

- Filtration spectrum of membranes
- Basics of Reverse Osmosis and equations
- Factors which affect membrane performance
- Thin Film Composites and Spiral Wound Membranes
- Applications and Markets

Filtration spectrum

Membrane operation modes

Dead-end filtration

Not feasible for RO/NF:

- Sparingly soluble salts precipitate and foul the membrane.
- Filter cake build-up

Cross-flow filtration

Required for RO/NF:

- Sweeps away membrane foulants
- Minimizes concentration
 polarization
- Generates a concentrate stream and a permeate stream

Typical operating pressures of different pressure driven processes

Membrane Process	Typical Operating Pressure Range (bar)	Typical Operating pressure (psi)
Reverse Osmosis Seawater Brackish water	55 – 76 10 - 40	800 - 1100 145 - 580
Nanofiltration	3.5 - 15	50 - 220
Ultrafiltration	2 – 7	30 - 100
Microfiltration	0.1-3	1.5 - 45

Osmosis

Reverse Osmosis

Reverse osmosis separation process

- Remove purified water from a feed stream (permeate)
- Concentrate chemicals in a feed stream (reject)
- ✓ Selectively separate small ions and molecules

What RO cannot do?

- Cannot concentrate to 100%
- ✗ Cannot separate to 100%

Osmotic pressure – rule of thumb

- Convert TDS to osmotic pressure:
 - TDS in ppm divided by 100: osmotic pressure in psi
 - TDS in ppm divided by 1400: osmotic pressure in bar
- Examples:
 - 100 ppm TDS » 1 psi osmotic pressure (» 0.07 bar)
 - 1,000 ppm TDS » 10 psi osmotic pressure (» 0.7 bar)
 - 35,000 ppm TDS » 350 psi osmotic pressure (» 25 bar)

For dilute solutions, osmotic pressure is approximated using the Van't Hoff equation:

$$\pi = \phi C_i RT$$

- π osmotic pressure, atm
- $\boldsymbol{\varphi}$ osmotic pressure coefficient
- C_i molar concentrate of the solute, mol/l
- R gas constant
- T absolute temperature (° K)

Describes water flux, salt flux and mass-transfer in pressure-driven membrane systems

Homogenous solution diffusion model

Water and Solute Flux

$$F_w = K_w (\Delta P - \Delta \pi)$$

- F_w solvent flux [gallons per square foot per day=gfd]
- K_w solvent mass transfer coefficient [gfd/psi] (A value)
- ΔP transmembrane pressure differential [psi]
- $\Delta \pi$ osmotic pressure differential [psi]

$$Fs = Ks (\Delta C)$$

- F_s solute flux [pounds per square foot per day, lbfd]
- K_s solute mass transfer coefficient [gfd] (B value)
- ΔC transmembrane concentration differential [lb/gal]

Mass balance equations

$$Q_{f} = Q_{p} + Q_{c}$$
$$Q_{f}C_{f} = Q_{p}C_{p} + Q_{c}C_{c}$$

- Q_f feed flow [gal/min]
- Q_p permeate flow [gal/min]
- Q_c concentrate flow [gal/min]
- C_f feed solute concentration [lb/gal]
- $C_{\mbox{\tiny p}}$ permeate solute concentration [lb/gal]
- C_c concentrate solute concentration [lb/gal]

Basic definitions

Salt Rejection (%) = 100 – Salt Passage

100 to 600 psi (brackish water) 800 to 1,200 psi (seawater)

Factors which effect membrane performance

- Feedwater
 - Concentration
 - Temperature
 - Osmotic pressure
 - pH
- Operation parameters
 - Pressure
 - System recovery
- Concentration Polarization

Affect of feedwater pressure on flux and salt rejection

Assuming temperature, recovery and feed concentration are constant

Pressure Affect

- If you double net driving pressure (NDP) to an RO unit you will double your permeate flow.
- NDP is the sum of all forces acting on the membrane

$$NDP = \Delta P - \Delta \pi$$

Feedwater temperature vs. flux and salt rejection

Feed Temperature ------>

Assuming feed pressure, recovery and feed concentration are constant

Temperature Affect

Permeate flow

- The higher the temperature the higher the permeate flow
- Why? Lower viscosity makes it easier for the water to permeate through the membrane barrier
- RULE OF THUMB for every 1°C the permeate flow will increase ~ 3%

Salt passage

- Rule of Thumb: salt passage increases 6% for 1°C increase.
- Increasing temperature increases salt passage more than water passage.
- Generally you will get better rejections at lower temperatures.

Salt concentration vs. flux and salt rejection

Feed Concentration ———

Assuming temperature, feed pressure and recovery are constant

Salt concentration affect

- Salt concentration affect on permeate flow
 - Higher salt concentration will decrease the permeate flow.
 - Why? Because higher osmotic pressure will reduce the NDP.
- Salt concentration affect on salt passage
 - Higher salt concentration will increase the salt concentration gradient and increase the rate of salt passage.
- Salt concentration affect on permeate quality
 - Overall water quality is lower for two reasons, higher rate of salt passage combined with less permeate water.

pH influence on salt rejection

Assuming temperature, feed pressure and concentration are constant

Boundary layer

- Water near the membrane surface has little to no cross flow
- Creates an area for particulates & colloids to collect and foul the membrane.
- Water flux through the membrane helps hold foulants in place.

Concentration polarization

- Concentration polarization is a function of the boundary layer.
- It results in an increased salt concentration at the membrane surface.
- The higher the flux rate through the membrane the higher the salt concentration at the membrane surface.
- Typically the TDS is 13–20% higher than the concentration in the bulk stream.

Thin Film Composite Membranes Spiral Wound Elements

Cross-section of thin film composite membrane

FILMTEC[™] membrane cross-section (SEM image)

WATER & PROCESS SOLUTIONS

Surface of barrier layer of FT30 (SEM image)

X 12,00 2.00K LE Im Th Th</td

BW30 Membrane

XLE Membrane

Aromatic Polyamide Barrier Layer

WATER & PROCESS SOLUTIONS

Factors affecting membranes solute rejection

WATER ACADEMY

Membrane type/condition:

- SW30XHR NaCl 99.75%,
- XFRLE NaCl 99.4%
- NF90: NaCl 85-95%

Solute characteristics

- Charge
- Polarity and/or Degree of Dissociation
- Degree of Hydration
- Molecular weight and Degree of Branching

Spiral wound RO membrane element

FILMTEC™ product range

WATER ACADEMY

Brackish Water

- High rejection
- Low energy
- Fouling resistant

Seawater Desalination

- Low energy
- High rejection

Nanofiltration

Special products

- Ultrapure Water
- Sanitary style
- Food and Dairy

Flexible sizing

- 8" X 40"
- 4" X 40"
- 2.5" x 40"
- 1.8" x 12"

Delivery

- Dry
- Wet

Applications and markets

Municipal

- Sea Water desalination & brackish water purification for potable use
- Agricultural irrigation

Industrial

- UPW, process water, boiler feed water and utility water
- Water purification or concentration of substances

Water reuse

Commercial

• Car Wash, Laboratory, Restaurant

Food and Nutrition

Dairy, Juice, Beverages

Military

Households

Thank You!

For more information please visit our web site or contact your local Dow representative. http://www.dowwaterandprocess.com/

Questions?