1).  The convective term contains the 

convective hydrodynamic coefficient Ki,c (dimensionless) which is again dependent on 

λi, and the volumetric flux Jv (m3.m-2.s-1).  The relative contribution from each 

mechanism can be calculated by dividing the particular term (j i,diffusion, ji,convection, ji,charge) 

by the total value of solute flux (j i,total). 
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Another form of the expression is shown in 

 

[ ]
dx

dP
V

RT

Dc

dx

lnd
DcJcK

dx

d

RT

FDcz

dx

dc
Dj i

p,iii
p,iivic,i

mp,iiii
p,ii −−+−−=

γϕ
, Eqn 11 

 

where all terms are as previously described, γ (mol.m-3) is activity and dP/dx is a 

“pressure diffusion” term which comes from the pressure dependence of chemical 

potential [94, 214].  The two additional terms on this equation are not considered in the 

common NF models because they are considered to be negligible [204, 214] and for 

reasons of numerical simplicity.    

 

One challenge in solving the ENP equation is the determination of hydrodynamic drag 

coefficients Ki,c and Ki,d.  Solutes moving in free solution are affected by a drag force, 

which is amplified when solutes move into a confined space where transport in 

hindered, such as a membrane pore.  The restricted hydrodynamic coefficients include 

both a convective (Ki,c) and diffusive (Ki,d) term and are functions of the ratio of Stokes 

radius to pore radius (λi).  Theoretical consideration of hindered transport in pores has 

been through reviewed [105] and there are a number of simplified correlations offered 

in the literature for specific values of λi.  However, most of these expressions cover only 

a small range of λi which limits their use generally to ultrafiltration and microfiltration 

scale.  The most complete expressions, valid for 0 ≤ λi ≤ 1, were used in membrane 

characterization and were provided by Bungay and Brenner [215, 216], and reviewed by 

Deen [105].  The Nanofiltran program [164] for numerical integration utilized 

coefficients provided by Dechadilok and Deen [217], Mavrovouniotis and Brenner 

[218], and Ennis et al. [219]. 

 

Although the use of ENP theory was not the primary objective of this thesis, the 

principles outlined here were used to determine the relative mechanistic contributions of 

selected experimental data.  Membrane characterization was completed using the 

method for neutral organic solutes outlined by Nghiem et al. [216] to determine 

membrane pore size and thickness to porosity ratio (described in detail in Chapter 

3.2.3).  During the analysis of experimental results presented in Chapter 7, the full ENP 

equation including charge was solved for ionic species using the Nanofiltran numerical 
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solver program developed by Geraldes and Brites Alves [164] in order to get a relative 

idea of the predicted mechanistic contributions (detailed results are not presented). 

 

2.4.2 Limitations of Current Models 
 
A major limitation in current NF models is the definition of solute size because most 

models use Stokes radius [36] or ionic radius [210], but this is inherently inaccurate due 

to the process of hydration.  Ions are hydrated by a shell of dipolar water molecules, 

which means that the mobile entity is the ion with its hydrated shell rather than just the 

bare ion [76].  Despite the fact that hydration is neglected in NF models, the importance 

of hydration has been demonstrated numerous times experimentally, as discussed in 

detail in Sections 2.2.1 and 2.2.5 [77, 85, 122-125]. 

 
Hydration during pore transport processes is not addressed in NF models for a number 

of reasons.  Firstly, the lack of available hydration data relevant to NF is a major 

limitation.  Determining information about hydration free energies and structure is 

difficult.  While data exists for a variety of ions [80-82], these lists are not 

comprehensive [85] and there is considerable discrepancy on reported values due to 

differing methods and assumptions used, as shown in Table 2-1.  Data is insufficient for 

many drinking water contaminants, such as nitrite or nitrate.  Secondly, hydration 

during pore transport includes complex interactions with the membrane; hence 

information on hydration in bulk solution cannot be applied within the pore.  Thirdly, if 

partial or complete dehydration occurs during the process of transport [77, 125, 126], 

the hydrated radius is therefore a transient parameter, and very little is known about 

how to account for this in transport models.  A more detailed approach is thus required 

that incorporates the interaction of water molecules with the ion as well as the 

interaction between the hydrated ion and the pore. 

 

2.5 Modelling of Ion Transport Using Molecular Dynamics 
 
Another tool that can be used in the modeling of ion transport is molecular dynamics 

(MD).  The motivation is that MD may be used to specifically examine the impact of 

ion hydration on transport through membranes, which is an issue that is not addressed 

by current NF/RO models.  MD is a classical simulation technique which allows the 
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determination of dynamic processes and interactions occurring at the atomic level in a 

given system [220, 221].  Much recent effort has been placed on examining the 

transport of water and ions through modelled biological ion channels and carbon 

nanotubes using MD [56, 222-225], however the application of MD techniques directly 

to NF has not largely been realized.  The aim of Chapter 6 is to conduct MD simulations 

in order to look at the specific role of ion hydration during transport through generic 

pores of similar size to NF pores.  Most of the focus in this area has been given to 

biological ion channels, so the influence of ion hydration in biological channels will be 

discussed.  The hope is to extend the knowledge obtained in these studies to be relevant 

to NF. 

 

The concepts and algorithms underlying MD are inherently complex, and thus, a 

balance must be made between accuracy and processing capabilities.  Modern MD has 

been developed in enable high-performance simulation of molecules in environments of 

100,000 atoms or more at realistic time scales (eg. 10-9 s for atoms) [220, 226].  This 

involves programmed algorithms for efficient numerical integration of Newtonian 

equations of motion, statistical mechanism methods for controlling temperature and 

pressure, efficient evaluation of electrostatic forces and the calculation of alchemical 

free energy differences.  A program called NAMD [226] is a popular high-performance 

molecular dynamics simulation technique that has been successfully employed in a 

number of applications, especially in membrane biophysics [126, 127, 227, 228]. 

 

In biological ion channels, the molecular basis of selectivity is due in part to the ion’s 

hydration properties [229-232].  Specific binding sites are located in selective transport 

proteins which identify the ions in their partially or fully dehydrated forms.  Selection 

depends upon how well the interactions with the protein in this binding site can 

compensate for the energetic cost of ion dehydration [229].  The selectivity of most 

classes of anion channels corresponds to the lyotropic sequence, with weakly hydrated 

anions (eg. nitrate) showing a higher permeability than strongly hydrated anions (eg. 

fluoride) due to the dehydration energy required for transport [233, 234].  However, the 

majority of work on anionic selectivity in ion channels has largely focused on chloride 

because chloride is the only halogen ion used in abundance in biological systems.  

Chloride transport is typically controlled by chloride channel transport proteins which 

have an hourglass-shaped chloride selectivity filter which forms a row of binding sites 
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for the fully or partially dehydrated chloride ion [235, 236].  This filter is not highly 

selective between chloride and bromide [237], but this is not required in nature.     

 

Alternatively, cation channels are highly selective and are constructed differently than 

the chloride channel proteins by having large aqueous vestibules within the 

transmembrane spanning portion of the membrane [229].  Differences in hydration are 

important in explaining the extremely precise selectivity in potassium channels (and 

other cation channels) that are up to 1000 times more permeable to potassium than 

sodium.  Although sodium is a smaller ion, the energy required to remove the hydration 

shell is greater than the energy gained by interacting with the carbonyl oxygen in the 

channels as compared to potassium [238].  The ease of constraining a hydrated 

potassium ion inside a narrow pore relative to hydrated sodium or lithium is highly 

dependent on pore radius [239]. 

 

In carbon nanotube membranes, ions were shown to have different energy barriers 

depending on ion type, pore size and pressure when entering hydrophobic pores as a 

consequence of dehydration [126, 127].  The energetic expense of chloride transport in 

cylindrical Si3N4 nanopores was also directly related to the stripping of ion hydration 

layers [128]. 

 

The knowledge and techniques utilized in these MD simulations is highly relevant to 

NF, but very few studies have yet applied these principles to drinking water 

contaminants.  The limited studies have involved simulating the transport of water 

and/or ions such as chloride in carbon nanotubes [126, 127, 223-225].  This presents an 

exciting opportunity to apply the knowledge of the transport of hydrated ions in 

biological channels to drinking water contaminants and NF. 

 

2.5.1 Molecular Dynamics Theory 
 

A brief review of the theory of MD is provided.  Dynamic processes and fundamental 

atomic interactions are determined with MD [220, 221].  Successive configurations of 

the system over a series of time steps are generated using Newton’s laws of motion, 

which can be stated as: 
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1. A body continues to move in a straight line at constant velocity unless a force 

acts upon it. 

2. Force equals the rate of change of momentum. 

3. To every action there is an equal and opposite reaction. 

 

Trajectories are obtained using Newton’s Second Law, 

 

iii amF ⋅=  Equation 12 
 

by solving the differential equations embodied within it:   
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. Equation 13 

 

The trajectory can then be determined for any particle, i, of mass mi (kg) along one 

coordinate xi, with acceleration ai (m.s-2) and Fxi (kg.m.s-2) being the force on that 

particle from a given direction.  To clarify nomenclature, a “particle” in the MD context 

refers to the specific atom, ion or molecule under consideration, and does not refer to a 

colloidal solid of considerable size as sometimes described in the membrane field. 

 

2.5.2 Force Field Parameters 
 

In order to understand the motion of a given particle at each coordinate of a trajectory, 

the forces acting upon that particle must be known.  One way in which these forces can 

be determined is by the use of a force field.  The force on a particular atom is calculated 

at any given coordinate or trajectory within a system from the gradient of the energy 

potential, 

 

totali VF ∇= . Equation 14 
   

The simplified potential energy function (Vtotal, kcal) incorporates both bonded (Vinternal, 

kcal) and non-bonded (Vexternal, kcal) interactions [221] such that 
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externalinternaltotal VVV += . Equation 15 
 

The internal energy contributions (Vinternal) are associated with covalently bonded atoms 

and is expressed as 
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2
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where b (Å) and θ (deg) are bond length and angle, respectively, subscript 0 signifies 

the equilibrium value, k is the associated force constant, n is multiplicity 

(dimensionless), t is torsion angle (deg) and σ is the phase (deg), each of which is 

described in the following text.  The internal contributions account for covalent 

interactions between atoms in close proximity.  In order to best explain these 

interactions, a generic schematic of a molecule showing these interactions is provided in 

Figure 2-11.  The first two terms in Equation 16 define the bond stretching and angle 

terms which are treated harmonically.  This keeps the bonds and angles values (b and θ, 

respectively) near the equilibrium points (b0 and θ0).  Force constants kb (kcal.mol-1.Å-2) 

and kθ (kcal.mol-1.rad-2) are like spring constants associated with each term.  The final 

bonding term, torsion, is applicable when there are 4 or more atoms in a molecule and it 

describes, for example, the angle between atoms 1-2 and 3-4 when viewed along the 2-3 

bond.  This angle is known as the torsion angle, t, and it is periodic in nature.  The 

torsion force constant is kt (kcal.mol-1.rad-2),  n is multiplicity or periodicity and σ is the 

phase.  The periodicity indicates the number of cycles per full rotation around the 

dihedral.  The phase dictates the location of the maxima in the dihedral energy surface 

allowing for the location of the minima for a dihedral of n=2 to be shifted from 0° to 

90°.  Typically the phase is either 0° or 180°. 
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Figure 2-11.  Generic representation of molecules to illustrate the various force 
field parameters (adapted from [221]).  
 

Nonbonded interactions occur between all atoms in a system and strongly impact the 

behaviour of any atom.  The external energy (Vexternal) represents nonbonded or 

intermolecular interactions between atoms and is calculated from  
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where εij (kcal) is the potential energy well depth, Rmin/2,ij  (m) is the distance between 

atoms i and j of minimum interaction energy, r ij is the distance between atoms (m), q is 

ionic charge and εD is the dielectric constant.  The term in square brackets in Equation 

17 corresponds to the van der Waals (VDW) interactions.  VDW interactions are 

typically reported as the Lennard-Jones (LJ) 6-12 term, which is the form shown in 

Equation 17.  The r ij
-12 term represents the exchange repulsion between atoms due to 

overlapping electron clouds (the Pauli exclusion principle), which is a very strong 

function of distance.  The negative r ij
-6 term represents favourable London’s dispersion 

interactions or instantaneous dipole-induced dipole interactions.  In this LJ form, there 

are two parameters.  The first is the potential energy well depth (εij) describing the 

magnitude of the London’s dispersion interactions between atoms i and j.  The second 

parameter is Rmin/2,ij which is the distance between atoms i and j where the minimum LJ 

interaction energy occurs.  Typically, εij and Rmin/2,ij are not determined for every single 

atom pair in a system, but rather for the types of individual atoms (for example for all 

  b, kb 

  θ, kθ  
 r ij 

t, kt 
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oxygens in water).  A general schematic showing the qualitative meaning of εij and 

Rmin/2,ij follows in Figure 2-12.  The quantitative values are obviously dependent on the 

two atoms interacting.   
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Figure 2-12.  Generic representation of van der Waals potential energy diagram.  
 
The second contribution to non-bonded interactions is the coulombic interactions 

between two charged atoms, and is dependent on the charge (q) of each ion, the distance 

between them (r ij) and the dielectric constant (εD) which is generally equal to 1 (the 

permittivity of vacuum). 

 

Therefore, once all of the force field parameters are known, the entire potential on each 

atom is calculated.  This process is repeated for all types of atoms in a given system.  It 

is important to note that the equations provided in this section represent a generally-

accepted compromise between simplicity and chemical accuracy.  Initial positions and 

velocities are required in order to begin a MD trajectory. 

 

These concepts have been widely applied to the transport of water and ions in ion 

channels and carbon nanotubes [126, 127, 223-225], but not directly applied to NF.  

This presents an exciting opportunity to use MD to apply the knowledge of the transport 

of hydrated ions in biological channels to drinking water contaminants and NF.  This 

fills a gap in current knowledge because it allows the specific examination of ion 

hydration during ion transport through a pore, which is not considered in existing NF 

models. 
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2.6 Review of Research Objectives 
 
This chapter has reviewed the literature available on the properties of inorganic ions in 

water, NF/RO mechanisms for inorganic solutes, the impact of operating parameters on 

NF/RO and the modelling techniques available.  In order to understand how the 

research objectives fit into the existing body of knowledge in this area, a more detailed 

description than was presented in Chapter 1.6 follows.  The aims and research 

objectives of each of the four core areas of this thesis are reviewed. 

 

NF/RO mechanisms are highly dependent on solute properties, operating parameters 

and membrane properties.  While a number of studies have examined mechanisms in 

very simple systems, understanding membrane performance in real groundwater 

provides a significant challenge due to complicated groundwater matrices (pH, 

composition, ionic strength, speciation).  Further, operating a RE-membrane system 

with no battery storage results in energy fluctuations and varying operating parameters, 

all of which affect NF/RO mechanisms and performance.  The aim of the first core 

results chapter, Chapter 4, was to critically evaluate data collected previously during a 

field trial in Australia in 2005.  The specific objectives were to  

• understand the impact of energy variation on retention; 

• determine the role of pH in this process (with regard to chemical speciation and 

system performance); 

• determine the dominant mechanisms of ion retention in real groundwater; 

• compare system performance at different locations (each with different 

groundwater); and 

• evaluate retention without the influence of complicated groundwater matrices 

using synthetic water and controlled energy conditions. 

 
The results obtained in Chapter 4 brought to light interesting research questions about 

the relationship between pH, solute speciation and retention.  Although the relationship 

between pH and retention for fluoride, nitrate and boron has been explored to some 

extent [49, 51, 54, 107, 240-242], the specific link between solute speciation and 

retention has not been made for those contaminants.  The aim of Chapter 5 was to 

complete initial work conducted by a previous student in order to thoroughly evaluate 
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the specific impact of pH on the removal of these contaminants in bench-scale studies.  

The specific objectives were to 

• predict the chemical speciation of boron, fluoride and nitrate as a function of pH; 

• measure retention and flux of these solutions as a function of pH with six 

different NF/RO membranes; and 

• determine the relationship between speciation and retention for these 

contaminants. 

 

The selectivity of monovalent anions observed in Chapter 5 emphasized the hypothesis 

that ion hydration is a very important parameter in determining retention in NF/RO.  

This remains an area which is not well-understood in NF/RO, despite anecdotal 

evidence of retention trends corresponding to hydrated size.  As such, a molecular 

dynamics model was created in order to evaluate the importance of the hydration of 

monovalent anions (fluoride, chloride, nitrate, nitrite) as the ions transport through 

narrow cylindrical pores, which was the overall aim of Chapter 6.  The specific 

objectives were to  

• determine the hydration structure of the anions in bulk water; 

• investigate the hydration of these ions during transport through a generic pore, 

as a function of (i) pore size; (ii) ion type; and (iii) surface charge; and  

• determine the energetic barriers of transport by evaluating free energy profiles in 

each of these scenarios.   

 

Experimental evidence of dehydration occurring during transport in real NF/RO 

membranes is an area still yet to be established.  The overall aim of Chapter 7 was to 

gain experimental evidence of dehydration occurring as a proposed transport 

mechanism in NF by comparing Arrhenius energy barriers to molecular dynamics 

simulations.  The specific objectives were to 

• determine the retention and solute flux of monovalent anions as a function of 

temperature and pressure; 

• relate solute flux to energy barriers for different (i) ion types (sodium fluoride, 

sodium chloride, sodium nitrite and sodium nitrate) and (ii) membrane types 

(with different effective sizes); and 
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• link experimental energy barriers with the results from the molecular dynamics 

simulations discussed in Chapter 6. 

 

Before delving into the results, first the methods and materials used experimentally will 

be described in Chapter 3. 
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Chapter 3  

 

Experimental Methods and Materials 

This chapter describes the methods and materials used experimentally in this research.  

The materials included different membrane systems at bench scale (stirred cells, 

crossflow and diffusion cells) and pilot scale (renewable energy-membrane system).  

Other materials included commercially-available membranes (and their characteristics) 

and chemicals.  The analytical equipment and techniques used in this project are 

described in this chapter, including ion selective electrodes, a nutrient analyzer, 

inductively-coupled plasma optical emission spectroscopy, inductively-coupled plasma 

mass spectroscopy, total organic carbon analysis and ion chromatography.  Common 

experimental protocols are reviewed here and specific details are discussed when 

relevant in Chapter 4, 5 and 7.  A summary of common experimental calculations and 

error analysis is included. 

 

3.1 Membrane Systems 

A number of experimental systems have been used in the completion of this research 

project, including stirred cells, crossflow, diffusion cells and a RE-membrane system.   

Table 3-1 shows a general comparison of the experimental systems used, and a detailed 

discussion of each system (description, use and experimental protocols) follows. 
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Table 3-1. General comparison of experimental systems used (for broad 
comparative purposes only). 
  Typical Parameter Range 
System Primary Use Membrane 

Area (cm2) 
Pressure 
(bar) 

Feed Flow 
(L.min -1) 

Permeate Flow 
(L.min -1)* 

Stirred Cells Bench-scale  
filtration 

21.2 or 
38.5 

< 8 -- < 0.008 

Crossflow Bench-scale  
filtration 

46.0 < 30 < 2.0 < 0.1 

Diffusion Cells Diffusion 
experiments 

4.91 0 -- -- 

RE-Membrane Pilot-scale 
filtration 

~78000 < 12 < 8.3 < 3.3 

*note that permeate flow is strongly dependent on membrane type and water composition 
 
 

3.1.1 Stainless Steel Stirred Cells 
 

The first type of bench-scale equipment used was a stainless steel stirred cell.  Stirred 

cells were used for two main objectives: (1) to assess the impact of pH on inorganic 

contaminant removal [171] and (2) to characterize selected membranes.  Stainless steel 

stirred cells are enclosed cylinders used for dead end filtration experiments.  A 

membrane is placed on the base of the cell, which is filled with solution, stirred via a 

magnetic stir bar and pressurized.  Permeate solution then passes through the membrane 

and collected on the outside of the cell.  Two different types of magnetically-stirred 

stainless steel cylindrical batch cells were used for filtration experiments.  A small 

stirred cell was used in this project for pH experiments (Chapter 5) and larger stirred 

cells were used for selected membrane characterization (Chapter 3) for consistency and 

because three could be used at the same time. 

 

The volume of the smaller stirred cell was 185 mL, and the membrane surface area was 

21.2 cm2. The cell contained a plastic magnetic stirrer assembly (Millipore, Watford 

UK) which was stirred at 300 rpm using a magnetic stir plate (Fisher Scientific, UK).  

Further details about the cell and the hydrodynamics are provided by Schäfer [243].  

The cell was pressurized with compressed air and equipped with a pressure relief valve 

(Norgren V07-200-NNLG, UK).  Pressure was measured using a pressure transducer 

(OmegaDyne PX219-30V85G5V, USA, accuracy ± 0.25%) and permeate mass 

measured with an electronic balance (Ohaus Adventurer Pro, UK, accuracy ± 0.1 g).  
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Pressure and weight were recorded using a data acquisition module (Omega OMB-

DAQ-54, Omega Engineering, UK) on a computer using LabVIEW 8.0 (National 

Instruments, USA).  Figure 3-1 and Figure 3-2 show a schematic and photograph of the 

experimental apparatus, respectively. 
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Figure 3-1. Schematic of stainless-steel stirred cell experimental apparatus (note 
not to scale).  Ambient temperature was measured outside of the cell with a probe 
connected to the datalogger (not shown for clarity). 
 

 

Figure 3-2. Photograph of the small stainless steel stirred cell. 
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Larger stainless steel cells were used for membrane characterization.  The setup of these 

stirred cells was nearly identical to what was just described, with the exception that the 

volume of the cell was 990 mL, and the membrane surface area was 38.5 cm2.  Three of 

these larger stainless steel cells were used in parallel.  Extensive description of these 

cells is provided by Neale [244]. 

 

3.1.2 Crossflow Membrane System 
 

The second type of bench-scale equipment used was a crossflow membrane system.  A 

crossflow rig is used when experiments with flow and pressure across a flat-sheet 

membrane coupon are desired.  A stainless steel crossflow system (MMS, Switzerland) 

was used for filtration experiments reported in Chapter 7.  Extensive modification of 

this system was required in order to address an oil leak from the pump, and these issues 

are addressed in detail by Semião [245].  Figure 3-3 and Figure 3-4 respectively show a 

schematic and photograph of the crossflow system used in this research and then the 

system details are described. 
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Figure 3-3. Schematic of crossflow membrane system (note not to scale). 
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Figure 3-4. Photograph of the crossflow membrane system. 
 

The system contained two 2.5 L feed tanks (of which only one was used at a time) and a 

high pressure diaphragm pump (Hydra-Cell P200, UK).  Feed solution was pumped 

across and through a flat sheet membrane cell (membrane area 46.0 cm2).  Temperature 

was controlled by a water bath (Lauda WK 700, Germany) which was piped to a 

cooling jacket around the feed tanks (0.09 m2 surface area per feed tank). Pressure was 

controlled by a back pressure regulator (Swagelok KPB Series, UK). A datalogger 

(Omega DAQ55, UK) recorded the following in-line monitored parameters: pressure 

(before and after cell) (S model pressure transducer, Swagelok, UK), feed flow rate 

(Macnaught M2SSPI, UK) and temperature (Condustrie-Metag WTM Pt 100-0-6, 

Germany).  A conductivity probe (WTW, Germany) was installed in a flow cell in the 

permeate line just after the membrane cell and attached to a standard meter (WTW, 

Germany) to monitor conductivity in real time (data was not logged automatically).   

 

The primary purpose of using the crossflow system was to experimentally determine 

retention, permeability and energy barriers of salt transport through NF/RO membranes, 

as reported in Chapter 7.  The main parameters that can be varied in a crossflow system 

are solution composition, pressure, flow, and temperature.  The selection of operating 

parameters varied depending on the objectives of the experiment and specifics are listed 
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in the appropriate chapters and figure captions.  The membranes were always 

compacted before starting an experiment until pure water flux stabilized (at least one 

hour).  Specific protocols will be discussed where appropriate.     

 

3.1.3 Diffusion Cells 
 

The third type of bench-scale equipment used was diffusion cells.  Diffusion cells were 

used to measure the diffusion of various salt solutions across a membrane barrier 

(Appendix B), as driven by a concentration gradient between the two cells and 

temperature, and to determine energy barriers of transport.  Two glass cells (each 100 

mL) were clamped together using joint clip flat flanges (Fisher Scientific, UK).  The 

membrane area was 4.91 cm2 and dimensions of each cell were as follows: outer 

diameter (of the flange) 55 mm, inner diameter 25 mm and shank length 204 mm.  The 

volume of the cylindrical sampling port was an additional 26 mL (inner diameter 26 

mm, height 50 mm) to the 100 mL cell.  A round shaped cross-head stir bar (VWR, UK) 

was placed in the centre of each cell and stirred with a magnetic stir plate (Fisher 

Scientific, UK) at approximately 800 rpm.  Diffusion cells were supported by standard 

lab stands (Fisher Scientific, UK) and placed in a water bath where temperature was 

measured using a thermocouple (Standard ST-9612) and water was mixed with a 

bubbler to maintain temperature.  The water bath was large enough for experiments with 

two sets of cells to be run in parallel.  The diffusion cells were custom-made at Heriot-

Watt University.  Figure 3-5 and Figure 3-6 show a schematic and photograph of the 

diffusion cells.  Holders are not shown on Figure 3-5 and the water bath is not shown on 

Figure 3-6 for clarity. 

 

 

Figure 3-5. Schematic of diffusion cell experimental apparatus (supports not 
shown for clarity). 
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Figure 3-6. Photograph of diffusion cell experimental apparatus (water bath not 
shown for clarity) 
 
 

3.1.4 Renewable Energy Membrane System 
 

Prior to the start of the current PhD project, a field trial was conducted using a RE-

membrane system.  Although the PhD candidate did not take part in the field trial, the 

data produced from it was critically evaluated by the PhD candidate, which is the 

subject of Chapter 4.  As such, the system will be described in order to put the results in 

Chapter 4 into context.  This same system was later adapted for controlled, laboratory-

based experiments, with which the PhD candidate did conduct a limited number of 

experiments. 

 

The construction of this RE-membrane system has been previously described in detail 

[74, 246, 247].  The RE-membrane system was a two-staged membrane system 

combining ultrafiltration (UF) and NF/RO [74].  The system was designed to be suitable 

for meeting the drinking water needs of remote communities of 50 – 100 people, 

producing about 1000 L of drinking water per solar day.  For field trials, the first 

filtration stage consisted of six UF membranes (Zenon ZW10) connected in parallel and 

immersed in a 300 L stainless steel tank.  An air bubbler (Nitto LA80a) was used for 

gentle mixing and for the reduction of solid deposits in the feed tank.  A progressive  
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cavity pump (Mono-Pumps, Australia) drew feedwater through the UF membranes (at 

around -0.5 bar) and then into the NF/RO module at pressures up to 12 bar.  Membrane 

modules were 4 inch cylinders of spiral wound flat sheet membranes (membrane surface 

area approximately 7 – 8 m2 depending on membrane type).  A schematic of the RE-

membrane system during the  field trial is shown in Figure 3-7, and a photograph is 

provided in Richards et al. [248]. 

 

 

Figure 3-7. Schematic of the RE-membrane system with field trial configuration.  
Sensors are marked T (temperature), pH (pH), P (pressure transducer), C 
(conductivity) and F (flow meter). 
 
 
During the field trial, the system was powered using solar energy via PV panels.  Four 

24 VDC PV panels (BP Solar, BP3150S) were installed on a 4-wheel drive trailer where 

the membrane system was mounted.  Each of the PV panels provided a maximum 

power of 150 W and thus only two were required to power the pump (rated at maximum 

power of 300 W).  The panels were mounted on a single axis solar tracker (Mono-

Pumps, Australia) which was guided by a global positioning system and thus followed 

the path of the sun from east to west during the day.  An alternative power supply for 

the system was a backup generator (Honda Eu10i 1kVA) or 240 VAC grid power.  
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During the field trials a battery bank and charger were used to power peripheral 

equipment only (such as a laptop computer and data acquisition information). 

 

The system was equipped with a number of sensors to monitor important operating 

parameters for research purposes (shown on Figure 3-7).  Pressure was measured on 

both sides of the pump and after the NF/RO module on the concentrate line using 

pressure transducers (Bürkert 8323, Bürkert Fluid Control Systems).  Flow sensors 

(S8011R Farnell type 178-923) were installed on the feed and concentrate lines and 

manual measurements were made if the flow was outwith the sensor range.  

Temperature and electrical conductivity were monitored (WTW MultiLine P4) in the 

feed, concentrate and permeate lines.  Pump voltage and current were measured directly 

from the pump.  All parameters were measured with a datalogger (DataTaker DT500) at 

5 s intervals and downloaded to a laptop. 

 

For more controlled testing in the laboratory at Heriot-Watt University, the RE-

membrane system was configured slightly differently.  In order to eliminate random 

energy fluctuations inherently resulting from renewable energy, power was controlled 

using a solar array simulator programmable power supply (Agilent Technologies 

E4350B) that was able to simulate the output of a 300 V PV array.  Temperature was 

controlled using a water chiller system.  The power supply was controlled and all data 

recorded on a personal computer using LabVIEW 8.0 (National Instruments, USA). 

 

3.2 Membranes and Membrane Characteristics 

3.2.1 Membranes 
 

The membranes used in this research were all commercially available polymeric RO 

and NF membranes available from a number of manufacturers.  Membrane properties, 

characteristics and performance varied greatly, and specific parameters are reported 

here and related to results where appropriate in Chapter 4, 5 and 7.  Commercially-

available membranes were selected because the research interest was to evaluate 

membranes that are actually in use and available.  For specific experiments, particular 

membranes were selected based on the desired requirements (eg. flux or retention) for a 

meaningful experiment.  All membranes used have a polyamide-based active layer.  The 
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membranes used, along with their classifications, manufacturer and with which system 

they were used are shown on Table 3-2. 

 

Table 3-2. List of membranes, type, manufacturer and which system they with 
which they were used for experiments. 
Membrane Type System* Manufacturer Information 
BW30 RO RE-Membrane, stirred cell, 

diffusion cell 
NF90 NF RE-Membrane, stirred cell, 

crossflow, diffusion cell 
NF270 NF crossflow, diffusion cell 

Dow [249] 

TFC-S NF RE-Membrane, stirred cell 
TFC-SR2 NF diffusion cell 
TFC-SR3 NF diffusion cell 

Koch [250] 

ESPA4 RO RE-Membrane, stirred cell Hydranautics [251] 
UTC-60 NF stirred cell, diffusion cell 
UTC-80A RO stirred cell, diffusion cell 

Toray [252], [253] 

*Membranes for the RE-Membrane system were 4” spiral would modules; all other 
were flat sheet membrane coupons 
 

A challenge of working with commercial polymeric membranes lies in that the details 

of the manufacturing processes are held proprietary and thus it can be difficult to obtain 

detailed information about membrane properties.  Instead, a number of characterization 

techniques were used to gain information about membrane properties (permeability, 

retention, effective pore size, molecular weight cutoff, surface charge, chemical 

composition, surface morphology, active layer thickness, hydrophobicity).  Another 

major challenge is batch variability, where a different batch of the same membrane may 

well exhibit different properties.  This is exasperated because only small coupons are 

used for bench-scale experiments rather than entire modules.  In order to address this, 

the same membrane batch was used for any set of experiments and characterization was 

repeated if a new batch was required. 

 

The most important properties for this research on the transport of salts in NF/RO were 

permeability, retention, effective pore size and surface charge, and these will be the 

parameters that will be used to describe results in the following chapters.  Information 

about chemical composition, surface morphology and hydrophobicity is included here 

for the sake of completeness but this data was not extensively considered in the analysis 
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of filtration results as the other parameters were.  The later parameters are more relevant 

for organic solutes and mechanisms such as adsorption. 

 

Pure water permeability and salt retention were easily measured experimentally (Section 

3.2.2).  Effective pore size, the thickness to porosity ratio, and molecular weight cutoff 

(MWCO) were measured (Section 3.2.3) by fitting the hydrodynamic model (Chapter 

2.4.1) to experimental data.  Membrane surface charge can be measured with streaming 

potential (Section 3.2.4).  Elemental analysis of some of the membranes used was 

reported in the literature using X-ray photoelectron spectroscopy (XPS) and Rutherford 

backscattering spectrometry (RBS) (Section 3.2.5).  Atomic force microscopy (AFM) 

was used to determine surface roughness (Section 3.2.6).  Transmission electron 

microscopy (TEM) was used to image the cross section of a membrane (Section 3.2.7).  

Contact angle gives information on hydrophobicity (Section 3.2.8).  Where obtained 

and/or available in the literature for the membranes used in this research, this data is 

reported in the following sections.  It is important to be informed about membrane 

properties in order to understand their performance. 

 

3.2.2 Permeability and Retention 
 

The pure water permeability and observed salt retention (0.1 M NaCl, 10 bar) of each 

membrane was measured and results are shown on Table 3-3.  There is a general trade-

off between pure water permeability and retention.  The membranes with the lowest 

pure water permeability generally have the highest salt retention, and conversely the 

membranes with highest permeability have lower retention.  Pure water permeability 

and retention both vary widely depending on membrane type.  Detailed retention results 

for different solutes and under different conditions are given in the relevant results 

chapters (Chapter 4, 6 and 8).  The PhD candidate did the characterization of UTC80A, 

BW30, TFCS, ESPA4, NF90, NF270 and UTC60, and the remaining membranes were 

characterized by other members of the Membrane Technology Group (University of 

Edinburgh). 
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Table 3-3.  Pure water permeability and NaCl retention for membranes used. 

Membrane Pure Water Permeability 
(L.m -2.h-1.bar-1) 

NaCl Retention, Observed  
(0.1 M, 10 bar) (%) 

UTC80A 2.2 98.4 
BW30 4.4 99.8 
TFC-SR3 5.7 40.8 
TFCS 5.8 86.8 
ESPA4 6.5 90.9 
NF90 9.7 83.7 
TFC-SR2 14.1 22.7 
NF270 16.2 42.4 
UTC60 32.8 24.7 

 
 

3.2.3 Effective Pore Radius and Molecular Weight Cut-off 
 
Effective pore radius (Rp, 10-10 m), membrane active layer thickness to porosity ratio 

(L.ε-1, m) and MWCO were determined for the membranes.  These parameters are 

important because they give information about which solutes may be excluded due to 

size.  The retention of neutral organic solutes (25 mg.L-1 as C, each of methanol, 

dioxane, xylose and dextrose) was measured and corrected for concentration 

polarization to obtain real retention (Rr, %) (see Section 3.5).  Solutes were selected 

according to the expected size of the membrane (eg. methanol, the smallest, was used 

for RO and tight NF and dextrose, the largest, was used for loose NF).  Table 3-4 shows 

the properties of the organic solutes used for characterization.   

 

Table 3-4. Properties of Organic Tracers Used in Characterization. 
Organic Tracer Molecular Weight 

(g.mol-1) 
Diffusivity  
(10-10 m2.s-1) [216] 

Stokes Radius 
(10-10 m) [216] 

Methanol 32 6.0 [254] 1.91 
Dioxane 88 9.1 2.34 
Xylose 150 7.4 2.90 
Dextrose 180 6.6 3.24 

 

 

The hydrodynamic model (Chapter 2.4.1) was curve fitted to match the variation of real 

solute retention with permeate flux in order to obtain Rp and L.ε-1, as detailed in the next 

paragraphs.  The methodology described by Nghiem et al. [216] was used for BW30, 

NF90, NF270, UTC60 in the crossflow system, and the same method was adapted for 
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stirred cells [255] for ESPA4, TFC-S, TFC-SR2, TFC-SR3, UTC-80A.  The PhD 

candidate did the characterization of UTC80A, BW30, TFCS, ESPA4, NF90, NF270 

and UTC60, and the remaining membranes were characterized by other members of the 

Membrane Technology Group (University of Edinburgh). 

 

For characterization, a reduced form of the hydrodynamic model (full form discussed in 

Chapter 2.4.1) was employed 

 

v
m
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i
p,ii JcK

dx

dc
Dj +−= , Equation 18 

 

as neutral organic solutes were used and thus there no charge term is required.  This 

therefore assumes that solute retention only occurred through steric exclusion.  

Integrating Equation 18 over the entire membrane using the concentrations at each end 

of the pore as boundary conditions and the distribution coefficient, Φ, 
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The integration yields the macroscopic flux equation 
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where Pe is the membrane Peclet number (dimensionless) determined from  
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and sJ  is radially averaged solute flux (mol.s-1.m-2), V  is the radial average fluid 

velocity in the pore (m.s-1), L/ε is the membrane thickness to porosity ratio, cm is 
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concentration at the membrane surface (mol.m-3) and cp is the concentration in the 

permeate (mol.m-3).  Equation 21 can be reduced using real retention (Rr, %) to  
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This theoretical Rr is now a parameter which can be directly compared to the 

experimental Rr (the calculation of which is shown at the end of this chapter in Section  

3.5 with other common calculations used in this thesis).  In order to characterize 

membrane properties, the theoretical and experimental Rr values should be equal, which 

required fitting the theoretical model to the experimental value of Rr.  To do this, the 

membrane parameters pore radius (Rp) and L/ε were solved for iteratively by 

minimizing the variance between the theoretical and experimental real retention values 

with Microsoft Excel Solver.  This process essentially determined Rp and L.ε-1 by curve 

fitting the experimental values for the variation of real solute retention with permeate 

flux to the pore flow model.   

 

MWCO was determined by measuring the retention of polyethyleneglycol (PEG) of 

molecular weight 200, 400, 600 and 1000 g.mol-1 (again at concentration of 25 mg.L-1 

as C).  MWCO was extrapolated as the point at which 90% retention was achieved.  

Note that this calculation was invalid for tight NF or RO membranes because the 

retention of all PEGs tested was greater than 90%.  These experimentally characterized 

membrane properties are listed on Table 3-5.  These characteristics also varied 

according to membrane type.  Results are consistent with Table 3-3, showing that 

membranes with a relatively low permeability and high salt retention have small 

effective pore sizes and low molecular weight cutoff.  These results will be discussed 

more in detail in the relevant results sections where they can be used to explain 

experimental data. 
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Table 3-5.  Effective pore radius, active layer thickness to porosity ratio and 
MWCO for membranes used.  Uncertainty in these fitted parameters is estimated 
to be ± 5%. 

Membrane 
Effective Pore 
Radius (Rpore,  
10-10m) 

Active Layer Thickness to 
Porosity Ratio (L.ε-1, 10-6m) MWCO 

UTC80A 1.9 3.00 n/a* 
BW30 3.2 6.01 88; 98 [161] 
ESPA4 3.3 7.57 n/a* 
NF90 3.4 1.46 < 88; 100 [161] 
TFC-S 3.4 5.29 200 [256] 
TFC-SR3 3.8 1.59 167 
NF270 3.8 1.01 180 
UTC60 4.5 4.70 150 [257] 
TFC-SR2 4.6 1.09 425 
*retention of each organic solute was > 90% and thus MWCO was not calculated 

 

3.2.4 Surface Charge 
 
Membrane surface charge is important because it affects the charge interactions 

between the membrane and ions.  Surface charge of the membrane surface is determined 

by streaming potential which is measured using an electrokinetic analyzer.  Zeta 

potential result was obtained using an electrokinetic analyzer at Imperial College 

London (EKA, Anton Paar KG, Austria, with Ag/AgCl-electrodes SE 4.2, 

Sensortechnik Meinsberg, Germany).  Streaming potential was measured in 20 mM 

NaCl and 1 mM NaHCO3.  The electrolyte solution moves through a channel created by 

a PTFE spacer between the active layers of the membrane samples in order to generate a 

streaming potential (channel height 0.87 mm).  The membrane zeta potential was 

calculated from the streaming potential using the Helmholtz-Smoluchowski and 

Fairbrother-Mastin relationships [174],  
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where ζ is zeta potential (mV), Us is streaming potential (mV), P is applied pressure 

(bar), µ is dynamic viscosity of the solution (kg.m-1.s-1), εsolution is the relative 

permittivity of the test solution (--), ε0 is the relative permittivity of free space (--), 
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Lchannel is channel length (m), Axsection is channel cross-sectional area (m2) and Rchannel is 

channel resistance (m). 

 

The measurement protocol described by Childress and Elimelech was followed [174].  

Membranes were rinsed with ultrapure water and equilibrated with the background 

electrolyte in a beaker for 20 minutes.  Then the membrane was mounted in the 

measuring cell.  The protocol was to (1) flush the cell with ultrapure water for 3 

minutes; (2) rinse the cell with test solution; (3) equilibrate the cell with test solution for 

30 minutes; (4) adjust the pH of the test solution using the autotitrator; (5) recirculate 

the test solution for 10 minutes or until stable; (6) measure streaming potential; (7) flush 

the cell with ultrapure water.  Eight measurements were taken at each pH (four in each 

direction). The first two measurements were discarded and the remaining six (three in 

each direction) averaged to calculate the zeta potential at each pH.  The measuring 

range was from pH 3 to 13.  This range was selected in order to span the whole range of 

typical experimental values used, but it is important to note that Ag/AgCl electrodes are 

unstable at high pH.  Because of this, the measured zeta potential values should be 

considered relative to each other and not taken as absolute values, especially at high pH.  

All measurements were taken at room temperature.  Zeta potential is shown on Figure 

3-8.  Zeta potential for each of the membranes decreases from approximately pH 4 to 

13.  Zeta potential for ESPA4 increases from pH 3 to 4 which is not observed with any 

other membranes, which could be due to a specific chemical feature of the membrane 

functional groups.  No other zeta potential data for ESPA4 was available in the 

literature for comparison.  Zeta potential for UTC-80A is the most negative at the low 

pH values and stays more constant throughout the whole pH range when compared to 

the other membranes.  The zeta potential will be discussed in detail and related to 

retention in Chapter 5.  Zeta potential measurements were made by Annalisa De Munari 

(University of Edinburgh), Dr. Kingsley Ho and Dr. Alexander Bismarck (Imperial 

College London). 
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Figure 3-8. Membrane zeta potentials of NF90, UTC-60, TFC-S, BW30, UTC-80A 
and ESPA4 (in background solution 20 mM NaCl and 1 mM NaHCO3). 
 

3.2.5 Membrane Material and Chemical Composition 
 
All membranes used in this project have a polyamide-based active layer.  Specific 

information about the membrane materials follows as reported in the literature.  The 

Dow Filmtec membranes (BW30, NF90 and NF270) consist of three distinct layers 

[258].  The base is a polyester support web; the middle layer is microporous 

polysulphone; and the top (active) layer is an ultrathin polyamide material.  NF90 and 

BW30 are fully aromatic polyamide thin film composite membranes whereas NF270 is 

a piperazine-based semi-aromatic polyamide thin film [161, 258, 259].  NF90 and 

BW30 are made from benzezetricarbonyl trichloride and 1-3 phenylene diamine, where 

as NF270 is made from benzezetricarbonyl trichloride and piperazine [161].  The active 

layer of these membranes is a few hundred nanometers [260].  UTC-80A has 1,3,5-

triaminobenzene as a polyamine component [261]. 
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Mondal and Wickramasinghe conducted elemental surface analysis of BW30, NF90 and 

NF270 using XPS [258].  With the equipment setup of Mondal and Wickramasinghe 

[258], XPS allows the sensitive measurement of elemental composition (except 

hydrogen) on the membrane surface and provides chemical binding information for the 

top 1 to 10 nm of the membrane surface.  Their results for virgin BW30, NF90 and 

NF270 are reported in Table 3-6.  Their objective was to compare virgin membranes 

with those filtered with oily wastewaters, but only the data for virgin membranes is 

reported here (and thus the data may include measurement artefacts from the 

atmosphere because it is taken out of its original context to be comparative).  The 

filtration of oily wastewaters affected the C:O:N ratio of the membranes due to organics 

absorbing on to the membrane surface [258], but no similar data for inorganics is 

available. 

 

Table 3-6. Surface elemental analysis (as %) using XPS of virgin samples of BW30, 
NF90 and NF270 [258]. 
Membrane C O N C : O : N ratio S Na Cl Si 
BW30 70.7 22.2 6.1 11.6 : 3.6 : 1.0 -- 0.5 0.5 -- 
NF90 71.0 16.4 11.1 6.4 : 1.5 : 1.0 0.8 0.5 0.2 -- 
NF270 64.4 22.3 7.5 8.6 : 3.0 : 1.0 1.1 3.7 0.9 -- 
 
 
The elemental analysis of TFC-S [262] and ESPA3 (assumed to be similar to ESPA4) 

[263] was also reported.  The active layer of TFC-S is a polyamide ((CONH2]
n) thin 

film composite and the composition ratio was determined by Rutherford backscattering 

spectrometry (RBS) [262].  Results for TFC-S are reported on Table 3-7.  Tang et al. 

[263] reported the composition of ESPA (polyamide active layer) and BW30 using XPS 

and their results are shown on Table 3-8.  Both Mondal and Wickramasinghe [258] and 

Tang et al. [263] showed higher O:N ratio than would be expected from a fully cross-

linked polyamide layer, which was attributed to either proprietary modifications of the 

interfacial polymerization or the presence of a coating like polyvinyl alcohol [258].  The 

active layer material for UTC-60 is a cross linked polyamide [264] and UTC-80 is a 

cross linked fully aromatic polyamide ultra-thin composite membrane [252] but 

elemental breakdown for these membranes was not available. 
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Table 3-7. Active layer elemental composition (as %) of TFC-S determined by 
model fitting of RBS data of TFC-S [262]. 
Membrane C O N C : O : N ratio S  Cl Ca 
TFC-S 73.1 15.0 10.7 6.8 : 1.4 : 1.0 --  0.9 0.19 
 
 
Table 3-8. Surface elemental composition (as %) of ESPA3 and BW30 determined 
by XPS [263]. 
Membrane C O N C : O : N ratio 
ESPA3 74.3 ± 0.5 12.8 ± 0.8 12.9 ± 1.0 5.8 : 1.0 : 1.0 
BW30 67.9 ± 0.6 29.0 ± 1.5 3.1 ± 1.0 21.9 : 9.4 : 1.0 
 
 

3.2.6 Surface Morphology 
 

Atomic force microscopy (AFM) can be used to determine the roughness of a 

membrane.  The roughness of a membrane is a particularly important parameter for 

understanding membrane fouling [161].  Although fouling is not the focus of this work, 

membrane characteristics are important for understanding experimental results.  

Roughness is used in Chapter 7 to discuss differences between NF90 and NF270.  

Additionally, surface roughness has implications on more than only fouling, as observed 

by Hirose et al. [265], who showed that a linear relationship exists between permeate 

flux and surface roughness when filtering NaCl in RO.  This was attributed to the 

unevenness of the top layer causing an enlargement of the effective membrane area 

[265].  In this light, the roughness will be reported. 

 

Surface roughness was measured using an AFM (Multimode AFM, Veeco, now Bruker 

Corporation) using a cantilever (Mikromasch CSC38/AIBS type B) in de-ionized water.  

The AFM uses a tip that slowly moves over the membrane surface (sample size 2.0 

µm2) and determines a roughness profile of the surface by measuring the force it takes 

for the tip to move.  An image of the top surface and the corresponding surface profile is 

shown for each membrane in Figure 3-9.  After determining the profile, the software 

automatically calculates two parameters which represent the surface roughness.  The 

parameters are Ra and Rq.  Ra is the mean roughness which is the arithmetic average of 

the deviations from the centre plane, and Rq is the root mean square roughness which is 

the standard deviation of two values within a given area.  The calculated Ra and Rq 
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values are tabulated on Table 3-9.  Ime Akanyeti and Dr. Nhan T. Pham (University of 

Edinburgh) provided the AFM data.   

 
Table 3-9. Membrane roughness measurements using AFM and comparison to 
literature. 
 Membrane Ra (10-9m) Rq (10-9m) Published Roughness (10-9m) 
      Ra Rq Average 
BW-30 67.7 ± 2.4 83.9 ± 3.8    68.3± 12.5 

[258] 
61 [266] 

BW-30* 63.6 ± 5.0 78.4 ± 6.2       
ESPA-4 86.5 ± 2.3 107.0 ± 3.6    
NF-90 61.7 ± 2.1 78.5 ± 3.6 69.9 

[267] 
33.1 [161] 
129.5 ± 23.4 
[258] 

70 [266] 

NF270 4.2 ± 0.3 5.5 ± 0.4 5.5 [267] 4.2 [161] 
9.0 ± 4.2 [258] 

4.5 [266] 

TFC-S 64.5 ± 6.2 81.5 ± 8.1       
UTC-60 6.6 ± 0.4 8.8 ± 0.5       
UTC-80A 36.9 ± 2.1 45.5 ± 2.5       
*compacted at 15 bar 

 

 

These results show that NF270 and UTC-60 are by far the smoothest membranes.  The 

order of increasing roughness is NF270 < UTC-60 < UTC-80A < NF90 < BW30 

(compacted) < TFC-S < BW30 < ESPA4, which is comparable to the literature [161].  

Three-dimensional images were not obtained for all of the membranes analyzed, but 

three-dimensional AFM images are easier to understand conceptually.  As such, they are 

provided in Figure 3-10.  These images visually support that NF270 is very smooth 

compared to BW30 and NF90. 

. 
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(A) BW30 (B) BW30 Compacted 

(C) ESPA4 

 

(D) NF90 

(E) NF270 

 

(F) TFC-S 

 
(G) UTC60 

 

(H) UTC80A 

 
Figure 3-9. AFM images and surface profiles for each of the membranes used. 
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Figure 3-10. Three-dimensional AFM images of BW30XLE, NF90 and NF270 
from Boussu et al. [161]. 

 

3.2.7 Active Layer Thickness 
 

Direct measurement of membrane layers, and in particular the selective active layer, is 

very difficult because of their very small size.  However, the selective active layer is 

very important because it controls the selectivity and permeability of the membrane.  

Active layer thickness was used to approximate diffusion coefficients of various salts 

through NF membranes (Appendix B).  NF membranes have an active layer in the range 

of 15 – 100 nm [260, 268].  High resolution transmission electron microscopy (TEM) 
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can image the cross-section of a membrane sample but it remains difficult to see the 

details of the active layer.  Although the resolution is not good enough to see pores, 

these images can assist in the estimation of the active layer thickness.  For 

demonstrative purposes, several TEM images from the literature [263] are shown in 

Figure 3-11.  The polyamide layer of NF270 (Figure 3-11D) can clearly be seen due to 

the smooth nature of this membrane.  Dr. Andrea Semião and Dr. Chris Jeffree 

(University of Edinburgh) did TEM measurements for NF90 and NF270.   

 

3.2.8 Hydrophobicity 
 
Contact angle provides information on the hydrophilicity or hydrophobicity of a 

membrane by measuring the interactions between water and the polymeric material of 

the membrane [110, 153].  More hydrophobic membranes have less interaction with 

water and hence are less wettable by a drop of water.  Low affinity between membrane 

and water leads to a contact angle greater than 90° and high affinity leads to an angle 

less than 90°.  This is shown on Figure 3-12.  While contact angle is commonly used to 

measure the hydrophobicity of membranes, other membrane properties (such as 

roughness, pore size and surface tension) affect measurements and thus the data should 

be used with caution. 

 

Contact angle was measured for selected membranes (BW30, ESPA4, NF90 and 

NF270) using the sessile drop method and a contact angle instrument (Easy Drop Kruss 

model FM40, Germany).  The membranes were rinsed thoroughly and soaked in 

deionized water for 24 hours.  Then, the membrane surface was dried for at least 8 hours 

to ensure that the results were not affected by the degree of dryness [269].  The 

membrane was glued to a glass holder to ensure a plane surface.  A pure water drop was 

placed onto the membrane and it was photographed within 15 seconds and then every 

minute for at least six minutes, and the contact angle was automatically calculated.  At 

least three measurements for each membrane were taken.  Results are reported on Table 

3-10 and compared to values reported in the literature.  Literature values varied 

substancially in some cases, which is likely due to variations in measurement 

methodology and/or manuality of the person taking the measurement.  Comparison 

across one reference is best for this reason.  These results show that the hydrophobicity  
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(A) BW30 (B) ESPA3 

(C) NF90 (8k5) (D) NF270 (40k4) 

Figure 3-11. TEM images from Tang et al. [263] for (A) BW30 and (B) ESPA3 and 
for (C) NF90 and (D) NF270.  Note that the scales are different on each image.  PA 
and PS represent polyamide (active layer) and polysulphone (support layer), 
respectively. 
 

 

 
Figure 3-12. Significance of contact angle measurements [110, 153]. 

more hydrophilic more hydrophobic 
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of the membranes increases in the order of NF270 (most hydrophilic) < BW30 < NF90 

< ESPA4 (most hydrophobic) which is consistent with the trend observed in the 

literature [258].  Contact angle measurements were made by Annalisa De Munari 

(University of Edinburgh), Dr. Kingsley Ho and Dr. Alexander Bismarck (Imperial 

College London). 

 

Table 3-10. Membrane contact angle measurements using the sessile drop method 
and comparison to literature. 
Membrane Contact 

Angle (°) 
Published Contact Angle (°) 

  Sessile Drop Method Captive Bubble Method 
BW30 40.3 ± 1.1 60.8 [258], 51 [161] 65 [270] 
ESPA4 53.1 ± 2.2 -- -- 
NF90 47.9 ± 1.7 54.6 [258], 54 [161], 42 

[110] 
-- 

NF270 29.1 ± 1.6 42.7 [258], 27 [161], 55 
[110] 

14.6 [270] 

TFC-S -- 30 [110] -- 
 

3.3 Chemicals 

All chemicals were of high purity and purchased from Fisher Scientific (UK), Sigma-

Aldrich (UK), Acros Organics, Merck or BDH Chemicals.  A list of chemicals used 

along with the general purpose, supplier, and grade/purity is shown on Table 3-11.  

Ultrapure water (18.2 MΩ.cm-1) (Elga PURELAB Ultra, UK) was used for all 

experimental and analytical solutions, unless specified otherwise.  For particular 

experiments, the pH was adjusted using 1M NaOH and/or 1M HCl.  Concentrations of 

target contaminants varied depending on the type of experiment and are specified where 

relevant. 
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Table 3-11. List of chemicals used with supplier and grade/purity. 

Chemical Purpose* Supplier Grade/ 
Purity (%) 

acetone (C3H6O) analysis (IC) Fisher Scientific 99 
ammonium chloride (NH4Cl) analysis (NA) Fisher Scientific 99+ 
boric acid (H3BO3) filtration Sigma-Aldrich 99.5 
dextrose (C6H12O6) characterization Fisher Scientific 99+ 
dioxane (C4H8O2) characterization Fisher Scientific 99+ 
Disodium ethylenediamine 
tetraacetic acid dehydrate (EDTA, 
C10H14N2Na2O8·2H2O) 

analysis (NA) Acros Organics 99+ 

glacial acetic acid (C2H4O2) analysis (ISE) Fisher Scientific 99+ 
hydrogen chloride (37%) (HCl) pH adjustment Fisher Scientific 99+  
methanol (CH3OH) characterization Fisher Scientific 99.8 + 
multi-element standards analysis (ICP-

OES, ICP-MS) 
Merck -- 

N-(1-napthyl) ethylenediamine 
dihydrochloride (NED, 
C12H14N2·2HCl) 

analysis (NA) Acros Organics 98+ 

nitric acid (67%) (HNO3) pH adjustment BDH Chemicals -- 
oxalic acid (H2C2O4) analysis (IC) BDH Chemicals 99.8 
polyethylene glycol (200, 400, 
600, 1000) (H(OCH2CH2)nOH) 

characterization Fisher Scientific -- 

potassium chloride (KCl) filtration Sigma-Aldrich 99 
potassium fluoride (KF) filtration Acros Organics 99 
potassium nitrate (KNO3) filtration Fisher Scientific 99+ 
potassium nitrite (KNO2) filtration Acros Organics 97 
sodium hydrogen carbonate 
(NaHCO3) 

analysis (IC) Fisher Scientific 99+ 

sodium carbonate (Na2CO3) analysis (IC) Fisons Scientific 99.9 
sodium chloride (NaCl) filtration, analysis 

(ISE) 
Fisher Scientific 99.9 

sodium fluoride (NaF) filtration Sigma-Aldrich 99+ 
sodium hydroxide (NaOH) pH adjustment, 

analysis (ISE) 
Fisher Scientific 98 +  

sodium nitrate (NaNO3) filtration Fisher Scientific > 98 
sodium nitrite (NaNO2) filtration Acros Organics 97+ 
sulphuric acid (98%) (H2SO4) analysis (IC) Fisher Scientific -- 
sulphanilamide (C6H8N2O2S) analysis (NA) Acros Organics 98 
xylose (C10H10O5) characterization Acros Organics 99+ 
*IC: ion chromatography; NA: nutrient analyzer; ICP-OES: inductively coupled 
plasma optical emission spectroscopy; ICP-MS: inductively coupled plasma mass 
spectroscopy; ISE: ion selective electrode 
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3.4 Analytical Equipment 

A variety of analytical equipment was used to determine chemical composition of 

experimental samples.  A summary of equipment, application and detection limits 

follows in Table 3-12. 

 

Table 3-12. Analytical Equipment Summary. 
Analytical 
Equipment 

Type of Analysis Measured 
Units 

Typical 
Range 

Detection 
Limit * 

Conductivity Meter electrical 
conductivity 

mS.cm-1 1 - 10000 1 µS.cm-1 

     
pH Meter pH -- 2 – 13 low: -2.0 
     

Ion Selective 
Electrodes (ISE) 

fluoride, nitrate mV 10 - 160 
mV 

0.1 mg.L-1 

     

Nutrient Analyzer 
(NA) 

nitrate, nitrite mg.L-1 0.1 - 20 
mg.L-1 

0.1 mg.L-1 

     

Inductively-Coupled 
Plasma Optical 
Emission 
Spectroscopy (ICP-
OES) 

cations, boron mg.L-1 0.1 - 100 
mg.L-1 

< 0.1 mg.L-1 [a] 

     

Inductively-Coupled 
Plasma Mass 
Spectroscopy (ICP-
MS) 

cations, boron µg.L-1 0.1 - 50 
µg.L-1 

< 0.1 µg.L-1 [a] 

     

Total Organic 
Carbon (TOC) 

organic carbon mg.L-1 0.1 - 25 
mg.L-1 

0.1 mg.L-1 

     

Ion Chromatograph 
(IC) 

fluoride, chloride, 
nitrate, nitrite 

mg.L-1 0.1 - 2000 
mg.L-1 

0.05 mg.L-1 

*Detection limits are reported as the practical quantitation limit typically used, but this 
occasionally varied depending on instrument, calibration and sample type. [a]  Instrument 
detection limits were element-specific: 0.1 mg.L-1 (Mg, Na, B); 0.01 mg.L-1 (Al, Ca); 
0.001 mg.L-1 (As, Ba, Be, Cr, Cu, Fe, Pb, Li, Mn, Mb, Ni, Se, Sr, S, Ti, U, V, Zn) 
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3.4.1 Electrical Conductivity and pH 
Electrical conductivity (EC, mS.cm-1) and pH were measured using probes (multiline P4 

epoxy gel combination pH electrode with automatic temperature compensation 

immersion probe, WTW, Germany) and a standard meter (WTW, Germany).  

Conductivity readings were converted to salt concentrations using calibrations made 

with the particular salt of interest.  Calibration details are included in Appendix A.  For 

the results presented in Chapter 4, total dissolved solids (TDS) was estimated by 

multiplying the electrical conductivity by a conversion factor (k = 0.64) which is 

applicable to Australia groundwater with high sodium content [74, 271]. 

 

3.4.2 Ion Selective Electrodes 
Fluoride was analyzed for some experiments (specified in the relevant chapters) using 

an ion-selective electrode (ISE) in conjunction with an Ag/AgCl reference electrode 

connected to an ion meter (781 Ion Meter, MetrOhm, UK).  The electrode was 

calibrated regularly (once a week during regular use) with calibration standards 

typically of values 0.1, 0.3, 1.0, 3.0, 10.0 and 30.0 mg.L-1.  All standards and samples 

were mixed with a total ionic strength adjustment buffer (TISAB) to reduce 

interferences resulting from pH and conductivity.  The TISAB buffer consisted of 

glacial acetic acid, sodium chloride and sodium hydroxide.  Note that for analysis of 

samples containing aluminium there is significant interference with the fluoride 

measurement using ISE, and thus the TISAB buffer must also include 1,2-

cyclohexanedinitrilo-tetraacetic acid (C6H10[N(CH2CO2H)2]2·H2O or CDTA) in order to 

reduce those interferences.  ISE was only used for fluoride analysis of samples made in 

lab-grade water without high concentrations of aluminium and thus CDTA was not 

included in the buffer.  Calibration details are included in Appendix A. 

 

3.4.3 Nutrient Analyzer 
Nitrate and nitrite were analyzed using a QuickChem 8500 FIA Nutrient Analyzer 

(Lachat Instruments, Colorado USA).  Samples are buffered to pH 8.5 with ammonium 

chloride (NH4Cl) before an optional pass through a copperized cadmium column to 

reduce nitrate to nitrite (this column was used when nitrate was in the samples).  

Disodium ethylenediamine tetraacetic acid dehydrate (EDTA) is added to the NH4Cl 
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buffer solution to reduce possible interferences with other metals present in the samples.  

The total nitrate (reduced nitrate plus nitrite) is then determined by diazotising with a 

sulphanilamide colour reagent (converting an amine into a diazo compound of form R-

N:N- where R is an aromatic hydrocarbon) followed by coupling with N-(1-

napthyl)ethylenediamine dihydrochloride (NED).  This process converts the sample to a 

magenta water-soluble dye which can be read at a wavelength of 520 nm.  The resultant 

peak area is reported in mV.s-1.  Calibration details are included in Appendix A. 

 

3.4.4 Inductively-Coupled Plasma Optical Emission Spectroscopy 
Cations and boron were analyzed with inductively-coupled plasma optical emission 

spectroscopy (ICP-OES) (Perkin Elmer Optima 5300 DV, Waltham, USA).  Calibration 

standards were typically 0.1, 1.0, 5.0, 10, 50, 100 and 250 mg.L-1 (depending on 

expected sample concentrations) and were prepared from multi-element standards 

(Merck, Darmstadt Germany).  An example calibration is shown in Appendix A.  All 

samples were acidified to below pH 2 with pure Aristar nitric acid and stored in 

polypropylene centrifugal tubes in order to reduce possible leaching of inorganics into 

glassware.  The analytical rinse solution was 2.8% Aristar nitric acid in MilliQ water 

(v:v).  All samples were analyzed quantitatively by external calibration.  Analysis 

blanks and certified reference standards were analyzed for quality control. 

 

3.4.5 Inductively-Coupled Atomic Emission Spectroscopy 
Inductively-coupled atomic emission spectroscopy (ICP-AES) was used to determine 

cation concentrations for the pH results presented in Chapter 4.  Analysis was 

completed by the Australian Nuclear Science and Technology Organisation (ANSTO) 

using a Varian Vista AX Simultaneous CCD instrument.  ICP-AES samples were 

acidified and spiked (4000 mg.L-1) with cesium to suppress easily ionised elements.  All 

samples were analyzed quantitatively by external calibration.  Analysis blanks and 

certified reference standards were analyzed for quality control. 

 

3.4.6 Inductively-Coupled Plasma Mass Spectroscopy 
Analysis of cations and boron at low concentration (typically µg.L-1 range) for the solar 

experiments presented in Chapter 4 was conducted with inductively-coupled plasma 
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mass spectroscopy (ICP-MS) (Agilent 7500ce, USA).  Calibration standards were 

typically 0.1, 1.0, 5.0, 10 and 50 µg.L-1 and sample preparation and storage was the 

same as for ICP-OES.  Analysis of pH results presented in Chapter 4 was conducted 

using a different ICP-MS instrument (Agilent 4500, USA) and samples were spiked 

with indium, yttrium, lithium, scandium, lutetium, bismuth, and rhodium as internal 

standards.  All samples were analyzed quantitatively by external calibration.  Analysis 

blanks and certified reference standards were analyzed for quality control. 

 

3.4.7 Total Organic Carbon 
Organic carbon was measured for characterization experiments using a total organic 

carbon analyzer (TOC-V CPH, Shimadzu, Milton Keyes UK) in non-purgeable organic 

carbon mode (NPOC).  Sample preparation included acidifying samples using 2 M HCl 

and sparging with nitrogen for 2 minutes prior to injection to remove inorganic carbon.  

Sources of carbon were neutral organic solutes methanol, xylose, dioxane, dextrose, and 

polyethylene glycol (200, 400, 600 and 1000 g.mol-1).  A high-sensitivity column was 

used and sample concentrations did not exceed 20 mg.L-1.  Typical calibration standards 

were 0.1, 1.0, 5.0, 10.0, 25.0 mg.L-1, and an example calibration is shown in Appendix 

A. 

 

3.4.8 Ion Chromatography 
Anions for diffusion cell experiments were analyzed using ion chromatography (IC 883, 

Basic IC Plus, MetrOhm UK).  The IC was equipped with a high capacity anion column 

for the determination of anions in salt solutions.  Ions are separated in the column over 

time according to increasing charge to mass ratio, and concentrations are determined by 

conductivity spikes at an ion-specific retention time.  The eluent used was a 

carbonate/bicarbonate buffer prepared fresh as needed and at least weekly.  Typical 

standards were made at 0.1, 0.3, 1.0, 3.0, 10.0 and 30.0 and 100.0 mg.L-1 of a single salt 

solution of the desired analyte.  Calibration details are included in Appendix A.  The 

analysis of chloride, nitrate and sulfate presented in Chapter 4 was completed by 

ANSTO with a Dionex DX-600 IC with Eluent Generator.  The analysis of nitrate and 

fluoride for the single feed experiments presented in Chapter 5 was done using a Dionex 

DX-100 IC (A.I. Scientific) equipped with a Dionex AS9-HC column and the eluent 
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used was Na2CO3 (9.0 mM, pH=10).  Analysis blanks and standard checks every 10 

samples were analyzed for quality control. 

 

3.5 Standard Calculations 

3.5.1 Standard Parameters 
 
Standard calculations reported through this thesis are shown in this section.  Other more 

specialized calculations will be reported as appropriate.  Flux (J or Jv, L.h-1.m-2) is 

calculated as 
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JJ , Equation 25 

 
 
where Q is the flow of the permeate (L.h-1) and A (m2) is the membrane area.  Flux is 

interchangeably volumetric flux (Jv), because it is based on a volumetric flow.  If the 

subscript such as pure water or solution follows J, it is specifying that the measured flux 

is of pure water of a specific solution.  Flux can be converted to permeability (L, L.h-

1.m-2.bar-1)  
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by dividing by applied pressure (Papplied, bar).  Solute flux (mol.h-1.m-2) is calculated by 
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Retention (R, %) is 
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where C is concentration in the permeate and feed.  Retention calculated this way is 

observed retention (eg. no correction for concentration polarization) and unless 

otherwise specified, retentions reported in this thesis are observed retention.  Real 

retention (Rr) has been corrected for concentration polarization using the relationship 
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− 1
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ln  Equation 29 

 

where kf  is the salt mass transfer coefficient across the membrane (m.s-1) and Jv is the 

average volumetric flux (L.h-1.m-2).  This relationship is based on film theory [216] and 

was derived in Chapter 2.3.1.  The mass transfer coefficient, kf, was determined 

experimentally using methods previously published [154, 216] and calculated with 
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where the applied pressure is ∆P, pure water flux is Jw, solution flux is Jsalt, and the 

osmotic pressure (π) of the bulk and permeate solutions are calculated from the bulk and 

permeate salt concentrations using the Van’t Hoff equation: 

 

∑= RTCiπ , Equation 31 

 

where C is concentration, R is the gas constant, and T is temperature.  By 

experimentally determining kf, Jw and Jsalt, the concentration of salt at the membrane 

surface (Cmembrane) can be calculated.  This allows observed retention to be corrected for 

concentration polarization to get real retention (Rr) 

 

1- 100permeate
r

membrane

C
R

C
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. Equation 32 

 

In Chapter 4, a number of operational parameters are reported.  Specific energy 

consumption (SEC, kWh.m-3) is calculated using  
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where I is current (A) and U is voltage (V), the product of which is power (W).  Trans-

membrane pressure (TMP, bar) is calculated by  

 

2 3 -
2 permeate

p p
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 Equation 34 

 
 

where p2 and p3 are the pressures measured on the feed and concentrate lines (as shown 

on Figure 3-7). 

 

3.5.2 Error Analysis 
 
Uncertainty (δ) was calculated for selected experiments using standard propagation 

techniques, according to the general formula (where F is any function): 
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where F is any quantity that depends on A, B and C.  The uncertainty for each of the 

fundamental contributions to the calculations (eg. δA or reproducibility of chemical 

analysis) was taken to be the standard deviation of multiple samples (n ≥ 5) and 

assumed to be similar across all experiments (unless otherwise indicated).  Table 3-13 

shows the values used for uncertainty for standard calculations.  It is also important to 

note that there can be significant variation in membrane coupons, even within the same 

batch, according to the manufacturing process.  In order to reduce this effect, an 

acceptable pure water flux value was selected for each commonly-used membrane 

based on experimental flux measurements of a number of coupons of the same 

membrane type and batch (rather than according to the manufacturer’s specification), 
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and any coupon outwith 10% of that pure water flux value was discarded (the 

acceptable value is the average permeability shown on Table 3-3 ± 10%). 

 

Table 3-13. Uncertainty values for standard measurements (determined by taking 
multiple (n ≥ 5 ) measurements of a single parameter or analysis). 

Parameter, Analysis Type Uncertainty Estimate (± %) 
δ Chloride, IC 2 % 
δ Fluoride, IC 2 % 
δ Fluoride, ISE 3 % 
δ Nitrite, IC 3 % 
δ Nitrate, IC 3 % 
δ Nitrite, NA 5 % 
δ Nitrate, NA 4 % 
δ Analysis, ICP-OES 2 % 
δ Analysis, ICP-MS 2 % 
δ Flux (L.h-1.m-2), -- 2 % 

 

Where the propagation calculation could not be directly applied (eg. for the fitting 

procedure in membrane characterization or for calculation of diffusion coefficients), 

uncertainty was estimated by re-running the fitting procedure or calculation with the 

largest expected errors in input parameters to determine the variation in the outputs. 

 

3.6 Conclusions 
 

In summary, this chapter explained the methods and materials used experimentally in 

this research.  This included a RE-membrane system and bench scale filtration systems 

(stirred cells, crossflow and diffusion cells).  The commercially-available membranes 

are described with characteristics that were determined and that were available within 

the literature.  Chemicals were listed and each of the pieces of analytical equipment is 

described.  Common experimental protocols are reviewed, but detailed and specific 

information is provided in the relevant chapters.  A summary of common experimental 

calculations and uncertainty is included. 
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Chapter 4  
 
 
Renewable Energy Powered Membrane Systems 
 
 

In order to provide safe drinking water in isolated communities where water supply and 

electrical infrastructure is limited, a solar energy powered desalination system was 

previously developed using UF followed by NF/RO.  During a field trial in 2005 (prior 

to the start of the PhD candidate), a series of experiments were performed with various 

NF/RO membranes with natural groundwater in central Australia to assess various 

influences on system performance, such as varying energy, pH and groundwater type. 

 

The RE-membrane system effectively removed a number of inorganic contaminants over 

a range of real energy and pH conditions, given sufficient solar availability.  At each 

location, energy fluctuations affected pressure and flow and thus the retention of 

fluoride, magnesium, nitrate, potassium and sodium where convection/diffusion 

dominated retention.  Retention of calcium, strontium and uranium was very high and 

independent of solar irradiance, which was attributed to a combination of size and 

charge exclusion and, for some solutes, sorption and precipitation.  The solutes were 

categorized into two groups (groundwater-specific) according to retention as a function 

of pH.  The first group contained solutes with pH-independent retention (Group 1: 

arsenic, calcium, chloride, nitrate, potassium, selenium, sodium, strontium, and 

sulphate).  The second group of solutes had pH-dependent retention (Group 2: copper, 

magnesium, manganese, molybdenum, nickel, uranium, vanadium, and zinc).  The 

retention of Group 1 solutes was typically high and attributed to steric effects.  Group 2 

solutes had dominant, insoluble species under certain conditions which led to 

deposition on the membrane surface (and thus varying apparent retention).  Variations 
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in system performance occurred due to changes in solar irradiance, groundwater 

composition and pH. 

 

Results demonstrated successful use of this system with real water and energy 

conditions in remote areas, but also highlighted the lack of understanding of 

fundamental removal mechanisms in NF/RO processes.  As such, this chapter brought 

to light a number of interesting research questions and emphasized the importance of 

working with simplified systems in order to study fundamental mechanisms, which will 

be the the subject of the remaining chapters of this thesis. 

 

The RE-membrane system was designed and constructed by the previous research team 

led by Profs. Andrea Schäfer and Bryce Richards in Australia in 2005.  Subsequently, a 

field trial with the system was conducted in the Australian outback, which included a 

number of experiments that were planned and carried out by that team.  A vast amount 

of data was produced on this trip, and as such, a series of publications set about to 

address different aspects of the system operation.  The contribution of the current PhD 

candidate was to specifically evaluate the data relevant to the removal of trace 

contaminants.  This involved critically analyzing a very large set of data collected 

during the field trial in order to identify interesting results and meaningfully develop a 

selection of results into manuscript form.  This analysis brought to light a number of 

interesting research questions, which shaped the rest of the PhD.  Specifically, the 

examination of the effect of energy fluctuations and pH on the removal of ions in 

groundwater ultimately led to mechanistic questions about the role of ion hydration in 

determining which ions are retained. 

 

4.1 Introduction and Objectives 
 
As discussed in detail in Chapter 1, drinking water treatment and energy consumption 

are integrally related and need to be addressed together in order to achieve all the 

United Nations’ Millennium Development Goals [4].  A concern with remote drinking 

water supplies is the presence of naturally-occurring salts and inorganic contaminants 

such as arsenic, fluoride and nitrate, which can be undesirable above guideline values 

for both health and aesthetic reasons [11, 24].  NF/RO is capable of retaining many of 
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these salts and inorganic contaminants, and NF/RO coupled with a renewable energy 

source may help address drinking water treatment in remote areas without electrical grid 

connections. 

 

There are many practical advantages of using such a system without battery storage, 

such as increased efficiency, increased performance at higher temperatures and lower 

life-cycle costing [72].  However, the lack of battery storage inherently means that the 

variable renewable energy input will directly impact system operation (in particular 

flow and pressure) [72].  This subsequently may impact salt and inorganic contaminant 

retention due to changing conditions near the membrane surface.  The impact of 

renewable energy on the retention of inorganic contaminants in real groundwater 

remains poorly understood. 

 

In consequence, the aim of the work in this chapter was to evaluate retention of a 

number of inorganic solutes in real groundwater using NF/RO with five specific 

objectives: 

 

1. To understand the impact of energy fluctuation on retention 

2. To determine the role of pH in this process, with regard to chemical speciation 

and system performance 

3. To determine the dominant mechanisms of ion retention in real groundwater 

4. To compare system performance at different locations (each with different 

groundwater) 

5. To evaluate retention without the influence of complicated groundwater matrices 

using synthetic water and controlled energy conditions 

 

4.2 Experimental Summary 
 
The RE-membrane system was powered by PV panels and comprised of a two-staged 

membrane process as described by Schäfer et al. [74].  Three categories of experiments 

were conducted: solar experiments, pH experiments and laboratory-based synthetic 

water experiments, the first two of which were conducted in the field prior to this PhD 

thesis (October 2005 in Australia). 
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4.2.1 Field Trial Overview 
 

Because the primary aim of the work was to understand system operation with a real 

groundwater and natural renewable energy conditions, field trials were conducted.  

These trials were conducted at six locations in Central (Aileron, Aluyen, Harry Creek, 

Pine Hill, Ti Tree) and South (Coober Pedy, low salinity borehole) Australia [272] in 

October 2005.  These locations were deemed ideal for the field study due to high 

average solar irradiance, problems of water scarcity as a result of low precipitation, and 

no access to grid electricity [273].  A map of the field locations overlain with the annual 

average peak daily sunshine hours (solar exposure) follows in Figure 4-1, showing that 

each of the field locations have very high solar irradiance [273].   

 

 

Figure 4-1. Field locations with average daily solar exposure [273]. 
 

The first step was to analyze the raw groundwater quality in each of the six field 

locations to provide a basis for all other experiments, using the analytical techniques 

described in Chapter 3.4.  Chemical speciation of the groundwater was then predicted 

from experimental measurement of total elemental concentrations using Visual 

MINTEQ (methods described in Section 4.4).  Subsequently, in order to assess each of 
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the specific effects on system performance, two main types of field experiments were 

conducted: (1) solar experiments and (2) pH experiments.   

 

4.2.2 Solar Experiments 
 

Solar experiments were designed to assess the impact of naturally varying energy 

throughout a solar day on salt/contaminant retention at the natural pH of the water.  The 

solar experiments had two main purposes: (1) to obtain in-depth results and chemical 

analysis for the RO membrane BW30 [249] at Pine Hill and Ti Tree [248], and (2) to 

compare performance with six different groundwaters with less chemical detail [274].  

The system was operated in re-circulation mode.  Samples were collected hourly from 

feed, UF permeate, NF/RO permeate and concentrate and analyzed using the methods 

(conductivity, pH, ion selective electrodes, inductively coupled plasma optical emission 

spectroscopy, inductively coupled plasma mass spectroscopy) described in Chapter 3.4.  

Operating parameters varied depending on location and operation and will be 

specifically discussed in Section 4.5.  Typical values were that solar irradiance varied 

from 0.01 – 3 kW.m-2, motor power from 50 – 300 W, TMP across the NF/RO 

membrane from 2 – 12 bar, and feed flow between 90 – 500 L.h-1.   

 

4.2.3 pH Experiments 
 

The objective of the pH experiments was to evaluate the specific impact of pH on 

contaminant retention, while using constant power (supplied from a diesel generator).  

Constant power ensured constant flow and pressure, thus isolating pH as the only 

variable.  Four different NF/RO membranes were used (BW30 [249], ESPA4 [251], 

NF90 [249], and TFC-S [250]) at Pine Hill (for membrane performance comparison).  

An additional experiment with BW30 was conducted at Ti Tree (for comparison of 

different groundwaters).  During each experiment, the pH of the bore water was 

adjusted in increasing step-wise increments between 3 and 11 with HCl and NaOH (1 

M) and equilibrated (typically for 30-60 minutes) before taking performance readings 

and collecting samples.  Samples were collected from feed, UF permeate, NF/RO 

permeate and concentrate and analyzed using the methods (conductivity, pH, ion 
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selective electrodes, ICP-OES, ICP-MS) described in Chapter 3.4.  Operating 

parameters for the pH experiments were set at 9 bar and 400 L.h-1.  The feed water 

temperature in the tank ranged from 24.2 to 26.9°C at Pine Hill and from 29.1 to 32.6°C 

at Ti Tree on the days of experimentation.     

 

4.2.4 Synthetic Water and Energy Experiments 
 

In order to assess system performance without the influence of complicated 

groundwater matrices and uncontrolled energy fluctuations (eg. not in the field), a 

limited number of additional experiments were conducted using synthetic brackish 

water and simulated energy conditions at Heriot-Watt University.  The RE-membrane 

system was configured as described in 3.1.4.  Feed water was prepared using deionized 

water spiked with general purpose grade NaCl (6 g.L-1), NaNO3 (50 mg.L-1 as NO3), 

NaNO2 (10 mg.L-1 as NO2), NaF (10 mg.L-1 as F), B(OH)3 (10 mg.L-1 as B), NaHCO3 

(84 mg.L-1) (Fisher Scientific, UK).  The membrane was an new NF90 4” module, and a 

system set-point of 10 bar was selected as described by Park et al. [168].  Temperature 

was controlled at 22.5 °C by constant circulation.  Power was held at 75, 100, 160, 220 

and 265 W and samples collected at time 0, 1, 2, 3, 5, 10, 20 and 30 minutes after power 

was adjusted.  After 30 minutes, the power was increased to the next level.  Chemical 

analysis was conducted using the nutrient analyzer for nitrate and nitrite, ion selective 

electrode for fluoride, and ICP-OES for boron.  Details of chemical analysis were given 

in Chapter 3.4. 

 

Having described the various types of experiments conducted, the following sections 

report the results from these experiments.  First an overview of the raw water quality 

and groundwater speciation in remote Australian communities is given in Sections 4.3 

and 4.4, respectively.  Then the performance of the RE-membrane system is discussed 

in detail in Sections 4.5 - 4.7.  

 

4.3 Overview of Water Quality in Remote Australian Communities 
 

This section discusses and compares water quality at each of the six selected field 

locations.  Raw water quality analysis at the different field locations is shown in Table 
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4-1.  The most saline water was Pine Hill (total dissolved solids, TDS = 5700 mg.L-1) 

and the least saline was Ti Tree (TDS = 1080 mg.L-1), which are levels typical of 

brackish groundwaters.  All groundwaters have a pH between 7.8 and 8.5.  Australian 

Drinking Water Guidelines for NO3
-, Se, SO4

2- and U (health-based) and Cl-, Mn2+, Na+ 

and TDS (aesthetic) were exceeded at some locations (marked in bold font on Table 

4-1).  All locations exceeded guidelines for at least one contaminant.  Associated health 

concerns for the contaminants exceeding guidelines were reviewed on Table 1-1.  For 

Pine Hill, which will be discussed in detail in Section 4.5, the contaminants exceeding 

Australian health-based guidelines [24] were selenium (0.015 mg.L-1, guideline (GL): 

0.01 mg.L-1), sulphate (889 mg.L-1, GL: 500 mg.L-1), and uranium (0.295 mg.L-1, GL: 

0.02 mg.L-1).  Where the solute was analyzed but not detected, the result is marked as 

less than the detection limit (note that detection limit varied because analysis was 

conducted with different instruments). 

 

Groundwater quality can be affected throughout the year by weather trends (in 

particular rainfall and temperature) and anthropogenic activities such as agriculture.  

Therefore, contaminant concentrations could be higher in very dry and hot conditions 

than when rainfall is high and temperatures are lower due to more dilution and less 

evaporation.   

 

Average weather information is available for Alice Springs (site number 015590), 

which is the nearest major town to these field locations [273].  This field study was 

conducted in October, where the average temperature is 30.9 °C and average monthly 

rainfall is 21.8 mm.  The average monthly temperature varies from 19.7 °C (July) to 

36.4 °C (January), and the average monthly rainfall varies from 8.6 mm (September) 

and 44.3 mm (February).  When considering these monthly averages, October would be 

expected to have higher than the yearly average temperature and approximately average 

rainfall.  While it is expected that contaminant concentrations could be higher at certain 

points throughout the year, the hottest months (January and February) actually occur 

when the rainfall is highest too.  When these conditions are considered, October seems 

to be a fair representation of average annual water quality.  From an operational 

standpoint, it is also worth mentioning the daily sunshine averages too.  In October, this 

was estimated to be 10.0 h.day-1, with a minimum of 8.4 (June) and maximum of 10.3 

(January). 
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Table 4-1. Groundwater quality at each of the six field locations in Australia.  
Concentrations exceeding Australian Drinking Water Guidelines [24] are marked 
in bold.  Associated health concerns for regulated contaminants were previously 
reviewed on Table 1-1. 

Parameter 
(mg.L-1) 

Aileron Aluyen 
Coober 
Pedy 

Harry 
Creek 

Pine 
Hill 

Ti 
Tree 

Aust. 
Guide-
line° 

WHO 
Guide-
line¤ 

TDS 2500 1540 4780 1510 5700 1080 500a 600a 

pH (--) 8.2 8.4 8.1 8.2 8.5 7.8 -- -- 

Al <0.03 <0.03 <0.03 <0.03 < 0.01 0.107 0.2a -- 

As n/a n/a n/a n/a 0.005 0.003 0.007 0.01b 

Ba 0.0185 0.0505 0.0405 0.0295 0.016 0.04 0.7 0.7 

Ca 77.2 38.2 290 31.8 60.1 30.4 -- -- 

Cl- n/a n/a 1950 n/a 2000 437 250a -- 

Cr <0.01 <0.01 <0.006 <0.006 < 0.001 < 0.001 0.05 0.05b 

Cu n/a n/a <0.05 n/a 0.021 0.096 1a ; 2  2 

F- 2.22 1.27 0.26 0.29 1.10 0.46 1.5 1.5 

Fe <0.01 <0.01 <0.006 <0.006 0.225 0.055 0.3a -- 

Pb n/a n/a <0.07 n/a 0.004 0.005 0.01 0.01 

Li 0.018 0.005 0.132 0.012 0.06 0.007 -- -- 

Lu <0.001 0.002 0.001 0.001 <0.001 0.0135 -- -- 

Mg 59.0 98.3 169 96.7 149 38.1 -- -- 

Mn n/a n/a 0.296 n/a 0.007 0.002 
0.1a ; 
0.5 0.4a 

Mb n/a n/a n/a n/a 0.005 < 0.001 0.05 0.07 

Ni n/a n/a <0.05 n/a 0.003 0.005 0.02 0.07 

NO3
- 8.90 21.1 28.0 32.7 19.0 58.4 50c 50c 

K 20.6 34.1 66.0 8.6 15.0 26.0 -- -- 

P <0.06 <0.06 <0.1 <0.1 <0.1 <0.1 -- -- 

Sc <0.001 0.002 <0.001 <0.001 0.001 0.014 -- -- 

Se n/a n/a n/a n/a 0.015 0.004 0.01 0.01 

Na 660 310 1050 208 1650 173 180a -- 

St 1.00 0.53 3.31 0.51 1.3 0.475 -- -- 

S 90.5 36.5 370 24 272 33.2 -- -- 

SO4
2- n/a n/a 940 n/a 889 116 

250a ; 
500 -- 

Ti n/a n/a <0.001 n/a < 0.001 < 0.001 -- -- 

U n/a n/a n/a n/a 0.295 0.025 0.02 0.015b 

V n/a n/a n/a n/a 0.022 0.0009 -- -- 

Y <0.001 <0.001 <0.003 <0.003 <0.006 0.023 -- -- 

Zn n/a n/a <0.01 n/a 0.222 0.0008 3a -- 
aAesthetic-based guideline; bProvisional guideline due to scientific uncertainties regarding 
toxicology/epidemiology and/or due to difficulties regarding technical achievability; cGuideline 
recommended to protect against methaemoglobinaemia in bottle-fed infants (short-term 
exposure); n/a: not analysed; °[24]; ¤[11] 
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Besides averages, the month of October 2005 experienced the first rain in 18 months 

and very unusual amounts of it (79 mm at Alice Springs, well above average).  These 

periods of rain and heavy cloud were an unseasonal occurrence.  Hence the data may 

well be different than what one expects based on averages, but the actual performance 

data obtained will be presented in Sections 4.5 and 4.6. 

 

4.4 Chemical Speciation of Brackish Groundwaters 
 
Chemical speciation of the brackish groundwaters was predicted to understand the 

dominant chemical forms of each ion in the groundwater.  Speciation modelling was 

conducted using the Visual MINTEQ (version 2.53) software package [275, 276].  

Groundwater parameters (concentrations) were entered and ‘sweep tests’ were utilized 

based on component activity to determine the chemical speciation of the dominant ionic 

species over a selected pH range.  Assumptions included a fixed carbonate 

concentration (partial pressure of 3.8×10-4 atm), temperature of 25°C, set valence sets 

based on groundwater information and phase diagrams and a charge difference between 

cations and anions ≤ 5%.  Understanding the solubility of each of the compounds in the 

specific chemical conditions of a particular groundwater (Pine Hill) can help explain the 

retention results presented later in this chapter in Section 4.6. 

 

Figure 4-2 shows the predicted speciation of fifteen commonly occurring groundwater 

compounds at Pine Hill by presenting the percentage of relative species of each 

compound as a function of pH.  Several trends can be observed from analyzing these 

diagrams.  Calcium (Figure 4-2B), magnesium (Figure 4-2E), manganese (Figure 4-2F), 

nickel (Figure 4-2H), and strontium (Figure 4-2L) all have major changes to primarily 

aqueous carbonate salt species at high pH values.  Vanadium (Figure 4-2N) and zinc 

(Figure 4-2O) also convert nearly completely to carbonate salt species at high pH 

values, but first go through an intermediate transition stage.  Arsenic (Figure 4-2A), 

fluoride (Figure 4-2D), potassium (Figure 4-2J), and sodium (Figure 4-2K) all exhibit 

one significant switch in primary species at a pH which corresponds to the chemical 

properties of the compound (i.e. acid dissociation constant).   While the speciation of 

some compounds such as molybdenum (Figure 4-2G) and phosphate (Figure 4-2I) is 

quite complicated, the speciation of other compounds is not significantly impacted by 
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pH.  Chloride (Figure 4-2C) speciation is shown as a representative example for 

chloride, copper, nitrate, selenium, and sulphur, all of which demonstrate this pH 

independence of speciation.  
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Figure 4-2. Predicted Speciation of Selected Groundwater Compounds at Pine 
Hill: (A) Arsenic; (B) Calcium; (C) Chloride; (D) F luoride; (E) Magnesium; (F) 
Manganese; (G) Molybdenum; (H) Nickel; (I) Phosphate; (J) Potassium; (K) 
Sodium; (L) Strontium; (M) Sulphate; (N) Vanadium; (O) Zinc 
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Now that the raw water quality and speciation have been discussed, performance of the 

RE-membrane system will be assessed to see how effective the system is at removing 

the various chemical contaminants.  Solar experiments will first be presented (Section 

4.5), followed by the pH experiments (Section 4.6). 

 

4.5 Impact of Varying Solar Conditions on RE-Membrane Performance 
 

This section discusses the effect of varying energy on the RE-membrane system’s 

ability to remove inorganic contaminants.  Understanding the impact of varying solar 

energy on inorganic contaminant removal is critical to evaluating the performance of the 

membrane system and to determine the safe operating window.  During periods with the 

highest solar irradiance (as per Figure 4-1), power generation from the pump increases, 

leading to maximum pressure, flow, and therefore high flux while during cloudy 

periods, pressure and flow decrease and sufficiently low energy levels will lead to pump 

shut down.  Inevitably such variations will affect the retention of solutes.  The effect of 

intermittent operation (wind energy) on TDS retention was examined in depth by Park 

et al. [168].  Discussed here is the effect of varying solar conditions on inorganic 

contaminant removal specifically at Pine Hill (Section 4.5.1) and Ti Tree (Section 

4.5.2), with a summary of all field locations given in Section 4.5.3. 

4.5.1 System Performance under Varying Solar Conditions at Pine Hill 
 

The effect of changing solar irradiance on operating parameters at Pine Hill is shown in 

Figure 4-3.  Changes in solar irradiance throughout the day correlated directly with 

flow, flux, and pressure (Figure 4-3A and B), as expected for a system with no energy 

storage [72].  The temperature of the feedwater increased nearly 7ºC during the solar 

day from 24.7 to 31.6°C (data not shown on Figure 4-3) due to changes in ambient 

temperature and pumping heat (water was recycled).  The relationship between solar 

irradiance and retention of common salts (calcium, magnesium, sodium, potassium, and 

TDS) and inorganic contaminants (uranium, strontium, fluoride, and nitrate) using 

BW30 is shown in Figure 4-3C and D, respectively.  Retention was high and solute 

specific, with average retention throughout the day being: strontium (99.9 ± 0.1%) ≥ 

calcium (99.9 ± 0.1%) ≥ uranium (99.9 ± 0.2%) > fluoride (98.5 ± 1.0%) > magnesium 

(98.1 ± 1.9%) > sodium (97.1 ± 1.4%) > potassium (96.7 ± 1.3%) > nitrate (92.0 ± 
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1.8%) while TDS was 96.5 ± 3.5%.  While very high retention (as achieved here) is 

desirable for meeting health-based guidelines for contaminants, it is also important to 

note that sometimes near-complete removal of minerals and salts is not ideal from a 

taste and possibly health standpoint [272]. 

 

Comparison of retention trends with solar irradiance (and thus with flow and pressure) 

gives information on mechanisms.  The retention of some of these salts and 

contaminants (strontium, calcium, and uranium) was very high (> 99.5%) and did not 

change with solar irradiance.  Under the conditions of the experiment at Pine Hill (pH 

7.2), the dominant species of strontium and calcium are Sr2+ and Ca2+, respectively 

[171], both of which have large hydrated radii of 4.12·10-10 m (see Table 2-1, Chapter 

2.1) [82].  The large hydrated radii suggest that strontium and calcium retention is 

dominated by size exclusion.  This is significant because safe permeate concentrations 

of strontium, calcium, and uranium would therefore be expected regardless of operating 

conditions.  The speciation and behaviour of uranium is complex, highly dependent on 

groundwater type and energy variation, and is specifically dealt with in  detail by 

Rossiter et al. [277]. 

 

The retention of the other salts and contaminants was impacted by changing solar 

irradiance.  The retention of nitrate, potassium, sodium, and TDS closely followed the 

trend in solar irradiance, with lowest retention occurring during the lowest solar 

irradiance both in the morning and evening.  The hydrated radii (see see Table 2-1, 

Chapter 2.1) of nitrate (3.35·10-10 m), potassium (3.31·10-10 m), and sodium (3.58·10-10 

m) are relatively low compared to strontium and calcium.  This difference in hydrated 

sizes suggests that different mechanisms are dominant in their removal, which is 

supported because the operating conditions are more influential on retention than they 

were for the larger hydrated ions.  Convection and diffusion dominate retention for 

nitrate, potassium, and sodium as is evidenced by an increase in retention (outside of the 

error range) with increasing pressure (Figure 4-3).  Similar behaviour has been 

previously observed and attributed to convection/diffusion, especially for contaminants 

with small hydrated size (and thus can enter the membrane ‘pore’) [107].  As pressure 

increases, convective drag forces increase due to the solvent flux in the pore even  
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Figure 4-3. Conditions and results for BW30 operating with solar energy at Pine 
Hill over the course of one solar day (sunrise to sunset).  Feed TDS is 5770 mg.L-1 
and pH 7.2.  Figure (A) shows solar irradiance (SI) and flow; (B) flux and 
pressure; (C) salt retention and SI; and (D) health-threatening contaminant 
retention and SI.  Uncertainty in retention is not shown for clarity but calculated 
values are reported on Table 4-3 which are assumed to be similar for this data. 
 



Chapter 4. Renewable Energy Powered Membrane Systems 

118 
 

though surface forces attracting the solute stay constant.  Up until a threshold pressure, 

the surface forces are stronger than  the drag forces, and therefore ion flux remains low 

while solvent flux still increases with pressure, and thus retention increases [107].  Even 

at the lowest solar irradiance, the lowest retention observed was 88% for nitrate, which 

indicates that removal is well within acceptable guideline values and thus could be 

achieved for water with much higher feed concentration. 

 

The retention of fluoride and magnesium closely followed solar irradiance at the 

beginning of the day, which is explained again by convection/diffusion.  However, at 

the end of the day, retention did not again drop as was observed with nitrate, potassium, 

and sodium.  This could be attributed to concentration polarization and/or changes in 

the membrane surface (which were not measured) caused by the recirculation of 

groundwater and thus the build-up of ions near the membrane surface as the day 

progressed, which resulted in nearly constant retention in the evening despite the 

decrease in solar irradiance.  Correlation of flow and fluoride retention (as observed in 

the morning) has been similarly reported and attributed to convection/diffusion [241]. 

4.5.2 System Performance under Varying Solar Conditions at Ti Tree 
 
In order to compare the detailed effect of varying energy with different groundwaters, a 

similar experiment was conducted at Ti Tree.  The results of this experiment are shown 

in Figure 4-4.  The results are similar to those from Pine Hill, where as a result of no 

energy storage, solar irradiance directly impacted all aspects of operation: pressure, 

flow, flux and the quantity and quality of permeate produced.   

 

At Ti Tree, the system turned on at approximately 07:00 with 0.09 kW.m-2 solar 

irradiance.  The solar irradiance (Figure 4-4A) increased as the day progressed from 

07:00 to 10:00 causing increased feed flow (Figure 4-4A), flux (Figure 4-4B), pressure 

(Figure 4-4B), and production (Figure 4-4C).  From approximately 10:00 to 14:00, feed 

flow stabilized at around 450 L.h-1, pressure at 10 bar, and permeate flow at 220 L.h-1 

(corresponding to a recovery of nearly 50%).  This recovery was much higher that the 

manufacturer’s test condition of 15% recovery [249], which is good from a short-term 

production standpoint but reduces performance (eg. retention) [278] and potentially 
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could be damaging to the membrane module with long term operation due to increased 

concentration polarization and fouling.  

 

System operation became intermittent when significant cloud cover occurred from 

14:00 because solar irradiance became insufficient for operation.  When this happened, 

the system shut off and feed flow and pressure dropped; hence no more permeate was 

produced (note that sample collected is an average over intermittent operation).  

Operation was intermittent for the remainder of the day due to partial cloud coverage.  

Temperature increased from 24 to 33oC during the day due to ambient conditions and 

pumping heat resulting from recirculation.  Specific energy consumption (SEC) (data 

not shown on Figure 4-4) did not change with solar irradiance and was 1.0 kWh.m-3. 

 

Retention was impacted by varying energy (see Figure 4-4D) as a result of changes in 

flow and pressure affecting convection/diffusion mechanisms.  Retention was stable 

during consistent system operation but dropped significantly (from > 90% to 20-30%) 

for all contaminants when operation was intermittent (see sample taken at 18:00).  

During stable system operation, retention for calcium, magnesium, strontium, 

potassium, sodium, fluoride, nitrate and TDS was above 90%.  Retention of multivalent 

ions (calcium, magnesium, strontium) was higher than monovalent ions (potassium, 

sodium, fluoride, nitrate) which is consistent with RO principles [140].  Permeate water 

quality was acceptable according to guidelines for all contaminants during normal 

system operation (from 07:00 to 14:00) and not acceptable when operating 

intermittently due to cloud cover.  However, if the very high quality produced during 

normal operating conditions was mixed with water produced during relatively short 

periods of intermittent operation, the resulting permeate would still be acceptable. 
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Figure 4-4. Performance of RE-membrane system at Ti Tree using BW30 
membrane with operating parameters and ion retention over a solar day 
(afternoon partial cloud coverage). Uncertainty in retention is not shown for 
clarity but calculated values are reported on Table 4-3 which are assumed to be 
similar for this data.  Note that there was not enough volume of permeate collected 
for the final sample of the day for nitrate analysis. 
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4.5.3 Impact of Groundwater Type on RE-Membrane Performance 
 
Solar experiments were repeated at each of the locations in order to assess the impact of 

groundwater type on RE-membrane performance.  At each location, direct correlation of 

solar irradiance with operational parameters was observed.  A summary of the main 

performance parameters follows in Table 4-2. 

Table 4-2. Comparison of RE-membrane operating parameters by daily average at 
different field locations using BW30.  Note that extensive details of operation at 
Pine Hill [72, 248] and Coober Pedy [279] have been published elsewhere. 

Location Weather  

Solar 
Irradiance 
(kWh. 
m-2.day-1) 

TMP 
(bar) 

Flux  
(L.h -1.m-2) 

Rec- 
overy 
 (%) 

SEC 
(kWh.
m-3) 

Volume 
Produced 
(L.day-1)  

Permeate 
Flow 
(L.h -1) 

TDS 
Reten-
tion (%) 

Aileron � 4.4 5.1 8.5 25.2 1.6 911 61 91.2 

Aluyen � 10.6 9.2 24.7 43.7 1.2 2120 178 97.9 

Coober 
Pedy  
[279] 

� 10.7 10.2 9.1 17.5 3.2 764 65 96.3 

Harry 
Creek � 10.2 10.0 18.3 36.5 1.6 595 132 97.9 

Pine Hill 
[171, 
248] 

� 9.5 9.0 15.4 27.2 2.3 1106 91 96.6 

Ti Tree � 5.8 9.0 28.4 47.2 1.0 1736 205 98.5 

 
The weather conditions varied at the different locations, making direct comparisons by 

daily averages difficult.  The experiments at Coober Pedy and Harry Creek were fully 

sunny and thus are the easiest to directly compare.  Experiments at Aluyen, Pine Hill 

and Ti Tree were affected by partial cloud cover during the day and rain occurred at 

Aileron.  Solar irradiance directly correlated with TMP at each of the locations.  Aileron 

had the least solar irradiance and TMP reached a maximum of 6.7 bar during the day, 

whereas the averages for all other locations were all greater than 9.0 bar.  The maximum 

TMP achieved was 11.6 bar at Harry Creek.   

 

The rest of the parameters on Table 4-2 (flux, recovery, SEC, volume produced, 

permeate flow, and retention) on were dependent on the feed water in addition to solar 

irradiance.  Because of the similar full-sun weather conditions, Coober Pedy and Harry 

Creek are compared in detail with regard to water composition.  The average flux at 

Coober Pedy (9.1 L.h-1.m-2) was significantly less than at Harry Creek (18.3 L.h-1.m-2) 

which can be attributed to higher TDS at Coober Pedy (4780 mg.L-1) than Harry Creek 

(1510 mg.L-1, see Table 4-1) and thus a higher osmotic pressure barrier.  The difference 
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in TDS (and consequentially osmotic pressure barrier) also explains the lower recovery, 

higher SEC and lower permeate flow at Coober Pedy than Harry Creek.  In addition to 

Coober Pedy’s higher TDS, concentrations of magnesium, manganese, calcium, 

potassium, sodium and strontium were all higher than Harry Creek (Table 4-1) which 

further explains the lower flux observed.  Although the difference in weather conditions 

affects the TMP, a similar impact of lower TDS leading to high flux, high recovery and 

lower SEC was observed with Ti Tree and Aluyen where recoveries were again far 

above the standard manufacturer’s test condition of 15% [249]. 

 

SEC is particularly interesting and of vital importance for RE-membrane systems [66] 

because of the implications on capital cost and ability to compare treatment 

technologies.  SEC values range from 1.0 (Ti Tree) to 3.2 (Coober Pedy) kWh.m-3, 

which was comparable with low range SEC values achieved with other renewable 

energy brackish water desalination processes [63].  As clearly observed with the 

comparison between Harry Creek and Coober Pedy, SEC is a function of feed water 

characteristics such as TDS and concentrations of heavy metals and salts, in addition to 

solar availability (determines power consumed by the pump). 

 

Average daily TDS retention for each location was above 90%, despite occasional low 

retention obtained during intermittent operation (for example the drop from >90 to 20-

30% as observed at Ti Tree and discussed previously).  Likewise, TDS retention 

dropped to 40% at one sampling point with the poor weather conditions at Aileron, but 

the daily average remained above 90%.  This shows that under these conditions, the 

system works sufficiently despite the intermittent energy from poor weather. 

 

The differences in selected ion retention for each location are shown in Figure 4-5.  The 

highest retention at all locations occurred with multivalent ions magnesium, calcium 

and strontium, which was similar to what was observed at Ti Tree and expected due to 

charge and size exclusion.  When operation was continuous (no system shut off), 

retention was above 85% for these contaminants in each of the groundwaters – which is 

sufficient to meet drinking guidelines.  This is of particular interest because the 

variation of TDS in the groundwater (between 1080 and 5700 mg.L-1) did not reduce 

retention to unacceptable levels despite the clear impact on parameters such as flux and 

SEC (Table 4-2).  Similarly, variations in magnesium concentration (169 mg.L-1 at 
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Coober Pedy versus 38 mg.L-1 at Ti Tree) did not affect magnesium retention (> 99.5% 

for both). 

 

Interestingly, retention of nitrate followed solar irradiance at both Aluyen and Pine Hill, 

with retention lowest at lowest solar availability (early and late day).  Solar irradiance 

impacts convection/diffusion retention mechanisms because of changes in flow and 

pressure, which consequently affects transport of nitrate (a relatively small ion).  

However, this trend was not observed at Coober Pedy, as shown on Figure 4-5.  This 

could be explained because Coober Pedy has higher concentrations of large hydrated 

ions such as calcium and magnesium which could build an ionic boundary layer 

(concentration polarization) of these larger molecules on the membrane surface and 

effectively shield the impact of changing operating conditions on smaller ions such as 

nitrate. 

 

Under very cloudy conditions (Aileron) retention dropped to between 40-50% for one 

sample at 09:00 due to severe fluctuations (thunderstorms!) but the remainder of 

samples were retained > 93%.  At Ti Tree, retention dropped at 18:00 due to system 

shut off as discussed previously.  A comparison of Aluyen (some fluctuations in solar 

irradiance) with Coober Pedy (no solar fluctuations) shows no difference in retention, 

indicating that occasional fluctuations (with a duration of several minutes maximum, 

occurring every couple of hours) did not impede system performance with regard to 

contaminant retention, as long as the fluctuation does not cause the power to shut off (as 

with Ti Tree where the system did not recover).  Harry Creek has no data after 

approximately 12:00 due to the system being down. 

 

Depending on how water is being used/stored, though, periods of unacceptable retention 

may not have much effect as long as the volumes produced during significantly 

cloudy/rainy periods are relatively small as compared to when the system is operating 

well.  This is usually the case due to low pressure and hence low flux during reduced 

energy periods.  For example, because the water is treated to such high levels during 

continuous operation, mixing of ultra high quality water with a small proportion of 

water that is not treated as well does not make much difference.  The issue of 

intermittent operation is of ongoing research interest [280]. 
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Figure 4-5. Ion retention (calcium, magnesium, strontium, TDS, potassium, 
sodium, fluoride and nitrate) and solar irradiance (SI) at each of the six field 
locations over a solar day.  Uncertainty in retention is not shown for clarity but 
calculated values are reported on Table 4-3 which are assumed to be similar for 
this data. 
 
In summary, these solar experiments have shown that a number of solutes were well-

retained (≥ 85%) despite energy variation (solar irradiance between 0.2 and 1.0 kW.m-2) 

during a typical solar day.  Fluctuations in energy led to subsequent changes in flow, 

pressure, flux, and SEC.  Consequently, retention for solutes such as fluoride, 

magnesium, nitrate, potassium, sodium and TDS was impacted where 

convection/diffusion dominated retention.  For very large hydrated solutes (calcium, 

strontium, and uranium), retention was very high due to size exclusion and no impact of 

operating conditions was observed.  When different groundwaters were compared, 

retention of calcium, fluoride, potassium, sodium, nitrate, magnesium, strontium and 

TDS remained high (>85%) for each site tested (during continuous system operation), 

despite differences in groundwater composition and solar availability.  However, during 
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periods of severe energy fluctuations (range from 0.02 to 0.8 kW.m-2 lasting nearly two 

hours at Ti Tree), the system shut off and retention dropped significantly to 

unacceptable levels.  This decreased performance during extreme fluctuations has 

practical implications, especially in locations where such extreme changes occur 

frequently.   

 

4.6 Impact of pH on RE-Membrane Performance 
 

Because groundwater chemistry changes with pH, performance of the RE-membrane 

system can also be impacted with regard to ion retention and operation (eg. flux). The 

results from the pH experiments, described in Section 4.2.3, were categorized into two 

groups according to the observed retention behaviour of the contaminants.  The first 

group is solutes whose retention did not depend on pH (Group 1) and the second group 

is solutes whose retention was pH-dependent (Group 2). 

4.6.1 System Performance for pH-independent Solutes 
 
Group 1 contains solutes whose retention was independent of pH at Pine Hill (arsenic, 

calcium, chloride, nitrate, potassium, selenium, sodium, strontium, and sulphate).  

Average retention for each Group 1 solute, membrane, and location throughout the 

entire pH range are reported in Table 4-3.   Results will first be discussed for BW30 at 

Pine Hill, and then compared to the other membranes and location.  Note that Group 1 

may contain different solutes in another groundwater, as the pH-dependence is 

groundwater specific. 

 

Group 1 retention using BW30 at Pine Hill was high and generally above 90% (Table 

4-3).  Retention correlated both with charge and hydrated size.  The hydrated radii 

sequence for the predicted dominant species of each solute (no data available for arsenic 

species) is: Ca2+ (4.12·10-10 m) = Sr2+ (4.12·10-10 m) > SeO4
2- (3.84·10-10 m) > SO4

2- 

(3.79·10-10 m) > Na+ (3.58·10-10 m) > NO3
- (3.35·10-10 m) > Cl- (3.32·10-10 m) > K+ 

(3.31·10-10 m) (see Table 2-1, Chapter 2.1) [82, 171].  Multivalent ions with large 

hydrated radii (i.e. Ca2+, Sr2+ and SO4
2-) were retained more than monovalent ions with 

smaller hydrated radii (i.e. Cl-, K+, and Na+) at Pine Hill with BW30 (Table 4-3). 
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Table 4-3. Group 1 retention using BW30, TFC-S, ESPA 4, and NF90 at Pine Hill 
(for comparison of membrane performance with the same groundwater) as well as 
BW30 at Ti Tree (for comparison of the same membrane with different 
groundwater).  Operating conditions were set at 9 bar and feed flow 400 L.h-1. 
Where retention is reported as ‘≥’, the calculation was limited by the analytical 
detection limit. 

Solute 
Retention (%) 

BW30            
Pine Hill 

Retention (%) 
TFC-S         

Pine Hill 

Retention (%) 
ESPA 4      
Pine Hill 

Retention (%) 
NF90          

Pine Hill 

Retention (%) 
BW30            
Ti Tree 

Arsenic ≥ 78.9 (± 5.1) 64.2 (± 4.7) ≥ 77.6 (± 4.6) ≥ 77.5 (± 5.9) ≥ 57.6 (± 4.5) 
Calcium 99.6 (± 0.2) 95.2 (± 1.1) 98.8 (± 1.3) 99.5 (± 0.3) 99.7 (± 0.2) 
Chloride 96.4 (± 2.7) 76.1 (± 1.8) 89.0 (± 1.9) 92.5 (± 3.8) 97.3 (± 2.9) 
Nitrate 90.6 (± 6.7) 51.5 (± 6.6) 70.0 (± 7.4) 90.4 (± 2.0) 90.9 (± 6.2) 

Potassium 94.9 (± 4.1) 78.9 (± 2.9) 85.7 (± 3.2) 91.0 (± 5.2) 97.4 (± 2.1) 
Selenium ≥ 93.8 (± 0.1) 90.0 (± 3.8) ≥ 92.6 (± 2.6) ≥ 92.9 (± 2.6) ≥ 74.3 (± 3.5) 
Sodium 96.4 (± 1.5) 77.4 (± 2.9) 79.6 (± 2.2) 87.5 (± 4.9) 96.2 (± 1.4) 

Strontium 99.6 (± 0.2) 95.7 (± 0.9) 98.8 (± 1.4) 99.5 (± 0.4) 99.7 (± 0.1) 
Sulphate 99.5 (± 0.5) 97.1 (± 0.6) 99.1 (± 0.3) 99.5 (± 0.2) 99.8 (± 0.1) 

TDS 94.9 (± 4.5) 77.7 (± 2.7) 87.7 (± 5.9) 91.4 (± 3.7) 94.4 (± 6.9) 

 

The charge of BW30 (as well as each of the other membranes) becomes increasingly 

negative with increasing pH [161]. Therefore, if charge exclusion was the dominant 

retention mechanism, retention would be expected to consequently increase with pH 

[113].  However, because retention did not change with pH, charge is not predicted to 

be the dominant mechanism for these salts and inorganic contaminants.  This is best 

exemplified with chloride, nitrate, potassium, and sulphate, whose speciation is mostly 

pH independent between pH 3 and 11 under the conditions at Pine Hill, with dominant 

species Cl-, NO3
-, K+, and SO4

2-, respectively [171].  The retention of these solutes is pH 

independent, despite the changing membrane charge with pH.  Highest retention is 

achieved for those with larger hydrated radii.  This suggests that charge exclusion is not 

dominant, and instead, steric interactions dominate Group 1 retention.   

 

The speciation of other Group 1 solutes (arsenic, calcium, selenium, sodium, and 

strontium) depended on pH [171], but despite the changes in dominant species (and thus 

differences in charge and hydrated size), the retention remained pH independent.  The 

dominant species of calcium, sodium, and strontium were carbonate forms [171] at high 

pH and arsenic likely deprotonated between pH 7 and 9 depending on if arsenic was 

present as arsenic (V), arsenic (III) or a mixture [172].  Arsenic (III) retention has been 

previously observed to be pH independent and attributed to steric exclusion [172].  
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Regardless of these changes in species (corresponding to changes in hydrated size and 

charge) with pH, retention was still constant and for each of these solutes, again 

supporting that steric interactions dominated retention. 

 

The results for Group 1 solutes with health-based Australian or WHO guidelines 

(arsenic, nitrate, selenium, and sulphate – see Table 4-1) warrant individual attention 

given their significance in water supplies.  With BW30, the retention of these 

contaminants was high.  Arsenic (total) was well-retained, with an average retention ≥ 

78.9% (limited by analytical detection limit) and pH-independent.  Several studies have 

evaluated arsenic retention as a function of pH and other operating parameters [26, 177] 

and found that retention was highly dependent on operating conditions and affected by 

charge repulsion.  There are conflicting studies in the literature with regard to the pH 

dependence of arsenic retention.  In one case, arsenic (III) retention was observed to be 

pH independent [172].  However, Urase et al. observed that arsenic (III) retention was 

dependent on pH and arsenic (V) was pH-independent [177].  Further conflicting 

behaviour was observed by Figoli et al. who found that arsenic (V) retention was 

strongly dependent on pH [26].  These studies demonstrate that the dependence of 

arsenic retention on pH can vary and depends not only on the type of arsenic present but 

also on other groundwater characteristics.  Note that in this study, where pH-

independence of arsenic retention was observed, total arsenic was measured, rather than 

a particular species such as arsenic (III) or (V), and most likely the total arsenic present 

was a mixture of different types.  High retention of nitrate (90.6%) was achieved.  

Selenium and sulphate were the only contaminants above the guideline in the feed, and 

high retention was again achieved (≥ 93.8% and 99.5%, respectively), resulting in 

permeate concentrations well below the guideline.  Again, selenium and sulphate have 

relatively large hydrated radii (3.84·10-10 and 3.79·10-10 m, respectively) [82], which 

supports that their high retention is due to size exclusion. 

 

Membrane comparison (Table 4-3) showed the TDS retention sequence for Pine Hill is: 

TFC-S (77.7 ± 2.7%) < ESPA4 (87.7 ± 5.9%) < NF90 (91.4 ± 3.7%) < BW30 (94.9 ± 

4.5%) (note TDS has higher uncertainty than the other parameters because of the many 

groundwater constituents contributing to this measurement and the changes in their 

proportion in feed/permeate).  The average daily flux sequence (data not shown) varied 

inversely to the TDS retention: BW30 (13.5 ± 1.5 L.m-2.h-1) < ESPA4 (23.1 ± 1.2 L.m-
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2.h-1) = NF90 (23.1 ± 0.6 L.m-2.h-1) < TFC-S (24.3 ± 0.4 L.m-2.h-1).  The retention of 

specific solutes follows the same trend as TDS for each membrane (see Table 4-3).  The 

lowest retentions occur with TFC-S (which is the ‘loosest’ of the membranes), and the 

highest retentions with BW30 (a ‘tight’ brackish water RO membrane).   

 

Some of these ions presented challenges to the ‘loose’ TFC-S membrane in terms of 

retention.  In particular, nitrate retention (51.5%) and arsenic retention (64.2%) by TFC-

S were low as compared to the retention of other contaminants by TFC-S and to the 

other membranes’ retention of arsenic and nitrate.  Because feed concentrations of 

nitrate and arsenic did not exceed guidelines, this was not unsafe, although the lower 

retention with TFC-S could be an issue for waters of higher feed concentrations.  Size 

exclusion was a less effective retention mechanism for the ‘loose’ TFC-S, which 

explains the lower retention observed and highlights that variation of the effective 

membrane ‘pore’ size as compared to contaminants’ hydrated radii was significant 

when different membranes are considered.  Retentions with BW30 and NF90 are very 

similar, which can be explained by the comparable molecular weight cut off values of 

these membranes (98 and 100, respectively) [161] (and thus similar ‘pore’ size). 

 

Comparing Pine Hill and Ti Tree waters (Table 4-3) shows the impact of general water 

characteristics on the performance of BW30.  Group 1 retention trends at Ti Tree 

confirmed results seen at Pine Hill (pH independence and similar retention values).  

This indicates the consistently high performance of BW30 with Group 1 solutes, and 

again supports that size exclusion is predominant because of the minimal impact of feed 

composition.  The difference in average feed temperature (31.0°C at Ti Tree compared 

to 23.8°C at Pine Hill) did not have an observable impact on retention.  Nitrate data is of 

particular significance because it was present above guidelines at Ti Tree (which is a 

grape farm), and was safely removed to near detection limit.  Retention values for those 

solutes whose permeate measurements were limited by detection (arsenic and selenium) 

are difficult to compare between groundwaters, but both arsenic and selenium were well 

below guidelines at Ti Tree. 
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4.6.2 System Performance for pH-dependent Solutes 
 

The retention of other solutes (Group 2: copper, magnesium, manganese, molybdenum, 

nickel, uranium, vanadium, and zinc) in the Pine Hill groundwater was impacted by pH, 

as opposed to the pH-independent Group 1 solutes.   Group 2 solutes have insoluble and 

dominant species under certain conditions, which resulted in their apparent retention 

being dependent on pH (Figure 4-6).  Feed concentration (and thus observed retention) 

varied significantly between pH 3 and 11, because of deposition on the membrane 

surface rather than charge or steric retention mechanisms.  Precipitation occurs when 

concentration in the boundary layer exceeds the solubility limit of a particular species 

[112] at those local conditions.   

 

Magnesium (Figure 4-6B), for example, showed a drastic drop in feed concentration 

above pH 10, indicating precipitation due to the insolubility of MgCO3 [121, 171].  The 

deposit of precipitates (Mdep) can be calculated from the mass balance: 

 

NNPPFFI,FI,Fdep CVCVCVCVM −−−= , Equation 36 
 

where V is volume, C is concentration, and indices F are feed, P permeate, N 

concentrate, and I the initial reference condition, respectively.  Indeed, the mass balance 

confirmed accumulation on the NF/RO membrane surface, with approximately 78% of 

the magnesium present in the initial feed solution having deposited at high pH. 
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Figure 4-6. Concentration of feed, UF permeate, NF/RO permeate, and 
concentrate as a function of pH for BW30 at Pine Hill of Group 2 precipitating 
solutes (A) copper; (B) magnesium; (C) manganese; (D) molybdenum; (E) nickel; 
(F) uranium; (G) vanadium; and (H) zinc. Australian guidelines (if applicable) and 
detection limits (DL) are shown. 
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Similarly to magnesium, deposition occurred for all of the other contaminants shown in 

Figure 4-6.  Manganese (Figure 4-6C) and nickel (Figure 4-6E) deposited on the 

membrane at high pH, with respective accumulations ≥ 50% and ≥ 3% of the original 

concentrations (calculation limited by detection).  Speciation models indicated that 

these solutes were present in their carbonate forms MnCO3(aq) and NiCO3(aq) at the 

pH values where precipitation was observed [171].  Copper (Figure 4-6A) and 

molybdenum (Figure 4-6D) both accumulated on the membrane below pH 7, with 

respective accumulations of ≥ 68% and ≥ 42% (again constrained by analytical 

detection limit).  Copper was present as either CuCl2- or CuCl2
-, depending on the 

valence of copper (which was not determined) and molybdenum as MoO3(H2O)3 (aq).  

Accumulation of zinc (Figure 4-6H) was the most significant, with ≥ 96% of the 

original concentration accumulating on the membrane above pH 8, where zinc was 

mostly Zn(OH)2(aq) and ZnCO3(aq) between pH 8 and 10, and Zn (CO3)2
-2 above pH 

10 [171].  Vanadium (Figure 4-6G) showed complex speciation with deposition 

occurring both at low and high pH (accumulation ≥ 34%).  Deposition of uranium 

(Figure 4-6H) on the membrane occurred above pH 5, and the complex speciation of 

uranium suggests it would dissolve back into solution above pH 8 [23, 171], which was 

not observed at Pine Hill with BW30.  The behaviour of uranium was strongly 

dependent on both feed water characteristics and operating conditions and specific 

details were published elsewhere [277]. 

 

Removal was achieved (mostly to detection limit) for Group 2 solutes with health-based 

guidelines (copper, manganese, molybdenum, nickel and uranium - see Table 4-1).  

Uranium removal to below the guideline is especially notable since the feed 

concentration was significantly above the recommended level.  Although the feed 

concentrations of copper, molybdenum and nickel did not exceed guidelines, the high 

removal observed indicates that the process would be effective in treating waters with 

higher feed concentrations of these solutes.  The same general trends were observed for 

the other membranes tested at Pine Hill (TFC-S, ESPA 4, and NF90) as well as for 

BW30 at Ti Tree. 

 

The long term consequences of membrane deposition are flux decline, possible 

deterioration in permeate quality, and increased SEC.  During the relatively short 

experiments (30-60 minutes per pH value), significant flux decline (data not shown) at 
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high pH was noted for BW30 at both Pine Hill (22%) and Ti Tree (45%).  Flux decline 

for the other membranes was less than 10%.  The lowest overall flux (13.5 L.m-2.h-1) 

with BW30 at Pine Hill corresponded to the highest SEC (1.9 kWh.m-3).  This was due 

to the high salt concentrations at Pine Hill.  For example, calcium in Pine Hill water is 

approximately double that of Ti Tree water (Table 4-1).  In addition to the high 

retention of BW30 as compared to the other membranes tested which results in higher 

concentration polarization, higher osmotic pressure and consequently lower flux (which 

directly impacts SEC).  Much of the precipitation was reversible with a change in pH 

(see vanadium on Figure 4-6G) which may not be the case during long term operation 

when biofouling may occur as well. 

 

The impact of pH on system operation and specific ion retention at Ti Tree was also 

evaluated (see Figure 4-7), with the purpose being to compare how varying pH with a 

different groundwater affected performance.  Figure 4-7 shows that above pH 9, flux 

decreased nearly by 50% and SEC increased almost 200% from 0.95 to 1.8 kWh.m-3.  

The precipitation of carbonate-based contaminants (such as MgCO3, MnCO3 and 

CaCO3) is theoretically predicted by speciation modelling at high pH [171].  However, 

unlike Pine Hill, precipitation of these compounds was not observed, as the retention of 

these large multivalent ions (calcium and magnesium) did not change with pH (Figure 

4-7B).  The flux decline could be explained by the increased osmotic pressure barrier 

caused by the addition of NaOH for pH adjustment. 

 

The retention of some ions (nitrate, fluoride and TDS) increased with pH.  This is due to 

increased charge repulsion as the membrane surface charge becomes more negative at 

higher pH.  At low pH, the retention of fluoride is lowest (50%) and then fluoride 

retention increases to > 98% above pH 8.  Nitrate retention is 83% at pH 3 and increases 

to 94% above pH 8 (which is less than fluoride at the same pH).  Because fluoride and 

nitrate have the same charge and thus would be expected to be repelled in the same 

manner, this result shows that ion size impacts retention in addition to charge [171], as 

was demonstrated at Pine Hill. 
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Figure 4-7. Impact of pH on flux, SEC and ion retention at Ti Tree using BW30.  
Uncertainty in retention is not shown for clarity but calculated values are reported 
on Table 4-3 which are assumed to be similar for this data. 
 

It is very important to note that the behaviour with regard to the dependence of retention 

on pH observed at Ti Tree is different for some solutes than was observed at Pine Hill.  

This means that the groups of solutes presented for pH-dependence and pH-

independence are groundwater-specific.  For example, at Ti Tree, the retention of nitrate 

changes with pH although the opposite was observed at Pine Hill (nitrate was in Group 

1).  Further, at Ti Tree, the retention of magnesium was high and pH-independent, 

whereas at Pine Hill the behaviour of magnesium was strongly dependent on pH due to 

precipitation at high pH.  The groundwater characteristics thus have an important effect 

on the pH-dependence of retention of individual solutes, and the groups presented do 

not apply to every groundwater. 

 



Chapter 4. Renewable Energy Powered Membrane Systems 

134 
 

Although the natural pH of the waters tested in the field study only varied from 7.8 to 

8.5 (see Table 4-1), some locations have much higher pH where flux decline and 

precipitation could be a major operational issue.  For example, alkaline groundwaters 

have been identified from pH 9.1 in Tanzania [281] up to pH 12 in Korea [282].  

Although precipitation was not observed in Ti Tree, this has been observed in similar 

groundwaters [283].  In such locations, contaminant retention may be unreliable and 

flux decline, fouling and membrane cleaning would be major operational barriers.  

Further, concentration polarization near the NF/RO membrane surface could induce 

precipitation, or further precipitation, even if none occurred prior to the UF stage or 

already-present precipitates were small enough to pass through the UF membrane. 

 

In summary, these pH experiments have shown that the retention of some solutes (Pine 

Hill Group 1: arsenic, calcium, chloride, nitrate, potassium, selenium, sodium, 

strontium, and sulphate) is independent of pH.  The retention of other solutes (Pine Hill 

Group 2: copper, magnesium, manganese, molybdenum, nickel, uranium, vanadium, 

and zinc) is strongly dependent on pH.  The definition of the groups varies depending 

on groundwater.  Operating parameters such as flux and SEC are also impacted at high 

pH, which can have negative practical implications. 

 

4.7 System Operation with Synthetic Water and Simulated Solar Power 
 
In order to better understand the system operation and membrane performance without 

the influence of complex groundwater matrices, a limited number of experiments were 

conducted using de-ionized water spiked with inorganic contaminants and a solar array 

simulator to power the system in a controlled manner (as described in Chapter 3.1.4).  

The experiments determined the retention of each of the inorganic contaminants (at 

concentrations relevant to brackish groundwaters) at steady state conditions at a number 

of pump motor power levels.  For reference, pump motor power levels of 75, 100, 160, 

220 and 265 W corresponded to solar irradiance values of 0.25, 0.34, 0.53, 0.73 and 

0.88 kW.m-2, respectively.  The minimal power level of 75 W corresponded to where 

the system just began to operate continuously and the maximum neared the maximum 

capacity of the system.  The membrane was an new NF90 4” module, and a system set-

point of 10 bar was selected as described by Park et al. [168].  Results for steady-state 



Chapter 4. Renewable Energy Powered Membrane Systems 

135 
 

retention are shown in Figure 4-8 and the average operating conditions (flux, flow, TMP 

and temperature) at each power level in Table 4-4. 
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Figure 4-8. Retention at steady-state conditions (30 minutes at each power level) 
using membrane NF90 and feed composition NaCl (6 g.L -1), NaNO3 (50 mg.L-1 as 
NO3), NaNO2 (10 mg.L-1 as NO2), NaF (10 mg.L-1 as F), B(OH)3 (10 mg.L-1 as B) 
and NaHCO3 (84 mg.L-1).  Uncertainty is approximately ± 3.1% for boron, ± 3.5% 
for nitrate and nitrite, ± 1.5% for fluoride and ± 1% for conductivity. 
 

Table 4-4. Average operating parameters at steady-state conditions (30 minutes at 
each power level) using membrane NF90 and feed composition NaCl (6 g.L-1), 
NaNO3 (50 mg.L-1 as NO3), NaNO2 (10 mg.L-1 as NO2), NaF (10 mg.L-1 as F), 
B(OH)3 (10 mg.L-1 as B) and NaHCO3 (84 mg.L-1). 

Solar Irradiance 
(kW.m -2) 

Motor Power 
 (W) 

Flux 
 (L.h-1.m-2) 

Flow 
 (L.h-1) 

TMP 
(bar) 

Temperature 
(°C) 

0.25 75 7.0 54 4.4 23.1 
0.34 100 12.8 97 8.1 22.8 
0.53 160 25.6 195 10.3 22.8 
0.73 220 36.2 275 12.0 22.9 
0.88 265 41.5 316 12.0 23.0 

 

Steady-state retention of each of the contaminants increased with power level (and 

consequently flow and pressure), as shown on Figure 4-8.  This is due to the decreased 

relative importance of diffusion as compared to convection at higher flows and 

pressures (Table 4-4), and supports the results seen with real groundwater and energy 

conditions.  In these experiments, the power level was increased stepwise, while 

equilibrating for at least 30 minutes at each level, with a number of samples collected 

throughout the 30 minute period.  Although a hysterisis effect was not checked (eg. 

going down in steps rather than up), this could be tested in future experiments.  The 
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very low retention of boron (and negative values at the lowest pressure) is very 

interesting, and the mechanistic behaviour of boron remains poorly understood.  

Negative rejection of boron was observed previously for the membrane ESPA 1 by Oo 

and Song [284].  The rejection was most negative at the lowest permeate flux (as is the 

case here), but these results were not explained mechanistically.  Besides boron, 

negative rejections of ions in pressure-driven processes has been proposed to be due to 

several distinct mechanisms and has been observed before [116, 285].  In many cases, 

the phenomenon arises by an increased concentration of an ion in the membrane phase, 

which, in the case of charged membranes, is accompanied by a weakened electric field 

[285].  This can occur in electrolyte mixtures (as is the case here) due to the presence of 

different counter ions of different mobilities.  Negative rejections can also occur for ions 

whose concentration is decreased in the membrane phase, which also occurs in 

electrolyte mixtures due to acceperation of some ions by the electric field of diffusion 

potential caused by high rejections of other components in the mixture (eg. fluoride or 

chloride here) [285].  The experiments conducted in this section were not sufficiently 

extensive to be able to comment on possible mechanistic explanations (or a systematic 

error) for the negative retention of boron under these conditions.  However, more 

detailed analysis of boron retention in bench-scale experiments follows in Chapter 5. 

 

This experiment also confirms interesting results with regard to ion selectivity that were 

seen in the experiments conducted with real groundwater of complicated chemical 

composition.  In particular, the high retention of fluoride as compared to nitrate and 

nitrite is of interest.  The mechanistic question that results from this observation is in 

determining why this occurs, since fluoride is a small ion compared to nitrate and 

nitrite.  Hence, size exclusion based on ionic size does not explain these results, nor 

does charge repulsion since the ionic charges are equivalent.  This question will be the 

focus of the remaining work presented in this thesis. 

 

4.8 Conclusions 
 

In summary, this chapter focussed on the performance of a RE-membrane system with 

different weather and pH conditions, operating with real water in outback Australia 

(with the exception of Section 4.7).  The work completed here essentially shaped the 
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rest of the PhD as it brought to light a number of interesting questions with regard to ion 

selectivity and transport mechanisms in NF/RO. 

 

The main results reported in this chapter showed that a RE-membrane system reliably 

removed salts and inorganic contaminants (given sufficient solar availability) over a 

range of real energy and pH conditions via convection/diffusion and precipitation 

mechanisms. During a typical daily range of solar conditions, a number of solutes were 

well-retained (≥ 85%) despite energy variation (solar irradiance between 0.2 and 1.0 

kW.m-2) and subsequent changes in flow, pressure, flux, and SEC.  Consequently, 

retention for solutes such as fluoride, magnesium, nitrate, potassium, sodium and TDS 

were impacted where convection/diffusion dominated retention.  For very large 

hydrated solutes (calcium, strontium, and uranium), retention was very high due to size 

exclusion and no impact of operating conditions was observed.  Similar results were 

obtained when different groundwaters were compared, despite differences in 

groundwater composition and solar availability.  However, during periods of severe 

energy fluctuations (range from 0.02 to 0.8 kW.m-2 lasting nearly two hours at Ti Tree), 

the system shut off and retention dropped significantly to unacceptable levels.  This 

decreased performance during extreme fluctuations has practical implications, 

especially in locations where such extreme changes occur frequently.   

 

The retention of a number of solutes (Pine Hill Group 1: arsenic, calcium, chloride, 

nitrate, potassium, selenium, sodium, strontium, and sulphate) was pH independent 

between pH 3 and 11.  Because retention was stable despite changes in the membrane 

surface charge (and thus changing electric interactions), steric effects were expected to 

govern retention.  Retention with BW30 at Pine Hill ranged from ≥ 78.9% (arsenic) to 

99.6% (strontium and calcium) which was attributed to differences in solute properties 

(eg. hydrated size).  Retention of other solutes (Pine Hill Group 2: copper, magnesium, 

manganese, molybdenum, nickel, uranium, vanadium, and zinc) varied as a function of 

pH due to speciation.  The pH-dependence of certain solutes is dependent on the 

groundwater type, exemplified by nitrate and magnesium demonstrating different 

behaviour with the different groundwaters at Ti Tree and Pine Hill.  Deposition on the 

membrane surface occurred when concentrations at the membrane surface exceeded 

solubility limits, and resulted in flux decline.  This is a practical problem for long-term 

operation. 
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Although the system worked well in a number of cases, the results also highlighted the 

current lack of understanding of dominant mechanisms of ion transport in NF/RO 

processes.  An improved understanding of the fundamental mechanisms with which 

ions are removed would be very beneficial to the design and appropriate implementation 

of such a system.  In particular, the results presented in this chapter raised questions on 

ion selectivity and transport mechanisms, which directed the rest of the PhD.  These 

questions include: 

 

• Why is fluoride highly retained compared to nitrate (Figure 4-3, Figure 4-4, 

Figure 4-5, Figure 4-8), considering the ionic size is much smaller? 

• What explains ion selectivity for ions with the same charge (and hence the same 

charge repulsion from the membrane surface), such as fluoride, nitrate and 

nitrite? 

• Why is boron rejection negative at the lowest power levels (Figure 4-8), and 

why does it remain so much lower than any other contaminant at higher power 

levels? 

 

Because answering these questions requires controlled and systematic studies, further 

experiments with this large, field-scale RE-membrane system were not pursued 

(although this certainly could be the subject of future work).  Instead, the remainder of 

this work focussed on conducting systematic experiments with simplified systems.  The 

following chapters will address the role of pH in retention of monovalent anions and 

boron (Chapter 5).  The selectivity of monovalent anions with NF/RO, and in particular 

the role of hydration in this process, will be addressed with molecular dynamics 

simulations (Chapter 6) and experimental measurements (Chapter 7).  
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Chapter 5  
 
 
Impact of pH on the Removal of Inorganic 
Contaminants 
 
 

In Chapter 4, the impact of varying solar energy and pH on a renewable energy 

powered NF/RO system was evaluated using real groundwaters.  These results provided 

valuable information on the suitability of such a system, and brought up interesting 

questions about the trends in retention of inorganic contaminants.  However, the 

complexity of groundwater chemistry and the inherent variability in operation of a 

renewable energy membrane system make it difficult to understand the NF/RO 

mechanisms which explain the observed behaviour.  Thus, more simplified experimental 

systems are required in order to improve understanding of NF/RO retention 

mechanisms.  The current chapter endeavours to explore the retention of selected ions 

(boron, fluoride and nitrate) in a controlled laboratory environment and bench-scale 

equipment.  The specific objective of this current chapter was to evaluate the specific 

impact of pH on boron, fluoride and nitrate retention by linking solute speciation and 

retention mechanisms. 

 

In this chapter, the pH-dependence of speciation was predicted for health-threatening 

contaminants boron, fluoride and nitrate in purified water and a background salt 

solution.  The modelled speciation was then compared to results from bench-scale 

experiments using six different NF/RO membranes (BW30, ESPA4, NF90, TFC-S, UTC-

60, and UTC-80A).  Retention results were explained with regard to speciation, 

membrane properties, and ion properties such as charge, hydrated size and Gibbs free 
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energy of hydration.  Flux was independent of pH, indicating that pH did not alter pore 

size and hence permeability for all membranes except UTC-60.  Membrane charge (zeta 

potential) was strongly dependent on pH, as expected.  Boron and fluoride retention 

depended on membrane type and pH, which correlated closely to contaminant 

speciation, and was due both to size and charge exclusion.  While boron retention at 

low and neutral pH was a challenge, high boron retention was achieved (>70%) above 

pH 11.  Fluoride retention was generally > 70% above pH 7.  Nitrate retention 

depended on the membrane, and was mostly pH-independent, as was the speciation.  

The presence of a background electrolyte matrix (20 mM NaCl and 1 mM NaHCO3) 

reduced nitrate and boron retention (at high pH) due to charge shielding, and enhanced 

the retention of fluoride in single feed solutions, suggesting preferential transport of 

chloride compared to fluoride with sodium. 

 

The results obtained here were complimentary to those obtained in Chapter 4.  

Together, these results have shown the need for detailed analysis of the role of ion 

hydration in controlling selectivity during transport through a membrane pore, which 

will be the focus of the remaining work presented in Chapter 6 and 7. 

 

This work was initiated in 2005 by a visiting Master’s student (Marion Vuarchère, 

University of Savoie, France) and Prof. Andrea Schäfer at the University of 

Wollongong (Australia).  Vuarchère conducted speciation modelling, the experiments 

using BW30, NF90 and TFC-S in single-feed experiments and ESPA-4 and UTC-80A in 

mixed feed, and the chemical analysis for those experiments [286].  Vuarchère’s initial 

results informed the design of the experiments conducted in the Australian field trial 

which was the subject of Chapter 4. In 2010, the present PhD candidate picked up this 

work in order to fill in the gaps and make a clear link between solute speciation and 

retention mechanisms.  The PhD candidate verified speciation predictions, conducted 

and analyzed remaining experiments (NF90, BW30, ESPA-4 in mixed feed, UTC-80A 

mixed feed in MilliQ water and all with UTC60) and linked results with membrane 

properties.  The compilation and analysis of the data was completed by the PhD 

candidate. 
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5.1 Introduction and Objectives 

Groundwater is often considered a viable drinking water resource but, as discussed in 

Chapter 1, it may contain chemical contaminants which are dangerous to human health 

and can be difficult to remove.  The focus of the work in this chapter is on boron, 

fluoride, and nitrate, which have respective WHO guidelines of 0.5 mg.L-1 

(provisional), 1.5 mg.L-1, and 50 mg.L-1 (short term exposure), respectively [287].  NF 

and RO can reduce concentration of each these dangerous contaminants by varying 

degrees [49-51, 98, 139]. 

 

As discussed in detail in Chapter 2.3.5 and shown in Chapter 4.6, solution pH can 

strongly affect NF/RO because different species in which a solute is present in a 

solution are pH-dependent, and thus properties such as solute size, charge and hydration 

can change.  For example, if an uncharged solute is deprotonated at its acid dissociation 

constant (pKa), it becomes charged and thus charge exclusion from the membrane 

surface may become significant.  A change in species affects hydration state and 

consequently hydrated radius, thus impacting retention when size exclusion is important 

[37, 77].  Therefore, changing solute properties essentially affect all NF/RO 

mechanisms. 

 

Additionally, the actual membrane characteristics such as charge and pore size can 

change with pH [143, 174].  Increasing feed water pH results in an increasingly negative 

surface charge for most polymeric membranes [174].  Subsequently, electrostatic 

interaction between ionic compounds and the membrane surface vary according to 

solution pH [143], with minimal retention typically occurring around the isoelectric 

point of the membrane surface due to the minimized electrostatic effects [104, 111, 138, 

141, 172].  Additionally, pH impacts the dissociation of the functional groups on the 

membrane surface which can impact the “openness” of the pores [143].  Thus, pH can 

directly impact water flux and solute retention mechanisms (namely charge and size 

interactions), making pH a very important parameter for ion retention in NF/RO.   

 

The relationship between pH and retention for boron, fluoride, and nitrate has been 

explored to some extent [49, 51, 54, 107, 240-242], however the focus and novelty of 
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this chapter was the specific relationship between solute speciation and retention 

mechanisms for these contaminants.  The objective is to systematically evaluate the 

impact of pH on boron, fluoride, and nitrate retention by comparing speciation with 

retention using six different NF/RO membranes. 

 

5.2 Experimental Summary 

5.2.1 Filtration protocol 

To evaluate the impact of pH, experiments were conducted that assess the retention of 

different membranes when varying the pH. A magnetically-stirred stainless steel batch 

cell was used for filtration experiments, as described in Chapter 3.1.1.  Prior to each 

experiment, the new membrane was rinsed with ultrapure water and then compacted for 

one hour with a pressure of 8 bar.  Pure water flux was subsequently determined at 5 bar 

for 30 minutes.  Retention experiments were conducted at 5 bar and pH 3, 5, 7, 9, 11 

and 12.5.  For each batch experiment, 5 samples were collected from the feed (25 mL), 

concentrate (25 mL), and permeate (3 consecutive samples of 40 mL each for a total 

filtrate of 120 mL).  Retention calculations compensated for the increasing feed 

concentration and decreasing feed volume as a function of time via mass balance. 

 

Analytical grade boric acid (B(OH)3), hydrochloric acid (HCl), nitric acid (HNO3), 

sodium chloride (NaCl), sodium fluoride (NaF), sodium nitrate (NaNO3), sodium 

hydrogen carbonate (NaHCO3), and sodium hydroxide (NaOH) were obtained from 

Sigma-Aldrich.  B(OH)3 (1 mg.L-1 as B), NaF (3 mg.L-1 as F), and NaNO3 (100 mg.L-1 

as NO3
-) were the target solutes, with concentrations selected to be broadly 

representative of natural groundwater sources [32, 287, 288].  NaCl (20 mM) and 

NaHCO3 (1 mM) were used as background electrolyte and buffer, respectively, to 

roughly represent the matrices of natural waters and allow easier adjustment of pH.  

HCl (1 M) and NaOH (1 M) were used to adjust pH.  All solutions were prepared with 

purified water (MilliQ). 

 

The flatsheet membranes used were BW30 (RO, Filmtec), ESPA4 (NF, Hydranautics), 

NF90 (NF, Filmtec), TFC-S (NF, Koch), UTC-60 (NF, Toray), and UTC-80A (RO, 

Toray).  Membrane information is available online from the manufacturers (Filmtec, 
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Hydranautics, Koch, and Toray) and included in Chapter 3.2.  Experiments with BW30, 

NF90 and TFC-S were conducted both in purified water and background solution in 

single contaminant feed solutions to assess the impact of the background solution on 

retention.  Experiments with UTC-60, UTC-80A, and ESPA 4 were conducted both in 

purified water and background solution in mixed contaminant feeds.  Experiments with 

NF90 were conducted both in single and mixed contaminant feed solutions (with 

background) to assess the impact of mixed feed.  Mixed feed solutions are more 

representative of what occurs in natural waters, however because interactions can be 

complex, single feed solutions can give more straightforward insight into retention 

mechanisms. 

 

5.2.2 Analysis 
A number of analytical techniques were used and methods were described in detail in 

Chapter 3.4.  A pH meter was used to analyze pH (Chapter 3.4.1).  For single feed 

experiments, nitrate and fluoride were measured using ion chromatography (Chapter 

3.4.8).  For mixed feed experiments, nitrate was analyzed with a nutrient analyzer 

(Chapter 3.4.3) and fluoride with an ion selective electrode (Chapter 3.4.2).  Boron 

analysis was conducted with inductively coupled plasma optical emission spectroscopy 

(Chapter 3.4.4).  Analytical details and sample preparation were discussed in the 

referred section for each type of analysis. 

 

Zeta potential shows membrane surface charge and was calculated from streaming 

potential measurements with methods described in Chapter 3.2.4 [174].  Membranes 

were characterized for pore size using a hydrodynamic model to fit experimental 

retention of neutral organic solutes (dioxane, xylose, dextrose, and methanol) following 

the methodology described in detail in Chapter 3.2.3 [36, 216].  Speciation was 

modelled using Visual MINTEQ (version 2.53), as described in Chapter 4.4 [171, 276]. 

 

The results of the experiments will be presented next.  First, membrane characterization 

is discussed (Chapter 5.3), then flux as a function of pH (Chapter 5.4), and finally, 

speciation and retention of boron, nitrate and fluoride (Section 5.5). 

 



Chapter 5. Impact of pH on the Removal of Inorganic Contaminants 

144 
 

5.3 Membrane Characterization 
The properties of the membrane are required to be known in order to understand 

retention mechanisms.  The membrane surface charge was measured using zeta 

potential, and results for each membrane were shown previously in Figure 3-8.  Zeta 

potential for each membrane changed from positive to negative with increasing pH, 

with the exception of ESPA4 and UTC-80A which were never positively charged.  

ESPA4 and UTC-80A followed the same trend of an increase in zeta potential from pH 

3 to approximately 4 and then the zeta potential decreased above pH 4, however those 

two membranes were never positively charged.  The point of zero charge (isoelectric 

point) of the other membranes was 3.1, 3.2, 4.1, 4.2 and 4.3 for TFC-S, UTC-60, 

ESPA4, BW30 and NF90, respectively.  Zeta potential is important for understanding 

the relative amount of charge repulsion that can occur from the charged membrane 

surface and how this changes under various conditions. 

  

The other characterized parameters included pore radius and the active layer thickness 

to porosity ratio (L.ε-1).  These experimental results and membrane information 

applicable to the membranes used in this chapter are summarized in Table 5-1.  The 

pore radius is particularly important because the pore size determines which ions can fit 

easily through the pore and which are excluded due to their size as a sieve. 

 

Table 5-1. Membrane properties [161, 256, 257, 262]. 

Membrane 
MWCO 
(Da) 

Pore 
Radius 
(10-10m)a 

L.ε-1 
(10-6m)a 

Mat‘l 
Funct‘l 
Group 

Fluxb,  
PW  
(L.m -2.h-1) 

Fluxc,  
BG 
 (L.m-2.h-1) 

IEP 

TFC-S  200 [256] 3.4 5.29 PA 
TFC 

CONH 
[262] 

29.0 25.4 3.1 

UTC-60 
 

150 [257] 4.5 4.70 -- -- 164 154 3.2 

UTC-80A -- 1.9 3.00 -- -- 10.9 6.9 -- 

BW30 98 [161] 3.2 6.01 PA 
TFC 

COOH; 
amine 
[161] 

17.2 12.1 4.2 

NF90 100 [161] 3.4 1.46 PA 
TFC  

COOH; 
amine 
[161] 

54.9 36.6 4.3 

ESPA4 -- 3.3 7.57 PA -- 32.4 18.0 4.1 

--: not available; a Uncertainty is estimated to be ± 5% for these fitted parameters; MWCO: molecular 
weight cut-off; PA: polyamide; TFC: thin film composite; bFlux of pure water (PW) at 5 bar ; cFlux of 
background (BG) 20 mM NaCl and 1mM NaHCO3 at 5 bar;  IEP: isoelectric point 
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5.4 Flux as a Function of pH 
Flux as a function of pH is shown in Figure 5-1 for all experiments conducted.  Flux in 

pure water is shown in Figure 5-1A and with background solution in Figure 5-1B.  

Permeate flux was independent of pH for all membranes except UTC-60, which 

suggests this membrane changes with pH.  The average flux sequence (Table 5-1) for 

purified water experiments was UTC-60 > NF90 > ESPA4 > TFC-S > BW30 > UTC-

80A.  With the background solution, the flux sequence was the same with the exception 

of TFC-S being greater than ESPA 4.  Flux in background was always lower than the 

corresponding pure water flux with the same membrane, which is attributed to 

concentration polarization and osmotic pressure effects.  The lowest overall flux 

occurred with UTC-80A, which is an RO membrane developed for high boron 

retention. 
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Figure 5-1. pH dependence of flux for BW30, TFC-S, NF90, ESPA4, UTC60, and 
UTC-80A in (A) purified water and (B) background solution (20 mM NaCl and 1 
mM NaHCO3).  Error in flux measurement for one membrane coupon is estimated 
to be ± 1% but coupons from different membrane batches can vary ± 5 - 10%.  
 

5.5 Speciation and Retention as a Function of pH 
Solute characteristics are important to understand which mechanisms might affect the 

transport of a particular solute.  Characteristics of boron, nitrate, and fluoride species are 

summarized in Table 5-2, including hydrated radii and Gibbs hydration energies where 

available in the literature to compare hydration strength.  Hydrated radii are collected 

from one data source for consistency where possible [80].  Speciation results for each 

contaminant are shown in Figure 5-2,  Speciation predictions in purified water and 

background solution were the same for each solute, showing the additional ionic 
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strength did not impact speciation as sometimes observed at high salt concentration 

[289].  Speciation (Figure 5-2) and retention for single and mixed feeds (Figure 5-3 and 

Figure 5-4, respectively) will be discussed for each contaminant individually. 

 

Table 5-2. Characteristics of boron, nitrate, and fluoride and other relevant solutes 
as reported in the literature [80, 82, 290, 291]. 

Ion 
Molecular 
Weight (g·mol-1) 

Crystal 
Radius  
(10-10m) 

Hydrated 
Radius  
(10-10m) 

Gibbs Hydration 
Energies in Water 
(kJ·mol-1) 

B(OH)4
- 78.84 2.44 [290] -- -- 

B(OH)3 61.83 -- -- -36.9 [291] 
Cl- 35.45 1.81 [82] 3.32 [82] -270 [80] 
F- 19.00 1.36 [82] 3.52 [82] -345 [80] 
H+   1.01 -- 2.82 [82] -1015 [80] 
HF 20.01 -- -- -- 
Na+ 22.99 0.95 [82] 3.58 [82] -385 [80] 
NO3

- 62.00 2.64 [82] 3.35 [82] -275 [80] 
OH- 17.01 1.76 [82] 3.00 [82] -345 [80] 
--: not available  
 

5.5.1 Boron 
The speciation of boron was strongly dependent on pH (Figure 5-2A).  The equilibrium 

constant of boric acid (B(OH)3) and borate (B(OH)4
-) is 9.27 [121].  This means that 

boron predominantly existed in aqueous solution as uncharged B(OH)3  below pH 9.27 

and as B(OH)4
- above pH 9.27, as 

 

−+ +↔+ 432 )OH(BH)OH(BOH       (pKa = 9.27). Equation 37 
 

No other forms of boron were predicted to be present in solution, and there was no 

difference in boron speciation in the background solution. 

 

The influence of pH on boron retention was significant in both purified water and 

background solution (see Figure 5-3A and B and Figure 5-4A and B).  Retention was 

very low (< 23%) between pH 3 and 9 for all membranes except UTC-80A.  With UTC-

80A at low pH retention was approximately 50%, both in purified water and 

background solution, which is significantly higher than the other membranes.  At pH 11 

and 12.5, retention increased significantly for all membranes.  Retention with UTC-60 
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was significantly lower than all other membranes, even at high pH which is likely due 

to the more open nature of UTC-60 as shown by its high flux and larger pore size.   
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Figure 5-2. Speciation for (A) boron; (B) nitrate; and (C) fluoride.  Speciation 
conditions assumed a fixed atmospheric carbonate concentration (partial pressure 
3.8·10-4 atm) and temperature of 25°C.  Speciation results were the same in MilliQ 
water and with a background solution of 20 mM NaCl and 1 mM NaHCO3. 
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Figure 5-3. Single contaminant solutions (5 bar, feed concentrations: 1 mg.L-1 
B(OH)3 as B; 3 mg.L-1 NaF as F; and 100 mg.L-1 NaNO3 as NO3

-): Observed 
retention of (A) boron (C) nitrate and (E) fluoride in purified water, (B) boron, (D) 
nitrate and (F) fluoride in background solution for BW30, TFC-S, and NF90.  
Uncertainty is approximately ± 3.1% for boron, ± 3.5% for nitrate and ± 1.5% for 
fluoride. 
 

Similar pH effects on boron retention have been previously reported [49, 50, 289, 292-

294], however, data on all membranes used in this study have not been reported and the 

effects of salinity are often neglected.  The improved performance of UTC-80A 

compared to other membranes at lower pH is significant because the removal of boron 

at low to mid pH ranges is very challenging for most membranes.  Although the 

performance was even better at pH 10-12.5, the practical issues associated with treating 

waters of high pH are additional chemical cost and risk of scaling and corrosion [292, 

295, 296]. 
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Figure 5-4. Mixed contaminant solutions (5 bar, feed concentrations: 1 mg.L-1 
B(OH)3 as B; 3 mg.L-1 NaF as F; and 100 mg.L-1 NaNO3 as NO3

-): Observed 
retention of (A) boron (C) nitrate and (E) fluoride in purified water, (B) boron, (D) 
nitrate and (F) fluoride in background solution for UTC-80A, ESPA4, UTC-60, 
and NF90 (background only).  Uncertainty is approximately ± 3.5% for boron, ± 
3.5% for nitrate and ± 1.5% for fluoride. 
 

The retention pattern correlated closely with the speciation of boron.  At acidic and 

neutral pH, where retention is lowest, boron was present as boric acid B(OH)3.  This 

neutral species was easily transported through the membrane due both to lack of steric 

hindrance and lack of charge repulsion.  Thus, the higher retention achieved with UTC-

80A was likely due to the tight nature of that membrane which is also supported by 

UTC-80A’s low flux. 

 

Above pH 9, retention sharply increased for all membranes (≥ 75% in all cases except 

for UTC-60 which only reaches 52% in purified water and 30% in background 
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solution).  This increase in retention closely corresponded with the speciation change 

from B(OH)3 to B(OH)4
- (see Figure 5-2A), which is anionic as opposed to B(OH)3 

[294].  In consequence, the negatively-charged borate ions experienced electrostatic 

repulsion by the negatively-charged membranes (Donnan exclusion) at pH 11 and 12.5 

[292].  Although specific hydration information of both boron species is not currently 

available, B(OH)4
- is larger than B(OH)3 [294] so at pH 11 and 12.5 increased retention 

can further be explained due to size exclusion.  However, the hydration energy of 

B(OH)3 is much lower than the other anions, which is particularly interesting in light of 

its very low retention.  This is an area which warrants further exploration, but more 

thorough hydration data is required to do so. 

 

Additionally, differences in retention between B(OH)3 to B(OH)4
- have been attributed 

to three-dimensional differences in the molecular structure between the two compounds, 

which resulted in differences in interactions with membrane active groups [292].  

B(OH)4
- has a tetrahedral structure with a sp3 hybrid orbital, in contrast with the 

trigonal planar structure of B(OH)3 [297], as shown schematically on Figure 5-5.  The 

planar structure enhances hydrogen bridges between B(OH)3 and the membrane 

functional groups, enabling B(OH)3 to permeate in a similar manner as carbonic acid or 

water via convection/diffusion [292].  Functional groups are COOH and amine for 

BW30 and NF90, and COHN for TFC-S (see Table 5-1) but details and functional 

groups of the other membranes are unknown and proprietary.  The hydration structure 

of borate or boric acid was not available in the literature but this would be helpful 

information. 

 

 
Figure 5-5. Chemical structure of boric acid (B(OH)3, trigonal planar on the plane 
of the page) and borate (B(OH)4

-, tetrahedral, 3D). 
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Boron retention in purified water was higher than in the background solution at pH 11 

and 12.5 (up to 22% different for UTC-60, with most notable differences in the mixed 

feed solutions).  This is because at pH 11 and 12.5, B(OH)4
- retention was affected by 

charge repulsion, and in background solution, the increase in sodium ions (from < 1 

mM to 20 mM) shielded charge repulsion.  The shielding phenomenon is characteristic 

of charged membranes and has been commonly used to explain decreased anion 

retention in the presence of increased ionic strength [107, 108, 199, 241].  In single feed 

solutions, from pH 3 – 9, there was no difference in neutral B(OH)3 retention with and 

without the background solution, which is consistent with the observation that charge 

becomes important at pH 11 and 12.5.  A comparison of single feed and mixed feed 

with NF90 in background solution (Figure 5-3B and Figure 5-4B) showed slightly 

lower retention of B(OH)3 in the mixed feed solution of higher ionic strength (10% in 

mixed feed; 20% in single feed).   

 

5.5.2 Nitrate 
The speciation of nitrate does not depend on pH, with >99.5% present in ionic form 

(NO3
-) (see Figure 5-2B).  No difference in speciation of nitrate occurs in background 

solution.   

 

Nitrate retention (Figure 5-3C and D; Figure 5-4 C and D) varied widely from 20 – 

96%.  Retention was 60-96% and mostly pH independent for RO membranes BW30 

and UTC-80A, showing that size exclusion is important when pore size is smaller than 

or similar to solute size.  For other membranes, retention was mostly pH independent 

above the isoelectric point of the membranes (it shows the same shape for all 

membranes).  Because nitrate was of uniform charge and the charge of all membranes 

increased with pH, a continuous increase in retention with pH would be expected if 

charge exclusion was dominant.  Minimum retention was observed at low pH near the 

membrane isoelectric point when charge repulsion is minimal for TFC-S and ESPA4.  

This was similarly observed by Qin et al. [113].  However, retention was mostly pH-

independent above pH 5, which suggested that size exclusion was playing a role in 

addition to charge.  The lowest retention was observed with UTC-60, which is the 

“loosest” membrane.  Size exclusion is further supported because NF90 retention for 

single and mixed feed solutions is similar. 
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Nitrate retention was generally lower in the presence of the background electrolyte than 

in purified water (the most notable difference with TFC-S), which has been similarly 

observed and explained in literature [113, 139].  Because nitrate and chloride have very 

similar characteristics (charge, hydrated size and hydration strength, see Table 5-2), 

preferential transport of one of the anions with regard to the other with sodium would 

not be expected.  However, the increase in sodium concentration resulted in enhanced 

charge shielding and hence reduced retention based on charge repulsion [107, 108, 199, 

241].  It is to date unknown if ions such as nitrate permeate membranes in hydrated or 

unhydrated form, which is subject to ongoing investigations (and will be the subject of 

Chapter 6 and 7). 

 

5.5.3 Fluoride 
The speciation of fluoride was pH dependent and is shown in Figure 5-2C.  The 

equilibrium coefficient of hydrofluoride acid (HF) is pKa = 3.2 [121].  The chemical 

equation of the acid dissociation is  

 

−+ +↔ FHHF  (pKa = 3.20). Equation 38 
 

Therefore, above pH 3.2, the charged fluoride ion was dominant and above pH 5 all 

fluoride existed as F-.  Speciation was identical in background solution. 

 

Fluoride retention (shown in Figure 5-3C and D for single feed solution and Figure 

5-4C and D for mixed feed) was impacted significantly by pH and correlated with 

speciation.  Retention for all membranes, in both purified water and background with 

single feed, was relatively low at pH 3 (from 5 – 65% depending on membrane and 

conditions) and increased to 95 – 98% at pH 12.5 with pH.  Above pH 7, retention in 

single feed solutions was > 87% and hence higher than that of either boron or nitrate.  In 

mixed feed solutions, an increase in retention with pH was still observed.  High fluoride 

retention has indeed been observed over a range of conditions in a number of studies 

[51, 54, 240-242].   
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This suggested that steric effects contribute to fluoride retention.  Although fluoride is a 

very small ion, it is more strongly hydrated because of its high charge density and has a 

relatively large hydrated radius (3.52·10-10 m, see Table 5-2) compared to other 

monovalent anions in solution (3.32·10-10 m for Cl- and 3.35 ·10-10 m for NO3
-) [51, 82, 

242].  Consequently, steric exclusion led to fluoride being more strongly retained by 

tighter membranes.  Retention with UTC-60 was very low with a maximum of 53% in 

MQ at pH 12.5.  Because flux decreased with pH, the change in retention could be 

attributable to either or both changing charge interactions or the pore size.  Retention 

with NF90 in single and mixed feed solutions was similar, indicating that size exclusion 

is important for this membrane. 

 

Near the isoelectric point (pH 3-5), fluoride retention was higher in the presence of 

background solution (near 70% for BW30 and NF90) than in purified water (< 25%) in 

the single feed solutions (Figure 5-3C and D).  At acidic pH, fluoride was not retained 

by UTC-60 and retention by TFC-S was only 5% and 30% for pH 3 and 5, respectively, 

and approximately 65% for BW30 and NF90.  This can be explained with the fact that 

chloride rather than fluoride was preferentially transported through the membrane with 

sodium, which is supported both because the hydrated radius of chloride is smaller than 

fluoride and because chloride is more weakly hydrated (see Gibbs Hydration Energies 

on Table 5-2). Interestingly, in the background solution, retention was low at both pH 3 

and 5, whereas with purified water, low retention only occurred at pH 3 (this difference 

is most likely an error).  This requires further investigation.  

5.6 Conclusions 
 

The objective of this study was to determine the relationship between speciation and 

retention for boron, fluoride, and nitrate using six different NF/RO membranes.  The 

main conclusions follow.   

 

Flux was independent of pH for all membranes except UTC-60, indicating that pH did 

not alter pore size and hence permeability and size exclusion characteristics of those 

membranes.  The retention of boron correlated with speciation and was strongly 

dependent on pH. Below the pKa of boron (pKa = 9.27), only B(OH)3 was present in 
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solution, and retention was generally low and due to the small size of the species.  At 

pH ≥ 11, retention for all membranes increased sharply (up to 95%) due to charge 

repulsion of B(OH)4
-  from the negative membrane surfaces.  The presence of 

background solution decreased B(OH)4
-  retention due to charge shielding.  The highest 

boron retention at neutral pH (approximately 50%) was achieved using UTC-80A.  The 

speciation of nitrate was pH independent.  Retention varied widely depending on 

membrane type, and was mostly pH independent above the isoelectric point of the 

membranes.  Data supported that both charge and size mechanisms were occurring.  

Decreased nitrate retention was observed in the presence of background solution due to 

the screening effects of sodium.  Fluoride speciation and retention were pH dependent, 

with minimum retention occurring at low pH when HF dominates (this is similar to 

what happened with boric acid).  Fluoride (ion) was better retained than uncharged HF, 

due to both charge and size mechanisms.  Speciation effects were clearer in single feed 

solutions than mixed feed solutions.  In single feed solutions, at low pH, fluoride was 

better retained with the background solution than in purified water, which can be 

explained by charge and possibly preferential transport of chloride rather than fluoride 

to balance the charge of sodium.  In single feed solutions, the fluoride ion was more 

highly retained than nitrate for the same membrane above pH 7, which cannot be 

explained by the ionic size (fluoride is a smaller ion).  This is the same result found in 

natural groundwaters (Chapter 4) and is of significant interest. More extensive 

hydration data is needed for species relevant to this study, and this data is not currently 

available or inconsistent in the literature.  In particular, hydrated radius and Gibbs 

hydration energies for both boron species B(OH)3 and B(OH)4
-, as well as HF, would be 

valuable to further elucidate mechanisms.  Additionally, pH dependent hydration data is 

needed for all species. 

 

The selectivity of monovalent anions in single feed solutions is the most significant and 

interesting finding from this work (eg. the higher retention of fluoride than nitrate, 

despite the smaller ionic size of fluoride), and the subject that will be pursued for the 

remained of this thesis.  As such, nitrite will be added as a target contaminant for the 

remaining work presented, as this is another monovalent anion which is health-

threatening, and understanding the selectivity of this ion compared to the others would 

be valuable.  In particular, the role of hydration in determining which ions transport 
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through pores remains poorly understood, and progress in this area would make a 

significant contribution to the current knowledge of NF/RO mechanisms.  This will be 

explored using molecular dynamics simulations (Chapter 6) and then further pursued 

experimentally (Chapter 7). 
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Chapter 6  
 
 
The Importance of Dehydration in Determining 
Ion Transport in Narrow Pores 
 
 

The previous experimental chapters have demonstrated that mechanisms of salt transport 

through NF and RO membranes remain unclear.  For example, the high retention of 

fluoride as compared to nitrate, which was demonstrated in Chapters 4 and 5, cannot be 

explained by size exclusion based on bare ion size.  This observation emphasizes that the 

impact of ion hydration must be important.  However, there is no solid evidence about the 

specific role of ion hydration in determining ion transport in nanofiltration (eg. if ions 

become dehydrated as they enter a narrow pore), and information on this topic would be 

very valuable to improving the understanding of mechanisms of transport processes.  The 

transport of hydrated ions through narrow pores is important for a number of 

applications in addition to desalination, such as the conductance of ions through 

biological channels.  This subject is the focus of the current chapter.   

 

This chapter endeavors to tackle this challenging topic by use of molecular dynamics 

(MD) simulations which were used to systematically examine the transport of anionic 

drinking water contaminants (fluoride, chloride, nitrate and nitrite) through model pores 

ranging in effective radius from 2.5·10-10 to 6.5·10-10 m.  The aim was to elucidate the 

role of hydration in excluding these species during NF.  First, an idealized, cylindrical 
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pore model was created.  Bulk hydration properties (hydrated size and coordination 

number) were determined for comparison with the situations inside the pores.  Free 

energy profiles for ion transport through the pores showed that energy barriers depend 

on pore size, ion type, and membrane surface charge, and that the selectivity sequence 

can change depending on the pore size.  Ion coordination numbers along the trajectory 

showed that the process of partial dehydration of the transported ion was the main 

contribution to the energy barriers.  Ion transport was greatly hindered when the 

effective pore radius was smaller than the hydrated radius, as the ion had to lose some 

associated water molecules to enter the pore.  Small energy barriers were still observed 

when pore sizes were larger than the hydrated radius due to re-orientation of the 

hydration shell or the loss of more distant water molecules.  These results demonstrate 

the importance of ion dehydration in transport through narrow pores which increases the 

current level of mechanistic understanding of membrane-based desalination and 

transport in biological channels. 

 

This work was conducted at The University of Western Australia by the PhD candidate in 

collaboration with A/Prof. Ben Corry.  Corry has previously worked on the simulation of 

ions through carbon nanotubes and biological channels and thus shared his knowledge 

and contributed some code for the development of the model and data analysis.  

Parameterization, simulations and analysis were conducted by the PhD candidate. 

 

6.1 Introduction and Objectives 
 
Water and ion transport through confined pores is relevant to important applications such 

as desalination and the understanding of biological ion channels.  As described in Chapter 

2.2, typical NF models include mechanistic contributions from size exclusion, charge 

repulsion, diffusion and convection [143, 144, 198, 208-210].  However, a major 

limitation in current NF models is the definition of solute size.  Most models use ionic 

[210] or Stokes radius [36], which is inherently inaccurate due to the process of 

hydration. Ions are hydrated by a shell of dipolar water molecules, which means that the 

mobile entity is the ion with its hydrated shell rather than just the bare ion [76].  Despite 

the fact that hydration is neglected in NF models, the importance of hydration has been 

demonstrated numerous times experimentally [77, 85, 122-125] and in carbon nanotube 
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simulations [126, 127].  Ion hydration is also of critical importance to biological ion 

channels, where the molecular basis of selectivity is due in part to the ion’s hydration 

properties [230-234, 238, 239]. 

 

As discussed in detail in Chapter 2.2, hydration during pore transport processes is not 

well-understood (and to date completely un-addressed in NF models), for a number of 

reasons.  These reasons include the lack or inconsistent nature of hydration data [80-82, 

85], the inaccuracy of applying hydration information in bulk solution to a confined 

space, and challenges in accounting for an unknown or transient parameter in models [77, 

125, 126].  Thus, a more detailed approach is required that incorporates the interaction of 

water molecules with the ion as well as the interaction between the hydrated ion and the 

pore. 

 

The overall aim of the work in this chapter was to examine the hydration of a selection of 

monovalent anions relevant to drinking water purification (fluoride, chloride, nitrate, 

nitrite) as they transport through nanopores to determine its importance in this process.  

The specific objectives were to: (1) develop a model using MD to simulation the 

transport of ions through an idealized pore; (2) determine the hydration structure of the 

anions in bulk water; (3) investigate the hydration of these ions during transport through a 

generic pore, as a function of (i) pore size; (ii) ion type; and (iii) surface charge; and (4) 

determine the energetic barriers of transport by evaluating free energy profiles in each of 

these scenarios.   

 

The novelty in this study lies in systematically evaluating the dehydration mechanism 

during pore transport for small ions with molecular dynamics (MD).  Rather than 

attempting the challenge of describing the complexity of realistic membrane pores, 

simplified channels are used so as to be able to more easily isolate the role of in 

dehydration in pores of different sizes.  By carefully parameterizing the simulations to 

reproduce ion dehydration energies, many ion types and pore sizes can be examined, 

which would be difficult with more detailed simulations.  This study provides the 

evidence that dehydration is the determining factor in the transport of ions through pores, 

and that such effects occur in conditions applicable to desalination and biological pores. 
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6.2 Molecular Dynamics Model Development 
 

The principles of MD, described in Chapter 2.5, were used to develop a new model to 

simulate the transport of ions through a pore.  The model was developed in light of the 

primary objective to understand the fundamental role of ion hydration/dehydration during 

transport through a narrow pore, which is a topic not addressed by current NF models.  

Specifically, the objective was to assess the transport of anions chloride, fluoride, nitrate 

and nitrite through narrow pores of sizes relevant to NF/RO.  The following sections 

describe the details of the MD model. 

 

All MD simulations were conducted using the software package NAMD2.7 [226] and 

VMD1.9 for visualization [298].  NAMD software was selected as it is an appropriate 

parallel molecular dynamics code commonly used for high-performance simulation of 

large molecular systems. 

 

There were two main categories of simulations conducted.  The first simulation type was 

in bulk water with no pore and was meant to determine the properties of the ions when in 

water.  The second type of simulation contained a pore and was used to model the 

transport of ions through the pore.  Both types of simulations will be described.  

 

6.2.1 Bulk Water Simulations 
 

The first system was used to determine the unconstrained hydrated size and structure of a 

target ion in bulk water.  A single ion was placed within a simple box of water (type 

TIP3P [221, 299]) to do this.  The system for bulk simulations was minimized for 1-ps 

and run for 500-ps with a single ion in a water box of 60×60×60·10-10 m at 298 K and 1 

atm (controlled with Langevin dynamics).  The radial distribution function (RDF) was 

calculated in order to determine the structure of the hydration shell(s) around the ion.  

The hydrated radius (Rhyd) was defined at the first minima in the RDF.  The coordination 

number is the number of water molecules associated with the ion and this was defined by 

the average number of water molecules within the hydrated radius. 
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6.2.2 Pore Simulations 
 

The second type of simulations was similar to the first type with the addition of a pore.  

Developing the pore representation in the simulations required much effort.  A number of 

different techniques were tried in order to balance surface characteristics with 

computational efficiency.  Ultimately, closely spaced, discrete carbon atoms were 

selected for the surface representation, as the computation requirements of using 

analytical functions, grid forces or numerical tables were too high.  Although similar 

simulation systems had been constructed based on carbon nanotubes [127], this current 

pore representation was selected to be similar to that of an idealized cylindrical 

nanofiltration pore.  

 

This simulation essentially contained two water reservoirs separated by a pore.  This 

simulation was designed to understand how ions transport through narrow pores.  Figure 

6-1 shows a side-view representation of this model system.  The pore was represented as 

a smooth, idealized surface to be generic and avoid giving specific chemical 

characteristics.  While the surface representation could have been achieved using 

analytical functions or numerical tables, closely spaced discrete atoms were selected for 

computational efficiency.  These surface atoms were spaced at an interval of 1·10-10 m as 

smaller spacing did not influence the LJ interaction as a function of distance from the 

pore wall. The interaction of water and ions with the wall was through LJ interactions 

defined by Rmin/2,surface = 3.75 ·10-10 m and εsurface = 0.1946 kcal.mol-1 (based upon values 

for methyl groups in hydrocarbon chains which is of relevance to biological and 

membrane pores) [300, 301].  The density of atoms on the surface was used to scale 

εsurface to reproduce methyl LJ interactions when the atoms are at the density of real 

methyl groups.  A pore of total length 16·10-10 m (selected to ensure that length was more 

than twice the widest radius and for computational efficiency) was constructed.  One 

simulation with a longer 32·10-10 m pore was also conducted (Reff = 3.3·10-10 m) and the 

free energy profile flattened out in the pore.  In this case with a relatively small pore 

radius, the maximum energy barriers flattened at a slightly higher value (~3 kcal.mol-1 

higher) for the 32·10-10 m pore as compared to the 16·10-10 m pore due to the electric field 

of the ion dropping away relatively slowly and thus still exerting an influence on the bulk 

water.  This does not affect the ordering of ions and the difference decreases as pore 
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radius increases.  After pore construction, the pore was solvated in a water box of 

dimensions 40×40×70·10-10 m with periodic boundary conditions for continuity.   

 

The MD pore simulation is very simplified when compared to a real NF membrane.  A 

summary of how the MD pore compares to a real NF membrane is shown on Table 6-1.  

Because the interest with MD was to assess the specific impact of transport on ion 

hydration, a simplified model was used which allowed this effect to be determined. 

 

 

 
Figure 6-1. Side-view representation of model system with 0.1M NaF and Reff = 
3.3 ·10-10 m.  Light grey region is a volume representation of water; green circles 
represent fluoride (Rion,fluoride = 1.3 ·10-10 m [80]); yellow circles represent sodium 
(Rion,sodium = 1.0·10-10 m [80]). 
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Table 6-1. Comparison of MD pore model with a real NF membrane. 
Characteristic MD Model NF membrane 
Pore definition Idealized cylindrical pore.  The 

effective size of the pore is 
determined by the space in the 
pore actually available to water 
(eg. where the LJ interactions 
between the surface atoms and 
water molecules allow). 

Tortuous void space in the 
spectrum between discrete pore 
and dense material, with a 
distribution of pore sizes.  Space 
available to water is determined by 
“wetting” which is dependent on 
the interactions between the 
polymer material and water. 

Material Pore represented by fixed atoms 
with the chemical characteristics 
of carbon atoms in CH3 groups, 
hydrophilicity/hydrophobicity not 
considered 

Polyamide ((CONH2]
n) based 

active layer, typically hydrophilic 

Surface Charge Not considered for the majority of 
simulations, however limited 
simulations were conducted with 
a surface charge of -0.1 C.m-2 
evenly distributed on the top 
surface and within pore 

Typically negatively charged.  A 
common charge range is 
approximately-0.05 to +0.01 C.m-2 
(for reference a zeta potential of    
-30 mV is approximately -0.01 
C.m-2 [302])  

   
   
Functional 
Groups 

Not considered Commonly present as part of the 
proprietary manufacturing process 
of the active layers 

Polarity Not considered Occurs due to membrane 
materials, functional groups 

Tortuousity Not considered,  however the 
narrowest part of the NF “pore”is 
where transport will be controlled 

Very tortuous 

 

The effective radius of the pore available to water (Reff) was used to define the pore radius 

rather than the size defined by the location of the center of the surface atoms (Rp) because 

Reff was more easily compared to the hydrated radius of each ion.  This is easily seen in 

Figure 6-1.  Effective radius was determined by calculating the oxygen density profile 

within the pore, and adding the distance at which it became zero to the ionic radius of 

oxygen (Rion,oxygen = 1.77·10-10 m) in water.  This effective radius was always less than the 

position of the center of the surface atoms due to the LJ interactions between the surface 

atoms and water (similar to “wetting” in NF).  For reference, the effective radii and 

corresponding radii of the centered surface atoms are shown on Table 6-2.  Simulations 

were initially conducted at Reff = 2.8, 3.3, 3.7, 4.3, 5.3 and 6.5·10-10 m [303] and the 

additional sizes were added on later for comprehensive analysis.  Pore radii were selected 
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to be similar to NF membranes [304] as well as those used in previous simulations of 

narrow carbon nanotubes [126, 127].  An additional simulation was conducted with 

surface atoms centered at Rp = 3.0·10-10 m but a corresponding effective radius could not 

be calculated because water evacuated from the pore. 

 

Table 6-2. Pore radii (Rp) and corresponding effective radii (Reff) used for pore 
simulations. 

Rp  (·10-10 m) Reff (·10-10 m) 
3.75 2.51 
4.00 2.81 
4.25 3.06 
4.50 3.32 
4.75 3.52 
5.00 3.72 
5.25 4.02 
5.50 4.33 
6.00 4.72 
6.50 5.32 
7.50 6.53 

 

The pore was neutral for all simulations with the exception of surface charge simulations 

(at Reff = 3.3 and 4.3·10-10 m) where a charge of -0.1 C.m-2 was evenly distributed along 

(i) all atoms on the top surface only, and (ii) all atoms on the top surface and within the 

pore.  The surface charge was implemented by applying a slightly negative partial charge 

(-0.006240 electronic charge units) evenly to every single atom on the desired surface in 

order to achieve a net charge of -0.1 C.m-2 and a smooth distribution of charge.  Ions 

were randomly placed to yield a net concentration of 0.1 M sodium fluoride, sodium 

chloride, sodium nitrate, and sodium nitrite (single salt per simulation), with 

electroneutrality maintained.  This meant that there were five cations, five anions and 

approximately 2400 water molecules per simulation (for a 3.3·10-10 m pore).  In the 

negatively charged pore, one anion was used (the target anion) and ten cations in order to 

maintain the overall electroneutrality requirement for the system.  The pore 

representation did not account for pore size distributions, tortuousity, and surface 

characteristics such as functional groups, which can be relevant to transport processes in 

NF, carbon nanotubes, and biological pores.   
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6.2.3 Free Energy Profiles 
 

The energetic barriers of the ion transporting through the pore was quantified using free 

energy profiles, where the free energy of the ion was calculated at a series of locations 

moving from bulk solution into the pore.  At each location, the free energy (or potential 

of mean force) was determined using umbrella sampling [305].  This technique uses a 

harmonic potential to set the location of the ion of interest along a trajectory path defined 

by the distance from the central pore axis rradial and the vertical position Z.  The ion was 

moved from Z = -15·10-10 m (bulk) to 0·10-10 m (center of pore) along the pore axis (rradial 

=  0) for all pore sizes in steps of 1·10-10 m.  Additional positions were sampled from Z = 

-15 to 7·10-10 m (at rradial = 4·10-10 m) for Reff = 2.8 and 3.3·10-10 m; Z = -15 to 0 ·10-10 m 

(at rradial = 4·10-10 m) for Reff = 3.7 and 4.3·10-10 m; and Z = -15 to 0·10-10 m (at rradial = 

4·10-10 m and 8·10-10 m) for Reff = 5.3 and 6.5·10-10 m.  For the neutral membranes, the 

symmetry of the system is used to generate a potential of mean force across the entire 

length of the pore (-15 < Z < 15).  The applied force constants were 2 kcal.mol-1.Å-2 and 

0.2 kcal.mol-1.Å-2 in the Z and rradial directions, respectively, and were selected for 

complete sampling in the system.  For each target position, a 250-ps simulation was run, 

and the coordinate of the ion was recorded every 1-ps.   

 

Table 6-3 shows the configuration parameters used for the simulations.  Force field 

parameters were specified in a protein database file (.pdb) but additional information is 

needed in order to calculate the interactions between atoms which are far apart.  A cutoff 

distance of 12·10-10 m was specified, meaning that when the distances between two ions 

are larger than the cutoff distance, the forces and energies are set to zero.  In order to 

eliminate the discontinuity that this creates, switching functions were used to smoothly 

bring the forces and energies to zero at a switching distance of 10·10-10 m [226].  The pair 

list distance is used to specify a patch size so that NAMD can create a list of pairs of 

atoms for which non-bonded interactions should be calculated periodically.  The patch 

size (13.5·10-10 m) must be defined for the list to be created because of atoms moving into 

or out of this patch between steps.  The scaled 1-4 exclusion policy relates to atoms 

separated by three bonds (not relevant in this model) and is always used with the 

CHARMM force field [226].  Constant temperature control is done using Langevin 

dynamics which balances friction with random noise to drive each atom in the system 

towards a target temperature.  Because periodic boundary conditions were used, full-
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system periodic electrostatics and constant pressure (Langevin piston) were used.  

Harmonic constraints were not used on any atoms in the system and output parameters 

were recorded every picosecond.  The statistical ensemble employed was the NPT 

ensemble, where pressure and temperature are kept constant.  This is implemented in 

NAMD using Langevin dynamics (details of which are shown in Table 6-3). 

 

Table 6-3. Configuration parameters for pore simulations using NAMD2.7. 
Parameter Category Parameter Selection 
Force-Field Parameters Exclude Scaled 1 – 4 
 1-4 Scaling 1.0 
 Cutoff 12·10-10 m 
 Switching On 
 Switch Distance 10·10-10 m 
 Pair List Distance 13.5·10-10 m 
 Margin 1.0 
Constant Temperature Control Langevin Dynamics On 
 Γ, damping coefficient 5 ps-1 
 Temperature 298 K 
Periodic Boundary Conditions -- On 
 X-Vector 40·10-10 m 
 Y-Vector 40·10-10 m 
 Z-Vector 70·10-10 m 
PME (full-system periodic electrostatics)    PME On 
 Grid Size X 75·10-10 m 
 Grid Size Y 75·10-10 m 
 Grid Size Z 95·10-10 m 
Constant Pressure Control Flexible Cell On 
 Constant Area On 
 Langevin Piston On 
 Piston Target 1.01325 bar 
 Piston Period 200 
 Piston Decay 50 
Harmonic Restraints Harmonic Restraints Off 
Outputs Restart Frequency 1 ps 
 DCD Frequency 1 ps 
 XST Frequency 1 ps 
 Output Energies 1 ps 
 Output Pressure 1 ps 

 

The weighted histogram analysis method (WHAM) [306, 307] was used to calculate two-

dimensional free energy profiles with a tolerance of 0.0001 and 30 bins in both Z and 

rradial directions.  Conceptually, this method removes the bias placed on the target ion 

with the umbrella sampling to calculate the energetic requirements, which is the desired 

end result.  Umbrella sampling is a standard technique used in molecular dynamics 
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simulation.  Two-dimensional profiles were integrated at each Z position [127] to 

determine a one-dimensional profile.  All energy profiles were single-ion profiles as no 

other ions entered the pores during the simulations.   

 
 

6.2.4 Uncertainty Analysis 
 

The uncertainty in the free energy values was assessed by conducting seven independent 

trajectories for one case (fluoride at Reff = 3.3·10-10 m) in order to show error of repeated 

simulations.  The standard deviation of the peak of the energy barrier from the seven 

independent trajectories was ± 2.3%, and this was also assumed to be similar for all 

trajectories.  Convergence of the simulations was further evidenced by taking the average 

and standard deviation of energy outputs over the last 20% of the sample windows of 

500-ps (bulk simulations) and 250-ps (per umbrella window).  The standard deviation as 

a percentage of the average value was ± 0.07% and 1.4% for the 500-ps and 250-ps 

simulation windows, respectively.  To further assess error, the Monte Carlo Bootstrap 

error analysis [308] feature within WHAM (a standard error technique for umbrella 

sampling) was evaluated for fluoride at Reff = 2.8·10-10 m, as determined with 1000 

Monte Carlo trials and correlation time of 100.  Using this technique, reproducibility of 

the free energy calculations was estimated to be ± 0.3 kcal.mol-1. This accuracy was 

assumed to be similar for all simulations.  Because the magnitude of the error bars is 

small, they are not marked on the figures in Chapter 6. 

 
 

6.3 Parameterization 
 
Force field parameters required for MD simulations were available for fluoride [83], 

chloride [83] and water (type TIP3P) [309], but had to be specifically developed for 

nitrate, nitrite and boric acid using ab-initio quantum mechanical and MD techniques 

[221].  Gaussian03 [310] software was used to conduct geometry optimization (bond 

length, angle stretch and improper torsion), frequency analysis, and to calculate partial 

charges with the Merz-Singh-Kollman electrostatic fitting scheme [311].  This was 

achieved using Hartree Fock theory and a 6-31+G* basis set.  Hartree Fock theory 

utilizes a mean value for electron-electron interactions and the selected basis set 6-31+G* 
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describes intermolecular interaction energies using split valence and polarization 

functions on all non-hydrogen atoms [220, 221].  Force constants were determined from 

potential energy surface scans and adjusted to match the infrared spectra from a MD 

vacuum simulation to the infrared frequencies obtained from the Gaussian calculation. LJ 

parameters (Rmin/2,ij and εij) for all non-bonded atoms were systematically adjusted to 

reproduce the hydration free energies of the ions. 

 

The method of alchemical free energy perturbations (FEPs) [221] was used to validate the 

ion parameterization by calculating the difference between the Gibbs hydration energies 

of two ions and comparing to literature values [80].  A single chloride ion was placed in 

the center of a 40×40×40·10-10 m water box (type TIP3P [221, 299]) and slowly morphed 

into the target ion (eg. nitrate or nitrite) in 20 thermodynamic perturbation steps each 

lasting 500-ps.  The non bonded LJ parameters were adjusted until the simulated 

hydration free energy of the ions was within 1 kcal.mol-1 of the hydration free energies 

reported in the literature (-71.6 kcal.mol-1 for nitrate and -78.8 kcal.mol-1 for nitrite [80]). 

 

6.3.1 Fluoride, Chloride and Water 
 

Force field parameters for fluoride [83], chloride [83] and water (type TIP3P) [309], as 

available in the literature, are shown on Table 6-4.  The TIP3P was model was selected as 

it is commonly used in molecular dynamics simulations for a variety of applications. 

 

Table 6-4. Force field parameters from the literature for fluoride [83], chloride [83] 
and water (type TIP3P) [309]. 
Parameter Fluoride Chloride Water (TIP3P) 
    H O 
Partial Charges -1 -1 0.417 -0.834 
Non-bonded: rmin/2,ij (Å) 2.303 2.513 0.2245 1.7682 
Non-bonded: ε (kcal.mol-1) 0.0033 0.0356 -0.0460 -0.1521 
Bond length, b (Å) H-O: 0.9572 
Bond force constant, kb (kcal.mol-1.Å-2) 

n/a n/a 
H-O: 450 

Angle stretch, θ (deg) H-O-H: 104.52 
Angle force constant, kθ (kcal.mol-1.rad-2) 

n/a n/a 
H-O-H: 55.0 
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6.3.2 Nitrate and Nitrite 
 
Force field parameters for nitrate and nitrite were developed using ab-initio techniques 

and FEPs, as described above.  The non bonded LJ parameters were adjusted until the 

hydration free energy of the ions was within 1 kcal.mol-1 of the target value, which was -

71.6 kcal.mol-1 for nitrate and -78.8 kcal.mol-1 for nitrite [80].  The FEP results for nitrate 

with various LJ parameters are shown in Figure 6-2. 
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Figure 6-2.  Gibbs free energy values for nitrate obtained from alchemical FEP 
when a chloride ion was gradually morphed into nitrate in a water box.  The 
adjusted Lennard-Jones parameters (ε and Rmin/2) are for the oxygen in nitrate. 

 
Alchemical FEP calculations with various combinations of LJ parameters yielded the 

Gibbs free energies shown on Figure 6-2 for nitrate.  More negative ε and decreasing 

Rmin/2 led to lower (more negative) Gibbs free energy.  Ultimately, the parameters of ε = -

0.2 kcal.mol-1 and Rmin/2 = 1.9·10-10 m were selected for the oxygen in nitrate as this 

combination yielded the desired free energy of hydration for nitrate [80] and were 

comparable to values for other bonded oxygen atoms that were already optimized in the 

available parameter files [226].  A similar fitting procedure was conducted for nitrite.  

The final optimized parameters for nitrate and nitrite are shown in Table 6-5. 
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Table 6-5. Optimized ion parameters necessary for pore simulations developed by 
ab-initio techniques for nitrate and nitrite (“--” is non-applicable). 
Parameter Nitrate Nitrite 
  N O N O 
Partial Charges 1.0323 -0.677 -0.058 -0.471 
Non-bonded: rmin/2,ij (Å) 1.850 1.900 1.850 1.900 
Non-bonded: ε (kcal.mol-1) -0.200 -0.200 -0.200 -0.200 
Bond length, b (Å) N-O: 1.2268 N-O: 1.2254 
Bond force constant, kb (kcal.mol-1.Å-2) N-O: 425 N-O: 264 
Angle stretch, θ (deg) O-N-O: 120 O-N-O: 117 
Angle force constant, kθ (kcal.mol-1.rad-2) O-N-O: 110 O-N-O: 27 
Improper torsion, t (deg) N-O-O-O: 0 n/a 
Improper force constant, kt (kcal.mol-1.rad-2) N-O-O-O: 163 n/a 

 

6.3.3 Boric Acid 
 

Geometric optimization, force constants and partial charge determination were also 

completed for boric acid.  These parameters are shown on Table 6-6.  Due to the 

complicated nature of boric acid with seven atoms, parameterization is much more 

difficult for this molecule and unfortunately there was not sufficient time to complete the 

parameterization of the LJ interactions.  This could be the subject of future work, as the 

transport of boric acid is poorly understood, and properly parameterizing the molecule for 

MD simulations would be valuable.  Because parameterization was not completed, no 

further results will be presented for boron in this chapter. 

 

6.4 Ion Behaviour in Bulk Water 
 
The behaviour of ions in bulk water must be understood as a basis for comparison to how 

water interacts within a confined pore.  The ions are placed in bulk water and allowed to 

interact with the water molecules. After allowing the interactions, a number of properties 

can be determined. The hydration properties of each ion in bulk water are shown in Table 

6-7.  Fluoride had the smallest hydrated size (Rhyd,fluoride = 3.4·10-10 m), smallest average 

coordination number (6.5) and highest hydration energy (-119.7 kcal.mol-1).  Nitrate and 

nitrite had larger hydrated radii (5.0·10-10 m and 5.1·10-10 m, respectively) and more 

water molecules associated with them compared to the single atom ions fluoride    
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Table 6-6. Optimized ion parameters developed by ab-initio techniques for boric 
acid.  Note that Lennard-Jones parameters are not included. 

Parameter Boric Acid 
  B O H 
Partial Charges 1.334 -1.096 0.652 
Bond length, b (Å) B-O: 1.3584  
Bond length, b (Å) O-H: 0.9471  
Bond force constant, kb (kcal.mol-1.Å-2) B-O: 500  
Bond force constant, kb (kcal.mol-1.Å-2) O-H: 625  
Angle stretch, θ (deg) H-O-B: 113.7  
Angle stretch, θ (deg) O-B-O: 120  
Angle force constant, kθ (kcal.mol-1.rad-2) H-O-B: 20  
Angle force constant, kθ (kcal.mol-1.rad-2) O-B-O: 55  
Improper torsion, t (deg) B-O-O-O: 0  
Improper force constant, kt (kcal.mol-1.rad-2) B-O-O-O: 31.6  
Dihedral angle, σ (deg) H-O-B-O: 180  
Dihedral force constant, kσ (kcal.mol-1) H-O-B-O: 3  

 

(3.4·10-10 m) and chloride (3.8·10-10 m).  The most weakly hydrated ion was nitrate, 

which had the highest average coordination number (15.5) and lowest hydration energy (-

71.6 kcal.mol-1) meaning that each water molecule was bound weakly to the ion.  Note 

that nitrate and nitrite were not spherical ions, and thus were not spherical when hydrated 

because water molecules associated at highest density around the polar sites on the 

nitrogen and oxygen atoms.  Also note that the hydrated radii obtained here are somewhat 

different than reported in very early studies [82] but these new values are more reliable 

due to their ability to reproduce hydration free energies and will be used for the 

remainder of the work presented in this thesis.  The radial distribution functions and 

instantaneous distributions of coordination numbers are shown in Figure 6-3. 
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Table 6-7. Properties of hydration for each ion in bulk water including hydrated 
radius and average coordination number. 
Parameter Fluoride Chloride Nitrate Nitrite 

Ionic Radius, Rion (10-10 m)a 1.3 [80] 1.8 [80] 3.0 3.0 
Hydrated Radius, Rhyd (10-10 m)b 3.4 3.8 5.1 5.0 
Average Coordination Number (--) 6.5 7.1 15.5 12.7 
Target Hydration Free Energy 
(kcal.mol-1)  -119.7 [86] -89.1 [86] -71.6 [80] -78.8 [80] 
Simulated Hydration Free Energy 
(kcal.mol-1) -119.7 [83] -89.6 [83] -71.5 -79.1 
a For nitrate and nitrite, Rion = bN-O (1.22·10-10 m) + Rion,oxygen (1.77·10-10 m) 
b For nitrate and nitrite, Rhyd = bN-O (1.22·10-10 m) + RDFmin 
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Figure 6-3. Ion behavior in bulk water.  (A) Radial distribution function (RDF) for 
each ion in bulk water.  RDF indicates the variation of oxygen (in water) density with 
distance from the center of the ion, and the size of the hydration shells are defined by 
the minima of the RDF function.  Overlay schematic shows fluoride and its 
associated first hydration shell (Rhyd,fluoride = 3.4·10-10 m), which is defined by the first 
RDF minima. (B) Distribution of instantaneous coordination numbers.  The 
probability of each ion having a given coordination number is shown as determined 
from their relative frequencies within the bulk simulations. 
 
 

6.5 Ion Transport as a Function of Pore Size 
 

Simulations involving anions transporting through a pore are now considered for the 

remainder of the chapter.  The free energy profiles of fluoride entering pores of different 

sizes are shown in Figure 6-4A.  In the narrowest pore studied (Rp = 3.0·10-10 m), water 

evacuated the pore during system equilibration.  Such evacuation in small pores has been 

observed previously [300] and this narrowest pore size was not further pursued in this 
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study. In the remaining cases, the highest energy barrier for ion transport through the pore 

(46.9 kcal.mol-1) occurred with the smallest pore where water remained during 

equilibration (Reff = 2.8·10-10 m) because ion transport is the most hindered.  The energy 

barrier was not simply a linear function of pore size; there was significant impact of pore 

size on free energy at Reff = 2.8, 3.3 and 3.7·10-10 m but the impact became less prominent 

at the largest pore sizes Reff = 5.3 and 6.5·10-10 m. 

 

A plot of the maximum free energy versus pore size (Figure 6-4B) shows two key 

regimes that dictate transport.  The first regime has a steep slope, as the energy barrier 

steeply increases as pore radius decreases.  This occurred at lower pore radii (Reff = 2.8 to 

3.7 ·10-10 m) where transport was highly hindered (energy barrier > 10 kcal.mol-1).  The 

highly hindered regime occurred when the hydrated radius (3.4·10-10 m) was larger than 

or similar to the effective radius of the pore meaning that water must be stripped from the 

ion for it to enter the pore.  At larger pore radii (Reff = 4.3 to 6.5·10-10 m), transport had 

smaller hindrance (energy barrier < 6 kcal.mol-1) and the slope of the curve is less 

because fluoride could fit into the pore with its entire first hydration shell.  The 

dehydration energy does not scale linearly with the number of water molecules, as the 

first water binds most strongly to the ion. This is apparent in both ab-initio and MD 

calculations of binding energies [83], but is more evident in the pores where the limited 

space reduces hydrogen bonding between the coordinating waters as observed previously 

by Song and Corry, who determined the non-linearity of free energy required to partially 

or fully dehydration chloride in a pore [126]. 
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Figure 6-4. Impact of pore size on the free energy of fluoride.  (A) Free energy 
profile of fluoride entering pores of different sizes (center of pore is Z = 0). (B) 
Maximum energy barrier at different pore sizes. 
 

A quantitative and visual analysis of coordination number (Figure 6-5 and Figure 6-6, 

respectively) clearly showed that these energy barriers were due to dehydration because 

water molecules were removed from the hydration layer to allow fluoride to “squeeze” 

into the smaller pores.  In the  smallest pore (Reff = 2.8·10-10 m), the coordination number 

of fluoride decreased from six to two as it moved from bulk into this pore, which means 

that it was partially dehydrated with the loss of four water molecules from its inner 

hydration shell, explaining the very large energy barrier.  The coordination number 

remained at two with no deviation inside the pore as there was a single chain of 

molecules through the pore as shown in Figure 6-6, thus there was no other option for 

fluoride to coordinate with more than two water molecules once inside.  

 

When the effective pore size was larger than the hydrated radius, fluoride did not have to 

dehydrate, resulting in a much smaller energy barrier for the transport.  Small energy 

barriers at large pore sizes (for example 1.7 kcal.mol-1 at Reff = 6.5·10-10 m) were due to 

slight rearrangement of the hydration shell and/or losing water from the second and more 

distant hydration layer. 

 

These results are reasonable when compared with energy barriers found in carbon 

nanotubes, NF, RO and biological channels.  The energy required to strip water from the 

hydration shell of sodium as it was entering a carbon nanotube was approximately 8.5 
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kcal.mol-1 per water molecule [126], whereas it is approximately 10 kcal.mol-1 per water 

molecule in this study for fluoride (as calculated by dividing the energy barrier by the 

decrease in coordination number).  Energy barriers of pure water permeation in RO and 

inorganic NF membranes have been reported in the range of 4.3 to 7.2 kcal.mol-1 [183].  

The physiological role of biological channels is to transport ions across a membrane and 

thus most narrow biological pores (such as potassium channels) contain polar groups with 

which the ions can interact to overcome the dehydration penalty.  Biological pores with 

non-polar lining do exist, but must open wider to pass ions.  It has been noted, for 

example, that the 3.0·10-10 m radius non-polar interior of the closed state acetylcholine 

receptor presents a 6 kcal.mol-1 barrier to sodium and 4 kcal.mol-1 to chloride [126, 239, 

312]. 
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Figure 6-5.  Coordination number of fluoride as a function of distance in the Z-
direction from bulk water into the pore for each pore size (center of pore is Z = 0). 
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Figure 6-6. Representation of a fluoride ion (green) at the center of the pore (Z = 0) 
and surrounding water for different pore sizes. 
 

6.6 Ion Transport as a Function of Ion Type 
 
The effect of ion type on transport was examined to assess differences in behaviour 

according to ion properties, as shown in Figure 6-7. The free energy profiles (Figure 

6-7A and B) show that the energy barrier is strongly dependent on ion type due to ion 

size, hydrated size, and hydration strength.  In the smaller pore (Reff = 3.3·10-10 m, Figure 

6-7A) fluoride had the highest barrier (27.4 kcal.mol-1), followed by chloride (21.8 

kcal.mol-1), nitrite (11.1 kcal.mol-1) and nitrate (6.3 kcal.mol-1).  This order matched the 

trend in hydration energy (Table 6-7), showing that in a very narrow pore, the energy 

barriers in transport match the hydration energy trends.  In the larger pore (Reff = 4.3·10-10 

m, Figure 6-7B) energy barriers decreased for all ion types, which was consistent with the 

behaviour discussed for fluoride in Section 6.5. 

 

An interesting switch in the trend of the energy barriers occurred with fluoride and 

chloride with the two pore sizes shown in Figure 6-7.  In the larger pore (Reff = 4.3·10-10 

m), chloride had the higher energy barrier, whereas fluoride was the most hindered with 

the smaller pore (Reff = 3.3·10-10 m).  Plots of the coordination numbers in the pore 
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(Figure 6-7C and D) can be used to explain these results.  In the smaller pore (Reff = 

3.3·10-10 m), each of the ions had to partially dehydrate: fluoride partially dehydrated 

from approximately seven to four associated water molecules; chloride from seven to 

four; nitrate from fifteen to seven; and nitrite from twelve to six.  This shows that partial 

dehydration resulted in the energy barriers.  Nitrate had the lowest energy barrier because 

even though it lost eight associated water molecules during transport (the largest number 

of any of the ions), it had the most water molecules associated with it in the bulk (15.5) 

and the lowest hydration energy (-71.6 kcal.mol-1) so the dehydration did not have a large 

energetic cost. 

 

In contrast, in the larger pore size (Reff = 4.3·10-10 m) partial dehydration occurred for 

each ion except fluoride.  Fluoride was sufficiently small to fit in the pore without 

dehydrating (whereas chloride still needed to dehydrate), which explains the switch in 

fluoride and chloride between Figure 6-7A and B.  This is similar to the classic idea of 

‘size selectivity’ but is based upon the size of the hydrated rather than the bare ion or 

Stokes radii [313, 314].  A similar switch in the order of the energy barriers has been seen 

for sodium and potassium [126, 239].  Fluoride did not dehydrate, chloride partially 

dehydrated from seven to six associated water molecules; nitrate from fifteen to ten, and 

nitrite from twelve to nine.  The smaller amount of dehydration required resulted in the 

lower free energies at Reff = 4.3·10-10 m.  These results were consistent with data 

previously published by Song and Corry, which stated that the free energy required to 

partially dehydrate chloride to three associated water molecules was 20.3 kcal.mol-1 and 

to six water molecules was 9.50 kcal.mol-1 (compared to 21.8 kcal.mol-1 at Reff = 3.3·10-10 

m and 7.74 kcal.mol-1 for Reff = 4.3·10-10 m in this study) [126]. 

 

Therefore, this section has shown that free energy barriers were not only dependent on 

pore size, but also on ion type (and hence hydration properties).  Coordination numbers 

confirmed that partial dehydration is the main determinant of the energy barriers 

observed. 
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Figure 6-7.  Free energy profiles (A and B) and coordination number versus distance 
(C and D) of different ions for two pore sizes, (A and C) Reff = 3.3·10-10 m and (B and 
D) Reff = 4.3·10-10 m (center of pore is Z = 0) 
 
 

6.7 Ion Transport for Each Ion Type at an Extended Size Range 
Because of the very interesting results obtained and discussed in Sections 6.5 and 6.6, 

additional simulations were conducted for each ion at an extended range of pore sizes.  

The results for energy barrier of each ion versus effective pore size are shown in Figure 

6-8.  This figure shows that energy barriers are a very clear function of both ion type and 

pore size, corroborating the results shown in Sections 6.5 and 6.6.  However, this figure 

also shows some very interesting information in addition to what was already presented 

in previous sections.  In particular, there appear to be three key regimes with regard to ion 

properties that can be linked to the maximum energy barriers.  These key regimes 

describe regions in which: 

 

1. The ion fits in the pore with its complete hydration shell (Rhyd < Reff). 

2. The pore size is between the size of the bare ion and the hydrated ion (Rion < Reff 

< Rhyd). 

3. The bare ion struggles to fit inside the pore (Rion > Reff). 
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Figure 6-8.  Maximum energy barriers for fluoride (A), chloride (B), nitrate (C) and 
nitrite (D) with an extended range of pore sizes. 
 

In the first regime, the ion is able to fit in the pore with its first hydration shell complete.  

In other words, it is where the effective pore size is larger than the hydrated radius of the 

ion of interest.  This regime is the farthest on the right in Figure 6-8.  Energy barriers in 

this regime are relatively small and are due to rearrangement/reorientation of the first 

hydration shell or loss of the second and farther hydration shell.  The increase in energy 

barriers with decreasing pore size, even when the ion can fit in the pore with its hydrated 

shell, is most significant for strongly hydrated fluoride and chloride. 

 

In the second regime, the effective pore size is between the size of the bare ion and the 

hydrated ion.  Here, some dehydration is required in order for the ion to enter the pore 

with a partial hydration shell.  Pore size significantly impacts the energy barriers in this 

regime due to the energy required to dehydrate.  The slope of the line of energy barriers 

versus pore size can be clearly seen in the middle regime in Figure 6-8.  The slope of this 

line is related to hydration energy.  Fluoride, the most strongly hydrated, has a very steep 
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slope in this regime, followed by chloride, nitrite and nitrate.  This trend in slope is the 

same as the trend in hydration energies as seen on Table 6-7. 

 

The third regime is where the bare ion struggles to fit inside the pore, and hence energy 

barriers become extremely high or even infinite (as was the case with nitrate in the 

smallest pore, which is what the up-pointing arrow represents).  Fluoride and chloride 

never reached this third regime because of their very small ionic size (similar to that of 

water). 

 

The selectivity sequence of ions thus changes according to the pore size, since the 

regimes for each of the ions are located according to the ion properties (ion size, hydrated 

size, hydration strength).  This ordering is shown on Table 6-8, and will later be 

compared to experiments (Chapter 7).  At the smallest pore size (2.51·10-10 m), the 

energy barriers are nitrate > nitrite > fluoride > chloride, assuming the nitrite data point is 

out of trend.  At 2.81·10-10 m, the order is fluoride > nitrate > nitrite > chloride.  At 

3.06·10-10 m, fluoride > chloride > nitrate > nitrite.  From 3.32·10-10 m to 4.02·10-10 m, 

the order is fluoride > chloride > nitrite > nitrate, which is the inverse order at the 

hydrated radii.  At 4.33·10-10 m and 4.72·10-10 m, the order is chloride > fluoride > nitrite 

> nitrate, and finally at 5.32 ·10-10 m and 6.53 ·10-10 m, the order is fluoride > chloride > 

nitrite = nitrate.  These sequences are directly related to the amount of partial dehydration 

required, and thus are completely dependent on ion type and pore size.  Because each of 

the ions has a different ionic size, hydrated size and hydration strength, the selectivity 

sequence will change depending on pore size.  This phenomenon was shown and 

discussed specifically for fluoride and chloride previously on Figure 6-7, where there was 

a swap in sequence at Reff = 4.3·10-10 m, due to fluoride being sufficiently small to fit into 

the pore without dehydrating, but chloride still needed to partially dehydrate which lead 

to a higher barrier for chloride than fluoride.  This same concept results in the changes in 

selectivity sequences for all ions and all pore sizes discussed here. 
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Table 6-8. Energy barriers determined for each ion at each pore radius.  Error for 
molecular dynamics results is estimated to be ± 0.6 kcal.mol-1. 

Energy Barrier (kcal.mol -1) Effective Pore 
Radius 

(10-10 m) Highest      Lowest 

2.51 NO3
- (∞) > F- (57.1) > NO2

- (35.3) > Cl- (43.2) 
2.81 F- (46.9) > NO3

- (40.0) > NO2
- (39.3) > Cl- (34.0) 

3.06 F- (47.7) > Cl- (41.1) > NO3
- (32.5) > NO2

- (28.4) 
3.32 F- (27.4) > Cl- (21.3) > NO2

- (11.1) > NO3
- (6.5) 

3.52 F- (16.4) > Cl- (12.1) > NO2
- (5.7) > NO3

- (2.3) 
3.72 F- (10.6) > Cl- (8.5) > NO2

- (4.0) > NO3
- (1.6) 

4.02 F- (8.6) > Cl- (7.8) > NO2
- (2.2) ≈ NO3

- (2.1) 
4.33 Cl- (7.7) > F- (5.7) > NO2

- (3.0) > NO3
- (1.3) 

4.72 F- (6.4) > Cl- (5.2) > NO2
- (1.0) > NO3

- (0.3) 
5.32 F- (3.3) ≈ Cl- (3.1) > NO2

- (0.7) ≈ NO3
- (0.7) 

6.53 F- (1.7) ≈ Cl- (1.4) > NO2
- (0.4) ≈ NO3

- (0.2) 
 
 

Figure 6-8 showed that maximum energy barrier depended on pore size in three regimes 

determined by ion properties.  These results can be further corroborated by considering 

the coordination numbers, as shown in Figure 6-9, which confirm that the barriers 

obtained are due to dehydration.  Figure 6-9A shows average coordination number in the 

center of the pore versus effective pore radii.  For the smallest pore sizes, where energy 

barriers are highest, fluoride and chloride form a single chain with water molecules on 

either side, making the coordination number limited to two inside the pore.  As the pore 

size increases, more water molecules are able to fit inside the pore with the ions in all 

cases.  At pore sizes larger than the hydrated radii of the ion, the coordination number 

does not change as the maximum number of water molecules are associated with the ion, 

independent of being in the bulk water or in the pore.  Figure 6-9B shows the direct link 

between the energy barriers and the dehydration required for each ion.  At the smallest 

pore sizes, where the most dehydration is required, the ratio of the coordination number 

in the pore to coordination number in bulk is the lowest, and consequentially the energy 

barrier is the highest.  This is the case for all ions evaluated, although the actual values of 

course depend on the ion properties.  This confirms that the energy barriers obtained are 

due to varying degrees of dehydration. 

 

Further support that barriers are due to dehydration is shown in Table 6-9.  Here, the 

average interaction energy of each ion with the water molecules within its first hydration 
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shell is reported when the ion is located in the center of the pore.  As pore size increases, 

the attractive (negative) interaction force increases as more water becomes available.  The 

interaction energies reach the same value as in bulk at different pore sizes according to 

the ion properties.  As these results are average interaction energies, they do not include 

entropic contributions and thus cannot be directly compared to the free energy barriers 

but they do support that dehydration is important. 
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Figure 6-9.  Coordination numbers (CN) for each ion.  (A) is coordination number in 
pore versus effective pore radius (Reff); (B) is maximum energy barrier versus % of 
total coordination as defined by average CN in pore divided by average CN in bulk. 
 
 

 

Table 6-9. Average interaction energy (kcal.mol-1) of each ion with the water 
molecules within its first hydration shell when located in the centre of the pore. 

Average Interaction Energy (kcal.mol-1) Effective Pore Size 
(10-10 m) Chloride Fluoride Nitrate Nitrite 

2.51 -32.6 -48.9 -- -23.8 
2.81 -32.2 -48.2 -28.2 -27.3 
3.06 -31.8 -66.9 -32.6 -39.8 
3.32 -49.6 -83.8 -40.6 -55.6 
3.52 -56.2 -95.5 -49.3 -68.2 
3.72 -68.2 -111.0 -60.3 -79.0 
4.02 -72.4 -113.2 -62.7 -80.6 
4.33 -74.6 -116.9 -64.1 -81.8 
4.72 -77.1 -124.4 -65.8 -81.0 
5.32 -83.5 -123.5 -64.8 -84.6 
6.53 -83.7 -123.3 -68.5 -84.4 
Bulk -83.9 -121.7 -68.7 -83.7 
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Finally, the effect of partial ion dehydration is demonstrated visually using a probability 

density function of water around each ion in the center of the pore (Figure 6-10).  Each of 

the regimes can be seen here.  The first regime is shown in Figure 6-10B where the water 

surrounds the chloride ion in the pore.  The second regime is shown for chloride and 

nitrate (Figure 6-10A and Figure 6-10D, respectively), where the ion must be partially 

dehydrated to enter the pore (eg. Rion < Reff < Rhyd) and the ion forms a single chain with 

water on either side.  The final regime, where it is difficult for the bare ion to fit, is shown 

in Figure 6-10C.  Here the area that the water in the pore fills is smaller than nitrate, 

highlighting the unfavorable nature of this regime. 

 

  
 

 

Figure 6-10.  Water around the selected ion at the center of a pore as represented by 
isosurface plots of the average water density.  (A) shows chloride at Reff = 3.3·10-10 m 
(Regime 2); (B) shows chloride at Reff = 4.7·10-10 m (Regime 1); (C) is nitrate at Reff = 
2.8·10-10 m (Regime 3); (A) is nitrate at Reff = 3.3·10-10 m (Regime 2). 
 

6.8 Ion Transport Including Charge Interactions 
 
Most NF membranes contain charged groups on the membrane surface, rather than being 

neutral, which influences ion rejection through charge repulsion.  To compare the 

importance of ion dehydration with the better characterized mechanism of charge 

repulsion, additional simulations were conducted with a repulsive charge (-0.1 C.m-2) 

evenly distributed on the top surface.  The magnitude of these charges was chosen to be 

greater than that expected in most NF situations (typical range from approximately -0.05 

to +0.01 C.m-2) [283] as to compare dehydration with charge repulsion in an extreme 

case.  For reference, a zeta potential measurement of -30 mV, which is approximately the 

value for NF membranes NF90 and NF270 above approximately pH 12 (Chapter 3.2.4), 

is -0.01 C.m-2 (method of unit conversion in [302]). 

A B C D 
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The effect of surface charge on free energy profiles is shown in Figure 6-11.  The figure 

shows the free energy profile for fluoride along the z-axis through the center of the pore. 

The inclusion of negative charge on the top surface led to a higher energy barrier 

compared to when charge was not considered.  This is most likely caused by direct 

charge repulsion occurring between the negative surface and negative fluoride ion, but 

could also arise from interactions between water and the charged membrane or entropic 

changes.  However, even though charge contributed by increasing the energy barrier, it is 

important to note that dehydration remained the dominant effect.  The contribution to 

dehydration on Figure 6-11 is the same as the first half of the free energy profile for 

fluoride (-15 < Z < 0) shown on Figure 6-7.  At the smaller pore size (Reff = 3.3·10-10 m) 

charge contributed 14% to the maximum free energy (4.5 kcal.mol-1 of a total barrier of 

31.6 kcal.mol-1) and at Reff = 4.3·10-10 m, charge contributed 20% to the maximum free 

energy.  Charge had a larger relative effect at the larger pore sizes, because the 

contribution of dehydration to the total energy barrier was less.  These results are 

important as they demonstrate that dehydration remains the dominant barrier to ion 

transport as compared to charge repulsion.  

 



Chapter 6. The Importance of Dehydration in Determining Ion Transport 

184 
 

-15 -10 -5 0

0

5

10

15

20

25

30

35
(B) Reff = 4.3 

Å

 

F
re

e 
E

ne
rg

y 
(k

ca
l.m

ol
-1
)

Distance in Z Direction (
Å
)

0

5

10

15

20

25

30

35
(A) Reff = 3.3 

Å

 

 

F
re

e 
E

ne
rg

y 
(k

ca
l.m

ol
-1
)

 Total Energy Barrier
 Contribution from 

Dehydration
 Contribution from

Charge Repulsion

 
Figure 6-11. Decomposition of free energy profile with a surface charge of -0.1 
C.m-2 (applied to top membrane surface only) for fluoride with (A) Reff = 3.3·10-

10 m and (B) Reff = 4.3·10-10 m (center of pore is Z = 0). 
 
 

An additional simulation was conducted to assess the impact of the distribution of charge 

on the surface of the pore. The results on Figure 6-11 had charge distributed only on the 

top membrane surface.  Figure 6-12 shows the impact of adding charge inside the pore as 

well.  As expected, the presence of charge inside the pore increases the energy barrier due 

to increased charge repulsion. However, dehydration remains the dominant barrier to pore 

transport and key to understanding transport mechanisms. 
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Figure 6-12. Free energy profile with a surface charge of -0.01 C.m-2 applied to 
top membrane surface only and the top surface with the inside of the pore for 
fluoride with Reff = 3.3 ·10-10 m (center of pore is Z = 0). 

 
 

6.9 Relevance to Real Membrane Systems 
 

While these MD simulations are an extremely valuable tool in understanding ion 

transport, the model cannot exactly replicate a NF pore or membrane.  The pore 

representation used here did not account for pore size distributions, tortuousity and 

functional groups on the membrane surface.  It was meant to be a generic representation 

of a pore that could thus be used for a number of applications such as NF, carbon 

nanotubes, and biological pores.  Experimental evidence of dehydration occurring during 

ion transport in a NF membrane is yet to be systematically demonstrated but will provide 

a complementary and significant step forward in understanding this mechanism.  The 

next chapter in this thesis (Chapter 7) aims to determine energy barriers experimentally 

using commercial NF membranes in order to gain an indication of the comparison of 

results obtained with this model to real membrane systems.  

 

6.10 Conclusions 
 
This chapter described MD simulations that were used to examine the hydration of 

monovalent anions relevant to drinking water purification (fluoride, chloride, nitrate, 
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nitrite) as they transport through nanopores to determine its importance in this process.  

Three key conclusions can be drawn from this work.  Firstly, energetic barriers were 

strongly dependent on pore size.  Energy barriers were not linearly correlated with pore 

size; instead, there were three distinct regimes related to the required dehydration.  

Transport was strongly hindered when the size of the pore was smaller than the hydrated 

radius.   

 

Secondly, energy barriers depended on ion type (and hence hydration properties) and the 

selectivity sequence amongst the ions can change depending on the pore size. In general, 

the transport of small, strongly hydrated ions (such as fluoride) was much more 

energetically expensive than for larger, less strongly hydrated ions (such as nitrate) due to 

the required dehydration unless the pore is larger than the size of the hydrated ion.  This 

could have important implications in utilizing the different barriers in order to separate 

different types of ions, which is especially exciting from the perspective of removing 

contaminants other than sodium chloride in seawater desalination. Further work is 

ongoing to pinpoint the pore sizes that enable the best discrimination between the ion 

types studied, although the issue is complicated when polar groups are present in the pore 

walls.   

 

Thirdly, and most importantly, these results showed that dehydration was the main barrier 

to ion transport in the narrow pores.  In particular, partial dehydration was the main 

determinant of the energy barriers for small, strongly hydrated ions whose hydrated 

radius is larger than the pore size, even when charge repulsion is considered.  This 

explains, for example, why fluoride is rejected by membranes with pore sizes greater than 

the ionic radius of fluoride.  Demonstrating that the process of hydration/dehydration is 

important in NF will encourage future models to incorporate these interactions. By 

providing a systematic and novel insight into the role of ion dehydration in pore transport, 

these results are significant in understanding anionic selectivity in biological channels as 

well as desalination and removal of various drinking water contaminants with NF.  This 

work provides the theoretical evidence for dehydration occurring as a NF mechanism, 

and the next chapter (Chapter 7) will aim to show this experimentally. 
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MD simulations applied to pore transport in NF stand to be developed in a number of 

ways.  It would be particularly interesting to use such methods to understand boron 

transport, however, complete parameterization of boron species is first required.   

Additionally, further developing the pore representation to thoroughly account for 

membrane characteristics such as charge, polarity and functional groups would be very 

valuable.  It is hoped that some of these aims can be achieved in future work.
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Chapter 7  
 

Experimental Determination of Energy Barriers 
to Ion Transport 
 
 

Using MD simulations, Chapter 6 showed that fluoride, chloride, nitrate and nitrite can 

partially dehydrate when they transport through narrow pores according to ion type and 

pore size.  This chapter endeavours to show the same effect experimentally.  This is a 

very challenging undertaking due to limitations in what can be measured experimentally 

(for example it is not possible to measure the hydration structure of an ion as it 

transports through a membrane pore).  However, carefully designed experiments were 

undertaken using real NF membranes in an attempt to experimentally verify the MD 

results which suggested dehydration as an important transport mechanism. 

 

The results obtained in this chapter showed that energy barriers can be determined 

experimentally for anions in a crossflow system.  Fluoride, chloride nitrate and nitrite 

face different energy barriers in the range of 7 – 17 kcal.mol-1 according to ion type and 

membrane type.  Fluoride had the highest retention and energy barrier for both NF90 

and NF270, which can be explained by its comparatively strong hydration energy and not 

by size exclusion based on either bare ion or hydrated radius.  Besides fluoride, which 

clearly had a larger barrier than the other solutes, differences in energy barriers for the 

other solutes were difficult to distinguish outside of the error range.  Experimentally-

determined energy barriers are within a factor of four when compared to previous MD 

simulations that demonstrated barriers in idealized cylindrical pores were due to ion 
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dehydration.  The results obtained provide novel experimental indication of dehydration 

as an important NF mechanism and suggest that NF models would be improved by 

considering solute hydration. 

 

7.1 Introduction and Objectives 
 
The transport of water and dissolved solutes through NF membranes is substantially 

hindered because membrane “pores” are similar to the ionic and/or hydrated size of 

solutes.  This hindrance means that any molecule will face an energy barrier which must 

be overcome if transport through the membrane is to occur.  Any mechanism(s) which 

affects transport contributes to this net energy barrier.  As reviewed extensively, accepted 

mechanisms include size exclusion [77, 105, 106], charge interactions  (including 

maintenance of electroneutrality) [98, 109, 111, 113, 143, 198], sorptive interactions 

[134-136], diffusion [76, 118-120] and hydrodynamic influences such as convection [94, 

198].  However, other, less-established mechanisms (such as the possible dehydration of 

solutes during transport through the membrane [126, 129, 130, 303]), if important, will 

also contribute to the net barrier of transport. 

 

As demonstrated in Chapter 5 and 6, not all NF behaviour can be explained by the 

commonly-accepted NF mechanisms, such as the high retention of fluoride compared to 

nitrate [139, 283].  The proposed hypothesis is that this selectivity may be due to 

hydration properties (hydration strength and size) and the process of ions becoming 

dehydrated while transporting through the membrane  [126, 129, 130, 303].  The 

transport of solutes in NF has been  previously correlated with hydrated size and 

hydration energy [77, 100, 125].  Molecular dynamics simulations in idealized, narrow 

cylindrical pores (radius 2.5 to 6.5 ·10-10 m) discussed in Chapter 6, have highlighted that 

dehydration is the main contribution to energy barriers of anionic transport [303], and 

similar dehydration may be important if ions are dissolving into a porous or non-porous 

dense material.  Partial or full dehydration of a solute during transport would reduce the 

effective size of a solute and thus directly impact size exclusion, diffusion and convection 

mechanisms.  This hypothesis will be tested by experimentally determining energy 

barriers and linking them with dehydration trends. 
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Energy barriers can be overcome by any driving force, given that the driving force 

provides sufficient energy to overcome the barrier.  In NF, directional driving forces 

include pressure and flow (primarily driving convection) and concentration (primarily 

driving diffusion [76, 118-120].  Temperature provides a non-directional driving force.  

An increase in system temperature increases diffusion because molecules at higher 

temperature have more internal energy.  By increasing energy, the proportion of solutes 

with energy greater than the energy barrier of transport is significantly higher, so the 

overall solute transport increases.  In addition to increased diffusion, increase in ion 

transport with temperature is usually explained by a reduction in solvent viscosity, an 

increase in polymer chain mobility, or changes in pore size/membrane structure (eg. 

swelling) [136, 183, 185-187].  Temperature is the focus of this chapter because it allows 

for the quantification of energy barriers using standard techniques. 

 

The standard technique to quantify energy barriers is with the Arrhenius relationship, 

which describes the temperature dependence of water and solute transport, via 

 


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)ln()ln(  Equation 39 

 

where k is solute flux (mol.h-1.m-2), A is a pre-exponential factor, R is the gas constant 

(kcal.mol-1.K-1), T is temperature (K) and Ea is the energy barrier or activation energy 

(kcal.mol-1) [78].  The slope of a linear plot of ln(k) versus T -1 gives the energy barrier, 

Ea.  The direct inputs from experimental measurements are k and T, and Ea and A are 

parameters from the linear fit.  The main assumptions in this calculation are that (1) the 

process follows Arrhenius behaviour (validated if the plot is linear) and (2) that the 

determined energy barrier is a net effect from all contributions.  Energy barriers 

determined with the Arrhenius relationship for the transport of  water and various solutes 

through membranes and dense films have been reported [118, 119, 184, 186, 188-193], 

with varying objectives ranging from mechanistic to practical considerations of high 

temperature processes.  These were discussed in detail in Chapter 2.3.6.  However, 
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energy barriers in membranes have not yet been linked to dehydration, which is the 

primary goal of this chapter. 

 

The research objectives are to (1) determine the selectivity of monovalent anions using 

energy barriers and relate selectivity to hydration; (2) quantify energy barriers using the 

Arrhenius relationship for different ion types (sodium fluoride, sodium chloride, sodium 

nitrite and sodium nitrate) and membrane types (NF90 and NF270); and (3) link 

experimental energy barriers with results from molecular dynamics simulations indicating 

the dominant impact of dehydration. 

 

7.2 Experimental Summary 
 
 
The crossflow system was described in Chapter 3.1.2 and used for all experiments in this 

chapter. Membranes (NF90 and NF270, see next paragraph) were compacted for at least 

one hour (or until pure water flux stabilized) at 15 bar.  The system was operated at a feed 

flow of 2 L.min-1 (recirculated) and pressure was varied from 3, 5, 7, 9, 11 bar for each 

temperature of 15, 20, 25, 30 and 35 °C.  The feed solution consisted of 0.1M single salt 

(NaF, NaCl, NaNO3, NaNO2, Fisher Scientific, purity on Table 3-11) in MilliQ water 

with no pH adjustment (pH 6.2).  For the ease of referencing, the properties of ions are 

shown in Table 7-1, which is a consistently-defined set of values for these ions. Samples 

(25 mL, with the first 5 mL discarded in order to ensure that the sample line had been 

flushed from the previous sample) were collected from feed and permeate after 30 

minutes at a given operating condition.  Nitrate and nitrite were analyzed using a nutrient 

analyzer (Lachat QuikChem 8500, USA, Chapter 3.4.3), fluoride using an ion selective 

electrode (Metrohm, UK, Chapter 3.4.2), and chloride using ion chromatography 

(Metrohm 883 Basic IC Plus, UK, Chapter 3.4.8). 
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Table 7-1. Ion properties (ionic radius, Stokes radius, hydrated radius, hydration 
free energy and bulk diffusion coefficients) for each ion. 
Parameter Fluoride Chloride Nitrate Nitrite Sodium 
Ionic Radius, Rion  
(10-10 m )a 

1.3 [80] 1.8 [80] 3.0 [303]  3.0 [303]  1.2 [80] 

Stokes Radius, Rstokes 
(10-10 m) 

1.7 [82] 1.2 [82] 1.3 [82] 1.3 1.6 [83] 

Hydrated Radius, Rhyd 
(10-10 m)b 

3.4 [303]  3.8 [303]  5.1 [303]  5.0 [303] 2.4 [83] 

Hydration Free 
Energy (kcal.mol-1) 

-119.7 [83] -89.6 [83] -73.1 [90] -81.0 [90] -88.7 [83] 

Diffusion Coefficient 
in Bulk Water at 
25°C (10-9 m2.s-1) 

1.46 [78] 2.03 [131] 1.90 [131] 1.91 [315] 1.33 [316] 

a For nitrate and nitrite, Rion = bN-O (1.22·10-10 m) + Rion,oxygen (1.77·10-10 m) 
b For nitrate and nitrite, Rhyd = bN-O (1.22·10-10 m) + RDFmin (base of the first peak in the 
radial distribution function of oxygen) 

 
 
Commercially available NF membranes NF90 and NF270 (Dow Filmtec) were used.  Full 

characterization information was provided in Chapter 3 and a relevant summary is shown 

in Table 7-2.  The two membranes were selected to be of similar effective pore radius to 

the hydrated radius of the solutes of interest.  For example NF90 and NF270 have an 

average effective pore size very similar to the hydrated radius of fluoride and chloride, 

and smaller than the hydrated radius of nitrate and nitrite.  BW30 was not used because it 

is tighter than NF90 and a larger effective pore size was desired in order to obtain larger 

differences in retention (eg. retention for all solutes would be expected to be very high 

and thus difficult to distinguish for BW30).  Characterization (effective pore radius, Rpore, 

and the ratio of membrane active layer thickness/porosity, L.ε-1) was obtained by using 

the hydrodynamic model [36, 105] and methodology as described previously [216, 304].  

NF270 is a much smoother membrane than NF90 (Chapter 3.2.6).  Temperature 

dependence of effective pore size was determined using xylose only for NF90 and NF270 

by conducting experiments at 15, 20, 25, 30, 35 °C (diffusion coefficients used in the 

fitting method [216, 304] were adjusted for temperature). 
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Table 7-2. Membrane characterization. 

Membrane 

Effective 
Pore Radius 
(Rpore,  
10-10 m)a 

Average Active 
Layer Thickness: 
Porosity Ratio  
(L.ε-1, 10-6 m)a 

Average 
Active Layer 
Thickness  
(L, 10-10 m )b 

Average 
Porosity 
(%)c 

Membrane 
charge at 
pH 6.2 
(eq.m-3)d 

Ref. 

NF90 3.4 1.46 1740 11.9 -502 
[283, 
304] 

NF270 3.8 1.01 350 3.3 -170 
[283, 
317-
319] 

aUncertainty is estimated to be ± 5% for both of these fitted parameters; bAveraged from the 
literature (references as in final column); cCalculated from experimentally determined L.ε-1 and 
active layer thickness reported in literature. dMeasured streaming potential converted to charge 
density by method in [302]. 

 

Real retention was corrected for concentration polarization as described in Chapter 3.5.  

Energy barriers were calculated in three steps.  The first step was that for each 

temperature, solute flux was plotted against corrected pressure (applied pressure – 

osmotic pressure) and a line was fit to the plot.  The second step was to make an 

Arrhenius plot of the natural log of the y-intercept of each solute flux fit versus inverse 

temperature.  The third step was to determine the slope of the Arrhenius plot which is the 

energy barrier.  Uncertainty was calculated as described in Chapter 3.5.2.  Results were 

compared to the MD simulations described in Chapter 6. 

 

7.3 Selectivity of Monovalent Anions in NF 
 
The first question was to assess the selectivity of monovalent anions in NF and determine 

how this can be lined to energy barriers.  Figure 7-1 shows retention corrected for 

concentration polarization for each ion with NF90 and NF270.  Retention increases with 

pressure for all ions and for both membranes.  An increase of retention with pressure has 

been observed a number of times [37, 107, 140] and is attributed to higher water flux at 

higher pressure, leading to lower permeate concentration and higher retention [107].  

High selectivity exists between anions for both membranes.  Similar ordering of the 

retention of monovalent anions with NF has been observed previously (retention of 

fluoride > chloride [242]; retention of fluoride > nitrate [283]; retention of fluoride > 

chloride > nitrate [139]; retention of sodium chloride > sodium nitrate [106, 107, 136] but 

trend was opposite for a different membrane in the same study [136]).  The highest 
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retention (fluoride) means that the transport of fluoride has the highest associated energy 

barrier because transport through the membrane is the most “difficult”.  Evaluation of the 

relative contributions of convection, diffusion and electromigration using the Nanofiltran 

program [164] predicted that diffusive transport strongly dominated the other 

mechanisms under the conditions of these experiments.  Note that all calculations are 

based on the anion concentrations since the anion (co-ion) is the limiting species that 

determines overall electrolyte transport through the negatively charged membrane. 
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Figure 7-1. Retention corrected for concentration polarization at 25 °C for each 
anion (as sodium salt, 0.1M in MilliQ water) at pH 6.2 for (A) NF90 and (B) NF270 
using crossflow filtration. 
 
There are a number of potential explanations for this ordering that should be considered.  

The size of the bare ion does not explain why fluoride retention is highest, as fluoride is 

the smallest bare ion (see Table 7-1) yet retention is the highest.  The size of the hydrated 

ion does not explain the ordering, as nitrite and nitrate have the largest hydrated radii but 

their retention is comparatively low.  Stokes radius does not explain the selectivity either.  

Although fluoride has the highest Stokes radius and highest retention, chloride, nitrite and 
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nitrate have very similar Stokes radius and thus this parameter is unable to distinguish 

sufficiently.  Diffusion coefficients also do not explain the selectivity, as chloride has the 

highest diffusion coefficient so retention would be expected to be lowest in the tightest 

membrane where diffusion is most important, but this was not observed.  Note that 

Stokes radius and diffusion coefficients are the ion-specific inputs into the hydrodynamic 

model [164, 198], and neither of these adequately describes the observed behaviour.  

Simple charge exclusion does not explain the selectivity, because each ion has an equal 

net charge of -1, so this parameter cannot control selection (differences in charge density 

or where the charge is located on the ion will be ion-specific but net charge remains the 

same).  Differences in Debye length are expected to be small because they will only be 

due to concentration/ionic strength in the boundary layer resulting from the different 

ionic permeabilities (eg. a 20% increase in concentration leads to a 9% decrease in Debye 

length). This shows that none of the well-accepted mechanisms is sufficient to describe 

this behaviour. 

 

Ion dehydration will be considered as an alternate explanation.  Dehydration, in this 

context, refers to the process in which an ion is forced to become partially or fully 

dehydrated in order to transport through the membrane.  This could occur as a result of 

limited space availability (when the pore size is smaller or similar to that of the dissolved 

solute) and is due to forces on the ion driving it through the membrane (eg. pressure, 

concentration gradient, temperature, convection).  If dehydration was occurring, retention 

and transport trends would correlate not with radius as defined either by fully hydration 

in bulk, nor the bare ion.  Rather, the effective radius that controls transport would be 

somewhere in-between, according to the amount of dehydration required.  Further, 

retention and transport trends would correlate to hydration strength (as is observed with 

fluoride).  Thus, hydration free energies and energetic requirements for transport (eg.  

energy barriers) may be a better descriptor for transport than other mechanisms.  In order 

to test this hypothesis, energy barriers must be quantified.  The relationship between 

solute flux, temperature and pressure will be determined so that the Arrhenius 

methodology can be used to quantify barriers. 
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7.4 Solute Flux as a Function of Pressure, Temperature and Anion Type 
 
In order to obtain energy barriers, first the impact of temperature and pressure on solute 

flux must be determined, as shown on Figure 7-2 for fluoride.  Solute flux increases with 

pressure and temperature as expected.  Solute flux increases with pressure due to 

increased convective flow.  Solute flux increases with temperature due to increased 

diffusion and changes in nanostructure morphology [136, 183, 190, 320].  The same 

process was repeated for all ion types and both membranes (data shown for fluoride in 

both membranes).  One condition was used (7 bar and 25 °C) to compare anions type, as 

shown on Figure 7-3. 

 

Figure 7-3 shows that solute flux is inversely related to retention (and hence an ion with a 

low solute flux faces a large energy barrier).  Solute flux depends on ion type.  For NF90, 

the solute flux sequence is fluoride (0.3 ± 0.04 mol.h-1.m-2) < chloride (1.3 ± 0.1 mol.h-

1.m-2) ≈ nitrate (1.2 ± 0.1 mol.h-1.m-2) < nitrite (2.6 ± 0.2 mol.h-1.m-2).  For NF270, the 

sequence is fluoride (1.9 ± 0.15 mol.h-1.m-2) < chloride (2.8 ± 0.2 mol.h-1.m-2) < nitrate 

(7.7 ± 0.4 mol.h-1.m-2) < nitrite (13.2 ± 0.7 mol.h-1.m-2).  Now that solute flux as a 

function of temperature, pressure, and ion type is known, energy barriers will be 

quantified according to the Arrhenius expression. 
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Figure 7-2.  Solute flux versus applied pressure for fluoride (as sodium salt, 0.1 M 
in MilliQ water, pH 6.2) with (A) NF90 and (B) NF270 using crossflow filtration.  
Error bars have not been included for clarity but are shown on Figure 8-3 and 
estimated to be ± 0.04 mol.h-1.m-2 and ± 0.15 mol.h-1.m-2 for NF90 and NF270, 
respectively.  Note that the scales are different for the membranes because of the 
different magnitude of solute fluxes. 
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Figure 7-3.  Solute flux of fluoride, chloride, nitrite and nitrate (as sodium salts, 
0.1M in MilliQ water) at pH 6.2, 25°C and 7 bar. 
 
 

7.5 Quantifying Energy Barriers for the Transport of Monovalent Anions 
in NF 

 
In order to quantify energy barriers for anionic transport in NF, Arrhenius plots were 

created for each ion and both membranes (Figure 7-4).  Energy barriers depend on ion 

type and membrane type as expected from retention and solute flux results.  Fluoride (the 

most strongly hydrated ion) has the highest energy barrier, for both membranes, with the 

following trends.  For NF90, the order of energy barriers is fluoride (17.0 ± 2.2 kcal.mol-

1) > chloride (9.6 ± 1.3 kcal.mol-1) ≈ nitrate (10.2 ± 1.3 kcal.mol-1) ≈ nitrite (11.0 ± 1.2 

kcal.mol-1).  For NF270, the order is fluoride (14.3 ± 1.6 kcal.mol-1) > nitrite (11.1 ± 0.9 

kcal.mol-1) > chloride (8.0 ± 0.6 kcal.mol-1) ≈ nitrate (7.0 ± 0.6 kcal.mol-1).  Conceptually 

it makes sense that fluoride has the largest barrier because transport is the most hindered 

and thus fluoride has the lowest solute flux.  Fluoride clearly has the highest barrier, 

which shows that energy barriers can explain the very high retention of fluoride 

compared to the other solutes, a trend that cannot be explained by other properties or 

parameters.  Differences in the energy barriers between chloride, nitrate and nitrite cannot 

be adequately distinguished (outside of error), especially for NF90.  The energy barriers 

obtained here are comparable to other barriers reported in the literature for the transport 

of sodium chloride and sodium nitrate across thin film composite membranes [136] and 

sodium chloride in various membranes (between 4.4 and 12 kcal.mol-1) [118].  In ion 
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channels, the transport of chloride in a biological chloride channel was 4 to 4.5 ± 2 

kcal.mol-1 [321] and 2 to 3 kcal.mol-1 for potassium in a KcsA potassium channel [322]. 

 

The energy barriers for the different membranes can be compared.  Solute fluxes are 

smaller and energy barriers larger for NF90 (tighter membrane) than NF270 (looser).  

Higher water flux in NF270 leads to higher solute flux which leads to lower energy 

barriers when compared to NF90.  Membrane characteristics such as pore size 

distributions, charge, porosity and surface roughness all may also contribute to the 

differences between NF90 and NF270.  For example, the surface of NF90 is much 

rougher than NF270, NF90 has a higher thickness to porosity ratio than NF270, NF90 is 

more hydrophobic than NF270, the surface of NF90 is more negative than NF270 at 

neutral pH, and the chemical compositions and functional groups of the two membranes 

are different.   Each of these characteristics will contribute to the net energy barriers 

determined and the specific effect of one membrane characteristic cannot be isolated. 

 

Energy barriers represent the overall energetic expense of ion transport, including all 

membrane effects (pore size, material, surface charge, etc), all operating conditions 

(pressure, flow, concentration, solution chemistry, etc), all energetic contributions 

(entropic, enthalpic) and the specific solute.  However because the barriers on Figure 7-4 

were extrapolated to a “zero pressure” point, convection is not playing a role nor are 

differences in ion concentrations resulting from concentration polarization.  These results 

suggest that energy barriers may be due to dehydration because the order of barriers is not 

consistent with other mechanisms such as size exclusion based on either bare ion radius 

or hydrated radius or simple charge repulsion (since all ions have same net charge and 

should see similar barriers).  Further, the order of barriers is consistent with dehydration 

because (1) fluoride has the highest barrier for both membranes and (2) the tighter 

membrane (NF90) has higher barriers. 
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Figure 7-4.   Arrhenius plots for anions (as sodium salt, 0.1M in MilliQ water) at pH 
6.2 for (A) NF90 and (B) NF270 using crossflow filtration. Each plotted value is the 
extrapolated y-intercept of a plot of solute flux versus ∆pressure (applied pressure – 
osmotic pressure) for temperatures 15, 20, 25, 30 and 35 °C.  Energy barrier (Ea) is 
the slope of the Arrhenius plot.  Error bars of each individual data point are not 
included for clarity but the propagated error for Ea is shown. 
 

Next, energy barriers were quantified at each pressure (Figure 7-5), rather than from the 

extrapolated “zero pressure” point.  Increasing pressure leads to increasing convection 

and increasing concentration polarization at the membrane surface.  The energy barrier 

for fluoride decreases with pressure, which is especially notable for NF90.  This suggests 

that pressure/convection/concentration polarization reduce the barriers.  In face, at 

pressures > 5 bar, the dependence of energy barriers on ion type becomes non-

distinguishable in NF90.  If barriers are indeed due to dehydration, these results suggest 
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that operating conditions (eg. increasing pressure and concentration) make dehydration 

more likely for some ions (eg. fluoride) since the barriers are decreasing with these 

parameters.  Pressure had a less influence on energy barrier for NF270 which is 

consistent with the fact that this is a more open membrane. 
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Figure 7-5.  Energy barriers calculated directly at each pressure for (A) NF90 
and (B) NF270 with 0.1M single sodium salt in MilliQ water at pH 6.2 and 
from temperature 15 to 30 °C. 

 
 
The effect of temperature on membrane properties was then assessed (Figure 7-6) in 

order to understand how changing membrane properties with temperature may affect 

energy barriers.  The effective pore radius and pure water flux increases for both 

membranes with temperature.  Increase in pore size with temperature has been observed 

before and is attributed to changes in polymer structure [183] (eg. polymer 

expansion/swelling).  The increase in pore size with temperature is inherently included in 
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the Arrhenius calculations because energy barrier is determined by temperature 

dependence.  The increase in pore size with temperature results in the energy barriers 

quantified in Figure 7-4 and Figure 7-5 being slight over-estimates.  Quantification of the 

impact of the increase in pore size with temperature on energy barriers is currently being 

examined and will be included in future publications of this work. 
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Figure 7-6.  (A) Effective pore radius (Reff) and (B) pure water permeability 
(L p) for NF90 and NF270.  Error on pore size was determined by the carrying 
out propagated errors through the calculation optimization procedure.  Error 
bars on Lp are not included because they are small (approximately ± 2%), 
however variation in flux from different batches of the same membrane can 
be > 10 %. 
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7.6 Comparison of Experimental Energy Barriers with MD 
 
In order to interpret the energy barriers, the experimental energy barriers are compared to 

those obtained using molecular dynamic simulations.  Energy barriers determined with 

MD simulations showed that dehydration was the dominant energetic cost of transport for 

these ions in an idealized, cylindrical pore [303].  Energy barriers from experiments are 

compared to MD simulations on Table 7-3. 

 

Table 7-3. Comparison of energy barriers determined experimentally and with 
molecular dynamics simulations [303, 323].  Error for molecular dynamics results is 
estimated to be ± 0.6 kcal.mol-1. 

Energy Barrier (kcal.mol -1) Effective Pore 
Radius 

(10-10 m) Highest      Lowest 

Membrane        
NF90 (3.4) F- (17.0 ± 2.2 ) > Cl- (9.6 ± 1.3) ≈ NO3

- (10.2 ± 1.3) ≈ NO2
- (11.0 ± 1.2) 

NF270 (3.8) F- (14.3 ± 1.6) > NO2
- (11.1 ± 0.9) > Cl- (8.0 ± 0.6) ≈ NO3

- (7.0 ± 0.6) 
MD Simulation  

2.51 NO3
- (∞) > F- (57.1) > NO2

- (35.3) > Cl- (43.2) 
2.81 F- (46.9) > NO3

- (40.0) > NO2
- (39.3) > Cl- (34.0) 

3.06 F- (47.7) > Cl- (41.1) > NO3
- (32.5) > NO2

- (28.4) 
3.32 F- (27.4) > Cl- (21.3) > NO2

- (11.1) > NO3
- (6.5) 

3.52 F- (16.4) > Cl- (12.1) > NO2
- (5.7) > NO3

- (2.3) 
3.72 F- (10.6) > Cl- (8.5) > NO2

- (4.0) > NO3
- (1.6) 

4.02 F- (8.6) > Cl- (7.8) > NO2
- (2.2) ≈ NO3

- (2.1) 
4.33 Cl- (7.7) > F- (5.7) > NO2

- (3.0) > NO3
- (1.3) 

4.72 F- (6.4) > Cl- (5.2) > NO2
- (1.0) > NO3

- (0.3) 
5.32 F- (3.3) ≈ Cl- (3.1) > NO2

- (0.7) ≈ NO3
- (0.7) 

6.53 F- (1.7) ≈ Cl- (1.4) > NO2
- (0.4) ≈ NO3

- (0.2) 
MD Weighted Averages (based on log-normal distribution around experimentally determined effective 
pore radius) 
3.4, distribution F- (24.6) > Cl- (19.8) > NO3

- (18.2) > NO2
- (13.7) 

3.8, distribution F- (16.1) > Cl- (13.4) > NO3
- (8.6) > NO2

- (7.9) 
 
 

Experimentally-determined energy barriers are within a factor of four of barriers 

determined from MD simulations based on dehydration.  For an effective pore radius of 

3.32·10-10 m (similar to NF90), the order of MD barriers was fluoride (27.4 kcal.mol-1) > 

chloride (21.3 kcal.mol-1) > nitrite (11.1 kcal.mol-1) > nitrate (6.5 kcal.mol-1).  For an 

effective pore radius of 3.72·10-10 m (similar to NF270), the order was fluoride (10.6 kcal 

kcal.mol-1) > chloride (8.5 kcal.mol-1) > nitrite (4.0 kcal.mol-1) > nitrate (1.6 kcal.mol-1).  

Ordering in MD models results from ion properties (ion size, hydrated size, and hydration 

strength) and is due to the requirements for partial dehydration when an ion is 
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transporting through the cylindrical pore.  The changes in ion order with pore size is 

directly attributable to ion properties and the varying degrees of partial or full 

dehydration required for the ion to fit in the pore.  When a weighted average is taken of 

MD results (assuming a log-normal pore size distribution), energy barriers are notably 

comparable to what was observed experimentally (difference of < 10 kcal.mol-1, in the 

worst case) and ordering matches experimental retentions. This comparison further 

supports that experimental barriers may be attributed to dehydration. 

 

There are a number of differences between MD simulations and a real membrane, which 

must be mentioned in order to put the comparison into context.  Firstly, pore size 

distributions were not modelled.  Pore size strongly affects dehydration requirements and 

the ordering of ions.  When there are a fraction of pores of different sizes these will all 

contribute to the net energy barrier measured experimentally and thus it is not expected 

that values or trends would match up exactly to MD values from one pore size.  In order 

to compensate for this, a weighted average of pore sizes over a distribution was taken and 

this is a more realistic representation of an actual membrane.  Another difference is 

tortuousity, as simulations use a generic representation of an ideal cylindrical pore.  

However, the largest energy barriers would be expected to occur at the narrowest part of 

a tortuous pore/void.  Charge and polarity were not considered in the MD results reported 

on Table 7-3, however negative surface charge would be expected to increase energy 

barriers with the main contribution remaining dehydration [303].  Functional groups are 

also not considered in the MD model.  Functional groups will affect interactions as the 

ion nears the membrane surface and may be either attractive or repulsive (which could 

decrease or increase the energy barriers accordingly).  Regardless of these constraints, 

experimentally determined energy barriers seem reasonable according to dehydration 

barriers.  

 

7.7 Energy Barriers Determined using Diffusion Cells 
 
In an initial attempt to compare energy barriers obtained with the crossflow system to 

energy barriers obtained in a system without the complications of flow and pressure, 

energy barriers were also determined using diffusion cells.  These results are included in 
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Appendix B.  The results from diffusion cells largely did not agree with those obtained 

using the crossflow system.  In particular, the result that drew attention was the high 

energy barriers of nitrate and nitrite as compared to fluoride and chloride, which was not 

expected either from crossflow results nor MD simulations. 

 

Upon consideration, and unfortunately not until all experiments had been completed, it 

was realized that the mechanisms of the processes in the diffusion cell and crossflow are 

fundamentally different, and cannot be meaningfully compared.  In a diffusion cell, the 

diffusion of the ions across the entire membrane is measured and the membrane layers 

are essentially different resistors in series.  In a crossflow system, diffusion primarily 

occurs in the active layer, and then the ions are flushed through the remainder of the 

membrane along with the convective flow of water.  The active layer is extremely small 

compared to the entire membrane thickness.  Even though the support layer is much more 

porous, the fact that it is so much thicker than the active layer leads to a substantial 

amount of diffusion required for a solute to transport across the whole membrane 

thickness (which does not occur in the presence of convective flow).  Therefore, 

measuring diffusion across the entire membrane in diffusion experiments does not predict 

what is happening in the membrane active layer and cannot be compared with crossflow 

results.  It has been well documented that diffusion experiments using the whole 

membrane are fundamentally inaccurate due to the overwhelming resistance of the 

support when compared to filtration experiments [150, 324, 325], which is a reason that 

diffusion cells have not been used much in recent years for gathering information on salt 

transport mechanisms in for commercial NF/RO membranes.  It is recommended that 

diffusion cells not be used for determination of energy barriers or for direct comparison 

with results from any other type of filtration-based experiments. 

 

A recent study by Bason et al. [150] has demonstrated that the thin active layer of the 

membrane can be separated from commercial membranes, and that transport 

characteristics of this isolated layer are similar to those of the intact active layer within 

the original composite membrane.  Characterizing diffusion across the isolated active 

layer is much more realistic to the diffusion which occurs during filtration than diffusion 

experiments with the whole commercial membrane.  However, there are still a number of 
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practical issues that need to be addressed (such as supporting a thin film in a diffusion 

cell and separating a sufficiently large sample size) before an isolated active layer could 

be used to measure diffusion as used in this chapter.  The area of characterizing 

membrane active layers for transport properties can be expected to progress rapidly 

because of its clear relevance to understanding transport in real NF membranes. 

 

7.8 Conclusions 
 
In this chapter, it was demonstrated that high selectivity exists between monovalent 

anions in NF which is not adequately explained by bare ion radius, hydrated radius, 

Stokes radius, diffusion coefficients and charge.  Energy barriers were determined in a 

crossflow system in an attempt to explain ion selectivity with regard to hydration 

properties of the ions and dehydration requirements of transport.  Experimentally 

determined energy barriers depend on anion and membrane type.  Fluoride, which has the 

highest hydration energy and smallest bare ion size, had the highest energy barrier of 

each anion studied for both membranes (17.0 ± 2.2 kcal.mol-1 and 14.3 ± 1.6 kcal.mol-1 

for NF90 and NF270).  Energy barriers for NF90 (smaller effective pore size of 3.4·10-10 

m) were larger than for NF270 (larger effective pore size of 3.8·10-10 m), suggesting that 

transport is more hindered in the tighter membrane. 

Energy barriers are partially attributed to dehydration because: (1) ordering of barriers for 

different ions is not consistent with other mechanisms such as size exclusion based on 

bare ion size (which would have largest ion with largest barrier), size exclusion based on 

hydrated ion size or simple charge repulsion (all ions have same charge and should see 

similar barrier); (2) ordering of ions is consistent with dehydration (fluoride having the 

highest barrier); (3) energy barriers determined by extrapolating the results to zero 

pressure meant that convection and concentration changes are not playing a role; and (4) 

the magnitude of barriers is consistent with MD simulations based on dehydration 

(Chapter 6).  Limitations in the comparison between experiment and simulation such as 

pore size distributions, tortuousity, charge and functional groups were discussed.  These 

results suggest that incorporating hydration effects into NF models would be beneficial 

for model development.  The final chapter in this thesis (Chapter 8) summarizes the 

conclusions of this research project and discusses areas for future work. 
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Chapter 8 
 

Conclusions and Future Outlook 
 
The provision of safe drinking water is critical in an era in which the world’s 

population is increasing rapidly but water supplies remain scarce.  One way of 

addressing this problem is via the desalination of seawater or brackish water with 

NF/RO membranes.  However, the mechanisms by which solutes are retained in NF/RO 

are not well-understood.  Improvements in mechanistic understanding serve to provide 

membrane designers, chemists, engineers and modellers with information which may 

improve current technologies and optimize separation performance.  The most 

important contribution of this research was the novel indication of ion dehydration 

occurring as a mechanism which controls transport in NF, and it is hoped that this 

work provides a basis for these effects to be incorporated into future membrane models 

and design considerations.  

 

In this final chapter, a review of the aims and main conclusions of each of the main 

subject areas are discussed.  As this research has been successful in answering some 

very interesting questions, it has also raised many more.  As such, suggestions for future 

work conclude this thesis. 

 

8.1 Conclusions 
 
In summary, the overall aim of the work presented in this thesis was to improve the 

understanding of NF/RO, with the motivation that the technical knowledge obtained 



Chapter 8. Conclusions and Future Outlook 

208 
 

could contribute to solutions addressing the world water crisis.  The work had four 

primary sub-aims, and those were to examine: (1) the performance of renewable energy 

membrane systems; (2) the impact of pH on inorganic contaminant removal; (3) the 

importance of ion hydration in determining transport in a generic nanopore; and (4) the 

impact of ion and membrane type on energy barriers in NF.  Specific objectives in these 

areas were met with a combination of experiments and MD simulations.  A brief of the 

conclusions obtained in each of these areas follows. 

 

In Chapter 4, the research objective was to determine how energy fluctuations and 

groundwater characteristics (in particular pH) affected the performance of a RE-

membrane system tested during a previous field trial.  During short-term experiments 

(lasting < 12 hours), the renewable energy membrane system reliably removed salts and 

inorganic contaminants, given sufficient solar availability, over a range of real energy 

and pH conditions via convection/diffusion and precipitation mechanisms.  During a 

typical daily range of solar conditions, a number of solutes were well-retained (≥ 85%) 

despite energy variation and subsequent changes in flow, pressure, flux, and specific 

energy consumption.  Consequently, retention for solutes such as fluoride, magnesium, 

nitrate, potassium, sodium and total dissolved solids were impacted where 

convection/diffusion dominated retention.  For very large hydrated solutes (calcium, 

strontium, and uranium), retention was very high due to size exclusion and no impact of 

operating conditions was observed.  The retention of a number of solutes (arsenic, 

calcium, chloride, nitrate, potassium, selenium, sodium, strontium, and sulphate at Pine 

Hill) was pH-independent between pH 3 and 11.  However, retention of other solutes 

(copper, magnesium, manganese, molybdenum, nickel, uranium, vanadium, and zinc at 

Pine Hill) varied as a function of pH, which sometimes led to deposition on the 

membrane surface and consequential flux decline.  The pH-dependence of certain 

solutes is dependent on the groundwater type, exemplified by nitrate and magnesium 

demonstrating different behaviour with different groundwaters.  During periods of 

severe energy fluctuations, the system shut off and retention dropped significantly to 

unacceptable levels.  Flux decline and decreased performance during extreme 

fluctuations have practical implications on system lifetime which need to be thoroughly 

considered with longer term evaluations.  Overall, these results demonstrate that, 

provided sufficient availability of an energy resource, photovoltaic driven membrane 
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systems may be a viable solution for remote water applications where contaminants that 

are difficult to remove by conventional technologies are a concern. 

 

Having demonstrated the importance of pH in the removal of selected inorganic 

contaminants, a more detailed look at this specific effect was warranted in Chapter 5.  

The research objective of this chapter was to determine the relationship between 

speciation and retention for boron, fluoride, and nitrate using six different NF/RO 

membranes.  Flux was independent of pH for all membranes except UTC-60, indicating 

that pH did not alter pore size and, hence, permeability and size exclusion 

characteristics of those membranes.  Boron was the most difficult to remove and 

retention strongly depended on pH and speciation, which was suggestive of a dominant 

charge mechanism.  Despite the speciation of nitrate being pH independent, retention 

varied widely depending on membrane type and suggested both charge and size 

mechanisms were occurring.  Fluoride speciation and retention were pH dependent, 

with minimum retention occurring at low pH when HF dominates, which again 

suggested charge and size mechanisms.  An interesting result was that the fluoride was 

more highly retained than nitrate using the same membrane above pH 7, which cannot 

be explained by the ionic size as fluoride is a smaller ion.  This suggests the importance 

of hydrated size in determining transport, which was the subject of the remaining work 

presented in this thesis.  Overall, this chapter demonstrated that pH is a key factor in 

determining retention of charged inorganic contaminants, which is directly related to 

solute and membrane properties, but that there may also be other important factors such 

as hydration. 

 

The objective of Chapter 6 was to examine the hydration of monovalent anions 

(fluoride, chloride, nitrate, nitrite) as they transport through idealized, cylindrical pores 

using MD simulations.  Three key conclusions can be drawn from this work.  Firstly, 

energetic barriers were strongly dependent on pore size.  Energy barriers were not 

linearly correlated with pore size; instead, there were distinct regimes related to the 

number of water molecules which much be stripped away from the ion in order for 

transport to occur (eg. water molecules with the first hydration shell are held much more 

tightly than outer, more distant water).  Transport was strongly hindered when the size 

of the pore was smaller than the hydrated radius.  Secondly, energy barriers depended 

on ion type (and hence hydration properties).  The selectivity sequence amongst the ions 
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can change depending on the pore size and ion properties. In general, the transport of 

small, strongly hydrated ions (such as fluoride) was much more energetically expensive 

than for larger, less strongly hydrated ions (such as nitrate) due to the required 

dehydration unless the pore is larger than the size of the hydrated ion.  Thirdly, and 

most importantly, these results showed that the required dehydration was the main 

barrier to ion transport in the narrow pores.  In particular, partial dehydration was the 

main determinant of the energy barriers for small, strongly hydrated ions whose 

hydrated radius is larger than the pore size, even when charge repulsion is considered.  

This explains, for example, why fluoride is rejected by membranes with pore sizes 

greater than the ionic radius of fluoride.  By providing a systematic and novel insight 

into the role of ion dehydration in pore transport, these results are significant in 

understanding anionic selectivity in biological channels as well as desalination and 

removal of various drinking water contaminants with NF. 

 

As the theoretical evidence for dehydration occurring as a transport mechanism was 

demonstrated in Chapter 6, the research aim of Chapter 7 was to obtain experimental 

evidence of dehydration determining transport in a real NF membrane.  This was 

achieved by determining energy barriers for different anions and membranes in order to 

link experimental measurements with MD outputs.  Energy barriers depended on anion 

and membrane type.  Fluoride, which has the highest hydration energy and smallest bare 

ion size, had the highest energy barrier of each anion studied for both membranes, and 

energy barriers for were higher for the tighter membrane.  Energy barriers were 

reasonable (same order of magnitude and general trends) when compared with MD 

simulations, which corroborated the fact that energy barriers in NF may be due to 

dehydration.  While a one-to-one comparison between real membrane systems and MD 

is challenging, the results here support conclusions obtained from the fundamental 

theoretical transport studies.  These results demonstrate experimental evidence of the 

need to incorporate hydration effects into NF models.  

 

8.2 Future Outlook 
 
This work brought to light a number of interesting research topics that would benefit 

from being the subject of future investigation.  To this end, the greatest potential for 

future work lies in the areas of MD for representation of NF membranes, experimental 
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work for evidence of the dehydration mechanism, improved NF characterization, and 

the testing and application of renewable energy membrane systems. 

 

The work completed with MD in this research project was a valuable contribution and 

stands to be developed in a number of ways.  Simplified channels were used in order to 

isolate the role of ion dehydration in pores of different sizes, but a number of variations 

could be evaluated in order to better consider the complexity of realistic membrane 

pores.  This could involve designing and running MD simulations which could account 

for membrane parameters such as polarity, surface charge (on the surface and/or within 

the membrane pore) and functional groups.  Applying the simulations to other 

contaminants (in particular boron) would be valuable, as would systematically 

increasing the concentration, which could potentially lead into insight about ion pairing 

during transport. 

 

The task of demonstrating clear experimental evidence of NF mechanisms in real 

membranes remains challenging because of limitations in measurements, difficulty in 

isolating parameters and the heterogeneous nature of polymeric membrane materials.  

Improved characterization of the porous structure of the active layer of NF membranes 

would be very useful as it would allow information to be determined the layer which 

controls selectivity.  In particular, more information about the structure (eg. discrete 

pores versus dense film) and chemical properties of this layer is very important.  Recent 

work by Bason et al. [150] isolating and characterizing the selective active layer alone 

shows much promise in this area.   

 

Further, the use of carbon nanotube membranes would be very valuable in the effort to 

understand mechanisms without the variation in membrane material inherent in 

polymeric membranes.  However, at present suitable membranes of the desired 

characteristics are still largely in the developmental stages.  As soon as feasible, 

understanding ion transport experimentally in structured membranes would be very 

valuable in explaining what happens in polymeric membranes, which, although more 

structurally heterogeneous, are much more widely developed and used. 

 

Gaining clear evidence and understanding of new mechanisms, using the tools of 

simulation and experiment, gives exciting prospects to the future of desalination.  For 
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example, if it is proven that dehydration is, in fact, a controlling parameter for ion 

selectivity in NF, future membrane models must take hydration into account.  It may be 

possible, for example, to include energy barriers calculated in MD directly into the 

continuum transport models commonly used in describing NF.  This could also have 

important implications in utilizing the different energy barriers in order to separate 

different types of ions, which is especially interesting from the perspective of removing 

contaminants other than sodium chloride in desalination. 

 

The other main area which warrants future work is in renewable energy powered 

membrane systems.  The integration of membrane technology with renewable energy 

allows water to be treated to a high standard even in remote locations with no electrical 

grid connection.  This is an excellent solution to the synergetic water-energy problems 

facing many remote areas of the world.  However, further work is necessary to best 

optimize these systems.  In particular, the impact of variable operation on long-term 

system performance is unknown.  This could have consequences for the lifetime of the 

membrane, and thus needs to be understood for both practical and economic reasons.  A 

comparison of renewable energy membrane systems with traditional point-source 

treatment methods for a particular location(s) would also be valuable.  In order to 

determine the feasibility of long-term operation of such a system in remote areas, this 

comparison would need to consider not only technical aspects, but also maintenance 

requirements, economics, and socio-cultural factors for a complete assessment. 

 

These main areas for possible future work could be summarized by the following 

questions: 

 

• What are the effects of different water chemistries (eg. concentration, pH) on ion 

hydration properties and thus on potential dehydration during transport through 

a pore? (MD simulations) 

• What are the hydration properties of boron species (boric acid and borate, which 

are relevant in drinking water) and what happens to this hydration during 

transport through a pore? (MD simulations) 
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• What surface/pore characteristics (eg. surface charge, polarity, functional 

groups) have the largest influence on results and thus are most important in the 

comparison between MD and real NF membranes? (MD simulations/NF) 

• How do energy barriers for the transport of anions through carbon nanotube 

membranes compare to results obtained with MD and NF membranes? 

(experimental) 

• How does water composition (eg. mixes of feed contaminants or real 

groundwater) affect energy barriers for the transport of contaminants using NF 

membranes? (experimental/field trial) 

• What is the impact of long-term operation on the efficiency and reliability of a 

RE-membrane system? (field trial) 

 

In conclusion, this thesis has provided a thorough evaluation of four important and 

diverse areas related to the removal of inorganic contaminants with NF and RO.  The 

results achieved provide novel insight into fundamental transport mechanisms and 

renewable energy powered membrane systems alike.  It is hoped that this insight will 

provide a valuable stepping stone in the endeavour to improve the crisis surrounding the 

global need for safe drinking water. 
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Appendix A  

 

Instrument Calibration 
 

Appendix A includes example calibrations for analytical equipment used in this project: 

electrical conductivity (Figure A-1), fluoride ion selective electrode (ISE, Figure A-2), 

nutrient analyzer (Figure A-3), inductively-coupled plasma optical emission 

spectroscopy (ICP-OES) (Figure A-4), total organic carbon (Figure A-5), and ion 

chromatography (Figure A-6).  Calibration curves were made or confirmed by testing a 

sample of known concentration prior to the analysis of any new set of samples, and test 

standards were run throughout any sample run (typically every ten samples).  Particular 

ranges of calibrations were selected in order to be appropriate for the concentration 

range in samples.  This means that for the nutrient analyzer or for ICP-OES, for 

example, samples would be diluted to ensure they were within the range of a linear 

calibration in order to obtain results without the influence of interferences.  For these 

two instruments, high salt concentrations can interfere with the signal so it was 

necessary to dilute samples within an acceptable concentration range in order to obtain 

best instrument sensitivity.  The ISE calibration was fit to a log-normal plot, as is 

standard methodology for this instrument, for a linear calibration. 

 

Example calibrations are included because instrument calibrations can shift slightly 

depending on, for example, preparation of instrument solutions (eg. eluents, buffers), 

sample matrices (eg. pH, concentration of other ions), equipment condition (eg. time 

between cleaning/maintenance) and environmental factors (eg. room temperature), 

which had a larger effect for some instruments (such as the nutrient analyzer) more than 

others (such as the TOC).  Measurements with instruments which required manuality 
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(such as the ISE) could very slightly vary according to the person taking the 

measurement due to differences in mixing techniques or amount of time before 

recording the sample, for example, so a calibration made by the same person who made 

the measurements was best to ensure consistency.  Calibrations were always run on the 

day of analysis to ensure that the analysis made on that day had a valid calibration, and 

standards and solutions were made as fresh as possible.  Further, analysis of sample 

standards was conducted frequently in order to monitor any changes of instrument 

performance over time.  Despite all of these things which can influence calibrations, 

variations remained small if the solutions were made properly and the instrument was 

working properly.  Checking of calibrations was done for quality control. 
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Figure A-1. Electrical conductivity (mS.cm-1) versus sodium chloride concentration 
(g.L-1) (pH 6.2).  Uncertainty in the measurement of multiple samples (n = 7) is ± 
1%. 
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Figure A-2. Ion selective electrode response (mV) versus fluoride concentration 
(mg.L-1) (pH 7).  Uncertainty in the measurement of multiple samples (n = 7) is ± 
2%. 
 

0 5 10 15 20

0

20

40

60

80

 

P
ea

k 
A

re
a 

(V
.s

-1
)

Nitrate Concentration (mgN.L-1)  
Figure A-3. Nutrient analyzer calibration for nitra te showing peak area (V.s-1) 
versus nitrate concentration (mg.L-1 as N) (pH 7).  Uncertainty in the measurement 
of multiple samples (n = 7) is ± 3%. 
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Figure A-4. Example ICP-OES calibration for boron showing peak intensity versus 
boron concentration (mg.L-1) (pH 7).  Uncertainty in the measurement of multiple 
samples (n = 7) is ± 1%. 
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Figure A-5. Example total organic carbon calibration for potassium hydrogen 
phthalate (PHP) standards showing peak area versus total carbon concentration 
(mg.L-1) (pH 7).  Uncertainty in the measurement of multiple samples (n = 7) is ± 
2%. 
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Figure A-6. Example chloride calibration for the ion chromatograph.  Uncertainty 
in the measurement of multiple samples (n = 7) is ± 1%. 
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Appendix B 
 
Energy Barriers and Diffusion Coefficients 
Determined with Diffusion Cells 
 
 

B.1  Introduction and Objectives 
 

The purpose of using the diffusion cells was to (1) experimentally determine energy 

barriers to different ion and membrane types and (2) determine diffusion coefficients.  

At the time of planning, the objective of these experiments was to determine energy 

barriers without the complicating effects of pressure and flow (inherent in crossflow 

filtration) in order to provide complementary information to energy barriers determined 

with the crossflow system.  In hindsight, energy barriers obtained with the diffusion 

cells only serve to represent the specific conditions of diffusion cells, and cannot be 

meaningfully compared to the crossflow system due to the presense of flow which 

changes the mechanisms controlling transport.  For the sake of completeness, all 

diffusion cell results are reported here, but it is important to emphasize that these results 

cannot be meaningfully compared to the crossflow energy barriers presented in Chapter 

7. 

 

B.2  Experimental Summary 
 
The diffusion cells were described in Chapter 3.1.3.  A single salt (NaF, NaCl, NaNO3, 

NaNO2, KF, KCl, KNO3, KNO2) at a concentration of 0.1 M was placed in the 

concentrated cell and ultrapure water in the diluted cell.  No pH adjustment was made 

with the exception of one experiment (Section B.3.2).  The cells were clamped together 

and placed in water bath with temperatures of 15, 20, 25, 30, 35 °C.  For each 

temperature and salt, experiments were run for three hours.  Samples were collected 
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from both the concentrated and dilute cells at 60, 90, 120, 150 and 180 minutes.  Ion 

analysis was done with ion chromatography (Chapter 3.4.8) for anions and inductively 

coupled plasma optical emission spectroscopy (Chapter 3.4.4) for cations.  The energy 

barriers were determined by the slope of the Arrhenius plot of the natural log of solute 

flux as a function of inverse temperature.  Diffusion coefficients across the membrane 

were also calculated.  Diffusion cell experiments were conducted with commercially 

available NF membranes UTC80A, BW30, NF90, TFC-SR3, NF270 and TFC-SR2 

(characteristics in Chapter 3.2). 

 

B.3 Energy Barriers in Diffusion Cells 
 
Energy barriers were determined in diffusion cells to compare to results obtained with 

the crossflow system.  Since there is no flow or pressure in diffusion cells, the 

concentration gradient across the cells is the driving force for diffusion.  The diffusion 

of salt from the concentrated to dilute cell was measured at different temperatures in 

order to calculate an Arrhenius energy barrier to the transport.  The rate of diffusion is 

higher at higher temperatures.  Figure B-1 shows the Arrhenius plots for NF270 

obtained with diffusion cells, and Figure B-2 shows the energy barriers obtained for 

NF270 and NF90 for each sodium salt tested. 
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Figure B-1.  Arrhenius plots for anions (as sodium salt) for NF270 using diffusion 
cell methodology. 
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Figure B-2. Solute flux (A) at 25°C and 3 hours of diffusion time and energy 
barriers (B) for sodium fluoride, chloride, nitrite  and nitrate using NF90 and 
NF270 and the diffusion cell Arrhenius methodology. 

 
These results show that the smaller ions, fluoride and chloride, have higher solute fluxes 

and lower energy barriers than nitrate and nitrite.  This is not explained by the 

dehydration theory, as molecular modelling predicts that energy barriers for fluoride and 

chloride are much higher than nitrate and nitrite due to the strong hydration of fluoride 

and chloride [303].  Fluoride and chloride barriers with NF270 are higher than NF90, 

which is not expected because NF270 has a larger effective pore size.  However, this 

trend swaps with nitrate and nitrite which have higher barriers with NF90 than NF270, 

as expected.  Mass balance calculations did not suggest any absorption observed within 

the error of analysis in the three hours of diffusion time.  The results here are very 

different to the results obtained with the crossflow system, despite the dominant effect 
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of diffusion predicted for crossflow experiments using Extended Nernst Planck.  This 

can be explained because the determination of energy barriers using diffusion cells is 

mechanistically different than when determined with the crossflow system, and these 

differences are specifically were discussed in Chapter 7.7. 

 

B.3.1 Effect of Membrane Type on Energy Barriers of Fluoride 
 

The energy barriers for fluoride transporting through a number of membranes with 

different properties were determined.  The objective was to compare energy barriers 

with effective pore sizes.  Because it was desired to use to full spectrum of NF pore 

sizes, two membranes were used for these experiments (TFC-SR3 and TFC-SR2) which 

were not used anywhere else in this thesis in order to have more characterized pore sizes 

at the higher end of the spectrum.   Figure B-3 shows the results obtained for each 

membrane.  There is no clear trend of fluoride energy barriers and characterized pore 

size of each membrane, as the method is not suitable in diffusion cells.  There are other 

differences between the membranes that would affect these results, namely the total 

membrane thickness (which is the total distance the ions must diffuse through) and pore 

size distributions.  However, the active layer thickness alone is also not sufficient to 

explain results, as exemplified by the fact that the active layer thickness of NF270 (350 

·10-10 m) is smaller than that of NF90 (1740·10-10 m) but the barrier is larger.  Pore size 

distributions [132, 326] may become important if one membrane had a small fraction of 

large pore sizes, despite a low characterized average pore size, and vice versa.  In the 

first scenario, the fluoride ion would easily transport through the larger pore, which 

could skew results to have a lower energy barrier than expected from the average pore 

size alone.  With the tightest membrane UTC-80A, no fluoride was detected in the 

purified water cell after the 3 hours of diffusion cell.  These results show that there is no 

clear trend of the energy barriers with pore size or active layer thickness.  Rather energy 

barriers will be determined by the net membrane properties including a combination of 

pore size, porosity, material and thickness. 
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Figure B-3.  Energy barriers for sodium fluoride as a function of membrane type 
(effective pore size on right-hand y-axis) using diffusion cell Arrhenius 
methodology.  No fluoride was detected in the permeate cell for UTC80A, 
suggesting the energy barrier is very high for fluoride in this very tight membrane 
(represented by the dotted line). 
 

B.3.2 Effect of pH on Energy Barriers of Fluoride 
 
The effect of pH on the energy barrier of fluoride was tested for NF90 and NF270 at 

neutral pH (6.2) and very high pH (12.5) where the membranes are highly negatively 

charged (see Chapter 3.2.4).  The results are shown in Figure B-4.  This shows that the 

energy barrier is increased for both membranes at high pH.  This is due to the increased 

charge repulsion from the highly negative membrane surface and anion at high pH.  If 

the values are compared, this shows that charge repulsion contributes approximately 

11% and 27% to the overall energy barrier of fluoride transport for NF90 and NF270 

respectively, which was similar to modelled results of fluoride transporting through a 

simplified pore (eg. 14% and 19% for a single smooth pore of radius 3.3 and 4.3·10-10 

m, respectively) (Chapter 6.8) [303].  However, the pH cannot directly be correlated to 

the contribution of charge repulsion, as the adjustment of pH affects transport in a 

number of ways in addition to making the surface charge highly negative.  It also means 

that there are additional sodium hydroxide ions present in the solution (more ions leads 

to higher ionic strength and more prominent electric fields in solution), an excess of 

sodium, and possible change in pore size at high pH. 
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Figure B-4.  Energy barriers for fluoride (as sodium fluoride) at neutral and high 
pH (12.5) where the membrane is highly negatively charged for NF90 and NF270 
using the diffusion cell Arrhenius methodology. 
 
 

B.3.3 Effect of Cation Type on the Energy Barriers of Anions 
 
Selected experiments were repeated using potassium as the cation rather than sodium.  

The objective was to see if ion pairing or ion pumping played a role in the transport, and 

thus the cation type was changed in order to see if there was a measurable difference on 

the transport of the anion.  Ion pairing is more likely for potassium than sodium, due to 

the relatively weak hydration of potassium [86], and is particularly likely for potassium 

nitrate [76]. 

 

Changing the cation does not make a measurable difference for strongly hydrated and 

small ions fluoride and chloride.  However, changing the cation does make a significant 

difference for nitrate and nitrate.  The energy barrier is lower with potassium rather than 

sodium for these anions.  Nitrite and nitrate are more weakly hydrated and pairing 

between potassium and nitrate or nitrite is much more like than with sodium.  If the ions 

were paired, the new entity would be neutrally charged and thus it could be expected 

that energy barriers would decrease due to negligible charge effects.  However, a much 

more thorough study would be necessary to validate this hypothesis.  
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Figure B-5.  Comparison of energy barriers of each of the anions (fluoride, 
chloride, nitrite and nitrate) with different catio ns (sodium and potassium) for 
NF90 using diffusion cell Arrhenius methodology. 
 

B.4  Determination of Diffusion Coefficients 
 
The data obtained in the energy barrier experiments with diffusion cells was also used 

to estimate diffusion coefficients for the various salts across NF90 and NF270.  The 

results are shown in Table B-1.  Diffusion coefficients are dependent on anion, cation, 

membrane and temperature.  The diffusion coefficients obtained are one to three orders 

of magnitude slower than in bulk water (typically 10-9 m2.s-1 in bulk water), which 

demonstrates the hindered nature of membrane transport.  The error in these results is 

approximately 10%, which makes any significant changes between ions in one 

membrane difficult to decipher.  The error was estimated by taking the maximum 

uncertainty in solute flux measurements and re-calculating the diffusion coefficients 

with the largest expected errors in input parameters to determine the variation in the 

output (Chapter 3.5.2).  Unfortunately, the error in the results makes it difficult to 

analyze the data meaningfully, and the results obtained also are not relevant to the 

crossflow results, for reasons which are discussed in Section B.4.  Therefore, these 

diffusion coefficients have little useful significance.  When diffusion coefficients are 

calculated using hindered transport theory, as is used in extended Nernst Planck, the 

values for hindered diffusion (Di,p) in NF90 for sodium fluoride, sodium chloride, 

sodium nitrite and sodium nitrate are 2.45·10-10 m2.s-1, 8.06·10-10 m2.s-1, 5.75·10-10 m2.s-1 

and 5.72·10-10 m2.s-1, respectively.  These calculated values of Di,p, which estimate 
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diffusion only in the active layer based on a ratio of pore to Stokes radius and bulk 

diffusivity, are a better representation of diffusivity in a membrane than diffusion cell 

measurements of diffusivity across the whole membrane.  Di,p is what is used for inputs 

in diffusion and hydrodynamic models [198].   

 

Table B-1. Experimentally determined diffusion coefficients of anions in NF 
membranes after three hours.  Error in diffusion coefficient is estimated at 10%. 

Anion Cation Membrane Diffusion Coefficient of 
Anion at 25 °C (m2.s-1) 

Fluoride Sodium NF90 3.29·10-12 
  NF270 2.33·10-11 
  NF90, pH 12.5 3.02·10-12 
  NF270, pH 12.5 2.25·10-11 
 Potassium NF90 3.43·10-12 
  NF270 2.70·10-11 
Chloride Sodium NF90 3.57·10-12 
  NF270 2.26·10-11 
 Potassium NF90 3.91·10-12 
  NF270 2.67·10-11 
Nitrite Sodium NF90 7.72·10-13 
  NF270 1.73·10-11 
 Potassium NF90 7.31·10-13 
  NF270 1.26·10-11 
Nitrate Sodium NF90 1.14·10-12 
  NF270 1.31·10-11 
 Potassium NF90 1.23·10-12 
  NF270 1.43·10-11 

 

B.5  Conclusions 
 
The diffusion cell experiments were originally conducted in order to compare energy 

barriers in a system without flow and pressure.  However, this method was not suitable 

for comparison due to fundamental mechanistic differences, which were discussed in 

7.7 and a result of diffusion occurring across the entire membrane thickness in diffusion 

cells [150, 324, 325].  It is recommended that diffusion cells not be used for 

determination of energy barriers or for direct comparison with results from any other 

type of experimental system, unless the active layer can be isolated and characterized 

individually which may be possible with new methods in the future [150]. 
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