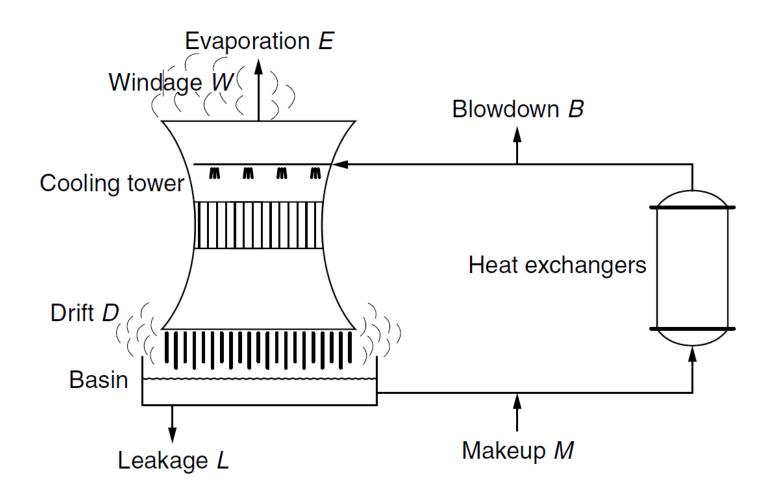
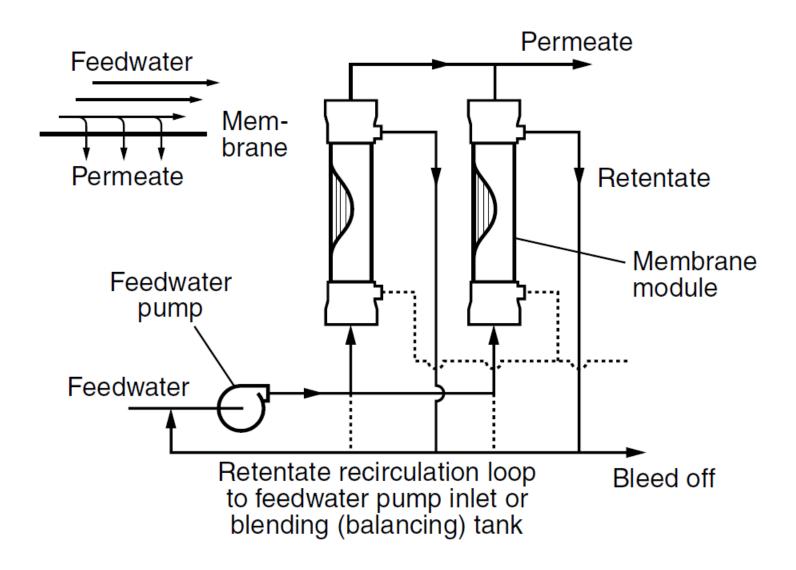
# WATER RECYCLING AND REUSE for WaterHarmony+ august 2016

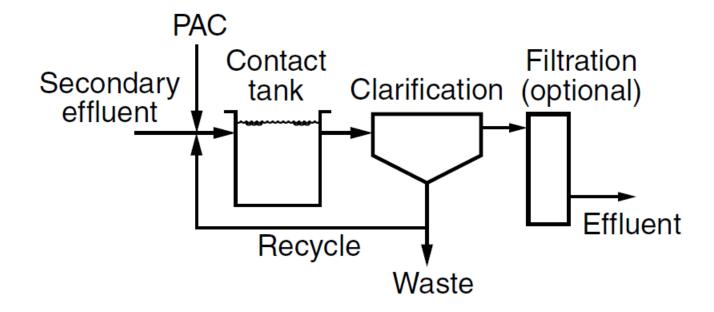
Kontsevoi Sergii Associate Professor Faculty of Chemical Technology NTUU "KPI", Kyiv, Ukraine serkon157@ukr.net


(skype and gmail.com)

### Basic sources for this presentation

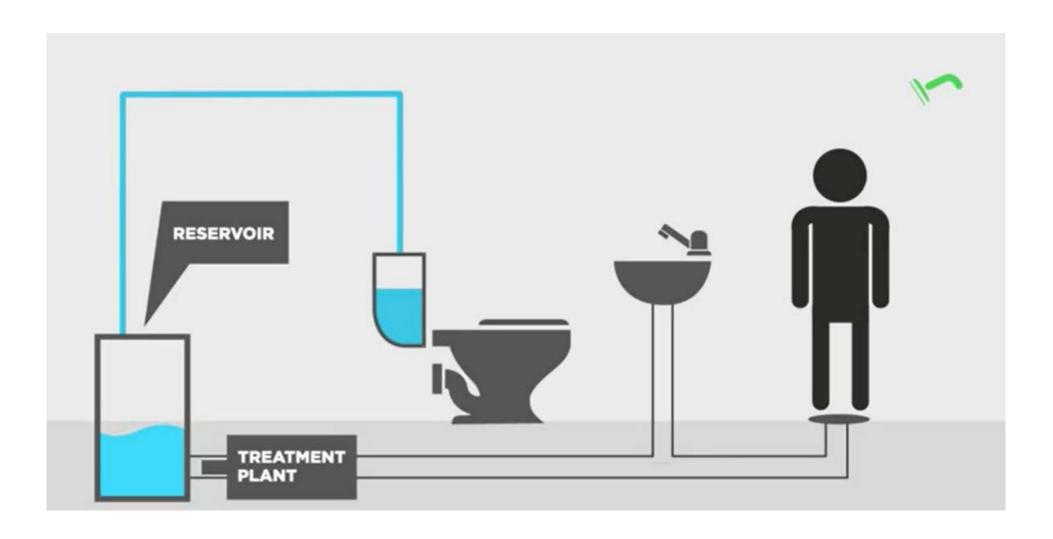

- Water Encyclopedia, Volume 1, Domestic, Municipal, and Industrial Water Supply and Waste Disposal. Jay H. Lehr (Editor-in-Chief), Jack Keeley (Editor), Janet Lehr (Associate Editor). ISBN: 978-0-471-73687-5. 952 pages, 2005
- Water reuse: issues, technologies, and applications / written by Takashi Asano ... [et al.]. ISBN-13:978-0-07-145927-3. 1503 pages, 2007
- PUB, Singapore's National Water Agency: <a href="https://www.pub.gov.sg">https://www.pub.gov.sg</a>

https://www.youtube.com/user/pubwebadmin


### Cooling water system



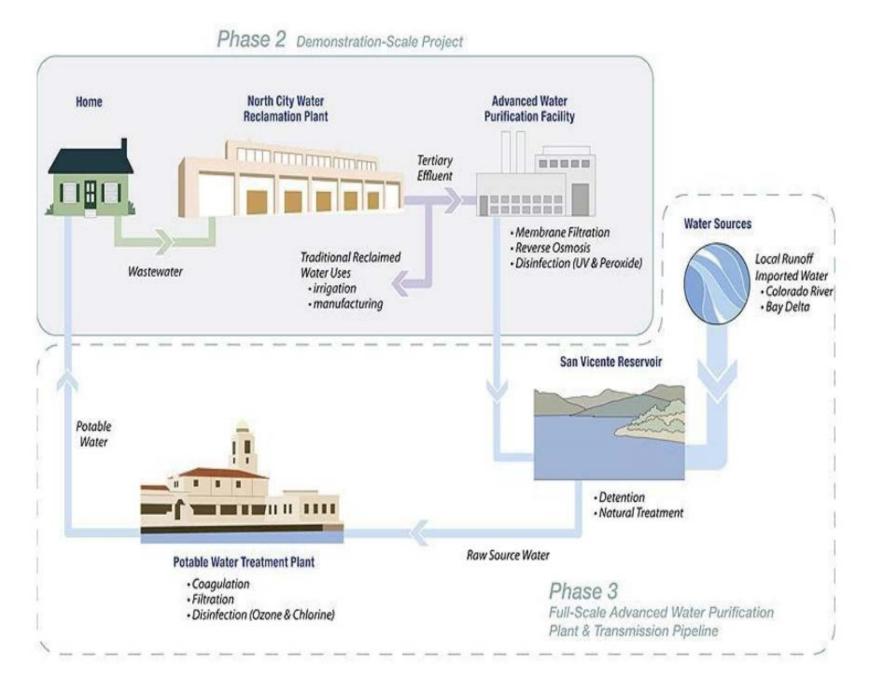
### Pressurized cross-flow membrane system




### Mixed PAC contactor with gravity separation



Powdered activated carbon (PAC)


### Greywater recycling



### Ecocyclet Water Reuse System

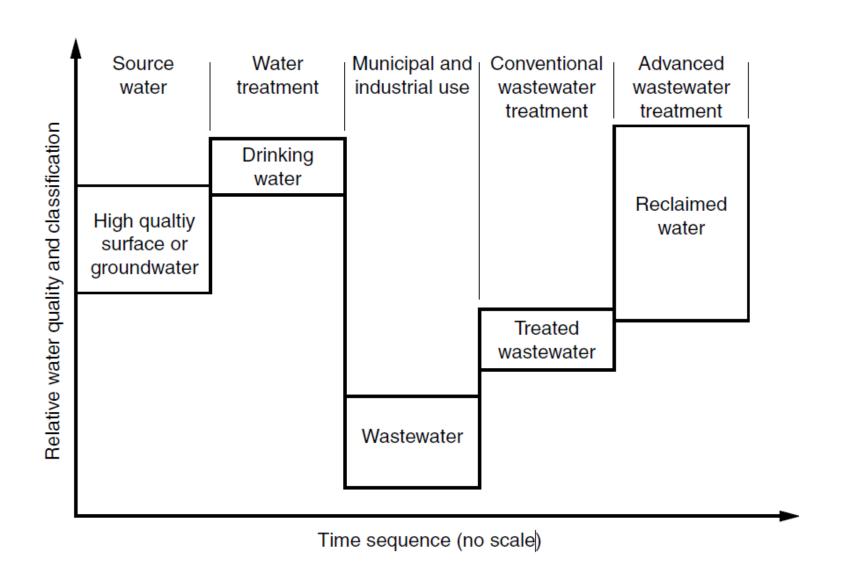


### Demonstration Project, City of San Diego



### BASIC WORKING TERMINOLOGY

| Potable water           | Water suitable for human consumption without deleterious health risks. The term drinking water is a preferable term better understood by the community at large.                                                                         |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Potable reuse, indirect | The planned incorporation of reclaimed water into a raw water supply such as in potable water storage reservoirs or a groundwater aquifer, resulting in mixing and assimilation, thus providing an environmental buffer                  |
| Potable reuse, direct   | The introduction of highly treated reclaimed water either directly into the potable water supply distribution system downstream of a water treatment plant, or into the raw water supply immediately upstream of a water treatment plant |
| Water reclamation       | Treatment or processing of wastewater to make it reusable with definable treatment reliability and water quality criteria                                                                                                                |
| Water recycling         | The use of wastewater that is captured and redirected back into<br>the same water use scheme such as in industry. However, the<br>term water recycling is often used synonymously with water<br>reclamation                              |
| Water reuse             | The use of treated wastewater for a beneficial use, such as agricultural irrigation and industrial cooling.                                                                                                                              |


#### BENEFITS OF USING RECLAIMED WATER

- It saves millions of gallons of drinking water each day.
- Its use for nonpotable (nondrinking) purposes is less expensive for the vast majority of of customers.
- It delays the need for developing costly new water sources and building very expensive treatment plants.
- There is no odor or staining fromits use.
- It allows a city to comply with permits relating to its<sub>10</sub>
   water supply and wastewater treatment.

### Water reuse categories and typical applications

| Category                        | Typical application                                                                                |
|---------------------------------|----------------------------------------------------------------------------------------------------|
| Agricultural irrigation         | Crop irrigation<br>Commercial nurseries                                                            |
| Landscape irrigation            | Parks School yards Freeway medians Golf courses Cemeteries Greenbelts Residential                  |
| Industrial recycling and reuse  | Cooling water Boiler feed Process water Heavy construction                                         |
| Groundwater recharge            | Groundwater replenishment<br>Salt water intrusion control<br>Subsidence control                    |
| Recreational/environmental uses | Lakes and ponds Marsh enhancement Streamflow augmentation Fisheries Snowmaking                     |
| Nonpotable urban uses           | Fire protection Air conditioning Toilet flushing                                                   |
| Potable reuse                   | Blending in water supply reservoirs<br>Blending in groundwater<br>Direct pipe to pipe water supply |

## Water quality changes during municipal uses of water in a time sequence and the concept of water reclamation and reuse



#### Constituents of Reclaimed Water

| Classification  | Constituent                                         |
|-----------------|-----------------------------------------------------|
| Conventional    | Total suspended solids                              |
|                 | Colloidal solids                                    |
|                 | Biochemical oxygen demand                           |
|                 | Chemical oxygen demand                              |
|                 | Total organic carbon                                |
|                 | Ammonia                                             |
|                 | Nitrate                                             |
|                 | Nitrite                                             |
|                 | Total nitrogen                                      |
|                 | Phosphorus                                          |
|                 | Bacteria                                            |
|                 | Protozoan cysts and oocysts <sup>a</sup>            |
|                 | $Viruses^b$                                         |
| Nonconventional | Refractory organics                                 |
|                 | Volatile organic compounds                          |
|                 | Surfactants                                         |
|                 | Metals                                              |
|                 | Total dissolved solids                              |
| Emerging        | Prescription and nonprescription drugs <sup>c</sup> |
|                 | Home care products                                  |
|                 | Veterinary and human antibiotics                    |
|                 | Industrial and household products                   |
|                 | Sex and steroidal hormones                          |
|                 | Other endocrine disrupters                          |

- The term conventional is used to define those constituents measured in mg/L that are the basis for designing most conventional wastewater treatment plants.
- Nonconventional applies to those constituents that may have to be removed or reduced using advanced wastewater treatment processes before the tank can be used beneficially.
- The term emerging is applied to those classes of compounds measured in the micro- or nanogram/L range that may pose long-term health concerns and environmental problems as more is known about the compounds. In some cases, these compounds cannot be removed effectively, even by advanced treatment processes.

<sup>&</sup>lt;sup>a</sup>Value per 100 mL.

<sup>&</sup>lt;sup>b</sup>Plaque-forming units/100 mL.

<sup>&</sup>lt;sup>c</sup>Pharmaceutically active substances.

### Typical Analysis Of Municipal Wastewater

Grease

|                                  | C      | oncentration | 1    |                            |                                      |
|----------------------------------|--------|--------------|------|----------------------------|--------------------------------------|
| Constituent, mg/L                | Strong | Medium       | Weak |                            |                                      |
| Solids, total                    | 1200   | 720          | 350  | Contaminant                | Source                               |
| Dissolved, total                 | 850    | 500          | 250  |                            |                                      |
| Fixed                            | 525    | 300          | 145  | Suspended solids           | Domestic use, industrial wastes,     |
| Volatile                         | 325    | 200          | 105  |                            | erosion by infiltration/inflow       |
| Suspended, total                 | 350    | 220          | 100  | Biodegradable organics     | Domestic waste                       |
| Fixed                            | 75     | 55           | 20   |                            |                                      |
| Volatile                         | 275    | 165          | 80   |                            |                                      |
| Settleable solids, mL/L          | 20     | 10           | 5    | _                          |                                      |
| Biochemical oxygen demand,       | 400    | 220          | 110  | Pathogens                  | Domestic waste                       |
| 5-day, 20 °C (BOD <sub>5</sub> ) |        |              |      | Nutrients                  | Domestic and industrial waste        |
| Total organic carbon (TOC)       | 290    | 160          | 80   | Refractory organics        | Industrial waste                     |
| Chemical oxygen demand (COD)     | 1000   | 500          | 250  |                            |                                      |
| Nitrogen, total as N             | 85     | 40           | 20   | Heavy metals               | Industrial waste, mining etc.,       |
| Organic                          | 35     | 15           | 8    |                            |                                      |
| Free ammonia                     | 50     | 25           | 12   | Dissolved inorganic solids | Increase above level in water supply |
| Nitrites                         | 0      | 0            | 0    |                            | by domestic and/or industrial use    |
| Nitrates                         | 0      | 0            | 0    | -                          | _                                    |
| Phosphorus, total as P           | 15     | 8            | 4    |                            |                                      |
| Organic                          | 5      | 3            | 1    |                            | . 147                                |
| Inorganic                        | 10     | 5            | 3    | Importan                   | t Wastewater                         |
| Chlorides                        | 100    | 50           | 30   |                            |                                      |
| Alkalinity, as CaCO3             | 200    | 100          | 50   | Contamii                   | nants                                |

### Suggested Treatment

| Type of Use                                   | Recommended Degree of Treatment               |                                                    |
|-----------------------------------------------|-----------------------------------------------|----------------------------------------------------|
| Urba                                          | n                                             | Preliminary Treatment Processes:                   |
| Landscape irrigation, fire protection         | Secondary, filtration, disinfection           | Screening. Grit Removal.                           |
| Restricted access irrigation                  | Secondary, disinfection                       | 9                                                  |
| Construction                                  | Secondary, disinfection                       | Comminution. Equalization.                         |
| Industrial                                    | Reuse                                         | <b>Primary</b> Treatment Processes: Sedimentation. |
| Industrial cooling, once-through              | Secondary                                     |                                                    |
| Industrial cooling, recirculated              | Secondary, disinfection                       | Secondary Treatment Processes:                     |
|                                               |                                               | Activated Sludge Processes. Plug                   |
| Agricultural I                                | rrigation                                     | Flow. Step Feed. Tapered Aeration.                 |
| Food products, not commercially processed     | Secondary, filtration, disinfection           | Complete Mix. Contact Stabilization.               |
| Food products, commercially processed         | Secondary, disinfection                       | Sequencing Batch Reactor. Extended                 |
| Nonfood products                              | Secondary, disinfection                       | Aeration. Fixed Film Processes.                    |
| Habitat Restoration                           | n/Recreational                                | Stabilization Ponds.                               |
| Recreational impoundments                     | Secondary, filtration, disinfection           | Advanced Treatment Processes:                      |
| Landscape impoundments                        | Secondary, disinfection                       | Nitrification. Biological Phosphorus               |
| Environmental (wetlands, stream augmentation) | Secondary, disinfection                       | Removal. Denitrification. Biological               |
| Groundwater                                   | Recharge                                      | Dual-Nutrient Removal. Air Stripping.              |
| Surface irrigation                            | Primary                                       | Coagulation / Sedimentation. Filtration.           |
| Subsurface injection                          | Secondary                                     | Activated Carbon Adsorption.                       |
| Augmentation of Po                            | otable Supplies                               | Membrane Systems.                                  |
| Indirect reuse, aquifer spreading             | Secondary, disinfection                       | Disinfection Processes:                            |
| Indirect reuse, aquifer injection             | Secondary, filtration, disinfection, advanced | Chlorination/Dechlorination. Ozonation             |
| Indirect reuse, surface augmentation          | Secondary, filtration, disinfection, advanced | Ultraviolet Light Disinfection.                    |

#### Treatment Levels Achievable from Various Combinations of Unit Operations and Processes Used for Water Reclamation

|                                                                                                                            | Typical Effluent Quality, mg/L, Except Turbidity, NTU |                  |         |         |                    |                    |           |
|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------|---------|---------|--------------------|--------------------|-----------|
|                                                                                                                            | TSS                                                   | $\mathrm{BOD}_5$ | COD     | Total N | NH <sub>3</sub> -N | PO <sub>4</sub> -P | Turbidity |
| Activated sludge + granular medium filtration                                                                              | 4-6                                                   | <5-10            | 30-70   | 15-35   | 15-25              | 4-10               | 0.3-5     |
| Activated sludge + granular<br>medium filtration + carbon<br>adsorption                                                    | <5                                                    | <5               | 5-20    | 15-30   | 15-25              | 4-10               | 0.3-3     |
| Activated sludge/nitrification single stage                                                                                | 10-25                                                 | 5-15             | 20-45   | 20-30   | 1–5                | 6-10               | 5-15      |
| Activated sludge/nitrification<br>denitrification separate stages                                                          | 10-25                                                 | 5-15             | 20-35   | 5-10    | 1-2                | 6-10               | 5-15      |
| Metal salt addition to activated<br>sludge +nitrification/<br>denitrification separate stages                              | ≤5-10                                                 | ≤5−10            | 20-30   | 3–5     | 1–2                | ≤1                 | 0.3-2     |
| Biological phosphorus removal <sup>a</sup>                                                                                 | 10-20                                                 | 5-15             | 20 - 35 | 15-25   | 5-10               | $\leq 2$           | 5-10      |
| Biological nitrogen and phosphorus<br>removal + filtration                                                                 | ≤10                                                   | <5               | 20-30   | ≤5      | $\leq 2$           | ≤2                 | 0.3-2     |
| Activated sludge + granular<br>medium filtration + carbon<br>adsorption +reverse osmosis                                   | ≤1                                                    | ≤1               | 5-10    | <2      | <2                 | ≤1                 | 0.01-1    |
| Activated sludge/nitrification-<br>denitrification +granular<br>medium filtration + carbon<br>adsorption + reverse osmosis | ≤1                                                    | ≤1               | 2-8     | ≤1      | ≤0.1               | ≤0.5               | 0.01-1    |
| Activated sludge/nitrification-<br>denitrification and phosphorus<br>removal + microfiltration<br>+reverse osmosis         | ≤1                                                    | ≤1               | 2-8     | ≤0.1    | ≤0.1               | ≤0.5               | 0.01-1    |

 $<sup>^</sup>a\mathrm{Removal}$  process occurs in the main flowstream as opposed to side stream process.

### Summary of EPA Suggested Guidelines for Water Reuse

| Levels of Treatment                  | Types of Reuse                                                           | Reclaimed Water<br>Quality                                         | Reclaimed Water<br>Monitoring              | Setback Distances                                                           |
|--------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------------------------|
| 1. Disinfected tertiary <sup>b</sup> | ${ m Urban\ reuse}^c$                                                    | pH = 6-9                                                           | pH = weekly                                | 15 m (50 ft) to potable water supply wells $^d$                             |
|                                      | Food crop irrigation                                                     | $\mathrm{BOD}_5 \leq 10~\mathrm{mg/L}$ Turb. $\leq 2~\mathrm{NTU}$ | BOD = weekly<br>Turb. = cont.              |                                                                             |
|                                      | Recreational impoundments                                                | $E. \ coli = 	ext{none}$<br>Res. $Cl_2 \ge 1 \ 	ext{mg/L}$         | $E. \ coli = daily$<br>Res. $Cl_2 = cont.$ |                                                                             |
| 2. Disinfected secondary             | Restricted-access-area irrigation                                        | pH = 6-9                                                           | pH = weekly                                | 30 m (100 ft) to areas accessible<br>to the public (if spray<br>irrigation) |
|                                      | Food crop irrigation<br>(commercially processed)                         | $BOD_5 = 30 \text{ mg/L}$<br>TSS = 30  mg/L                        | BOD = weekly<br>TSS = cont.                |                                                                             |
|                                      |                                                                          | $\textit{E. coli} = 200/100 \; \text{mL}$                          | $E. \ coli = daily$<br>Res. $Cl_2 = cont.$ | 90 m (300 ft) to potable water<br>supply well                               |
|                                      | Nonfood crop irrigation<br>Landscape impoundments<br>(restricted access) | $Res. \ Cl_2 \geq 1 \ mg/L$                                        |                                            |                                                                             |
|                                      | Construction<br>Wetlands habitat                                         |                                                                    |                                            |                                                                             |

<sup>&</sup>lt;sup>a</sup>From Reference 1.

EPA - the U.S. Environmental Protection Agency

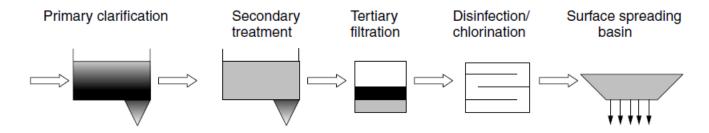
<sup>&</sup>lt;sup>b</sup>Filtration of secondary effluent.

<sup>&</sup>lt;sup>c</sup>Uses include landscape irrigation, vehicle washing, toilet flushing, fire protection, and commercial air conditioners.

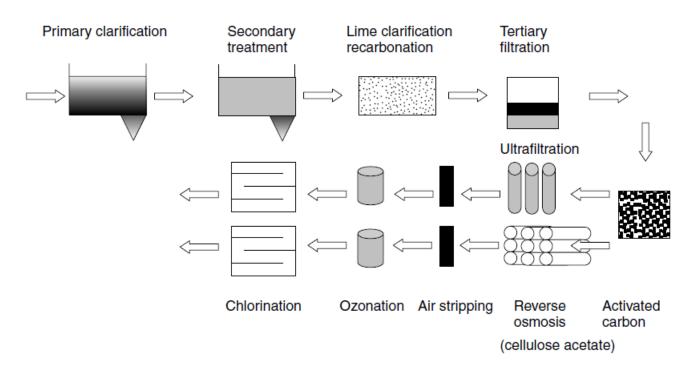
<sup>&</sup>lt;sup>d</sup>Setback increases to 150 m (500 ft) if impoundment is not sealed.

### A Comparison of Wastewater Treatment and Recycling Technologies

| Wastewater                                        | 975 (975)                |                  | Cost (US\$ per                   |
|---------------------------------------------------|--------------------------|------------------|----------------------------------|
| Technologies                                      | Applicability $^a$       | Suitability $^b$ | Million Liters of Treated Water) |
|                                                   | A. Physical technolog    | gies             |                                  |
| Screening, filtration, and centrifugal separation | Ss & Sl IOB              | RSrT             | 20-450                           |
| Micro- and ultra-filtration                       | SI IOB                   | RSrT             | 10-400                           |
| Reverse osmosis                                   | SI IOB                   | RSrT             | 10-450                           |
| Crystallization <sup>c</sup>                      | Sl IO                    | RSrT             | 50-150                           |
| Sedimentation and gravity separation              | Ss IOB                   | RSrT             | 2-10                             |
| Flotation                                         | Ss IOB                   | RT               | 5-25                             |
| Adsorption                                        | Ss & Sl IOB              | RSrT             | 50-150                           |
|                                                   | B. Chemical technology   | gies             |                                  |
| Precipitation <sup>c</sup>                        | Sl IO                    | RT               | 15-500                           |
| Coagulation                                       | Ss & Sl I                | RT               | 20-500                           |
| Oxidation                                         | SHO                      | RSrT             | 100-2000                         |
| Ion exchange                                      | SHO                      | RSrT             | 50-200                           |
| Solvent extraction                                | SI OV                    | RSrT             | 250-2500                         |
|                                                   | C. Electrical technology | gies             |                                  |
| Electrodialysis                                   | Sl IO                    | RSrT             | 10-400                           |
| Electrolysis                                      | Sl IO                    | RSrT             | _                                |
|                                                   | D. Thermal technolog     | gies             |                                  |
| Evaporation <sup>c</sup>                          | Sl & Ss IOB              | RSrT             | 10-200                           |
| Distillation                                      | Sl IOB                   | RT               | 10-2000                          |
|                                                   | E. Biological technolo   | ogies            |                                  |
| Aerobic                                           | Sl & Ss O                | RT               | 10-200                           |
| Anaerobic                                         | Sl & Ss O                | RT               | 10-200                           |

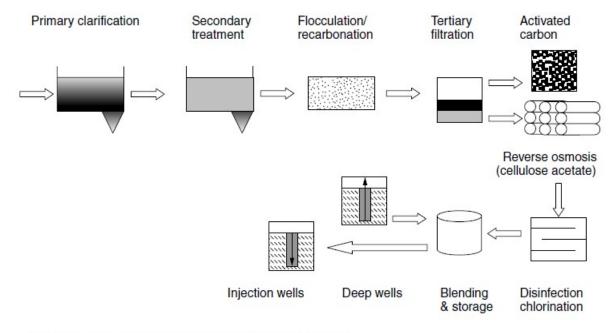

<sup>&</sup>lt;sup>a</sup>Sl: soluble; Ss: suspended; I: inorganics; O: organics; V: volatiles; B: biologicals.

<sup>&</sup>lt;sup>b</sup>R: reclamation; T: treatment; and Sr: source reduction.

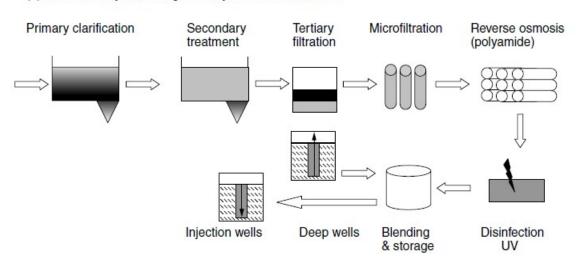

<sup>&</sup>lt;sup>c</sup>Rarely Used.

### Evolution of water reclamation process trains leading to indirect potable reuse / 1

(a) Montebello Forebay surface spreading grounds, County Sanitation Districts of Los Angeles County, California; continuous, started in 1962




(b) Denver potable water demonstration project, City of Denver, Colorado; initiated in 1974, completed in 1990

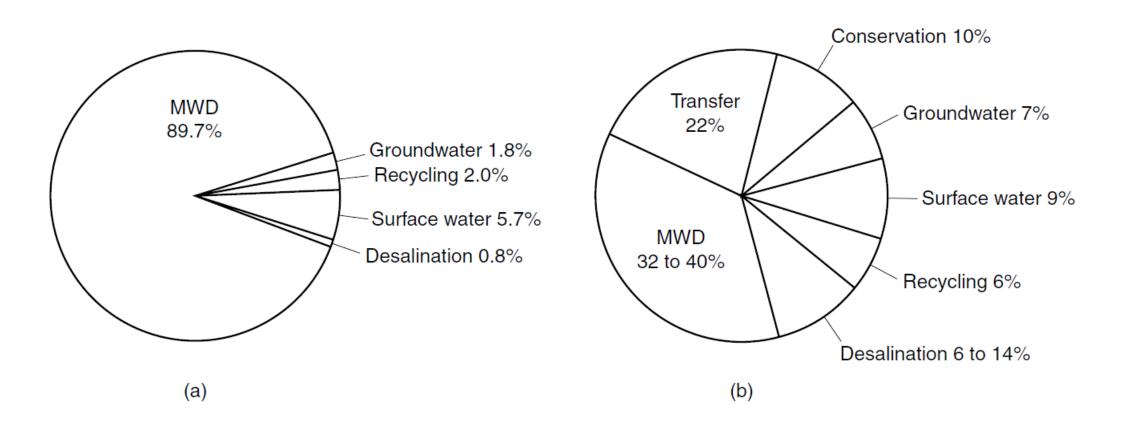



## Evolution of water reclamation process trains leading to indirect potable reuse / 2

(d) Water Factory 21, Orange County Water District; 1977



(e) Water Factory 21, Orange County Water District; 2002




#### WATER REUSE IN CALIFORNIA

- California, the most populous state (2004 population: 35.9 million) in the union, is a state where twothirds of the population live in a semiarid and desert climate.
- In many ways, California has been in the vanguard of water reclamation and reuse since its early days as a state. Water reclamation has been practiced in California as early as 1890 for agriculture.
- By 1910 at least 35 communities were using wastewater for farm irrigation, 11 without wastewater treatment, and 24 after septic tank treatment.

| Type of water reuse        | 10 <sup>6</sup><br>m³/yr | % of<br>total |
|----------------------------|--------------------------|---------------|
| Agricultural irrigation    | 297                      | 46            |
| Landscape irrigation       | 137                      | 21            |
| Industrial use             | 34                       | 5             |
| Groundwater recharge       | 60                       | 9             |
| Seawater intrusion barrier | 32                       | 5             |
| Recreational impoundment   | 41                       | 6             |
| Wildlife habitat           | 25                       | 4             |
| Geysers/energy production  | 3                        | 1             |
| Other uses or mixed type   | 19                       | 3             |
| Total                      | 648                      | 100           |

## Comparison of regional water supply sources for San Diego County, CA the years 2002 (a) and 2020 (b)



The principal source of water is from the Metropolitan WaterDistrict (MWD) of Southern Californa (Adapted from San Diego County Water Authority, 2002)

The 15 largest reclaimed water producing agencies in California<sup>a</sup>

|      |                                                      |                  | Reclaimed deliveries, 1 |      |
|------|------------------------------------------------------|------------------|-------------------------|------|
| Rank | Agency                                               | Number of plants | 1987                    | 2001 |
| 1    | County Sanitation Districts of Los<br>Angeles County | 8                | 66                      | 103  |
| 2    | City of Los Angeles                                  | 2                | 4                       | 50   |
| 3    | City of Bakersfield                                  | 2                | 30                      | 39   |
| 4    | Eastern Municipal Water<br>District                  | 4                | 12                      | 35   |
| 5    | West Basin Municipal Water District                  | 1                | 0                       | 32   |
| 6    | Irvine Ranch Water District                          | 1                | 10                      | 24   |
| 7    | City of Santa Rosa                                   | 2                | 11                      | 15   |
| 8    | Monterey Regional Water Pollution Control Agency     | 1                | 0                       | 15   |
| 9    | Orange County Water District                         | 1                | 3                       | 14   |
| 10   | City of Modesto                                      | 1                | 18                      | 13   |
| 11   | Inland Empire Utilities Agency                       | 4                | 2                       | 12   |
| 12   | Las Virgenes Municipal Water District                | 1                | 5                       | 8    |
| 13   | East Bay Municipal Utility Distict                   | 1                | 0                       | 7    |
| 14   | City of San Jose                                     | 1                | 0                       | 7    |
| 15   | South Tahoe Public Utility District                  | 1                | 6                       | 6    |
|      | Total                                                | 31               | 167                     | 380  |

<sup>&</sup>lt;sup>a</sup>Adapted from State of California (1990) and (2002).

Note: There were over 200 water reclamation plants in California delivering reclaimed water statewide in 2001, but 59 percent (380/648) of the reclaimed water came from the 15 largest water reclamation and reuse agencies as listed in this table.

### Water Reuse Policies and Recycling Regulations

- The California Department of Health Services (DHS) has the authority and responsibility to establish statewide health-related regulations for water reclamation and reuse.
- The Wastewater Reclamation Criteria (State of California, 1978)
  were widely used for over 20 years, the formative years of water
  reclamation and reuse, and were commonly known as Title 22
  regulations because they were listed in Title 22, Division 4 of the
  California Code of Regulations.
- The current Water Recycling Criteria were adopted by DHS in 2000 (State of California, 2000). The water recycling criteria include water quality standards, treatment process requirements, operational requirements, and treatment reliability requirements.

### Projections for reclaimed water use in California<sup>a</sup> (× 10<sup>6</sup> m<sup>3</sup>/yr)

|                                                                  | Year             |                   |                     |                      |  |  |
|------------------------------------------------------------------|------------------|-------------------|---------------------|----------------------|--|--|
| Application                                                      | 2002             | 2007              | 2010                | 2030                 |  |  |
| Planned nonpotable use Planned indirect potable use <sup>b</sup> | 494–629<br>61–86 | 642–913<br>99–148 | 950–1234<br>148–210 | 1875–2283<br>407–494 |  |  |
| Total                                                            |                  | 741–1061          | 1098–1444           | 2282–2777            |  |  |

<sup>&</sup>lt;sup>a</sup>Adapted from State of California (2003b).

However, technology is becoming more effective in removing pathogens and trace chemical constituents of concern.

Evolving technology will make water reclamation and reuse, and alternative treatment methods such as membrane processes, more reliable and economical in the future.

It is anticipated that the next areas for expanded reclaimed water use will be landscape irrigation, industrial reuse, groundwater recharge, and surface water augmentation.

<sup>&</sup>lt;sup>b</sup>Planned indirect potable use includes groundwater recharge, a portion of recharged groundwater in seawater intrusion barriers, and surface water reservoir augmentation for domestic water supply.

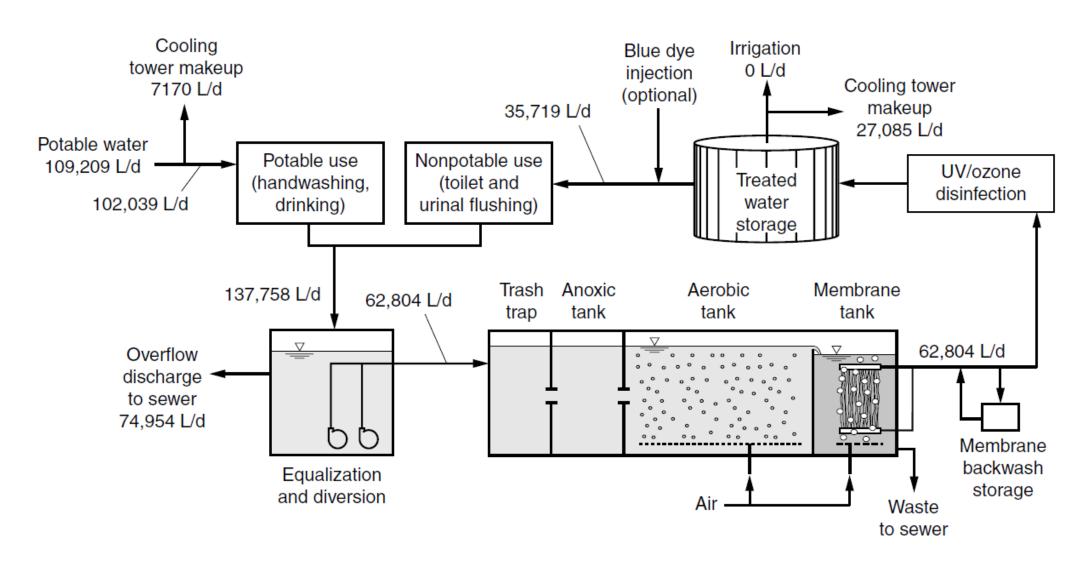
#### SOLAIRE BUILDING, NEW YORK

The Solaire is a residential highrise building in New York that has an onsite wastewater system for treating wastewater for toilet flushing and cooling water (coordinates: 40.717 N,74.016 W).

The Solaire is the first building designed in accordance with environmental guidelines instituted in 2000 by the BPCA (Battery Park City Authority).

The building received a LEED (Leadership in Energy and Environmental Design) Gold Certification from the U.S. Green Building Council.

The Solaire, the first building to be designed for the LEED program, was designed to require 50 percent less potable water than a conventional residential high-rise building.


The building included a wastewater treatment and recycling system to supply reclaimed water for toilet flushing and cooling tower makeup.



### The Solaire water reclamation system

- Aerated influent feed tank
- Trash trap to intercept nonbiodegradable solids
- Three-stage membrane bioreactor (MBR)
   consisting of an anoxic mix tank, aerobic digestion
   tank, filter tank containing ultrafiltration membrane
   units, and recirculation of the mixed liquor to the
   anoxic tank
- Ozone oxidation for color removal
- Ultraviolet (UV) disinfection
- Finished water storage tanks
- Booster pumping system and reclaimed water distribution piping

# Schematic flow diagram of the Solaire water reclamation and reuse system showing average daily flows for the first 12 months of operation



# Reclaimed water quality monitoring data from the water reclamation process in the Solaire

|                         |                           |        | Sample date |         |         |
|-------------------------|---------------------------|--------|-------------|---------|---------|
| Constituents            | Unit                      | 2/5/04 | 4/13/04     | 8/25/04 | 2/16/05 |
| Electrical conductivity | dS/m                      |        |             | 0.898   | 0.405   |
| TDS                     | mg/L                      | 448    | 994         |         | 242     |
| Calcium                 | mg/L                      | 11.5   |             | 48.9    | 11.3    |
| Magnesium               | mg/L                      | 3.62   |             | 33.4    |         |
| Total phosphorous       | mg/L                      | 6.74   |             |         | 8.0     |
| Orthophosphate          | mg/L                      |        |             | 21.8    |         |
| Sodium                  | mg/L                      | 124    |             |         | 48.5    |
| Potassium               | mg/L                      | 17.4   |             |         | 8.5     |
| Iron                    | mg/L                      | 0.033  |             | 0.051   |         |
| Copper                  | mg/L                      | 0.046  |             | 0.031   |         |
| Silica                  | mg/L                      | 10.1   |             | 20.07   |         |
| Zinc                    | mg/L                      |        |             | 0.045   |         |
| Sulfate                 | mg/L                      | 34     |             |         | 40      |
| Chloride                | mg/L                      | 48     |             | 158.7   | 43      |
| Nitrate-N               | mg/L                      | 21.3   |             |         | 11.4    |
| Ammonia-N               | mg/L                      | 0.16   |             |         |         |
| Bicarbonate             | mg/L as CaCO <sub>3</sub> | 120    |             |         |         |
| M-Alkalinity            | mg/L as CaCO <sub>3</sub> |        |             | 97.6    |         |
| Total alkalinity        | mg/L as CaCO <sub>3</sub> |        | 290         |         | 24      |
| Calcium hardness        | mg/L as CaCO <sub>3</sub> |        | 50          |         |         |
| Langlier index          |                           |        | -0.73       |         |         |
| TOC                     | mg/L                      | 6.62   |             |         |         |
| COD                     | mg/L                      | 22     |             |         |         |

| Period | Location                     | Event                                                                                                                                                                                                                                                                       |  |  |  |
|--------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 1962   | La Soukra, Tunisia           | Irrigation with reclaimed water for citrus plants<br>and groundwater recharge to reduce saltwater<br>intrusion into coastal groundwater.                                                                                                                                    |  |  |  |
| 1965   | Israel                       | Use of secondary effluent for crop irrigation.                                                                                                                                                                                                                              |  |  |  |
| 1969   | Wagga Wagga,<br>Australia    | Landscape irrigation of sporting fields, lawn and cemeteries.                                                                                                                                                                                                               |  |  |  |
| 1968   | Windhoek, Namibia            | Research on direct potable reuse and subsequent implementation.                                                                                                                                                                                                             |  |  |  |
| 1977   | Tel-Aviv, Israel             | Dan Region Project—Groundwater recharge via basins. Pumped groundwater is transferred via a 100-km-long conveyance system to southern Israel for unrestricted crop irrigation.                                                                                              |  |  |  |
| 1984   | Tokyo, Japan                 | Toilet flushing water for commercial buildings in the Shinjuku District using reclaimed water from the Ochiai Wastewater Treatment Plant operated by the Tokyo Metropolitan Sewerage Bureau.                                                                                |  |  |  |
| 1988   | Brighton, UK                 | Inauguration of the Specialist Group on Wastewater Reclamation, Recycling and Reuse at the 14th Biennial Conference of the International Association on Water Pollution Research and Control (currently, the International Water Association, headquartered in London, UK). |  |  |  |
| 1989   | Girona, Spain                | Golf course irrigation using reclaimed water<br>from the Consorci de la Costa Brava waste-<br>water treatment facility.                                                                                                                                                     |  |  |  |
| 1999   | Adelaide, South<br>Australia | The Virginia Pipeline Project, the largest water reclamation project in Australia—irrigating vegetable crops using reclaimed water from the Bolivar Wastewater Treatment Plant (120,000 m³/d).                                                                              |  |  |  |
| 2002   | Singapore                    | NEWater-reclaimed water that has undergone significant purification using microfiltration, reverse osmosis, and ultraviolet disinfection. NEWater is used as a raw water source to supplement Singapore's water supply.                                                     |  |  |  |

<sup>&</sup>lt;sup>a</sup>Compiled from various sources including Metcalf and Eddy (1928); AWWA (1981); Ongerth and Ongerth (1982); Asano and Levine (1996); Baird and Smith (2002).

# Significant events related to water reclamation and reuse in the world

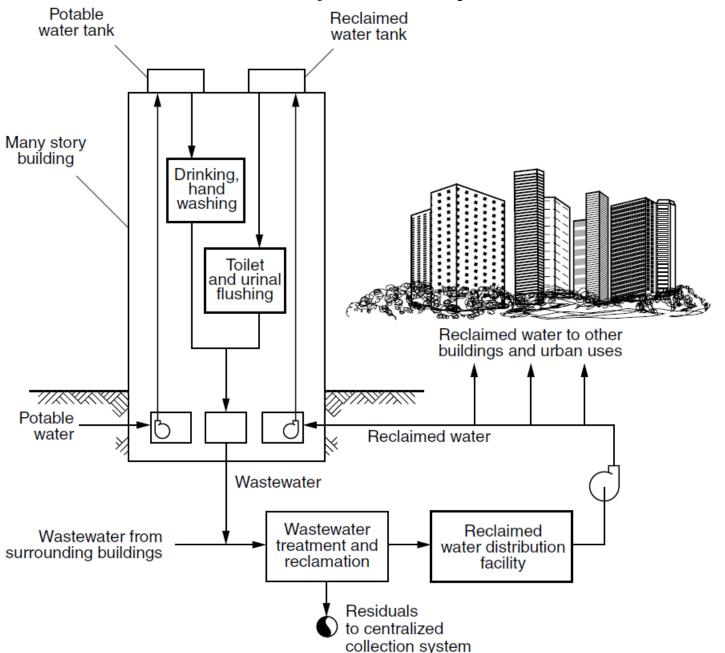
The water reclamation and reuse activities in the countries belonging to the European Union (EU) are guided by the EU Water Framework Directives promulgated in 2000. In the European Communities Commission Directive (91/271/EEC), "Treated wastewater shall be reused whenever appropriate . . . ," and that ". . . disposal routes shall minimize the adverse effects on the environment . . ." (EEC, 1991).

Unique to the prevailing water reuse applications which are mostly in irrigation uses, Japan's water reclamation and reuse has focused on urban water applications such as in building water reuse for toilet flushing in commercial and office buildings, urban landscapes, stream flow augmentation, and even snow melting and heating and air conditioning using heat content of the reclaimed water (Japan Sewage Works Association, 2005; UNEP and GEC, 2005).

#### WATER RECLAMATION AND REUSE IN TOKYO, JAPAN

- Tokyo is one of the largest cities in the world, with a population of over 12 million, or about 10 percent of Japan's total population, and a population density of over 5500 inhabitants/km<sup>2</sup>
- To maximize the use of limited water resource, the Tokyo Metropolitan Government (TMG) established an ordinance in 1984 to require all newly constructed large buildings, generally within area greater than 3000 to 5000 m² and/or buildings with installed water supply pipe diameters of greater than 50 mm, be equipped with dual plumbing systems and use reclaimed water for toilet and urinal flushing
- Reclaimed water quality criteria evolved through several revisions. The original criterion for total coliform was 1000 organisms per 100 mL, much higher than the requirements set forth by California and most other states in the United States (Asano et al., 1996). The most recent revision of Japanese

### Reclaimed water quality guidelines for urban uses in Japana


|                        | Unit      | Toilet/urinal flushing        | Spraying on street and ground | Recreational uses and water features                               |
|------------------------|-----------|-------------------------------|-------------------------------|--------------------------------------------------------------------|
| Total coliform         | No./100mL | no detect                     | no detect                     | no detect                                                          |
| Turbidity              | NTU       | 2                             | 2                             | 2                                                                  |
| рН                     | pH unit   | 5.8-8.6                       | 5.8-8.6                       | 5.8-8.6                                                            |
| Appearance             | _         | not unpleasant                | not unpleasant                | not unpleasant                                                     |
| Color <sup>b</sup>     | CU        |                               |                               | <10                                                                |
| Odor <sup>b</sup>      | _         | not unpleasant                | not unpleasant                | not unpleasant                                                     |
| Chlorine residual      | mg/L      | 0.1 (free), 0.4 (combined)    | 0.1 (free), 0.4<br>(combined) | 0.1 (free), 0.4 (combined)                                         |
| Treatment requirements |           | Sand filtration or equivalent | Sand filtration or equivalent | Coagulation,<br>sedimentation,<br>and filtration, or<br>equivalent |

<sup>&</sup>lt;sup>a</sup>Adapted from MLIT (2005).

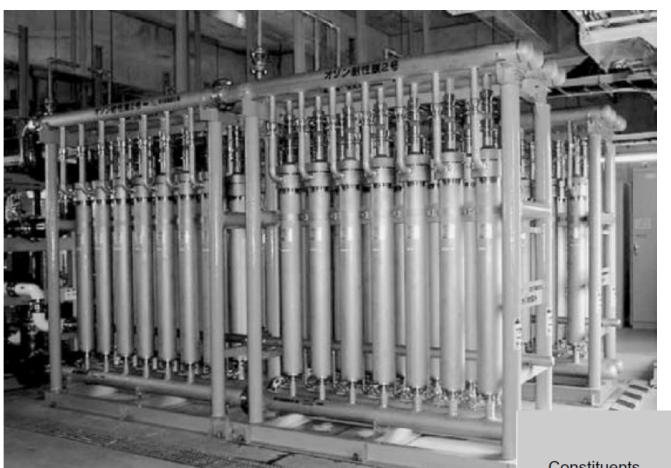
Note: Water quality is measured at the outflow of the water reclamation plant.

<sup>&</sup>lt;sup>b</sup>To be adjusted on a case-by-case basis to meet the user's demand.

# Schematic diagram of an area-wide recycling system in Shinjuku, Tokyo



## Reclaimed water quality between April 1994 and January 1995 at Shinjuku, Tokyo<sup>a</sup>


|                         |        | Month |     |     |      |     |     |      |     |     |      |
|-------------------------|--------|-------|-----|-----|------|-----|-----|------|-----|-----|------|
| Constituent             | Unit   | 4     | 5   | 6   | 7    | 8   | 9   | 10   | 11  | 12  | 1    |
| рН                      | _      | 7.2   | 7.2 | 7.2 | 7.0  | 7.3 | 7.2 | 7.1  | 6.8 | 7.1 | 7.5  |
| Total coliform          | no./mL | 0     | 0   | 0   | 0    | 0   | 0   | 0    | 0   | 0   | 0    |
| Combined                | mg/L   | 0.2   | 1.5 | 1.0 | 8.0  | 0.2 | 0.2 | 0.3  | 0.2 | 0.4 | 1.5  |
| chlorine residual       |        |       |     |     |      |     |     |      |     |     |      |
| Appearance <sup>b</sup> | _      | SY    | С   | С   | С    | С   | С   | С    | SY  | С   | С    |
| Odor <sup>c</sup>       | _      | WM    | WM  | WS  | WS   | WM  | WS  | SS   | MS  | MS  | SS   |
| BOD                     | mg/L   | 2.8   | 2.5 | 1.0 | 2.3  | 2.0 | 1.4 | 1.5  | 3.0 | 1.9 | 4.3  |
| Turbidity               | NTU    | 1     | 1   | 1   | 1    | 1   | 0   | 1    | 0   | 1   | 1    |
| Suspended solids        | mg/L   | 0     |     |     | 0    |     |     | 0    | _   | _   | 0    |
| Total nitrogen          | mg/L   | 13.0  | _   | _   | 9.7  | _   | _   | 9.6  | _   | _   | 16.0 |
| Total phosphorous       | mg/L   | 0.48  | _   | _   | 0.70 | _   | _   | 1.00 | _   | _   | 0.65 |

<sup>&</sup>lt;sup>a</sup>Adapted from Maeda et al. (1996).

<sup>&</sup>lt;sup>b</sup>SY = slightly yellow; C = clear.

<sup>&</sup>lt;sup>c</sup>WM = weak mold odor; WS = weak sewage odor; MS = moderate sewage odor; SS = strong sewage odor.

# Ozone resistant membranes used for color removal from reclaimed water for toilet and urinal flushing in a high-rise building

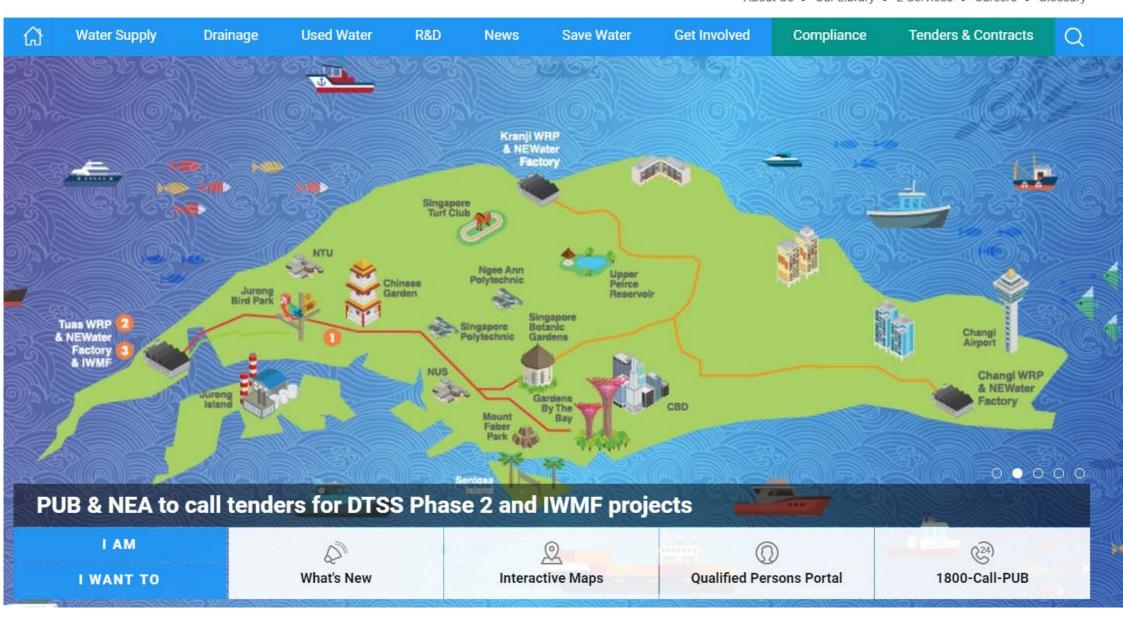


Comparison of water quality at the Shibaura wastewater treatment plant before and after the installation of an ozone-resistant microfiltration membrane treatment system

| Unit | Secondary effluent | after membrane<br>treatment   |
|------|--------------------|-------------------------------|
| mg/L | 10.3               | 0.0                           |
| NTU  | 9.4                | <0.1                          |
| CU   | 40                 | 3                             |
| _    | slight moldy smell | no smell detected             |
|      | mg/L<br>NTU        | mg/L 10.3<br>NTU 9.4<br>CU 40 |

Peolaimed water

#### **NEWater**


- NEWater, a pillar of Singapore's water sustainability strategy, is high-grade reclaimed water. Produced from treated used water that is further purified using advanced membrane technologies and ultra-violet disinfection, it is ultra-clean and safe to drink.
- NEWater has passed more than 130,000 scientific tests and is well within World Health Organisation requirements.

#### **Use Each Drop of Water More Than Once**

- NEWater was first mooted by PUB in the 1970s. We (PUB) were ahead of our time as the membranes then were costly and unreliable. In 1998, a NEWater study was successfully conducted to determine the suitability of using NEWater as a source of raw water to supplement Singapore's water supply. In May 2000, the first NEWater plant was completed and by 2001, we had embarked on this new initiative that would increase water supply from unconventional sources for no-potable use.
- Presently Singapore's four NEWater plants can meet up to 30% of the nation's current water needs. By 2060, NEWater is expected to



About Us • Our Library • E-Services • Careers • Glossary



## Imported Water





Under two bilateral agreements, Singapore has been importing water from Johor, Malaysia. The first agreement expired in August 2011. The second agreement will expire in 2061.

# How tap water is treated in Singapore / 1

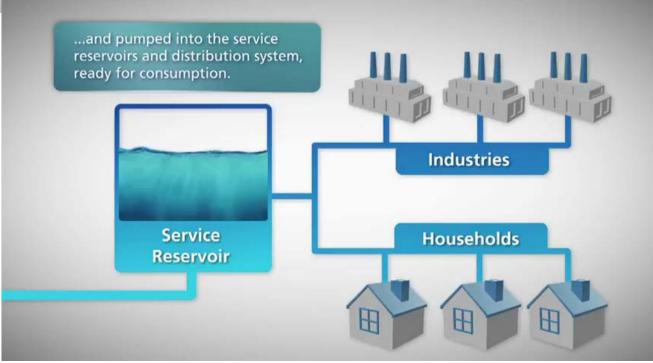
Canal

Reservoir

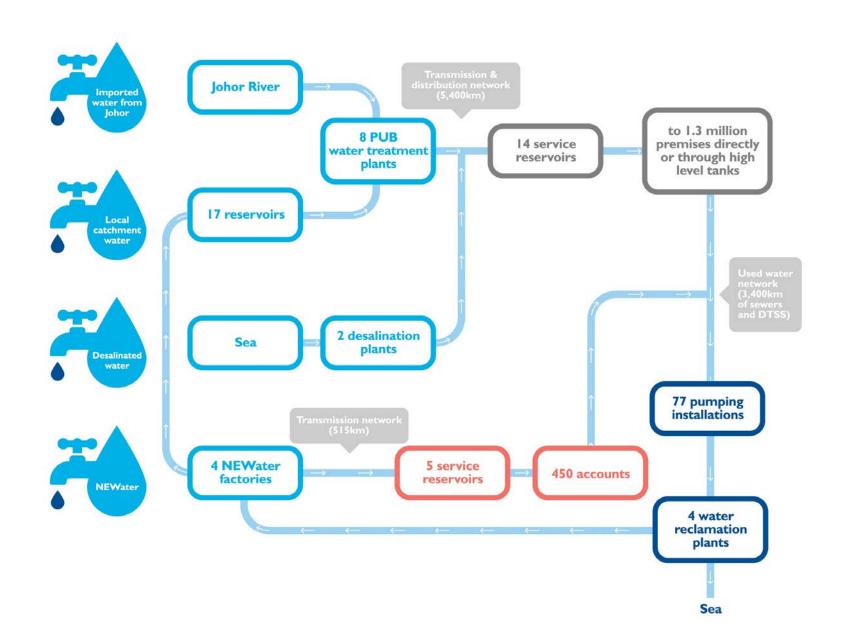

11-2-9-XTID

Drain /

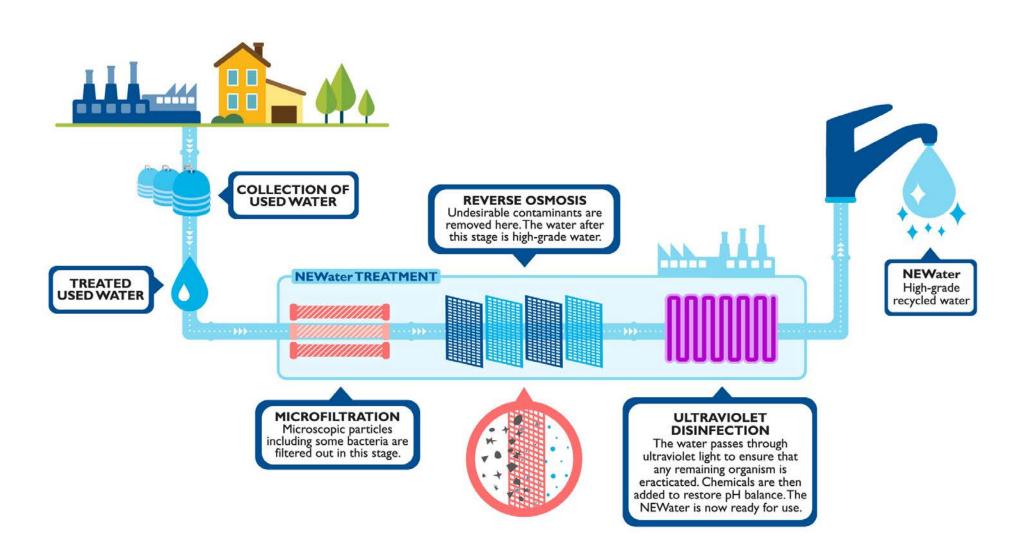
Rainwater flows through drains, canals and rivers to our 17 reservoirs.



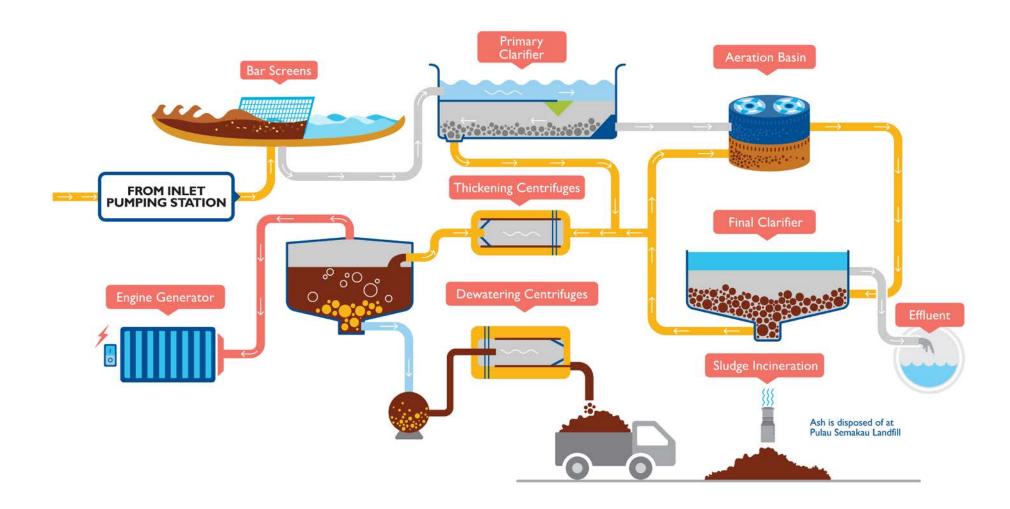

## How tap water is treated in Singapore / 2




# How tap water is treated in Singapore / 3

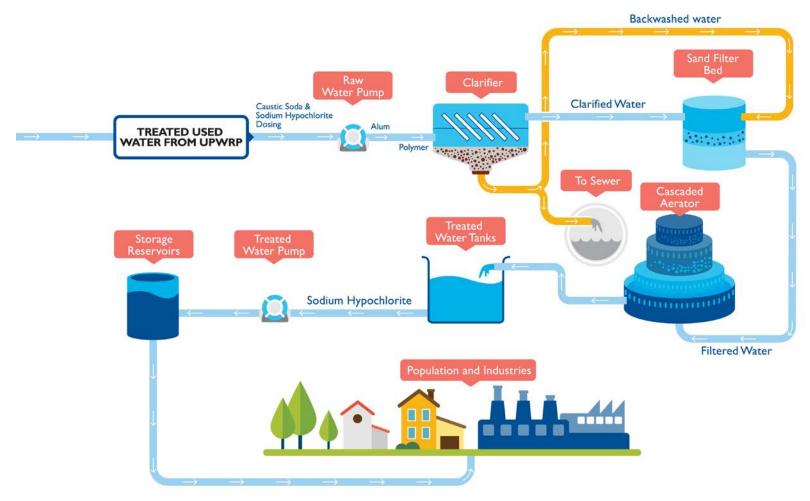






# Diversifying Water Supply



# NEWater Technology




#### Used Water Treatment Process - 1



Used water from both domestic and non-domestic sources is collected through a comprehensive network of underground public sewers. Used water from trade sources and industries are required to meet certain standards before it can be discharged into public sewers. The collected used water is treated at five water reclamation plants to render it clean for reuse or discharge into watercourses.

#### Used Water Treatment Process - 2



Jurong Industrial Water Works (JIWW) was set up to reclaim wastewater effluent of the Ulu Pandan Water Reclamation Plant (UPWRP). The purpose of wastewater effluent reclamation is to provide an alternative source of water for industries in the Jurong and Tuas Industrial Estate.

From an original capacity of 45,000 m<sup>3</sup> per day, the current capacity is increased to 125,000 m<sup>3</sup> per day over the years to cater for industries set up on Jurong Island and Tuas South.

#### The Treatment Process / 1

#### Screening (1):

The raw water enters the Works from UPWRP through the intake chamber into the bandscreen chamber. Large suspended solids and debris of sizes greater than 4mm are removed with the help of bandscreen equipment.





#### **Pre-Clorination and pH Correction (2)**

The water then flows into the raw water pump sump where it is dosed with sodium hypochlorite solution. This process, known as pre-chlorination, helps to suppress algae and bacterial growth on the surfaces of downstream units thereby reducing the amount of maintenance work required to keep these units clean. Caustic soda is also dosed when necessary to maintain the desired pH level as acidic raw water will cause erosion problems to the downstream units.46

#### The Treatment Process / 2

After pre-chlorination and pH correction, the raw water is pumped to the clarifiers (3) via the raw water pumps. At the clarifiers, the raw water is dosed with chemicals called aluminium sulphate (Alum) to bring about the coagulation, flocculation and sedimentation of the suspended solids in the raw water. The primary purpose of chemical clarification is for the removal of suspended solids and reduction of phosphates.





The clarified water from the clarifier flows by gravity into the **sand filters (4)** where the remaining fine suspended solids are removed. Filter beds are regenerated regularly by means of backwashing using industrial water. The suspended solids that are trapped on the sand filters are then desludged into the sewer.

#### The Treatment Process / 3

The filtered water is then sent by gravity to the cascade aerator (5) to increase dissolved oxygen in the water.



plus post-chlorination (6):

This is the final stage of the treatment process. The filtered water is channelled to the treated water tank where sodium hypochlorite is dosed to disinfect the treated water.



After the post-chlorination process, the treated water is ready to be supplied to the industrial consumers. The treated water is pumped to the 3 **industrial water reservoirs** (7) (total capacity: 35,000 m³) situated on Jurong Island via the high-lift pumps and along the underground pumping mains.

#### PLANNING FOR WATER RECLAMATION AND REUSE

# Effective water reclamation and reuse facilities should include the following elements:

- assessment of wastewater treatment and disposal needs
- assessment of water supply and demand
- assessment of water supply benefits based on water reuse potential
  - Integrated water A process that process planning development and manage

A process that promotes the coordinated development and management of water, land, and related resources to maximize the resultant economic and social welfare in an equitable sustainable manner.

a public information program

# Thank you!

