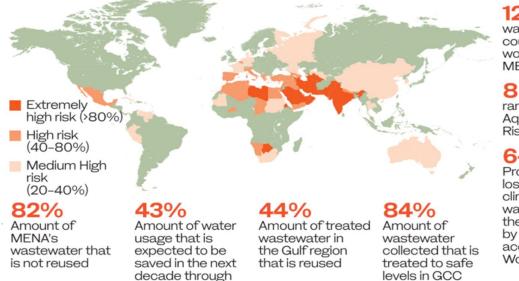
# Renewable energy water desalination: future and challenges



#### FAHAD A. AL-SULAIMAN, PhD, PMP, CEM, CEA, LEED-GA

**Director:** 


- Interdisciplinary Research Center for Renewable Energy and Power Systems (IRC-REPS), &
- Center of Ecellence in Energy Efficiency (CEEE)

King Fahd University of Petroleum and Minerals (KFUPM)



#### INTRODUCTION

#### **Overall water risk**



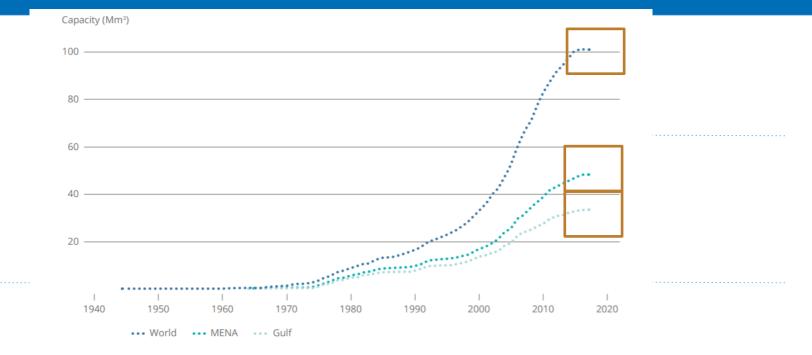
Saudi Arabia's

Qatrah program

12/17 most water-stressed countries in the world are in the **MENA** region

8 Saudi Arabia's rank in the Aqueduct Water **Risk Atlas** 

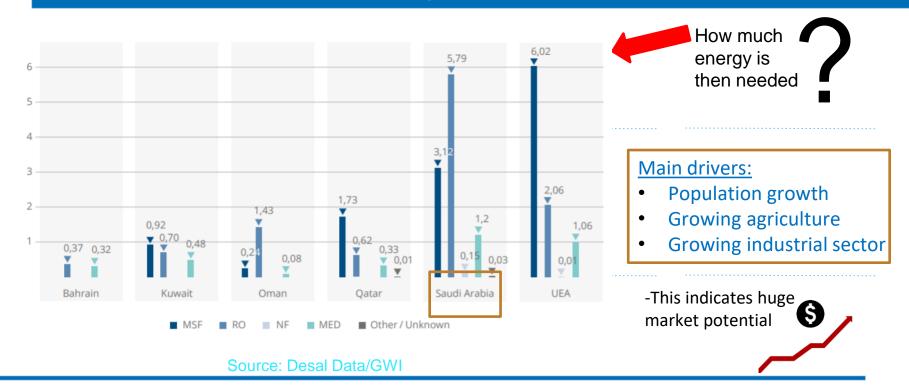
#### 6-14%


countries

**Projected GDP** loss due to climate-related water scarcity in the MENA region by 2050, according to the World Bank

World Resources Institute




#### Introduction – Global water desalination



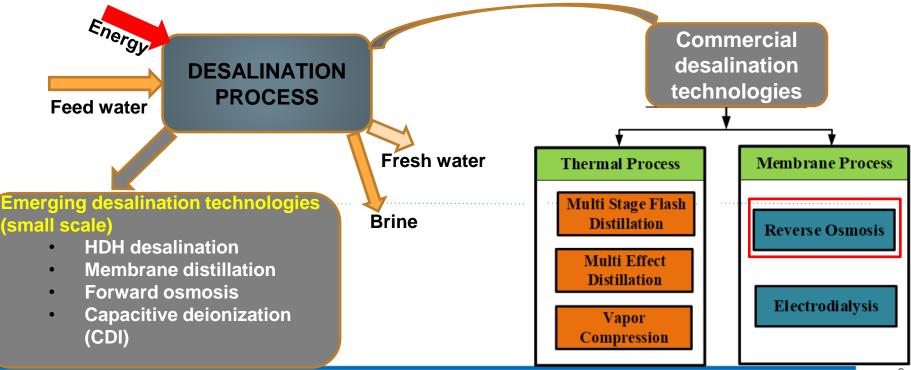
Cumulative contracted capacities globally and per region since 1944 (m3 /d) Source: Desal Data/GWI



#### Introduction – Desalination technologies distribution (Capacities in Mm3 /d) in GCC

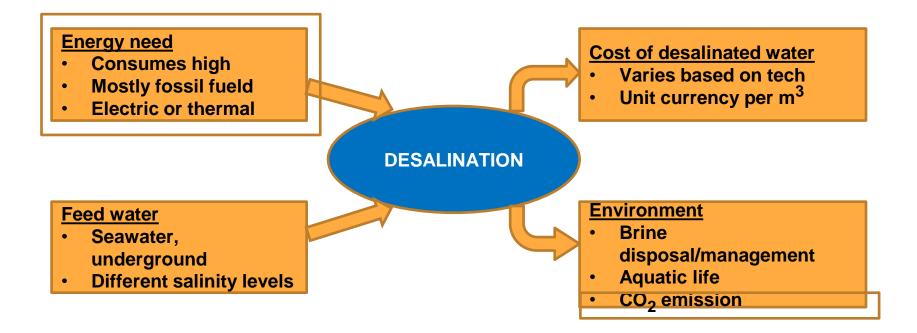







.. مسؤولية الجميع

**Overview of Desalination and Renewable Energy technologies** 




### **Desalination technologies**





#### Introduction –Important factors regarding desalination





### **Energy requirement for desalination**

| Properties                                        | Desalination technology |              |           |                   |                                |                 |                                    |
|---------------------------------------------------|-------------------------|--------------|-----------|-------------------|--------------------------------|-----------------|------------------------------------|
|                                                   | MSF                     | MED          | MVC       | TVC               | SWRO                           | BWRO            | ED                                 |
| Typical unit size (m3/day)                        | 50,000–70,000           | 5,000–15,000 | 100–3,000 | 10,000–<br>30,000 | Up to<br>128,000               | Up to<br>98,000 | 2–145,000                          |
| Electrical energy consumption (kW h/m3)           | 2.5–5                   | 2–2.5        | 7–12      | 1.8–1.6           | 4–6 with<br>energy<br>recovery | 1.5–2.5         | 2.64–5.5<br>recovery               |
| Thermal energy consumption (MJ/m3)                | 190–282                 | 145–230      | None      | 227               | None                           | None            | None                               |
| Equivalent electrical to thermal energy (kW h/m3) | 15.83–23.5              | 12.2–19.1    | None      | 14.5              | None                           | None            | None                               |
| Total electricity consumption (Kw h/m3)           | 19.58–27.25             | 14.45–21.35  | 7 – 12    | 16.26             | 4 – 6                          | 1.5–2.5         | 2.64–5.5,<br>0.7–2.5 at<br>low TDS |
| Product water quality (ppm)                       | ≈10                     | ≈10          | ≈10       | ≈10               | 400–500                        | 200–500         | 150-500                            |



#### **Costs of desalinated water**

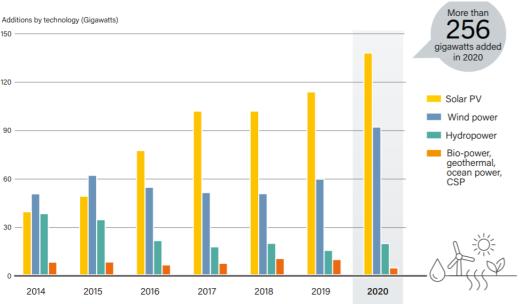
| Desalination method    |                      | Capital costs<br>(million US\$/MLD) |         | O&M costs (US\$/m³) |         | Cost of water production<br>(US\$m <sup>3</sup> ) |         |
|------------------------|----------------------|-------------------------------------|---------|---------------------|---------|---------------------------------------------------|---------|
|                        |                      | Range                               | Average | Range               | Average | Range                                             | Average |
| MSF                    |                      | 1.7-3.1                             | 2.1     | 0.22-0.30           | 0.26    | 1.02-1.74                                         | 1.44    |
| MED-TVC                |                      | 1.2-2.3                             | 1.4     | 0.11-0.25           | 0.14    | 1.12-1.50                                         | 1.39    |
| SWRO Mediterranean Sea |                      | 0.8-2.2                             | 1.2     | 0.25-0.74           | 0.35    | 0.64-1.62                                         | 0.98    |
| SWRO Arabian Gulf      |                      | 1.2-1.8                             | 1.5     | 0.36-1.01           | 0.64    | 0.96-1.92                                         | 1.35    |
| SWRO Red Sea           | a                    | 1.2-2.3                             | 1.5     | 0.41-0.96           | 0.51    | 1.14-1.70                                         | 1.38    |
| SWRO Atlanti           | c and Pacific oceans | 1.3-7.6                             | 4.1     | 0.17-0.41           | 0.21    | 0.88-2.86                                         | 1.82    |
| Hybrid                 | MSF/MED              | 1.5-2.2                             | 1.8     | 0.14-0.25           | 0.23    | 0.95-1.37                                         | 1.15    |
|                        | SWRO                 | 1.2-2.4                             | 1.3     | 0.29-0.44           | 0.35    | 0.85-1.12                                         | 1.03    |

Note: Costs are at 2016 values. MED-TVC = multiple effect distillation with thermal vapor compression; MLD = million liters per day; MSF = multistage flash distillation; O&M = operation and maintenance; SWRO = seawater reverse osmosis.

Source: World bank group – March 2019

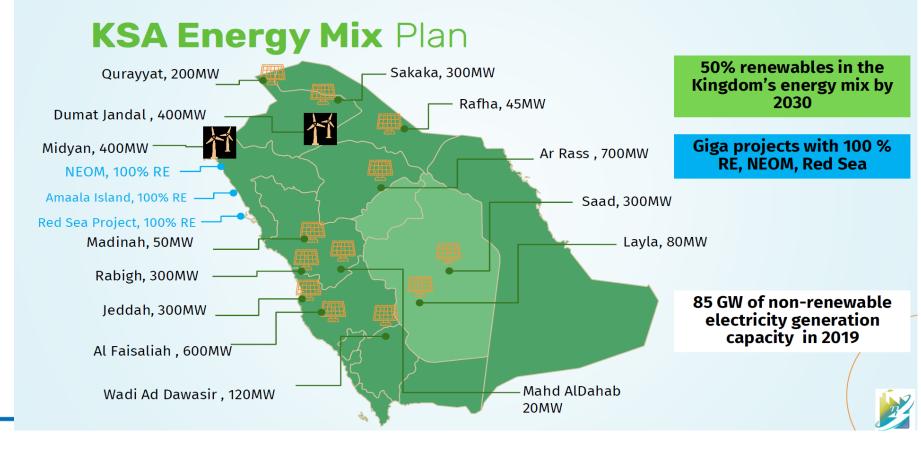


### **Overview of Renewable Energy (RE)**


Why renewable energy ?

- Save excess crude oil and increase its export
- Grow contribution of renewables to the national energy mix
- Increase the localization of non-oil sectors
- Reduce carbon emissions (pollutions)
- Ensure the sustainable use of water resources
- Develop economic ties with global partners




### **Global Renewable Energy**

- With increasing renewable energy power generation capacity, desalination plants powered by RE are most promising.
- By 2020, a total of 2,839 GW of power is generated through RES with a share of 29% in global electric production.
- Solar PV generation of 139 GW (50% of REs) and wind generation of 93 GW (36%) were added respectively in 2020.

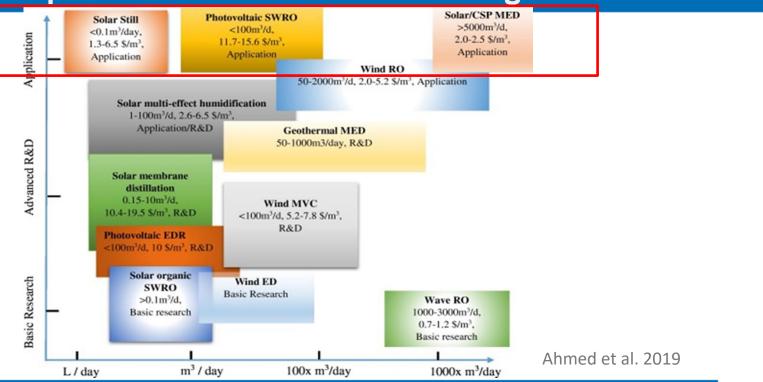


#### Source: ren21.net/










حامة المياه .. مسؤولية الجميع

# Progress of Renewable Energy Water Desalination

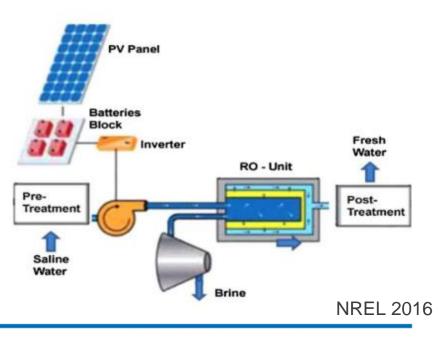


#### Status of operated RE desalination technologies





### Energy consumption and water production costs of RE


| <b>RE-desalination process</b> | Typical capacity (m³/day)                     | Energy demand (kW he/m <sup>3</sup> )  | Water production cost (USS/m <sup>3</sup> )                   |  |
|--------------------------------|-----------------------------------------------|----------------------------------------|---------------------------------------------------------------|--|
| Solar still                    | < 100                                         | Solar passive                          | 1.3-6.5                                                       |  |
| Solar MEH                      | 1-100                                         | Thermal: 29.6<br>Electrical: 1.5       | 2.6-6.5                                                       |  |
| Solar MD                       | 0.15-10                                       | 45-59                                  | 10.5-19.5                                                     |  |
| Solar pond/MED                 | 20,000-200,000                                | Thermal: 12.4–24.1<br>Electrical: 2–3  | 0.71-0.89                                                     |  |
| Solar pond/RO 20,000-200,000   |                                               | Seawater: 4–6<br>Brackish water: 1.5–4 | 0.66-0.77                                                     |  |
| Solar CSP/MED                  | lar CSP/MED > 5,000                           |                                        | 2.4-2.8                                                       |  |
| Solar PV/RO                    | < 100                                         | Seawater: 4–6<br>Brackish water: 1.5–4 | 11.7–15.6<br>6.5–9.1                                          |  |
| Solar PV/EDR                   | < 100                                         | 1.5-4                                  | 10.4-11.7                                                     |  |
| Wind/RO                        | d/RO 50–2,000 Seawater: 4–6<br>Brackish water |                                        | 6.6–9.0 small capacity<br>1.95–5.2 for 1000 m <sup>3</sup> /d |  |
| Wind/MVC                       | < 100                                         | 7–12                                   | 5.2-7.8                                                       |  |
| Geothermal/MED                 | 80                                            | Thermal: 12.4–24.1<br>Electrical: 2–3  | 2–2.8                                                         |  |

Esfahani et al. 2016



### Example PV-RO desalination pilot plants

| Location                 | PV Capacity | Production                 |
|--------------------------|-------------|----------------------------|
| Al-khafji, KSA           | 15 MW       | 60,000 m <sup>3</sup> /day |
| Jordan                   | 32 kWp      | 40 m <sup>3</sup> /day     |
| Nauru,<br>Australia      | 131 kWp     | 100 m³/day                 |
| Oman                     | 3.25 kW     | 7.5 m³/day                 |
| Ethens                   | 18 modules  | 0.35 m <sup>3</sup> /day   |
| Gran Canarian<br>Islands | 4.8 kW      | 3 m³/day                   |
| Egypt                    |             | 5 m <sup>3</sup> /day      |



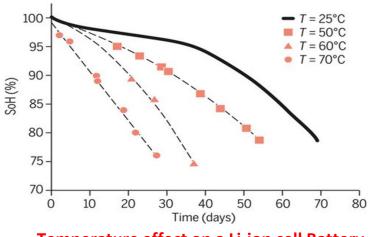


#### **AL-KHAFJI Solar SWRO Plant Project**

- World's **first** large scale solar powered desalination project.
- Reduction of Power Consumption From 4.2 kWh/m<sup>3</sup> to 3.7 kWh/m<sup>3</sup>.
- Advanced Dosing System Resulted in **15%** Reduction in Chemical Usage.
- Project Capacity **60,000** m<sup>3</sup> per day.






### **RE Desalination challenges**

- High investment and financial burden.
- Salt and air conditions effect on the solar system performance.
- Renewable energy sources are Non-dispatchable and intermittent nature.
- Lack of reliable solar resources data in some regions.
- Water crisis in remote areas and small communities
- Environmental issues related to desalination like brine disposal.
   Chemicals and waste membranes



### **RE Desalination challenges...**

- KSA harsh conditions (temperature , dust, UV ) have an impact on the performance of PV modules, solar receivers and batteries.
- Lack of standards and policies regarding grid integration of RES.



**Temperature effect on a Li-ion cell Battery** 





### **RE Desalination Opportunities**

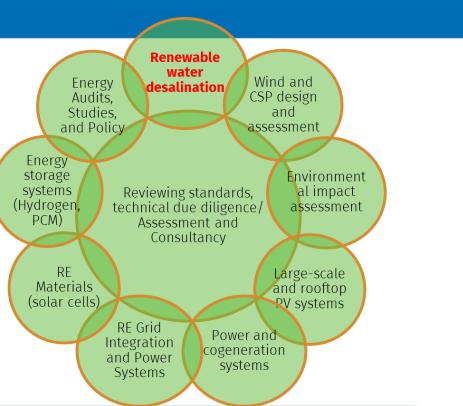
- Hybrid renewable energy sources, energy efficiency and advanced desalination technologies.
- Advanced system control and optimization with intermittency, and autonomous grids.
- Implementation of energy storage.
- Develop a regulatory framework for regulating, evaluating and monitoring the performance of the Renewable Energy water desalination industry.



استدامة المياه .. مسؤولية الجميع

# IRC-REPS/KFUPM EXPERIENCE IN RE DESALINATION




### **IRC-REPS Focus Areas**

| RE Materials Pow                                                                                                                                                                                                                      | ver Systems                                                                                                                                                                                                                                                                                                                                                                                                    | Hybrid Renewables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Intelligent Energy<br>Management                                                                                                                                                                                                                                                                                                                                                                            | Policies & Regulations                                                                                                                                                                                                                                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| under harsh weather<br>(temperature, UV, and<br>dust).<br>Thermal (heat)<br>management in<br>different renewable<br>energy technologies<br>and smart building.<br>Wind turbine and<br>concentrated solar<br>power (CSP)<br>materials. | Power system planning,<br>operation, control,<br>protection, stability,<br>and resilience<br>considering bulk RE<br>integration.<br>Smart grids, micro-<br>grids, IR4.0, IIoT,<br>cybersecurity, block-<br>chain technologies.<br>Energy storage<br>systems and electric<br>vehicle integration into<br>electric grid.<br>Electricity markets and<br>power electronic<br>converters for RE grid<br>integration | <ul> <li>Integrated and hybrid<br/>renewable energy systems<br/>for power, cooling, and<br/>heating applications.</li> <li>Hybrid RE systems for<br/>ammonia and hydrogen<br/>production.</li> <li>Hybrid RE systems for water<br/>desalination.</li> <li>Hybrid RE systems for other<br/>applications (agriculture,<br/>park, and military).</li> <li>RE systems assessment<br/>under harsh weather<br/>conditions (dust, UV, and<br/>temperature).</li> <li>RE systems maintenance<br/>(cleaning and operation).</li> </ul> | <ul> <li>Smart energy systems management for buildings, industries, and commercial facilities.</li> <li>Application of IR 4.0 technologies for energy managements.</li> <li>Energy auditing and efficiency improvement recommendations for buildings and plants.</li> <li>Policies and standards for energy systems and IR 4.0 technologies.</li> <li>Supporting Saudi Energy Efficiency Center.</li> </ul> | <ul> <li>Would provide a research and academic hub for the interdisciplinary study of energy policy.</li> <li>Work collaboratively with stakeholders and researchers on the economics and politics of energy to find new and innovative approaches for enabling the transition to a low carbon, sustainable and affordable energy system in KSA.</li> </ul> |



### **KFUPM/IRC-REPS** Activities

Design / Modelling, Simulation, and Optimization / Demonstration / Reviewing standards, technical due diligence/ Assessment and Consultancy





### **Selected RE Desalination Projects**

|       | Research Cluster                                                                                            | Projects | Thesis                | Publications                                              |
|-------|-------------------------------------------------------------------------------------------------------------|----------|-----------------------|-----------------------------------------------------------|
| Solar |                                                                                                             | 70+      | 40+                   | 700+                                                      |
| Wind  |                                                                                                             | 30+      | 7                     | 100+                                                      |
|       | Desalination                                                                                                |          | 20+                   | 200+                                                      |
| No.   | Title                                                                                                       |          | Status                | Agency                                                    |
| 1     | Innovative Sustainable Water Desalination hybrid system                                                     |          | In progress,<br>2016- | DISC-KFUPM                                                |
| 2     |                                                                                                             |          | In progress<br>2017-  | DSR, KFUPM                                                |
| 3     | Seawater Desalination using Thermal, Solar, and<br>Hybrid Systems, including Humidification<br>Desalination |          | 2010-2014             | Center for Clean Water<br>and Clean Energy, MIT-<br>KFUPM |



#### منتدى المياه السعودي saudi water forum SWF 20

حامة المياه .. مسؤولية الجميع

## Renewable Energy Laboratories and Facilities at KFUPM



#### **Renewable Energy desalination solutions at KFUPM**

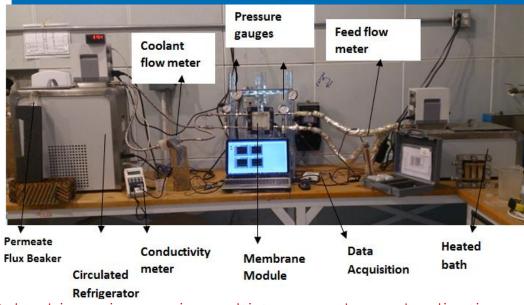


Solar PV-Wind hybrid desalination system at KFUPM

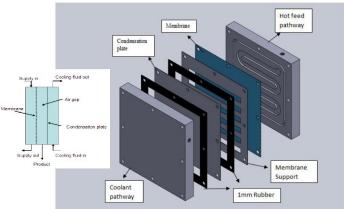


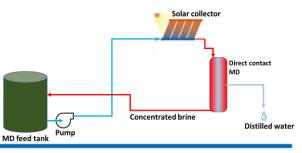
Solar air-heated HDH desalination system






Solar PV-RO unit



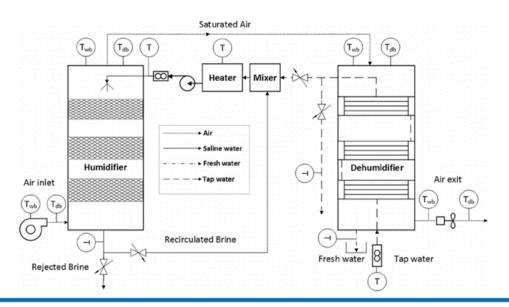

#### Renewable Energy desalination solutions at KFUPM..



#### **AGMD Cell**






Solar driven air sweeping multistage membrane desalination

- An Air sweeping multistage MD modules was designed and constructed
- Integration of solar heating system to MD system was investigated

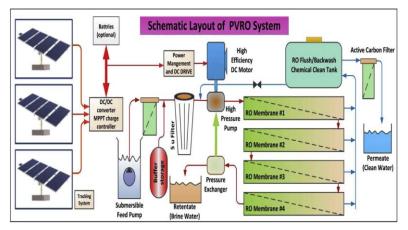


#### Renewable Energy desalination solutions at KFUPM..

- **A novel design** of a humidification-dehumidification (HDH) desalination systems with heat recovery options was proposed and investigated.
- The cost of the desalinated water produce by Modified HDH ranges between **\$0.79/m3 and \$2.25/m3**



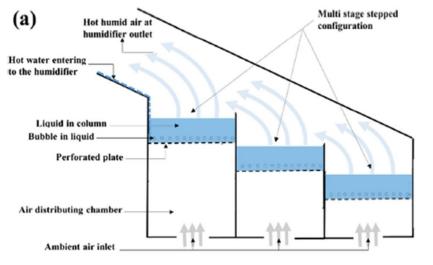





#### Renewable Energy desalination solutions at KFUPM...

- A **controller that** generates the optimum set point for feed and pressure control loop was designed and tested
- **An Optimized tracked-PV panels system** was developed and implemented to improve water production of a community scale PVRO water desalination system.




#### Process flow diagram and Setup PV-RO water desalination





#### Renewable Energy desalination solutions at KFUPM...

• **A novel design** of a multistage stepped bubble column humidifier for the humidification of air was developed and tested.

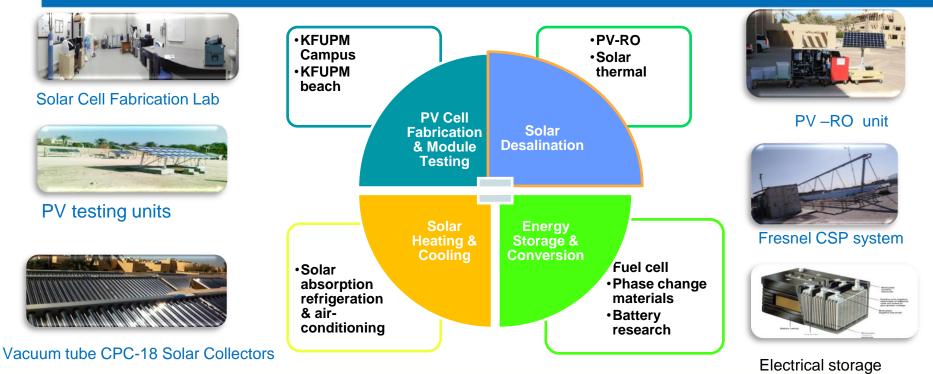




Proposed design and set up of the multistage bubble column humidifier



#### Renewable Energy desalination solutions at KFUPM...




Carrier gas extraction plant using HDH technique

- KFUPM faculty and MIT developed high efficient humidification-dehumidification technique.
- Many **patents obtained**, and a spin-off company in the USA established.
- Invented HDH process implemented in many industrial applications (Desalination, treatment and recycle contaminated oilfield water).



### **Renewable Energy Research Facilities at KFUPM**





### **Thin Film Laboratories**



**Solar Simulator** 



Solar cell measurement system



Kithley I-V and C-V system





**Stylus Profilometer** 

μ-PCD



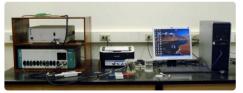
Ellipsometer



**FT-IR spectrometer** 



Hall Effect System


#### Others

- Dual target sputtering system
- Electrospinner
- OE SR system
- Florolog3 PL system
- Weather station
- JASCO UV-Vis system
- Thermal evaporation system
- Tubular furnace
- Accelerated Weathering Tester

Plasma Enhanced Chemical Vapor Deposition (PECVD)- to be operational soon



### **Energy Storage Laboratories**



Potentiostat/Galvanostat



Pure Lab-2GB Glovebox



**Furnaces** 



**Fuel Test Station** 



**Electro-chemical Reactor** 



Membrane Casting Machine



**Gas Chromatograph** 



### **Solar Thermal Laboratories**



/acuum tube CPC-11 Solar Collectors







Universität Stuttgart





Efficiency: 45%  $T_v: -6^{\circ}C$   $T_e: 8.5^{\circ}C$ min



Absorbtion Chiller (front) & Hydraullic Unit (back)





### **RE Grid Integration Laboratories**



Hardware capabilities: •RTDS •STATCOM/FACTS Power Amplifier Active Filter •SEL Relays Phasor Measurement Units •OPAL-RT •dSPACE Controller •Wind Generator (PMSG, IG) •PV Panel and PV Simulator Advanced Power Electronics •Electrical Machine Programmable AC/DC Loads/Supply



### **KFUPM On-campus Test facility**







→ 0 deg → 15 deg → 26 deg → 30 deg → 45 deg → 60 deg → 75 deg → 90 deg

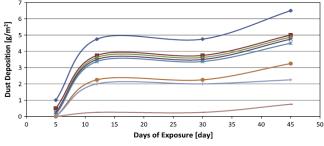
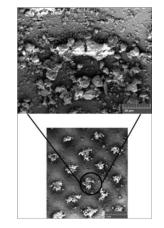
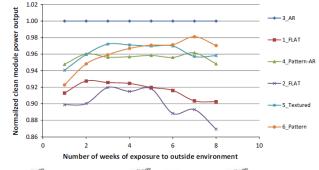





Fig. 8. Dust deposition with exposure periods for different tilt angle.













### **RE Research Facilities at KFUPM Beach**











#### PV testing system



Hybrid (PV-Wind) setup (CER -RI)

