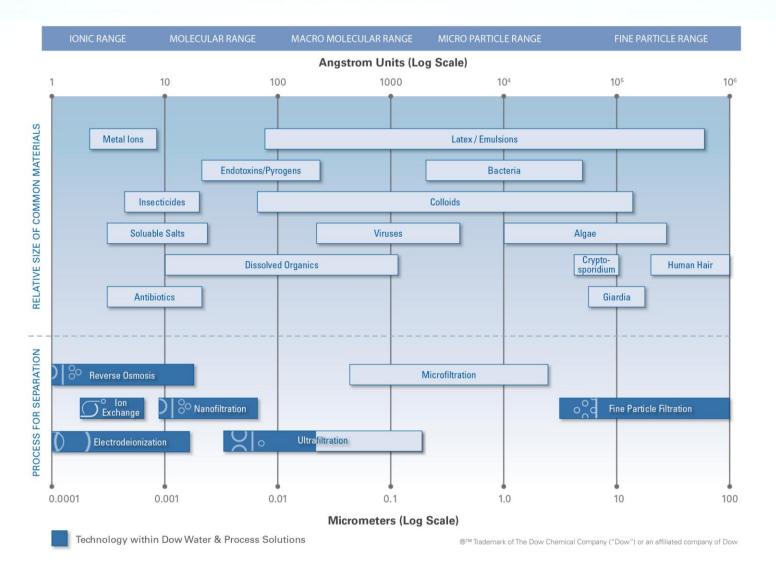
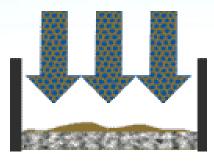
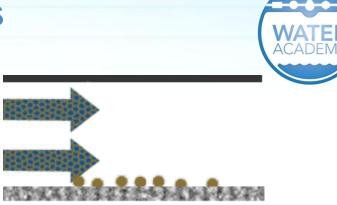
Reverse Osmosis Systems Course Operation & Design



- Filtration spectrum of membranes
- Basics of Reverse Osmosis and equations
- Factors which affect membrane performance
- Thin Film Composites and Spiral Wound Membranes
- Applications and Markets




Filtration spectrum

Membrane operation modes

Dead-end filtration

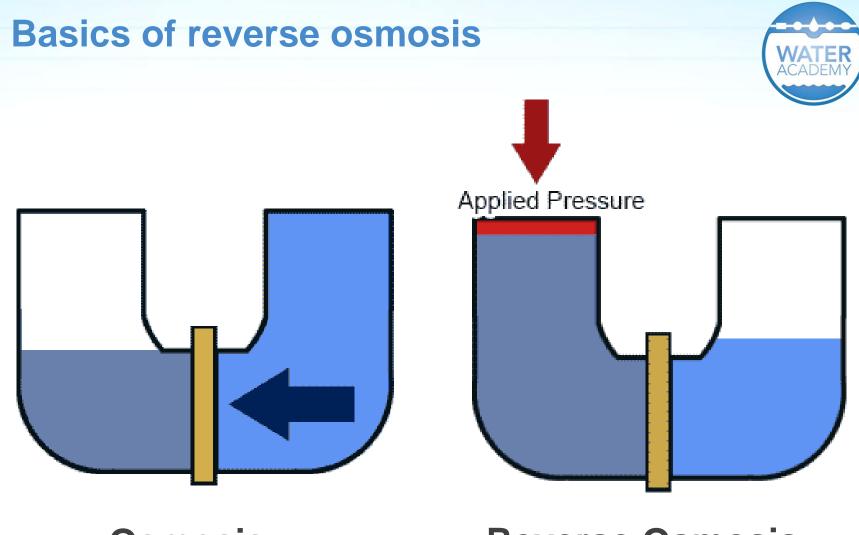
Not feasible for RO/NF:

- Sparingly soluble salts precipitate and foul the membrane.
- Filter cake build-up

Cross-flow filtration

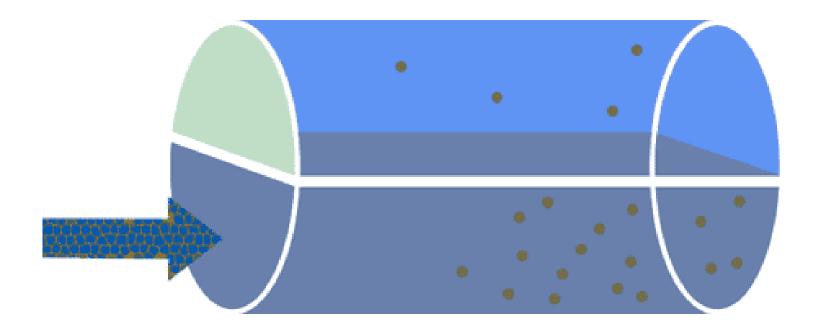
Required for RO/NF:

- Sweeps away membrane foulants
- Minimizes concentration
 polarization
- Generates a concentrate stream and a permeate stream



Typical operating pressures of different pressure driven processes

Membrane Process	Typical Operating Pressure Range (bar)	Typical Operating pressure (psi)
Reverse Osmosis Seawater Brackish water	55 – 76 10 - 40	800 - 1100 145 - 580
Nanofiltration	3.5 - 15	50 - 220
Ultrafiltration	2 – 7	30 - 100
Microfiltration	0.1-3	1.5 - 45



Osmosis

Reverse Osmosis

Reverse osmosis separation process

- Remove purified water from a feed stream (permeate)
- Concentrate chemicals in a feed stream (reject)
- ✓ Selectively separate small ions and molecules

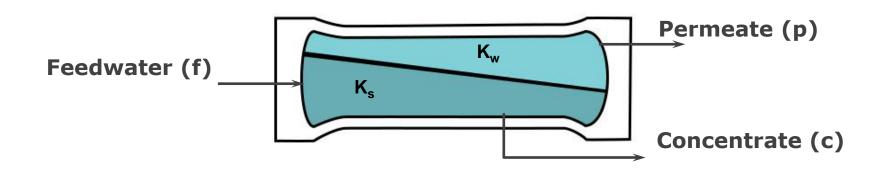
What RO cannot do?

- Cannot concentrate to 100%
- ✗ Cannot separate to 100%

Osmotic pressure – rule of thumb

- Convert TDS to osmotic pressure:
 - TDS in ppm divided by 100: osmotic pressure in psi
 - TDS in ppm divided by 1400: osmotic pressure in bar
- Examples:
 - 100 ppm TDS » 1 psi osmotic pressure (» 0.07 bar)
 - 1,000 ppm TDS » 10 psi osmotic pressure (» 0.7 bar)
 - 35,000 ppm TDS » 350 psi osmotic pressure (» 25 bar)

For dilute solutions, osmotic pressure is approximated using the Van't Hoff equation:


$$\pi = \phi C_i RT$$

- π osmotic pressure, atm
- $\boldsymbol{\varphi}$ osmotic pressure coefficient
- C_i molar concentrate of the solute, mol/l
- R gas constant
- T absolute temperature (° K)

Describes water flux, salt flux and mass-transfer in pressure-driven membrane systems

Homogenous solution diffusion model

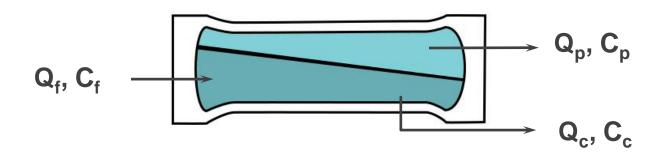
Water and Solute Flux

$$F_w = K_w (\Delta P - \Delta \pi)$$

- F_w solvent flux [gallons per square foot per day=gfd]
- K_w solvent mass transfer coefficient [gfd/psi] (A value)
- ΔP transmembrane pressure differential [psi]
- $\Delta \pi$ osmotic pressure differential [psi]

$$Fs = Ks (\Delta C)$$

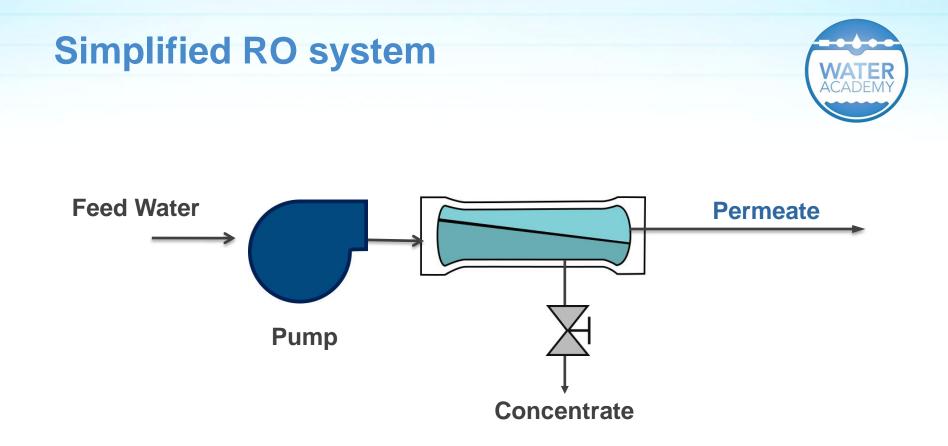
- F_s solute flux [pounds per square foot per day, lbfd]
- K_s solute mass transfer coefficient [gfd] (B value)
- ΔC transmembrane concentration differential [lb/gal]



Mass balance equations

$$Q_{f} = Q_{p} + Q_{c}$$
$$Q_{f}C_{f} = Q_{p}C_{p} + Q_{c}C_{c}$$

- Q_f feed flow [gal/min]
- Q_p permeate flow [gal/min]
- Q_c concentrate flow [gal/min]
- C_f feed solute concentration [lb/gal]
- $C_{\mbox{\tiny p}}$ permeate solute concentration [lb/gal]
- C_c concentrate solute concentration [lb/gal]

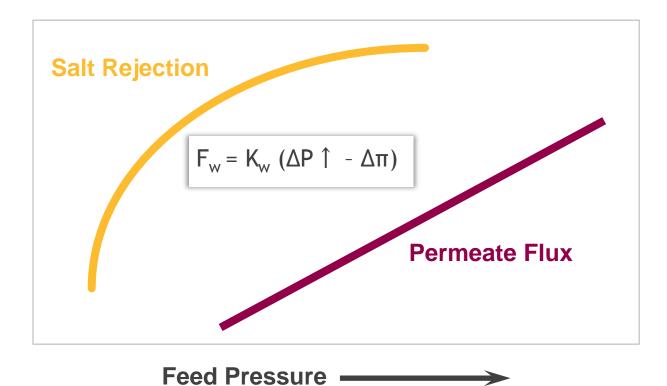

Basic definitions

Salt Passage (%) =
$$\frac{\text{Permeate Salt Concentration}}{\text{Feed Salt Concentration}} \times 100$$

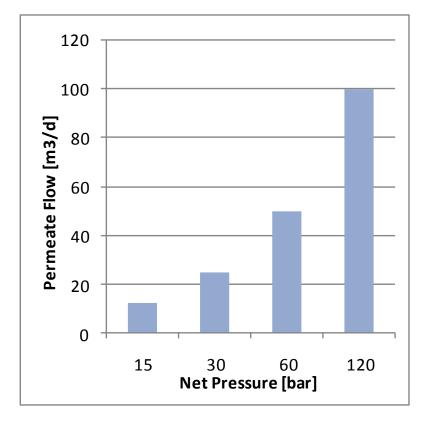
Salt Rejection (%) = 100 – Salt Passage

100 to 600 psi (brackish water) 800 to 1,200 psi (seawater)

Factors which effect membrane performance

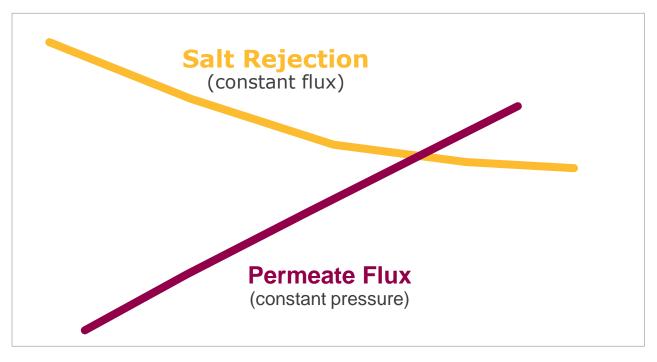

- Feedwater
 - Concentration
 - Temperature
 - Osmotic pressure
 - pH
- Operation parameters
 - Pressure
 - System recovery
- Concentration Polarization

Affect of feedwater pressure on flux and salt rejection



Assuming temperature, recovery and feed concentration are constant

Pressure Affect


- If you double net driving pressure (NDP) to an RO unit you will double your permeate flow.
- NDP is the sum of all forces acting on the membrane

$$NDP = \Delta P - \Delta \pi$$

Feedwater temperature vs. flux and salt rejection

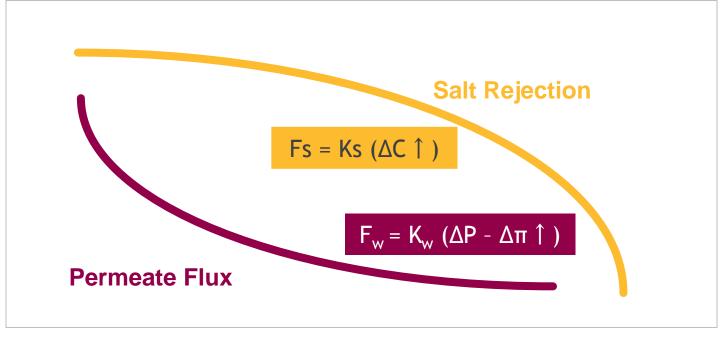
Feed Temperature ------>

Assuming feed pressure, recovery and feed concentration are constant

Temperature Affect

Permeate flow

- The higher the temperature the higher the permeate flow
- Why? Lower viscosity makes it easier for the water to permeate through the membrane barrier
- RULE OF THUMB for every 1°C the permeate flow will increase ~ 3%


Salt passage

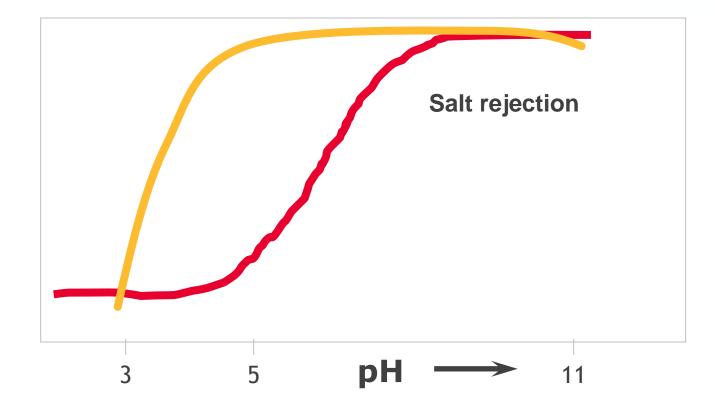
- Rule of Thumb: salt passage increases 6% for 1°C increase.
- Increasing temperature increases salt passage more than water passage.
- Generally you will get better rejections at lower temperatures.

Salt concentration vs. flux and salt rejection

Feed Concentration ———

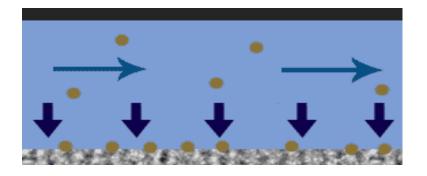
Assuming temperature, feed pressure and recovery are constant

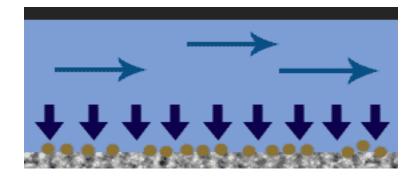
Salt concentration affect



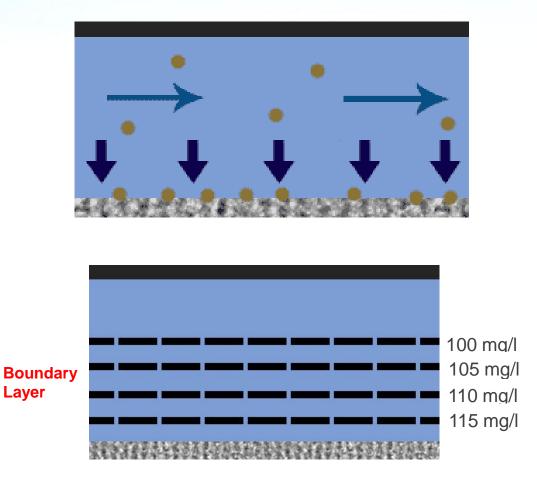
- Salt concentration affect on permeate flow
 - Higher salt concentration will decrease the permeate flow.
 - Why? Because higher osmotic pressure will reduce the NDP.
- Salt concentration affect on salt passage
 - Higher salt concentration will increase the salt concentration gradient and increase the rate of salt passage.
- Salt concentration affect on permeate quality
 - Overall water quality is lower for two reasons, higher rate of salt passage combined with less permeate water.

pH influence on salt rejection



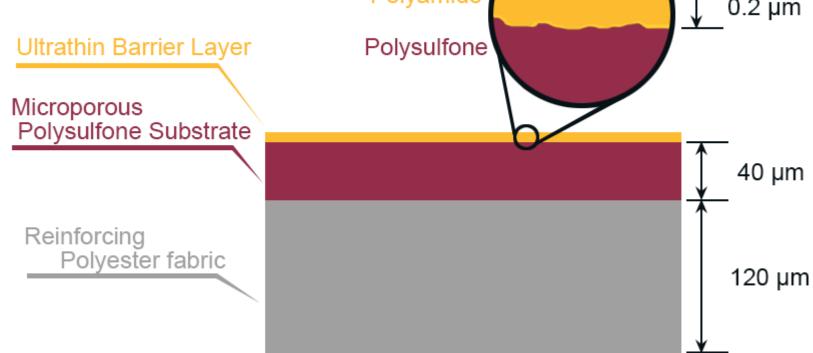

Assuming temperature, feed pressure and concentration are constant

Boundary layer



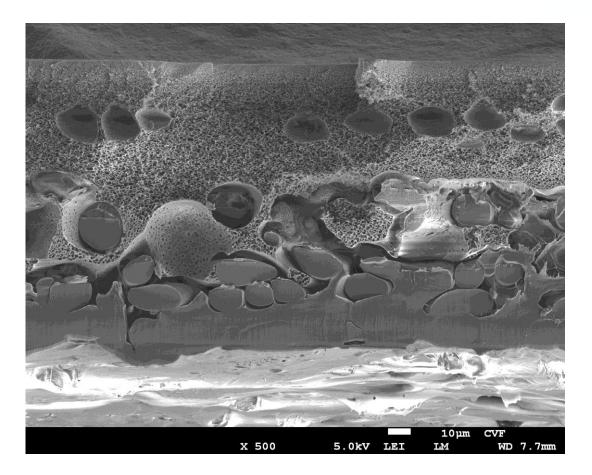
- Water near the membrane surface has little to no cross flow
- Creates an area for particulates & colloids to collect and foul the membrane.
- Water flux through the membrane helps hold foulants in place.

Concentration polarization

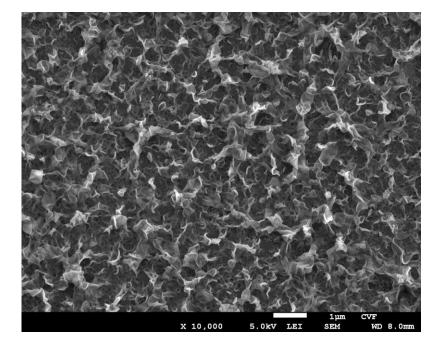


- Concentration polarization is a function of the boundary layer.
- It results in an increased salt concentration at the membrane surface.
- The higher the flux rate through the membrane the higher the salt concentration at the membrane surface.
- Typically the TDS is 13–20% higher than the concentration in the bulk stream.

Thin Film Composite Membranes Spiral Wound Elements

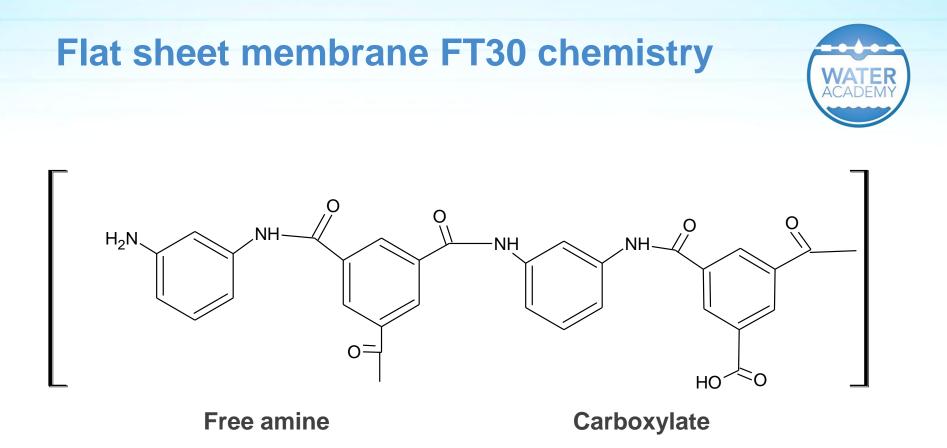

Cross-section of thin film composite membrane

FILMTEC[™] membrane cross-section (SEM image)



WATER & PROCESS SOLUTIONS

Surface of barrier layer of FT30 (SEM image)



X 12,00 2.00K LE Im Th Th</td

BW30 Membrane

XLE Membrane

Aromatic Polyamide Barrier Layer

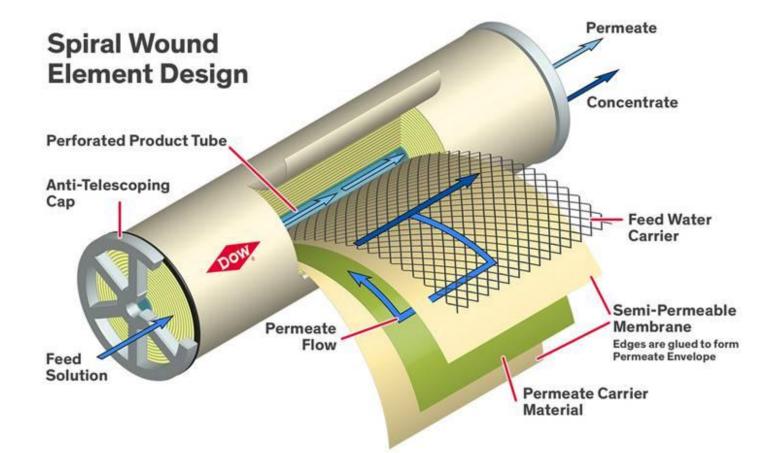
WATER & PROCESS SOLUTIONS

Factors affecting membranes solute rejection

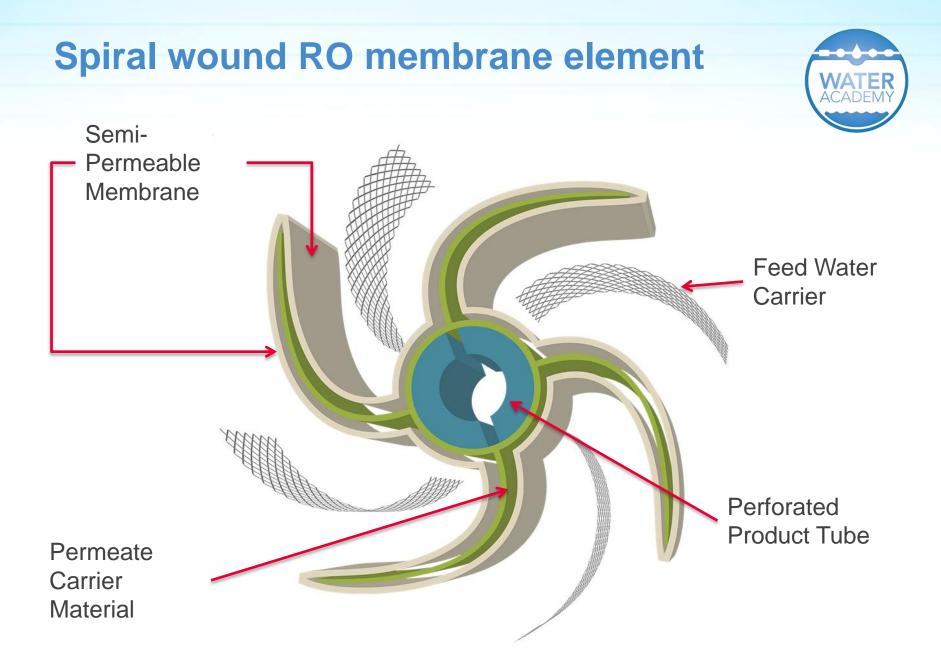
WATER ACADEMY

Membrane type/condition:

- SW30XHR NaCl 99.75%,
- XFRLE NaCl 99.4%
- NF90: NaCl 85-95%


Solute characteristics

- Charge
- Polarity and/or Degree of Dissociation
- Degree of Hydration
- Molecular weight and Degree of Branching



Spiral wound RO membrane element

FILMTEC™ product range

WATER ACADEMY

Brackish Water

- High rejection
- Low energy
- Fouling resistant

Seawater Desalination

- Low energy
- High rejection

Nanofiltration

Special products

- Ultrapure Water
- Sanitary style
- Food and Dairy

Flexible sizing

- 8" X 40"
- 4" X 40"
- 2.5" x 40"
- 1.8" x 12"

Delivery

- Dry
- Wet

Applications and markets

Municipal

- Sea Water desalination & brackish water purification for potable use
- Agricultural irrigation

Industrial

- UPW, process water, boiler feed water and utility water
- Water purification or concentration of substances

Water reuse

Commercial

• Car Wash, Laboratory, Restaurant

Food and Nutrition

Dairy, Juice, Beverages

Military

Households

Thank You!

For more information please visit our web site or contact your local Dow representative. http://www.dowwaterandprocess.com/

Questions?

Content

- Operation of membrane plants
- Operational steps
 - Loading
 - Start-up
 - Shut-down
 - Performance monitoring
 - Recordkeeping for RO Systems
 - Factors Influencing RO Performance
 - Data Normalization

Operation of membrane plants

- Successful long term performance depends on proper operation and maintenance of the system
- Proper operation is required to control fouling and scaling

Operation of membrane plants

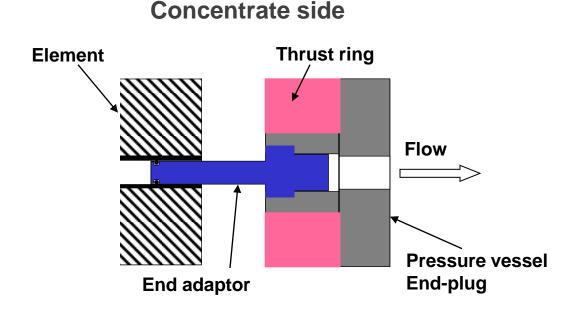
- 1. Element Loading
- 2. Start-Up
- 3. Shut-Down
- 4. Performance Monitoring

Element Loading

Element loading -Standard 8" membrane elements

- 1. Cleaning of pressure vessels (PVs) with water and lubrication with glycerin
- 2. Closing of PV's brine end
- 3. Preparation of elements
- 4. Loading of elements
- 5. Shimming
- 6. Closing of PV's feed end

Cleaning and Lubrication of PVs



- 1. Flushing PVs with a pressurized water hose
- 2. Cleaning with sponge & water
- **3.** Lubrication with sponge and glycerin/water (50/50)

Closing brine end

- 1. Insert thrust ring in empty PV
- 2. Close with lubricated end connector and end cap before loading

Example for thrust ring

<u>Alternative:</u> Close brine end with thrust ring but without end connector temporarily for loading of each PV. This is to avoid damage to the end connector when moving the element into the fixed end connector.

Preparation of elements

- Unpack elements and place on clean surface (e.g. horizontally on a table, or vertically on clean floor –cardboard layer)
- Check appearance of elements, esp. the inside of the permeate water tube (PWT) and correct direction of the brine seal
- Note Serial numbers for loading plan
- Lubricate (1) interconnectors (O-rings) and the inside of the PWT's with very little amount of Silicon grease*; (2) brine seals to facilitate the posterior element removal

* Dow Corning[®] 111; Molykote[®] 111 WATER & PROCESS SOLUTIONS

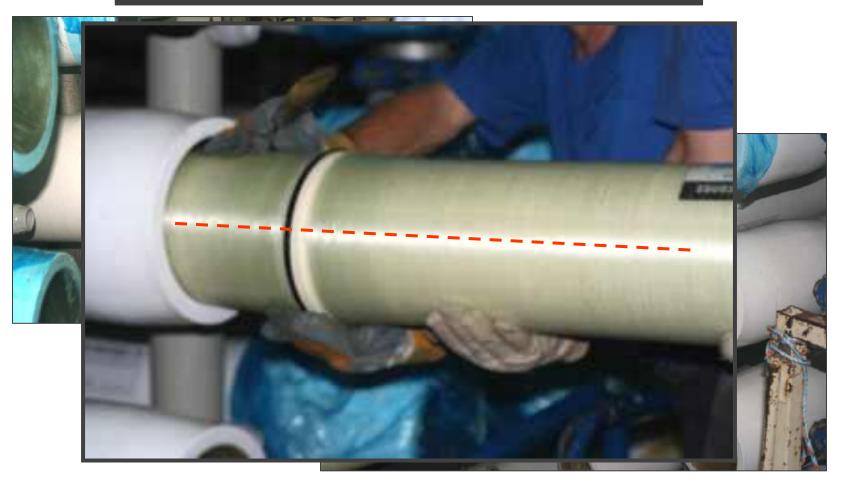
Loading -1st element and interconnector

- Place first element (last position, e.g. #7) into PV
- Place lubricated interconnectors into Feed end of PWT Turn and push interconnector at the same time!

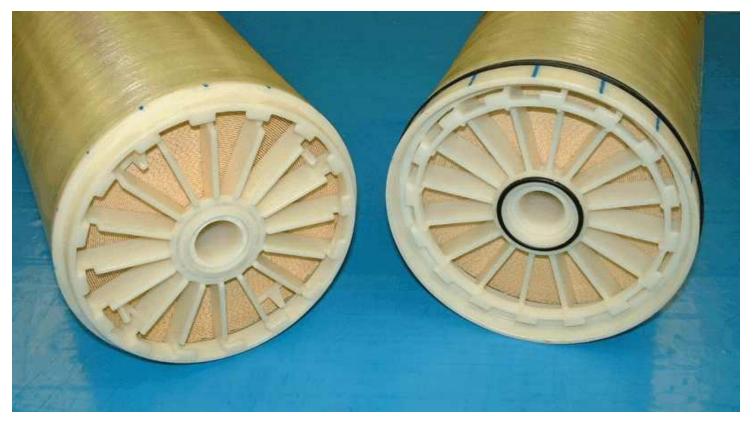
Silicon lubricant: **Dow Corning**[®] **111 or Molykote**[®] **111** Other lubricants may cause

Other lubricants may cause performance issues!

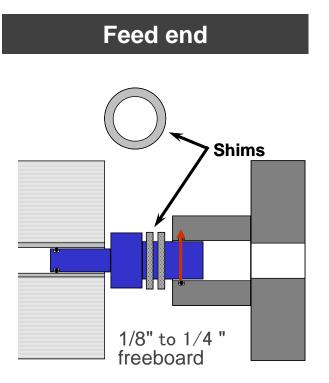
Brine seal check and lubrication


- glycerin/water (50/50) solution
- food grade glycerin
- Dow Corning® 111

Adding elements


Always support the element to keep it horizontal!

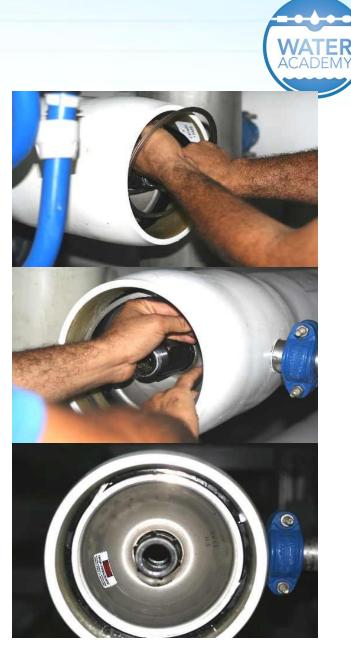
iLEC™ Elements


See Training video on

http://www.dowwaterandprocess.com/en/resources/ Keyword "iLEC"

Shimming

- 1. Push elements with appropriate tool
- 2. Shim so that the endconnector cannot move when PV is closed

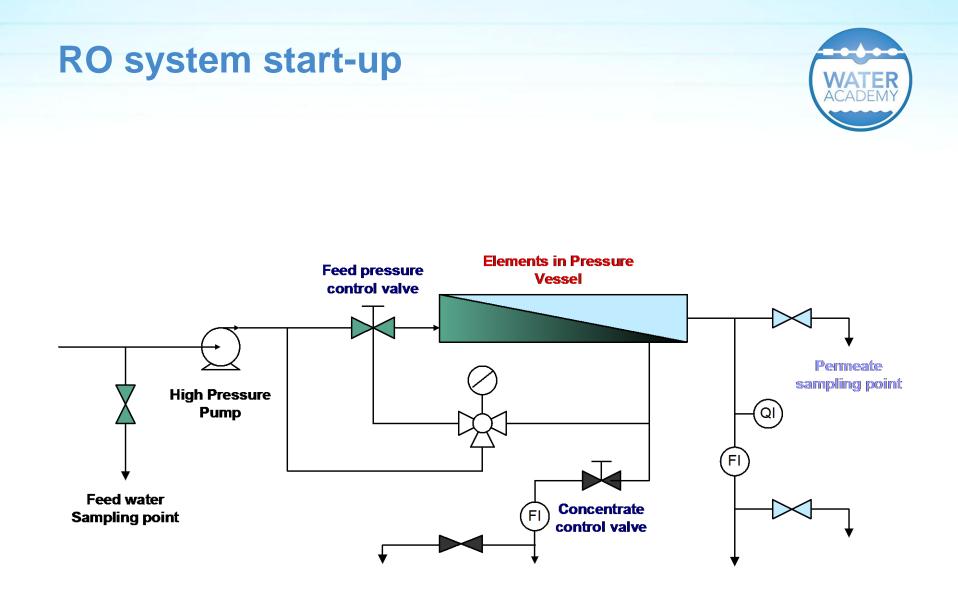


Closing of PV's Feed End

- 1. Place segmented ring
- 2. Close with spring

Start Up Checklist & Sequence

- ✓ Pretreatment
- Membrane units
- ✓ Turbidity and SDI
- Alarm shut downs (redox/pH, no sodium bisulfite, no acid, no antiscalant, temperature, pressure)
- Instrumentation is appropriate, properly installed and calibrated
- Provisions to prevent product back pressure (< 5 psi)



Checklist for start-up (2/2)

- ✓ Sampling valves installed
- Pressure vessels secured and piped for operation
- Pumps and valves ready for operation (permeate open to drain, reject flow control valve open, feed flow valve throttled and/or pump bypass valve partly open – feed flow < 50% of normal)
- Monitoring equipment
- ✓ Water analysis equipment

Start-up sequence

- 1. Rinse upstream section to flush out contaminants
- 2. Check correct setting of all valves
- 3. Purge air out of system at low pressure
- 4. Check for leaks
- 5. Partially close feed pressure control valve
- 6. Start high pressure pump
- 7. Slowly open feed control valve
- 8. Slowly close brine control valve to adjust to design recovery
- 9. Adjust to design product flow with feed and brine valves
- 10. Check all chemical dosages rates and brine LSI
- 11. Let system stabilize one hour
- 12. Record all operating parameters
- 13. Check permeate conductivity from each vessel
- 14. Take water samples and analyze
- 15. Compare performance to prediction
- 16. Lock plant in automatic operation
- 17. Record operating data frequently over first 48 hours. This provides a baseline for all future readings

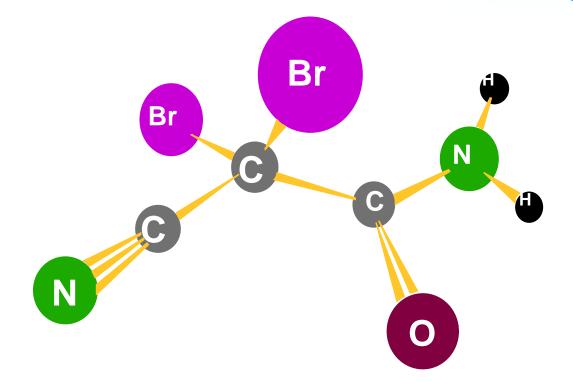
Shut-down

Reasons for Shut-down

- Storage tank full; operation not required
- Start-up not successful
- Power outage
- Scheduled maintenance
- Cleaning

۲

• Number of shut-downs should be kept at a minimum


Shut-Down Considerations

- Automatic flush at low pressure (~ 45-60 psi) for about 3 minutes $(C_f=C_b)$
- Flush water quality
 - Permeate water preferred
 - No pretreatment chemicals (except sodium bisulfite)
 - No free chlorine
 - DBNPA may be added

2,2 Di Bromo-3-Nitrilo Propion Amide

Features:

- Quick kill
- Rapid degradation
- Low use concentrations
- Non-oxidizing

Precautions during Shut-Down Period

- After flushing keep system full of water with no air (this becomes extremely critical when H₂S is present)
- Keep system cool but frost-free
- Avoid temperatures > 35° C
- Protect membranes from microbiological growth
 - Flush at least once every day with permeate or good quality feed water
 - Operate the system for a short time once every day
 - Preserve the system

Preservation

Required for periods > 48 hours without flushing or operation

- Preservation solution: 1 1.5% sodium bisulfite
- Renew solution if pH drops below 3 or latest after one month
- Keep system cool but frost-free
- Avoid temperatures > 35° C

Performance monitoring

Performance monitoring

- 1. Recordkeeping for RO Systems
- 2. Factors Influencing RO Performance
- 3. Data Normalization

Performance Monitoring -Why?

- To track performance of system trends
- To decide when to clean
- To decide when to replace membranes
- Useful information in troubleshooting
- Required in event of warranty claim

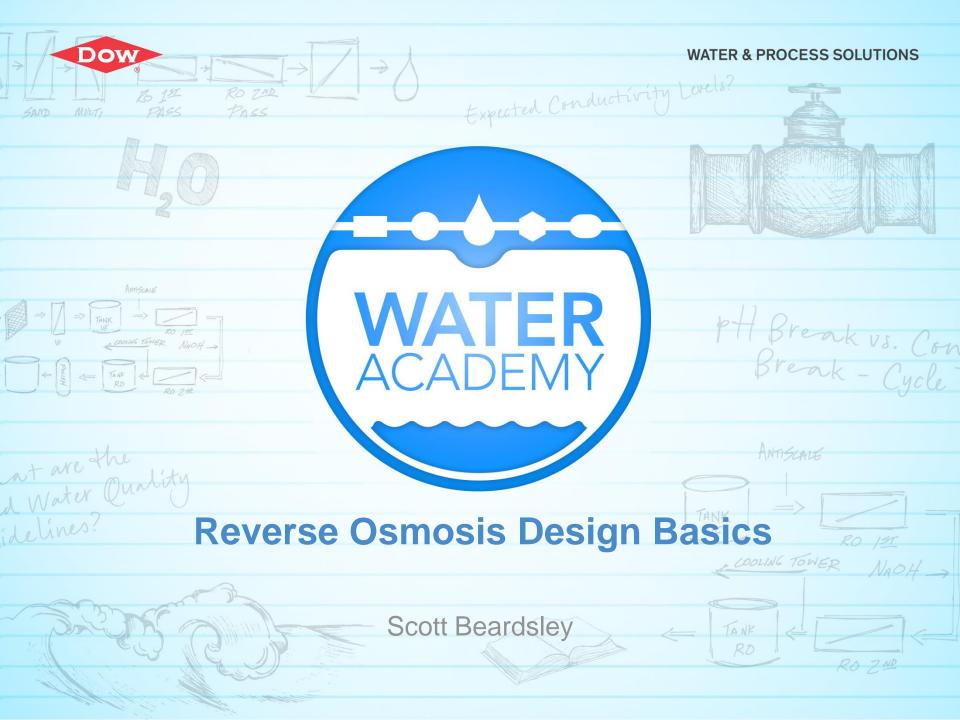
Performance monitoring -How?

- Record operating data on log sheet
- Normalize data to account for feedwater pressure, temperature, concentration and recovery
- Graph salt passage, product flow and DP vs. time

Recordkeeping for RO Systems

- Recommendations for RO operating records are in ASTM D 4472
- Data which should be recorded is:
 - Permeate and concentrate flows
 - Feed, concentrate and permeate pressures
 - Feed temperature
 - Feed pH
 - Feed, concentrate and permeate concentrations

Data normalization -Why normalize?


Fluctuations in operating conditions cause permeate flow and salt passage to change. Performance changes due to membrane properties might go undetected.

Normalization eliminates the effects of fluctuating operating conditions and allows monitoring of the membrane properties.

Thank You!

For more information please visit our web site or contact your local Dow representative. http://www.dowwaterandprocess.com/

RO System Design Webinar Series

Reverse Osmosis System Design Basics

Date & Time Sept 9, 2015 1-3 pm CDT **RO Webinar Series Speakers:**

Advanced Reverse Osmosis System Design

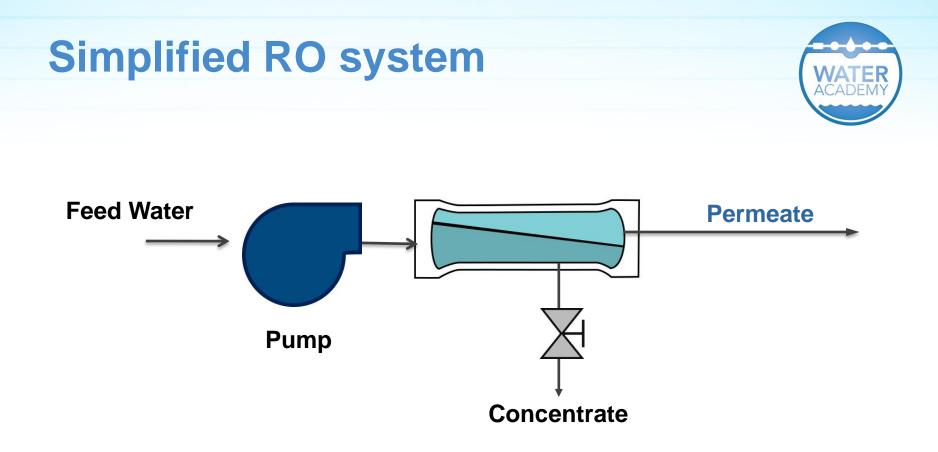
Date & Time Sept 23, 2015 1-3 pm CDT

ROSA System Design Basics

Date & Time Sept 11, 2015 1-3 pm CDT Scott Beardsley & Steven Coker Technical Service Specialists Advanced RO System Design with ROSA

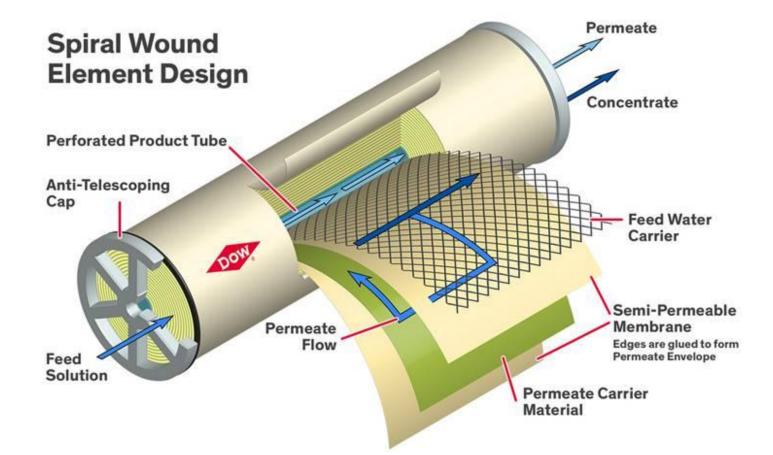
Date & Time

Sept 30, 2015 1-3 pm CDT

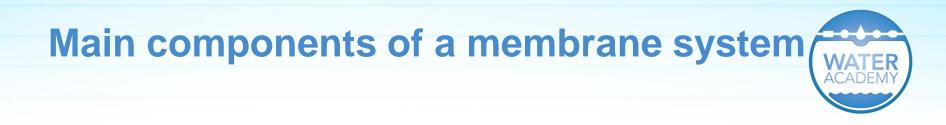


Overview

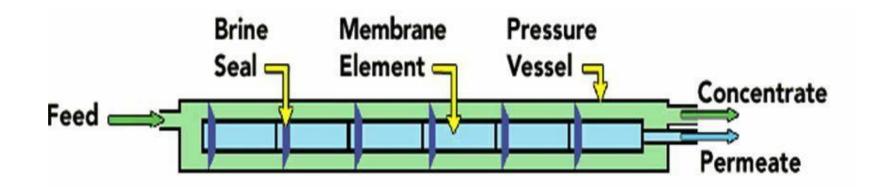
- 1. Scope of system design
- 2. System configuration types
- 3. System design guidelines
- 4. Ten steps to design a membrane system

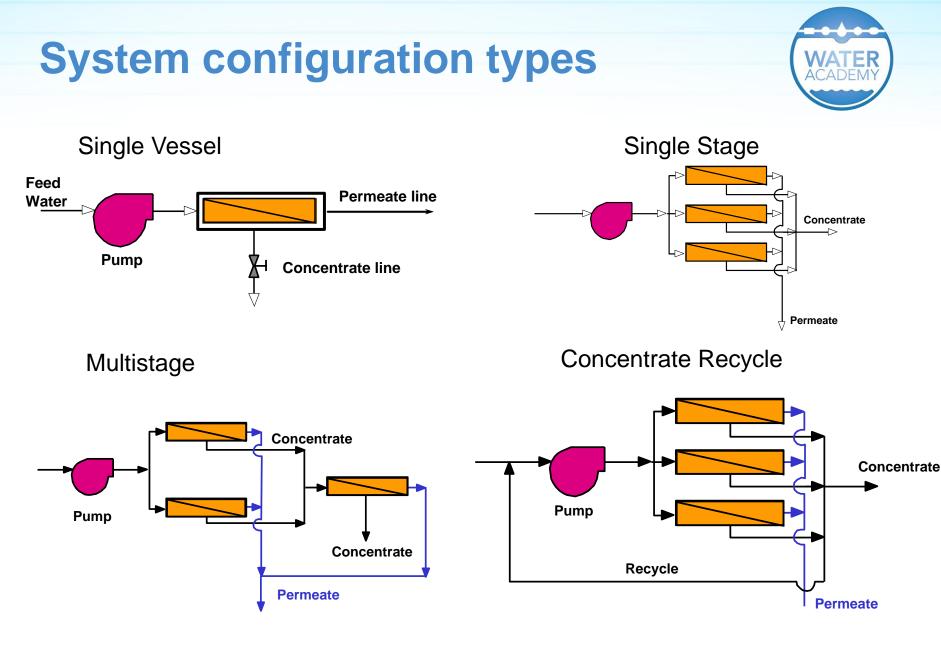


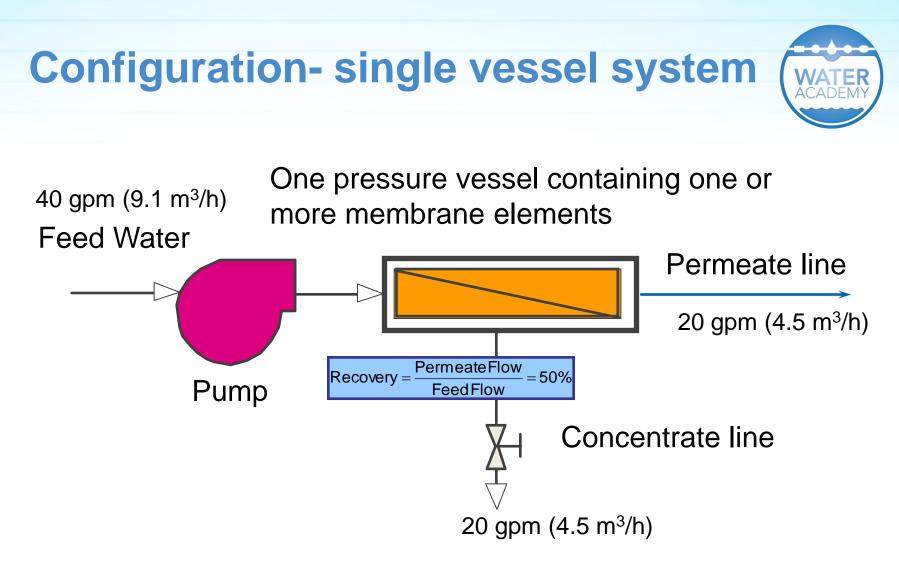
100 to 600 psi (7 to 42 bar) -brackish water 800 to 1,200 psi (55 to 83 bar) -seawater

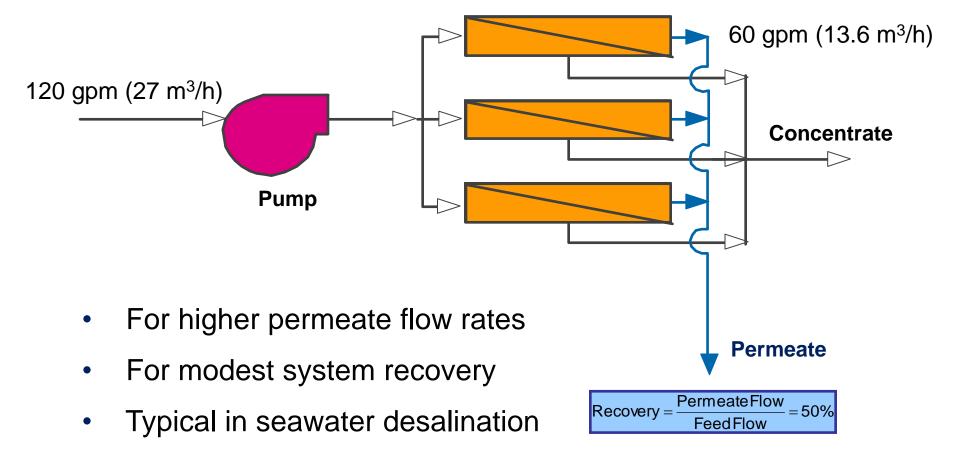


Spiral wound RO membrane element

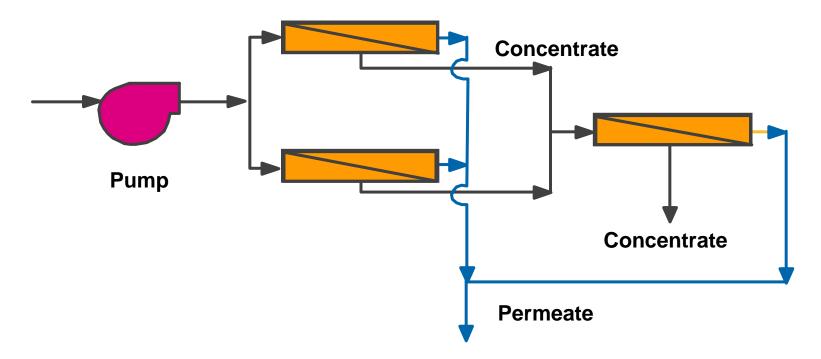



Serial arrangement of membrane elements in a pressure vessel

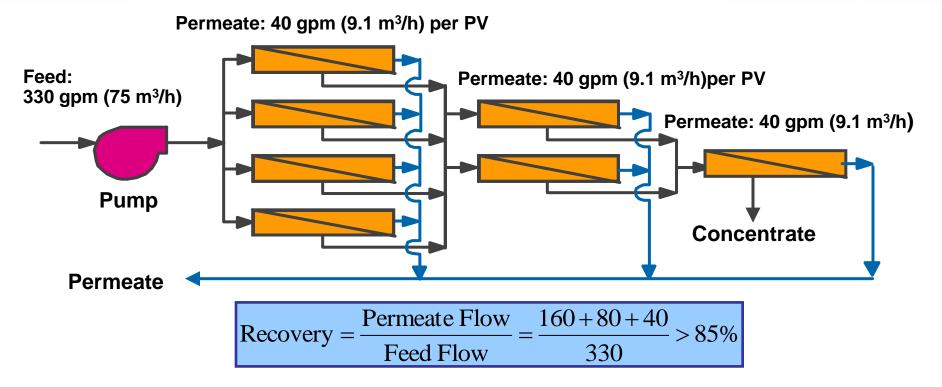

DOW FILMTEC™ RO Element



- For low flow rate
- For low system recovery


Configuration- single stage system

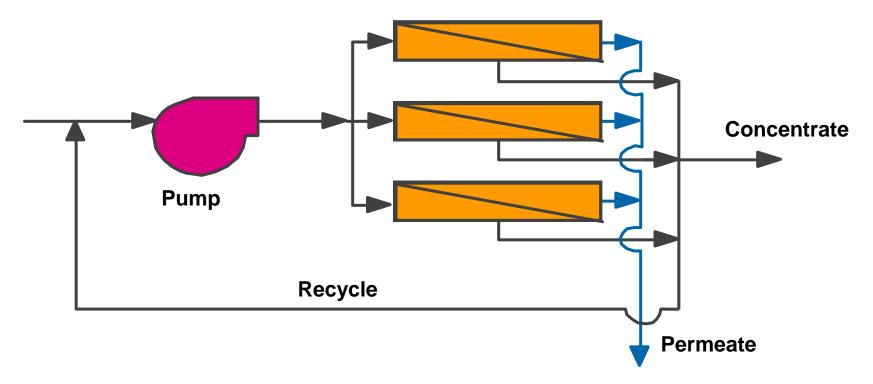
Pressure vessels in parallel with common feed, concentrate and permeate connections



- Use for higher recovery
- Typical 75% recovery with 6-element vessels

Configuration- multi-stage system

Three-stage system


- Use for higher recovery
- Typical 85% recovery with 6-elements vessels
- Up to 90% depending on the feed water quality

Configuration – concentrate recycle

- Way to increase recovery by re-circulating reject to increase feed flow
- Typical for special / waste water applications
- Typical for single vessel systems

Design guidelines for 8-inch FILMTEC elements

	RO perme ate		Surface Water				Wastewate	er	Seawater		
		Well Water	Dow UF	UF/MF ¹	Conven tional	Dow UF	UF/MF ¹	Conventio nal	Dow UF	UF/MF ¹ or Well	Open Intake
SDI	<1	<3	<2.5	<3	<5	<2.5	<3	<5	<2.5	<3	<5
Average flux (gfd)	21-25	16-20	16-20	13-17	12-16	11-15	10-14	8-12	9-11	8-10	7-10
Average flux (L/m²h)	36-43	27-34	27-34	22-29	20-27	18-26	17-24	14-20	15-18	13-20	11-17
Maximum element recovery (%)	30	19	19	17	15	14	13	12	15	14	13

¹ UF/MF: Generic Ultra/Microfiltration - continuous filtration process using a membrane with pore size of <0.5 micron.

The limiting values listed above have been incorporated into the ROSA software. Designs of systems in excess of the guidelines results in a warning on the ROSA printout.

Design guidelines for 8-inch FILMTEC elements Maximum permeate flow rate per element

	RO	Well	Sı	urface W	ater		Wastewat	ter	S	eawater	
	perme ate	Water	Dow UF	UF/M F ¹	Conven tional	Dow UF	UF/MF	Convent ional	Dow UF	UF/MF ¹ or Well	Open Intake
SDI	<1	<3	<2.5	<3	<5	<2.5	<3	<5	<2.5	<3	<5
Active Membrane Area (ft²)	Maximum permeate flow rate, gpd (m ³ /d)										
365	10.200 (38)	8.500 (32)	8.500 (32)	7.200 (27)	6.600 (25)	6.300 (24)	5.900 (22)	5.200 (20)			\searrow
380	10.700 (40)	8.900 (34)	8.900 (34)	7.500 (28)	6.900 (26)	6.500 (25)	6.000 (23)	5.200 (20)	7.900 (30)	7.600 (29)	7.200 (27)
400	11.200 (42)	9.300 (35)	9.300 (35)	7.900 (30)	7.300 (28)	6.800 (26)	6.400 (24)	5.700 (22)	8.400 (32)	8.000 (30)	7.600 (29)
440	12.300 (47)	10.300 (39)	10.300 (39)	8.700 (33)	8.000 (30)	7.600 (29)	7.100 (27)	6.300 (24)	9.200 (35)	8.800 (33)	8.360 (32)

¹ UF/MF: Generic Ultra/Microfiltration - continuous filtration process using a membrane with pore size of <0.5 micron.

Design guidelines for 8-inch FILMTEC elements Minimum concentrate flow rate per element

	RO	Well Water	Wall	Wall	Wall	Mall	Mall	Wall	Wall	Sı	Irface Wa	ter	v	Vastewat	er		Seawate	er
	permeat e		Dow UF	UF/MF ¹	Convent ional	Dow UF	UF/MF	Conventi onal	Dow UF	UF/MF ¹ or Well	Conventio nal							
SDI	<1	<3	<2.5	<3	<5	<2.5	<3	<5	<3		<5							
Element type				Miniı	mum conce	entrate flow	/ rate ² , gp	om (m³/h)										
Brackish water (365 ft²)	10 (2.3)	13 (3.0)	13 (3.0)	13 (3.0)	15 (3.4)	16 (3.6)	16 (3.6)	18 (4.1)		$\mathbf{\times}$	\searrow							
Brackish water (400- 440 ft ²)	10 (2.3)	13 (3.0)	13 (3.0)	13 (3.0)	15 (3.4)	18 (4.1)	18 (4.1)	20 (4.6)		\mathbf{X}	$\mathbf{\mathbf{X}}$							
NF	10 (2.3)	13 (3.0)	13 (3.0)	13 (3.0)	15 (3.4)	18 (4.1)	18 (4.1)	18 (4.1)	\triangleright	\ge	\ge							
Sea water	10 (2.3)	13 (3.0)	13 (3.0)	13 (3.0)	15 (3.4)	16 (3.6)	16 (3.6)	18 (4.1)	13 (3.0)	14 (3.2)	15 (3.4)							

¹ UF/MF: Generic Ultra/Microfiltration - continuous filtration process using a membrane with pore size of <0.5 micron

² The maximum recommended pressure drop across a single element is 15 psid (1bar) or 50 psid (3.5 bar) across multiple elements in a pressure vessel, whichever value is more limiting. We recommend designing at maximum of 80% (12 psid) for any element in a system.

Design guidelines for 8-inch FILMTEC elements Maximum feed flow

		RO		S	urface W	ater	v	lastewat	er		Seawater	,
		Perm eate	erm Well Water	Dow UF	UF/M F ¹	Conve ntional	Dow UF	UF/MF	Conve ntional	Dow UF	UF/MF ¹ or Well	Conve ntional
SDI		<1	<3	<2.5	<3	<5	<2.5	<3	<5	<2.5	<3	<5
Element type	Area (ft ²)		Maximum feed flow rate, gpm (m ³ /h)									
Brackish water	365 (33.9)	65 (15)	65 (15)	63 (14)	63 (14)	58 (13)	52 (12)	52 (12)	52 (12)	\ge	\searrow	\ge
NF or Brackish water	400 (37.2)	75 (17)	75 (17)	75 (17)	73 (17)	67 (15)	61 (14)	61 (14)	61 (14)	$\left \right>$	$\mathbf{\mathbf{X}}$	$\left \right>$
Brackish water	440 (40.9)	75 (17)	75 (17)	75 (17)	73 (17)	67 (15)	61 (14)	61 (14)	61 (14)	\ge	\ge	\ge
Sea water	370 (34.4)	65 (15)	65 (15)	70 (16)	70 (16)	64 (15)	58 (13)	58 (13)	58 (13)	63 (14)		56 (13)
Sea water	380 (35.3)	72 (16)	72 (16)	70 (16)	70 (16)	64 (15)	58 (13)	58 (13)	58 (13)	70 (16)		62 (14)
Sea water	400 (37.2)	72 (16)	72 (16	70 (16)	70 (16)	64 (15)	58 (13)	58 (13)	58 (13)	70 (16)		62 (14)

¹ UF/MF: Generic Ultra/Microfiltration - continuous filtration process using a membrane with pore size of <0.5 micron

- Define product flow rate and recovery (consider feed quality and required permeate quality
- Select the flow configuration
- Select the membrane element type
- Select the average membrane flux
- Calculate the number of elements needed

- Calculate the number of pressure vessels needed
- Select the number of stages
- Select the staging ratio
- Balance the permeate flow rate
- Analyze and optimize the membrane system

- Step 1 Define scope and boundaries
 - Required permeate flow rate
 - Required permeate quality
 - Available feed water quality
 - System recovery
 - Focus on capital or operation costs

Focus on capital or operation costs

Focus on minimizing capital costs (CAPEX):

- Implications:
- Maximize system flux
- Minimize number of elements and vessels

Focus on minimizing operational costs (OPEX):

- Implications:
- Lower system flux
- Higher number of elements and vessels
- Prefer low energy membranes

- Required permeate flow rate
 Implications:
 - Element size
 - Number of elements
- Required permeate quality
 Implications:
 - Element selection
 - Flow configuration
 - Recovery

- System recovery
 - Seawater recovery limits
 - High osmotic pressure of brine stream
 - Osmotic pressure limits recovery to 35-55%
 - Brackish water recovery limits
 - Brackish waters usually contain sparingly soluble salts which can cause scaling
 - Recovery normally limited to 70-85%
 - Softening or scaling inhibition required
 - Recovery limits for non-treated and softened waters calculated by ROSA
 - Recovery limits with scale inhibitors calculated by supplier programs
 - Lower recovery for feeds with higher fouling tendency
 - Permeate quality limits
 - Requested permeate quality may not be achieved at very high recovery

• Step 1 – Define scope and boundaries

OUR EXAMPLE


Required permeate flow rate: Required permeate quality: Available feed water quality: System recovery: Focus on operational costs

1,000 gpm (227 m³/h) TDS < 20 mg/L Local river source, TDS = 355 mg/L 80%

- Step 2 Select flow configuration
 - Continuous process is standard
 - Batch process in special applications e.g. for separation of process liquids and waste water treatment in food and pharma industries
 - Concentrate recirculation for small systems and in special application – e.g. waste water or process liquids

• Step 2 – Select flow configuration

OUR EXAMPLE

Continuous processYesBatch processNoConcentrate recirculationNo

• Step 3 – Select the membrane element type

According to:

- System capacity
- Feed water TDS
- Feed water fouling potential
- Required product water quality
- Energy requirements

• Step 3 – Select the membrane element type

According to system capacity

- Element diameter for approximate system capacity
 - 2.5-inch < 200 liters/h (1,270 gpd)
 - 4.0-inch < 2.3 m³/h (10 gpm)
 - 8.0-inch > 2.3 m³/h (10 gpm)
- Element length
 - Standard 40 inches (1,106 mm)
 - For small compact systems 21 or 14 inches

• Step 3 – Select the membrane element type

According to feed water TDS (rule of thumb)

- < 1,000 mg/L NF270, NF90, XLE, ECO, TW30, XFR, BW30
- < 10,000 mg/L BW30, XFR
- 10,000-30,000 mg/L SEAMAXX, SW30ULE, SW30XLE

30,000-50,000 mg/L SW30HR, SW30XHR, SW30HRLE, SW30XLE

• Step 3 – Select the membrane element type

According to feed water fouling potential

- Standard feed spacer thickness 28 mil
- Feed spacer thickness for feed waters with increased fouling potential – 34 mil used in BW30-365, BW30-400/34, BW30XFR-400/34, ECO-400, SW30HR-370/34
- Fouling resistant BW membrane for biofouling and organic fouling mitigation used in BW30XFR-400/34, ECO-400

• Step 3 – Select the membrane element type

OUR EXAMPLE

According to:

- System capacity: elements of 8" x 40" (1,000 gpm, 227 m³/h)
- Feed water TDS: BW or low energy
- Feed water fouling potential: 34 mil feed spacer
- Required product water quality: BW, ECO, low energy
- Energy requirements: ECO, low energy

• Step 4 – Select the average membrane flux

Select the design flux (f) based on:

- Typical design fluxes found in Membrane System Design Guidelines
- Feed water source (type)

Design Guidelines Choosing feedwater type

Feed water type	Description					
RO Permeate SDI<1	Very-low-salinity, high-purity waters (HPW) coming from the first RO systems (double-pass RO system) or the polishing stage in ultrapure water (UPW) systems with TDS up to 50 mg/L.					
Well Water SDI<3	Water from a ground source that has been accessed via well. Usually, has low fouling potential.					
Surface Water with Dow Ultrafiltration SDI<2.5	Water from rivers, river estuaries and lakes. In most cases it has high TSS, NOM, BOD and colloids. Frequently, surface water quality varies seasonally.					
Surface Supply SDI<3						
Surface Supply SDI<5						
Wastewater with Dow Ultrafiltration SDI<2.5	Industrial and municipal wastewaters have a wide variety of organic and inorganic constituents. Some types of organic components may adversely affect RO/NF membranes, inducing severe flow loss and/or membrane degradation (organic fouling).					
Wastewater with Generic Membrane Filtration SDI<3						
Wastewater with Conventional Pretreatment SDI<5						
Seawater with Dow Ultrafiltration SDI<2.5	Seawater Dow Ultrafiltration as a pre-treatment					
Seawater with Generic Membrane Filtration SDI<3	Well -water from a beach well with any type of pre-treatment Seawater any with Generic Microfiltration/Ultrafiltration as a pre-treatment					
Seawater (Open Intake) SDI<5	Open intake seawater with conventional pre-treatment					

• Step 4 – Select the average membrane flux

OUR EXAMPLE

According to:

- Design guidelines: surface water SDI < 5; design flux range = 12-16 gfd (20-27 lmh) for pretreated river water source
- Conventional pretreatment

• Step 5 – Calculate the number of elements needed

$$N_{\rm E} = \frac{Q_{\rm P}}{f \cdot S_{\rm E}}$$

OUR EXAMPLE

$$N_{\rm E} = \frac{Q_{\rm P}}{f \cdot S_{\rm E}} = \frac{5,450(m^3 / day)}{22.3(L / m^2 h) \times 37.2(m^2)} \frac{1day}{24h} \frac{1000L}{1m^3} \approx 274$$
$$N_{\rm E} = \frac{Q_{\rm P}}{f \cdot S_{\rm E}} = \frac{1,440,000(gal / day)}{13.2(gfd) \times 400(ft^2)} \approx 273$$

 Step 6 – Calculate the number of pressure vessels needed

$$N_{\rm V} = \frac{N_{\rm E}}{N_{\rm EpV}}$$

- N_V Number of vessels
- N_E Number of elements
- N_{EpV} Number of elements per vessel

OUR EXAMPLE

$$N_V = \frac{274}{7} = 39$$

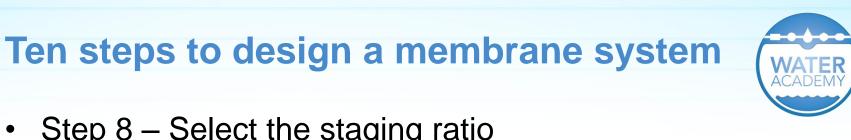
• Step 7 – Select the number of stages

Number of serial element positions should be higher for:

- Higher system recovery
- Higher fouling tendency

Number of stages depends on:

- Number of serial element positions
- Number of elements per pressure vessel



• Step 7 – Select the number of stages

Number of stages of a brackish water system

System Recovery (%)	Number of serial element positions	Number of stages (6-element vessels)	
40 - 60	6	1	
70 – 80	12	2	
85 – 90	18	3	

Step 8 – Select the staging ratio •

$$\mathbf{R} = \left[\frac{1}{(1-\mathbf{Y})}\right]^{\frac{1}{n}}$$

- Y System recovery (fraction)
- Number stages n

OUR EXAMPLE

$$\mathbf{R} = \left[\frac{1}{(1-0.80)}\right]^{\frac{1}{2}} \approx 2.24$$

Step 8 – Select the staging ratio
 Calculate number of vessels of first stage N_v(1)

$$Nv(1) = \frac{Nv}{1+R^{-1}}$$

For 2 stage system

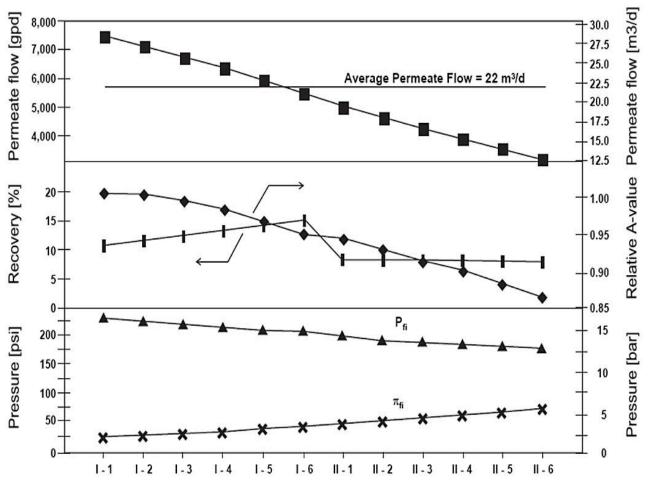
$$Nv(1) = \frac{Nv}{1 + R^{-1} + R^{-2}}$$

For 3 stage system

OUR EXAMPLE

$$Nv(1) = \frac{Nv}{1 + R^{-1}} = \frac{39}{1 + 2.24^{-1}} = 26.9$$

We need approximately 26 vessels in the first stage and 13 vessels in the second stage


• Step 9 – Balance the permeate flow rate

Permeate flow rate per element decreases from the feed end to the concentrate end of the system because of:

- Pressure drop in the feed/concentrate feed spacer
- Increasing osmotic pressure in the feed/concentrate stream

Individual element performance in a system 2:1 array of 8-inch BW30 elements (example)

Element Series Position (Stage No- - Vessel Pos.)

• Step 9 – Balance the permeate flow rate

Imbalance of permeate flow rate predominant with:

- High system recovery
- High feed salinity
- High water temperature
- Low pressure elements
- New elements

WATER

• Step 9 – Balance the permeate flow rate

Why balance the permeate flow rate?

- Avoid excessive flux of lead elements
- Reduce fouling rate of first stage
- Improve product water quality
- Make better use of tail end elements
- Reduce number of elements

• Step 9 – Balance the permeate flow rate

Methods to balance the permeate flow rate:

- Boosting the feed pressure between stages
- Permeate backpressure to first stage only
- Elements with lower water permeability in the lead positions; elements with higher water permeability in the tail positions

 Step 10 – Analyze and optimize the reverse osmosis system

The chosen system should then be analyzed and refined using the Reverse Osmosis System Analysis (ROSA) computer program.

Questions?

For more information please visit our web site or contact your local Dow representative. http://www.dowwaterandprocess.com/

NOTICE: Although the information and recommendations in this presentation (hereinafter "Information") is presented in good faith and believed to be correct, Dow makes no representations or warranties as to the completeness or accuracy of Information. Information is supplied upon the condition that the persons receiving same will make their own determination as to its suitability for their purposes prior to use. In no event will Dow be responsible for damages of any nature whatsoever resulting from the use of or reliance upon Information or the products to which Information refers. References to "Dow" or the "Company" mean the Dow legal entity selling the products to Customer unless otherwise expressly noted. NO WARRANTIES ARE GIVEN; ALL IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY EXCLUDED.

®TM Trademark of The Dow Chemical Company ("Dow") or an affiliated company of Dow

RO System Design Webinar Series

Reverse Osmosis System Design Basics

Date & Time Sept 9, 2015 1-3 pm CDT **RO Webinar Series Speakers:**

Advanced Reverse Osmosis System Design

Date & Time Sept 23, 2015 1-3 pm CDT

ROSA System Design Basics

Date & Time Sept 11, 2015 1-3 pm CDT Scott Beardsley & Steven Coker Technical Service Specialists Advanced RO System Design with ROSA

Date & Time

Sept 30, 2015 1-3 pm CDT

Reverse Osmosis Design Basics – Scott Beardsley

- 1. Scope of system design
- 2. System configuration types
- 3. System design guidelines

4. Ten steps to design a membrane system

Previous Water Academy webinars can be found at: <u>www.dowwaterandprocess.com</u>

Overview of Advanced RO Design

- RO system design guideline variables
- Drivers for RO system configuration selection
- Principles and benefits of RO array flux balancing
- Array selection criteria to achieve permeate quality target
- Energy recovery

Dichotomy of RO System Design

Focus on minimizing capital costs (CAPEX):

Implications:

- Maximize system flux
- Minimize number of elements and vessels

Focus on minimizing operational costs (OPEX):

Implications:

- Lower system flux
- Higher number of elements and vessels
- Prefer low energy membranes

Achieve the required permeate quality at the lowest total cost of water

Complexity of RO Designs

Increasing

Fouling

Potential

VARIOUS APPLICATIONS

Industrial/ Power/UPW

1st & 2nd pass

Wastewater Reuse Irrigation

1st & 2nd pass

Municipal Potable

1st pass

SWRO

VARIOUS FEED WATER SOURCES

- Waste water
 - Conventional
 - UF
- Surface water
 - Conventional
 - UF
- Well water
- RO permeate
- VARIOUS QUALITY REQUIREMENTS
- B < 0. 3-1 mg/l
- Br < 0.1 mg/l
- TOC < 10 ppb
- NO₃ < 0.5 -35 mg/l
- $NH_4 < 0.5 mg/l$
- SiO₂ < 10 ppb
- Hardness 0.5 mg/l 200 mg/l CaCO₃
- TDS: 0.1 mg/l 500 mg/l

Global Market Global Project Development

Regional Preferences

Regional Regulations

Strong Regional Variations

(TDS/Temp)

Market Segment Nuances for RO Design

<u>Municipal</u>

- Medium to large size plants
- Wide permeate quality targets
- Total cost of water is most critical

• Larger selection of RO elements

Industrial

- Small to medium size plants
- Narrow permeate quality targets
- System reliability is most critical

- Narrow latitude in system design
- High rejection RO elements

Membrane Design Guidelines

Happy RO Elements Work Better and Live Longer!

Design Guideline Variables

Feed Water Variables

- Temperature
- pH
- Silt Density Index
- Turbidity
- Salinity

System Variables

- Element Flux
- Element Feed Flow
- Differential Pressure
- Element Recovery
- System Recovery
- Operating Pressure

Membrane Design Guideline Variables

Feed Water Variables

- Temperature
- pH
- Silt Density Index
- Turbidity
- Salinity

System Variables

- Element Flux
- Element Feed Flow
- Differential Pressure
- Element Recovery
- Operating Pressure

Design Considerations

- Min T = Max P; Max T = Max TDS & Flux
- Rejection; Rejection of spec. ions; Scaling
- Fouling potential; Pretreatment
- Fouling potential; Pretreatment
- Membrane choice; Recovery; Pressure
- Number of RO elements and vessels
- Differential pressure; Number of vessels
- Num. of elements/vessel; Spacer; Life
- System recovery; Salinity; flux balance
- OPEX; Salinity; Temperature; Flux; Area;

Membrane Element Selection

According to feed water fouling potential

- Standard feed spacer thickness: 28 mil
- Feed spacer thickness for feeds with increased fouling potential: 34 mil
- Fouling resistant BW membrane for biofouling control

WATER ACADEMY

According to required product water quality and energy requirements

Selecting RO System Configuration

WATER

Typical RO System and Element Selection Drivers

- Controlling RO array flux balance
- RO fouling/scaling mitigation
- Required permeate or concentrate quality
- Optimization of RO system energy consumption

Typically, all of these selection drivers have an impact on the final RO system design.

Configuration – Number of stages selection

Number of serial element positions should be higher for

- Higher system recovery
- Higher fouling tendency of the feed water

Number of stages depends on

- Number of serial element positions
- Number of elements per pressure vessel

Number of stages of a brackish water system

System Recovery (%)	Number of serial element positions	Number of stages (6-element vessels)
40 - 60	6	1
70 - 80	12	2
85 – 90	18	3

Number of stages of a sea water system

System Recovery (%)	Number of serial element positions	Number of stages (6-element vessels)	Number of stages (7-element vessels)	Number of stages (8-element vessels)
35 - 40	6	1	1	-
45	7 - 12	2	1	1
50	8 - 12	2	2	1
55 – 60	12 - 14	2	2	-

Multistage systems: Staging ratio calculation

– Nv(i)	R	Staging ratio
$\mathbf{R} =$	N _v (i)	Number of vessels in stage i
Nv(i+1)	N _v (i +1)	Number of vessels in stage (i +1)

Calculate number of vessels of first stage NV(1)

$$Nv(1) = \frac{Nv}{1 + R^{-1}}$$

For 2 stage system

$$Nv(1) = \frac{Nv}{1 + R^{-1} + R^{-2}}$$

For 3 stage system

Multistage Systems: Staging Ratio

Typical staging ratio:

- **1.5** sea water systems with 6-element vessels
 - **2** brackish water systems with 6-element vessels
 - **3** low feed salinity or 2nd pass RO systems

Multi-stage Systems: Managing Flux Balance

WATER ACADEMY

Why balance the permeate flow rate?

- Avoid excessive flux of lead elements
- Reduce fouling rate of first stage
- Make better use of tail end membranes
- Reduce number of elements
- Improve product water quality

Methods to balance the permeate flow rate

- Boosting the feed pressure between stages
- Permeate backpressure to first stage only
- Membranes with lower water permeability in lead positions membranes with higher water permeability in tail positions

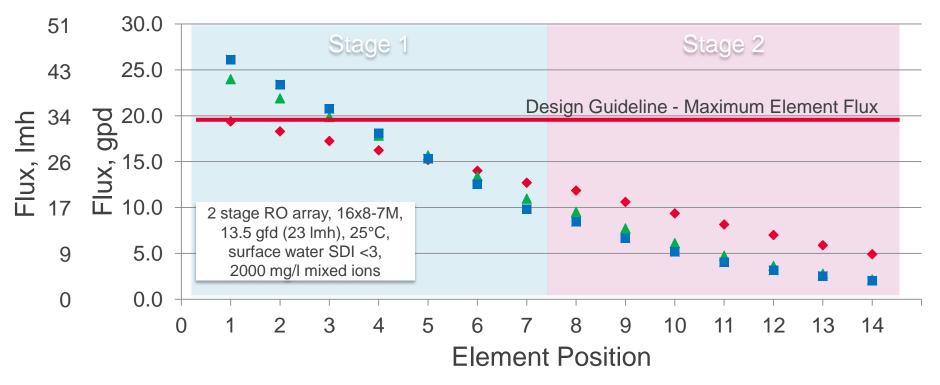
Advanced RO System Design Options

Managing Flux Balance

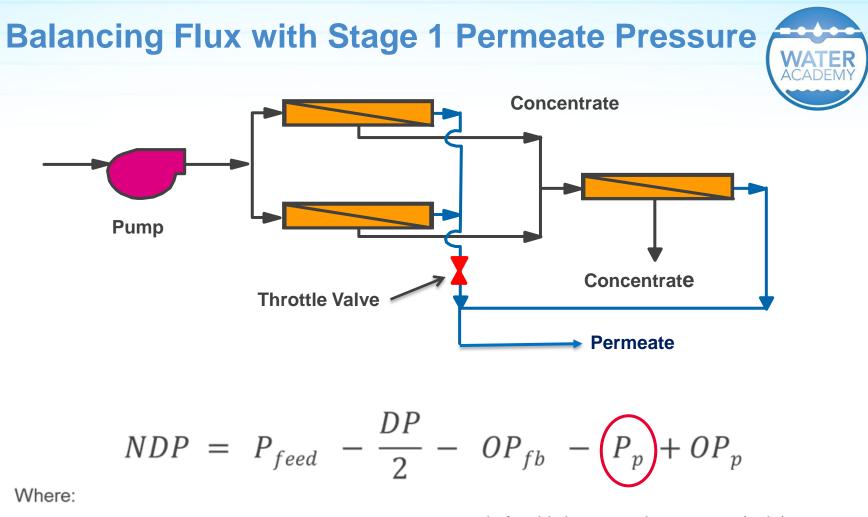
- Stage 1 permeate backpressure or stage 2 boost pump
- Multi-element hybrid array
- Internally Staged Design (ISD) array

Managing Permeate Quality

- RO with feed water/permeate blending
- 2 pass RO system
- 2 pass RO system w/ partial 2nd pass
- 2 pass RO system w/ permeate split design


Stage-wise Flux Balancing

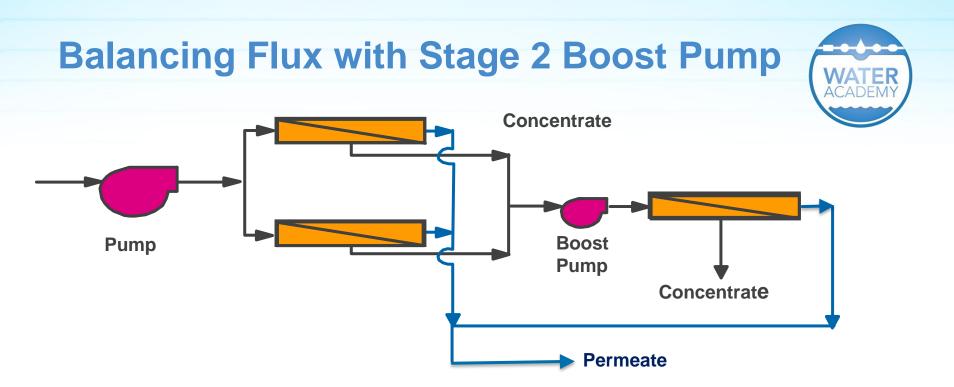
Element Flux Across 2 Stage Array


7,550 gpd
 (28.6 m³/d)

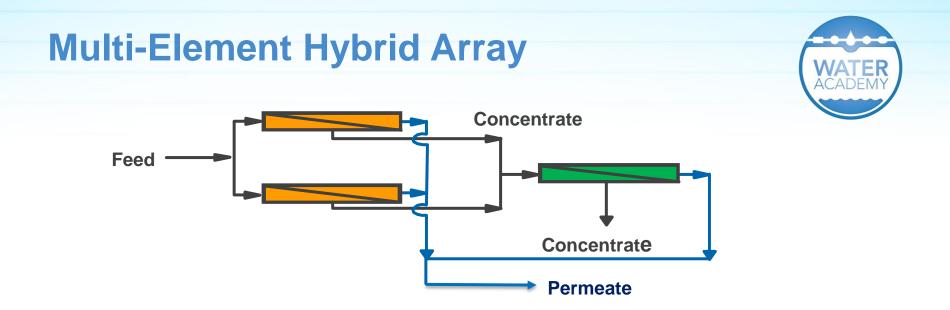
▲ 12,650 gpd (47.9 m³/d) 15,100 gpd
 (57.2 m³/d)

Element gpd tested at 150 psig (10.3 barg), 2000 mg/l NaCl, 25°C, pH 8, 15% recovery

- *NDP* = Net Driving Pressure (psig)
- *P_{feed}* is feed pressure (psig)
- *DP* is differential pressure (psig)

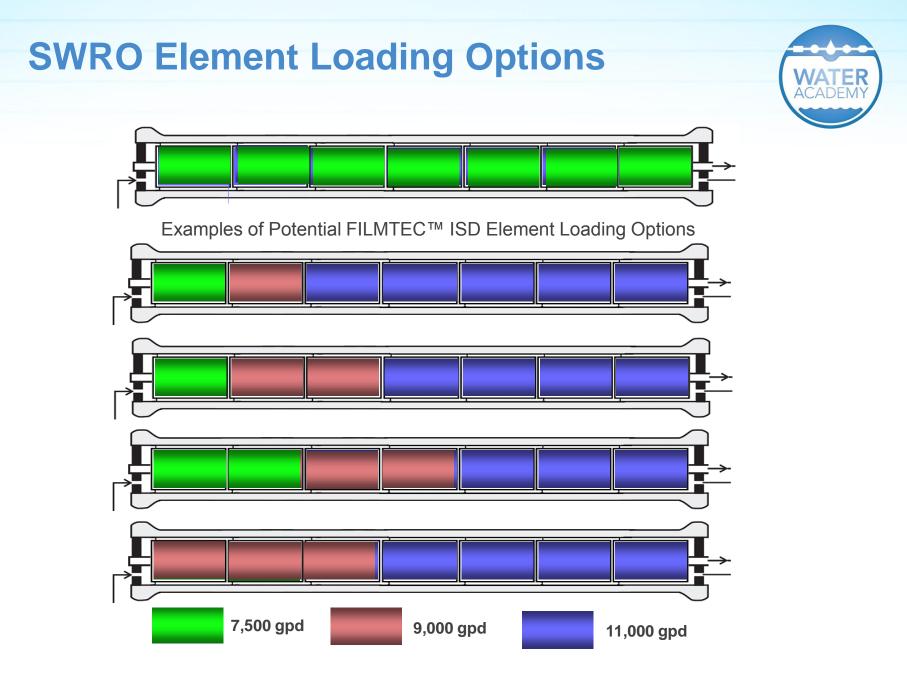

- *OP_{fb}* is feed-brine osmotic pressure (psig)
- *P_p* is permeate pressure (psig)
- *OP_p* is permeate osmotic pressure (psig)

Balancing Flux with Stage 1 Permeate Pressure Element Flux Across 2 Stage Array ■ 15,100 gpd ◆ 15,100 gpd w/ Perm. Throt. $(57.2 \text{ m}^3/\text{d})$ $(57.2 \text{ m}^3/\text{d})$ 51 30.0 Stage 1 Stage 2 43 25.0 \times Design Guideline - Maximum Element Flux 34 20.0 Flux, Imh Flux, gpd 15.0 26 10.0 17 2 stage RO array, 16x8-7M, 13.5 gfd (23 lmh), 25°C, 5.0 9 surface water SDI <3, X X 2000 mg/l mixed ions 0 0.0 2 3 5 10 12 13 0 4 8 9 11 14 6 **Element Position**


Element gpd tested at 150 psig (10.3 barg), 2000 mg/l NaCl, 25°C, pH 8, 15% recovery

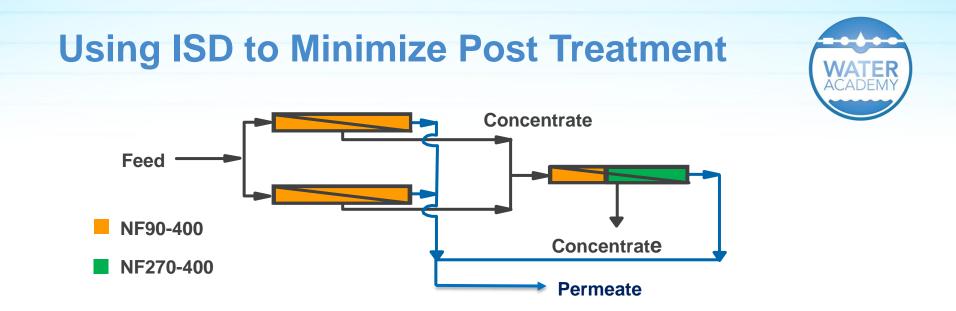
- Boost pump can be driven by electricity or by energy recovery device
- Stg 2 boost pressure = Stg 1 permeate throttle pressure
- Throttle valve is less expensive than boost pump
- Throttle valve has higher energy cost
- Throttle valves are typically limited to smaller systems

- Using different RO elements in each stage of the array...
 - to improve the flux balance between stages
 - to increase or decrease permeate TDS



- Multiple RO element types used in a stage
- Common method to control element flux and to optimize energy consumption in seawater systems
- Common method to minimize post-treatment chemical addition in municipal drinking water RO/NF systems

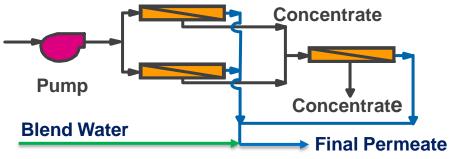
Using ISD to Optimize SWRO Performance 7.0 1.6 6.2 1.4 **Design Guideline** 5.3 1.2 Element Flow, gpm 3.5 2.6 Flow, m³/hr 1 ---- 9000 gpd 0.8 → 7500 gpd Element 0.6 1.8 0.4 SWRO 158 m3/h (1 MGD) Feed - 35,000 mg/l 50% recovery – 26°C 0.9 0.2 APF 14.8 lmh (8.7 gfd) 0 0 2 3 4 5 6 7 1 **Element Position**



Configuration – Internally Staged Design

Average Flux of the vessel	14 lmh (8.2 gfd)	15.8 lmh (9.2 gfd)	
Maximum permeate flow per element	0.99 m³/h (4.4 gpm)	0.99 m ³ /h (4.4 gpm)	
COST of Water Highest FF & T	60.14 UScts/m ³ (228 UScts/kgal)	58.27 UScts/m ³ 221 UScts/kgal)	
COST of Water Lowest FF & T	63.65 UScts/m ³ (241 UScts/kgal)	60.05 UScts/m ³ 227 UScts/kgal)	
% savings on cost of water*	Highest FF & T Lowest FF & T	3.1% 5.7%	
SW30HRLE	-400i SW30XHR-400i	SW30ULE-400i	

* COST CALCULATION (TOOLS): CAPEX and OPEX are taken into account. Model is prepared by a Consulting Company* for Dow (John Tonner Water Consultants International Inc.)



- Municipal NF plant designed with multiple 44 x 22 7M trains with FILMTEC[™] NF90-400 elements.
- The plant installed 4 NF270-400 elements in second stage to increase passage of hardness and alkalinity.
- Resulting increase in permeate total hardness and alkalinity levels allowed plant to eliminate problematic chemical addition in post treatment saving an estimated \$1M/year in O&M costs.

RO with Feed Water/Permeate Blending

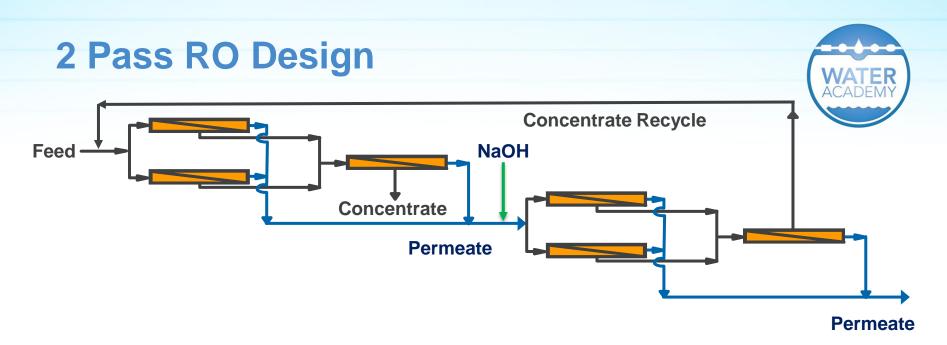
- Common in drinking water plants
- Increase overall system throughput
- Minimize post-treatment chemicals
- Blend water quality is critical
 - Determines the blend ratio
 - Low color
 - Low TOC and DBPFP

Sources of Blend Water

- Raw water
- RO feed water
- Lime softened water
- Permeate from different system

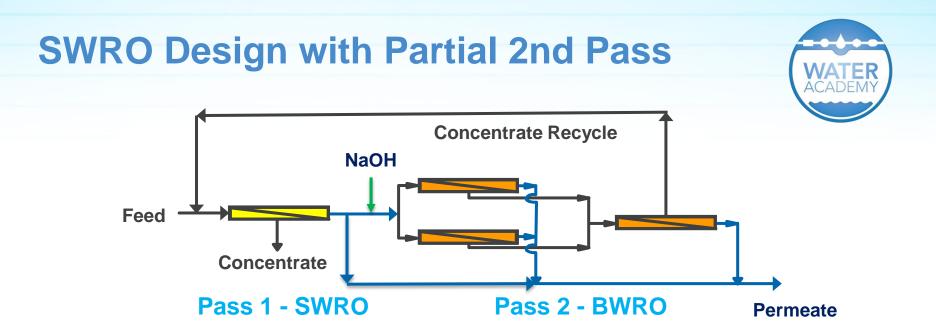
Economic Impact of Permeate Blending

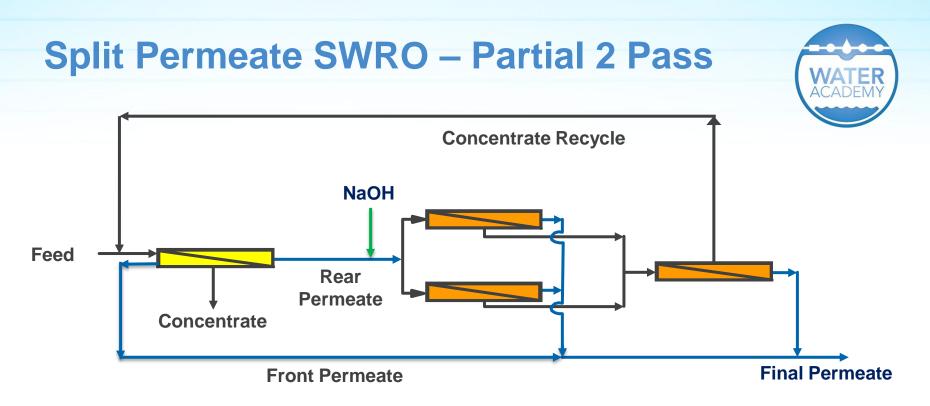
	XLE-440	ECO-440i w/ Blend
Rejection	99.0%	99.7%
Element Flow	14,000 gpd	12650 gpd
Test Conditions	125 psig – 2000 mg/l NaCl	150 psig – 2000 mg/l NaCl
Array	16 x 8 – 7M	14 x 7 – 7M
Flux	13.5 gfd	13.5 gfd
RO Recovery	80%	80%
System Recovery	80%	82%
Final TDS	72 mg/l	207 mg/l
Final Total Hardness	24 mg/l as $CaCO_3$	91 mg/l as CaCO ₃
RO Specific Energy	1.22 kWh/kgal	1.11 kWh/kgal

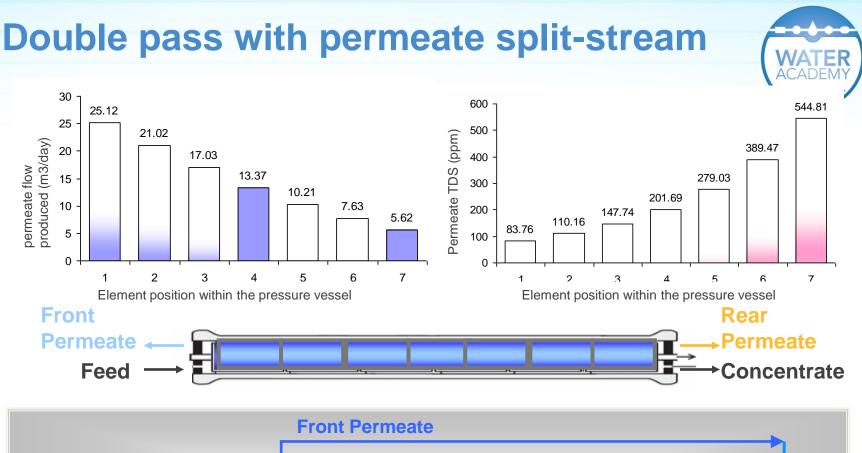

CAPEX Savings

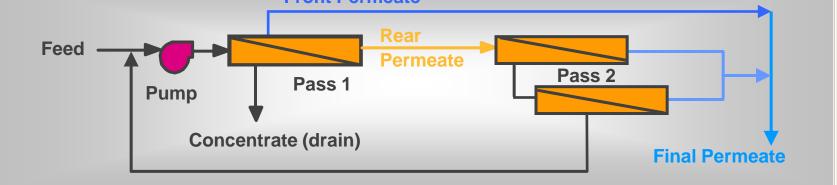
- 12.5% fewer vessels
- 12.5% fewer elements

OPEX Savings


- 9% lower energy
- Reduced post-treatment


- 2 pass RO systems are primarily used when high purity permeate is required.
- Typical applications include boiler feed water, semiconductor rinse water, some seawater municipal plants, etc.
- Inter-pass pH adjustment with sodium hydroxide is commonly used to enhance rejection of alkalinity, boron, etc.

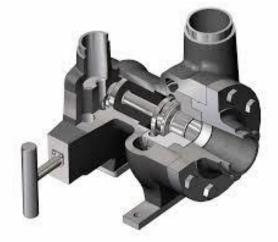

- SWRO design with a partial 2nd pass is primarily used to produce municipal drinking water
- This design saves both CAPEX and OPEX
- Percentage of 1st pass permeate treated with 2nd pass is a function of the feed water salinity and required final permeate salinity



- Split permeate SWRO systems withdraw permeate from both ends of the first stage pressure vessels
- Front permeate is lower in salinity and is directly blended into the final permeate stream
- Ratio of front/rear permeate is typically controlled by pass 2 feed pump
- Many split permeate SWRO systems use ISD with elements chosen specifically to reduce front permeate TDS and/or control lead element flux

Energy Recovery

- Energy Recovery Devices (ERD) are used to capture and use residual concentrate stream pressure to:
 - Increase feed pressure prior to final high pressure pump (HPP)
 - Augment electrical drive motor on HPP
 - Provide inter-stage boost pressure on multi-stage RO and NF
- ERDs are used on virtually all SWRO plants and many BWRO plants to reduce power costs of RO
- Several manufacturers have combining ERDs with pumps in small configurations which make it economical to use energy recovery on both smaller and low pressure systems
- Concentrate streams can be combined from multiple low pressure trains to drive ERD on single HPP


Examples of ERDs

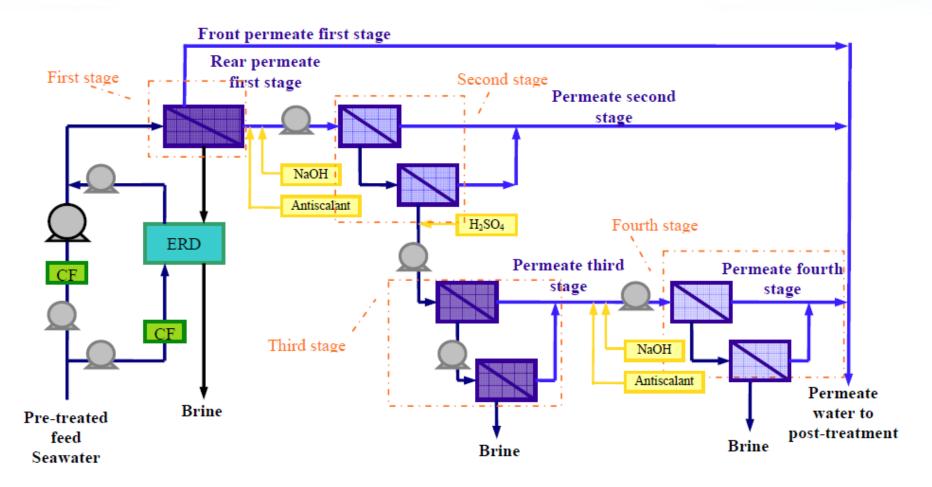
Pelton Wheel

FEDCO Turbine

Available Energy for Recovery Calculation

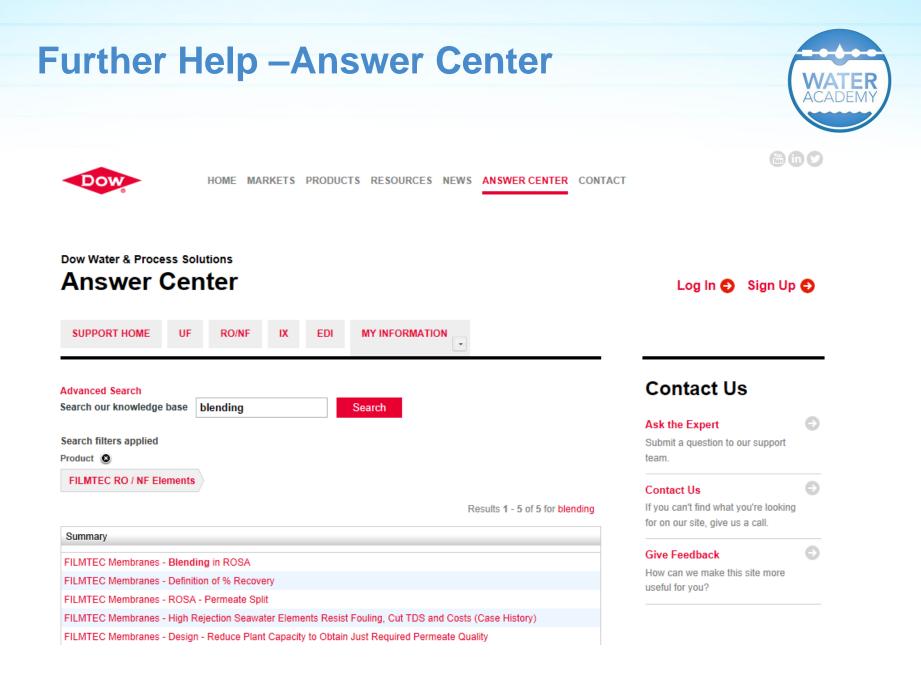
- All ERD manufacturers have sophisticated computer models to incorporate ERDs into systems
- Below is a simple equation to estimate available boost pressure from an ERD in an RO system.

$$P_{avail} = Pc * \frac{Q_c}{Q_f} * Eff$$


P = pressureQ = flow rateEff = ERD efficiency

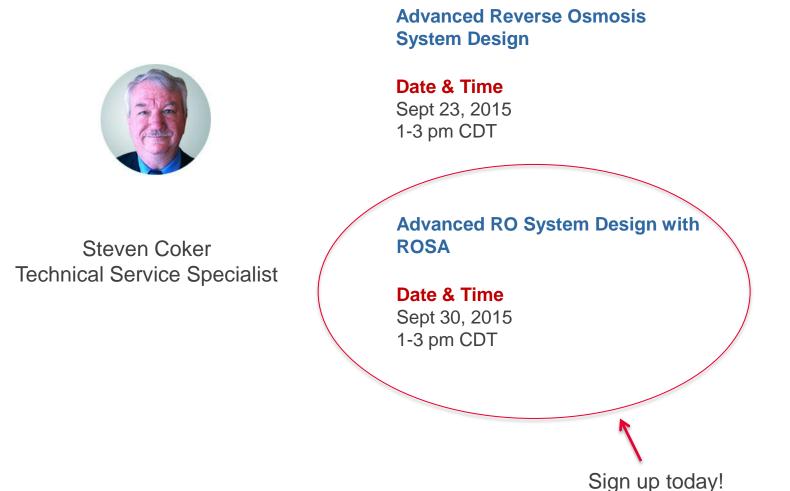
Subscripts: avail = available c = concentrate f = feed

Advanced RO Design Example


Diagram of IDE's Patented Cascade Process

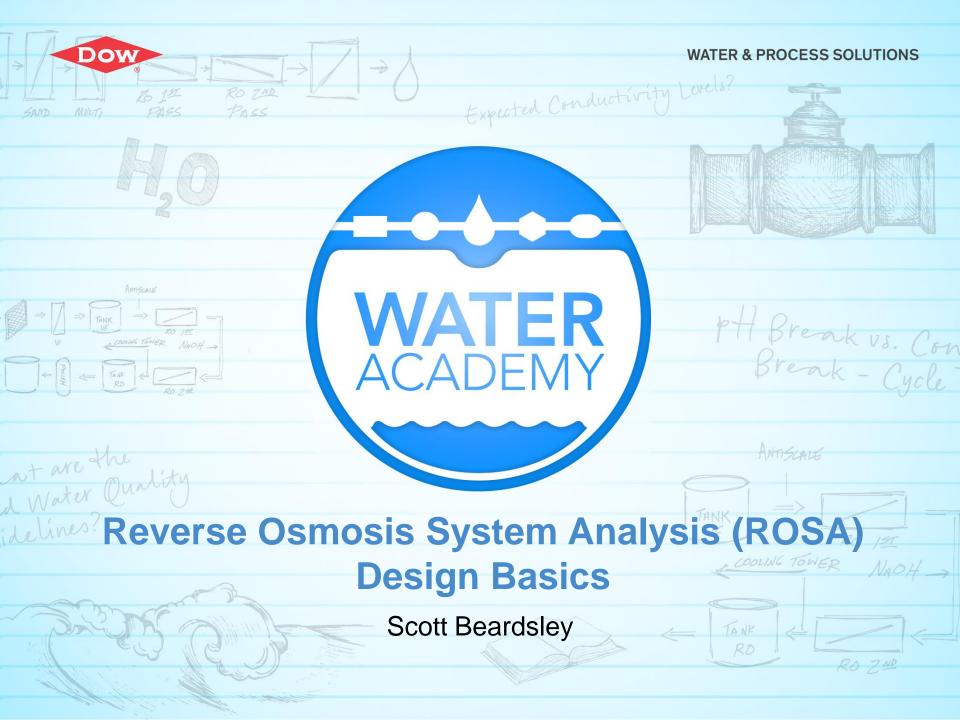
KEY ASPECTS OF THE MEMBRANE TECHNOLOGY IMPLEMENTED IN THE CARLSBAD DESALINATION PROJECT

Authors: Eduard Gasia Bruch, Steven Coker, Boaz Keinan, Blanca Salgado Presented at the IDA World Congress 2015, San Diego, CA, USA. August 30 – September 4, 2015



- RO is a highly versatile technology with many choices for optimization of CAPEX and OPEX
- Most important for a plant designer is to understand the starting point and customer's preferences
- Design within element operating guidelines and system guidelines for optimal performance and element life
- Recent advances in membrane chemistry and RO element construction enables several innovative designs
- Innovation continues...
- Seek out to Dow for guidance

RO System Design Webinar Series



Questions?

For more information please visit our web site or contact your local Dow representative. http://www.dowwaterandprocess.com/

NOTICE: Although the information and recommendations in this presentation (hereinafter "Information") is presented in good faith and believed to be correct, Dow makes no representations or warranties as to the completeness or accuracy of Information. Information is supplied upon the condition that the persons receiving same will make their own determination as to its suitability for their purposes prior to use. In no event will Dow be responsible for damages of any nature whatsoever resulting from the use of or reliance upon Information or the products to which Information refers. References to "Dow" or the "Company" mean the Dow legal entity selling the products to Customer unless otherwise expressly noted. NO WARRANTIES ARE GIVEN; ALL IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY EXCLUDED.

®TM Trademark of The Dow Chemical Company ("Dow") or an affiliated company of Dow

RO System Design Webinar Series

Reverse Osmosis System Design Basics

Date & Time Sept 9, 2015 1-3 pm CDT **RO Webinar Series Speakers:**

Advanced Reverse Osmosis System Design

Date & Time Sept 23, 2015 1-3 pm CDT

ROSA System Design Basics

Date & Time Sept 11, 2015 1-3 pm CDT Scott Beardsley & Steven Coker Technical Service Specialists Advanced RO System Design with ROSA

Date & Time Sept 30, 2015 1-3 pm CDT

Reverse Osmosis System Analysis (ROSA)

• What is it?

ROSA—the industry-leading RO system design tool for decades—makes it easy for you to design a reverse osmosis plant to meet your required water treatment specifications.

How does it work?

Enter the concentration of ions in the feed water, select the type of FILMTEC[™] element, and try different vessel configurations. ROSA does all the complex math for you and produces a complete, but simple-to-understand, report predicting the water quality and flow rate.

ROSA – Introduction to RO Plant Design

WATER

- Project Information
- Feedwater Data
- Scaling Information
- System Configuration
- Report

ROSA – Control Panel: File

ROSA Control Panel - Pr	oject 8956	
le <u>O</u> ptions <u>H</u> elp		
<u>N</u> ew Project	System Permeate Flow: 0.20 m³/h System Feed Flow: 1.33 m³/h System Recovery: 15.00%	
Open Project		
<u>C</u> lose Project	Project Name: Project 8956	
<u>S</u> ave Project		
Save <u>A</u> s	ny ent	
Exit		
Project Cases		
	Case: 1 ✔ Add Case Delete Case Pre-stage ΔP: 0.345 bar	
Notes for Current Case	e:	
righest rouning ract	I + highest remperature, LE elements	
Project Preferences —		
Analysis By:	Jane Doe Small Commercial System	
Company Name:	Water Filtration 123	
Balance Analysis Wit	n: NaCl	
Units Set:	Flow: m3/h, Pressure: bar 🗸	
Temperature Unit:	Celsius (°C) Vater & Process Solutions	
Default Project Folde	C:\Program Files\ROSA70\MyProjects	
1) Project Information 2) Fe	edwater Data 🛛 3) Scaling Information 🗍 4) System Configuration 🗍 5) Report 🗍 6) Cost Analysis	
Monday, Se	otember 28, 2009 Ready	

SA Control Panel							
Options Help							
Batch Processor	Permeate Flow: 0	.20 m³/h 3	System Feed Flow:	1.33 m³/h Syst	em Recovery: 15.003	6	
Database							
Eiles and Folders		1		- George Charles	4		
User Data		User Data	Settings				
				re will be shown on th	e Project Informatio	n tab, and persist th	nrough each use
hand the second s		of the program					
Project Cases		interface lang	juage changes r	require closing the pro	gram and restarting	∠User Interface	
Notes for Current Case:	Case: 1 🔽	Your Name:	Jane Doe				Language
		Company:	Water Filtration	- 122		English	~
		company.	vvater Flitration	n 123		See note ab	
		Balance Cher	mical: NaCl		~	See hole abo	ove.
Project Preferences	-	~ Default Units				Report Langua	
Analysis By;	Justyna Warczok						
Company Name:	The Dow Chemica	Flow, Pres	HOW. III	13/h, Pressure: bar	*	English	~
Balance Analysis With:	NaCl	Temperatu	ure: Flow: g	pm, Pressure: psig pd, Pressure: psig			
Units Set:	Flow: m3/h, Press			13/h, Pressure: bar 13/d, Pressure: bar			
Temperature Unit:	Celsius (°C)	Color Scheme		V	(Cancel	Save and Close
Default Project Folder:	C:\Documents and				L. L.		
Derault Floject Folder.	C. ECCOMONICA CINC						

ROSA – Control Panel: Options

E ROSA Control Panel	🗟 File and Folder Options				
Eile Options Help Batch Processor Permeate Flow: Database Eiles and Folders User Data	The following settings allow you to choose how you want ROSA to handle input (.rosa) files, and output (.html) files. When opening a .rosa project file (File/Open Project) Open the folder most recently used during a ROSA file operation (opening or saving) Open the default folder: C:\Documents and Settings\U391938\Data\My Documents\DWS\Technical				
Project Cases Notes for Current Case:	When saving a .rosa project file (File/Save As) Image: Save in the folder most recently used during a ROSA file operation (opening or saving) Image: Save in the default folder: C:\Documents and Settings\U391938\Data\My Documents\DWS\Technical				
Project Preferences Analysis By: Justyna Warczok Company Name: The Dow Chemical O	Save the output .html files (detail and overview) Save output files in the default folder C:\Documents and Settings\U391938\Data\My Save output files in the same folder as the input file (if applicable) Save output files in:				
Balance Analysis With: NaCl Units Set: Flow: m3/h, Pressun Temperature Unit: Celsius (°C)	Set my own default folder for .rosa files C:\Documents and Settings\U391938\Data\My Documents\DWS\Technical Service\Tech Request\RO\Projections				
by default	ed it shows where the ROSA files are stored Save and Close				

ROSA – Control Panel: Help

🗮 RO	SA Control Pa	nel -					(
Eile	Options <u>H</u> elp							
		About ROSA		System Feed Flo	ow: 1.33 m³/h	System Recovery:	15.00%	
	Project In Notes: Project Cases	EilmTec Website Help Unit Conversion Show Welcome Screen Show Case		Project Nav	Flow Pressure 123	From Unit	27.9333	To Unit m ³ /h Co To Unit Go
	Project Prefere Analysis By: Company Na			Sm	all Commercial Syst	psig bar		Glose
	Balance Ana Units Set: Temperature Default Proje	lysis With: NaCl Flow: m3/i Unit: Celsius (*C	h, Pressure: bar v) v files\ROSA70\MyPr	rojects	Dow Water &	۲ocess Solutio د	ns	
1)	Project Informatio	n 2) Feedwater Data day, September 28, 200		4) System Configura R	tion 5) Report 6 eady	i) Cost Analysis		

9

Plant Design using ROSA

Project Information

- Feedwater Data
- Scaling Information
- System Configuration
- Report

	Project L	Description		ACAD
Projec	t basic in	ct 8956 Ormation stem Permeate Flow: 0.20 m³/h	System Feed Flow: 1.33 m³/h System Recovery: 15.0	0%
	Project Information Notes: Project for XYZ Company Convetional pretreatment Project Cases Notes for Current Case: Highest Fouling Factor +	Case: 1	Project Name: Project 8936 ase Delete Case Pre-stage ΔP: 0.345	
	Project Preferences Analysis By: Company Name:	Jane Doe Water Filtration 123	Small Commercial System	
	Balance Analysis With:	NaCl		

ROSA – Limiting Scenarios ROSA Control Panel - Project 8956 File Options Help System Permeate Flow: 0.20 m³/h System Feed Flow: 1,33 m3/h System Recovery: 15,00% Project Information Project Name: Project 8956 Notes: We should consider the two limiting scenarios: Project for XYZ Company Convetional pre-treatment Highest T + Highest FF (short term A) conditions) + Highest feed TDS Project Cases Worst scenario in terms of salt passage and Add Case Dele Notes for Current Case: hydraulics of the system (highest flow Highest Fouling Factor + Highest Temperature rate in first elements) Lowest T + Lowest FF (long term conditions) B) **Project Preferences** + Highest feed TDS Jane Doe Analysis By: Worst scenario in terms of energy demand Water Filtration 123 Company Name: (useful for sizing the high pressure NaCl Balance Analysis With: pump) Dow Units Set: Flow: m3/h. Pressure: bar Water & Process Solutions Temperature Unit: Celsius (°C) Default Project Folder: C:\Program Files\ROSA70\MyProjects 2) Feedwater Data 3) Scaling Information 4) System Configuration 5) Report 6) Cost Analysis 1) Project Information Monday, September 28, 2009 Readv...

Flow Factor Concept:

- FF = 1.00 Nominal element flow performance according to specification
- FF = 0.80 80% of nominal element flow performance

	Flow Factor						
	Start up	+ 3 years	+ 3 years				
Membrane	(expected)	(fouling excluded, clean membrane)	(expected, fouling included)				
BW	1.0	0.80	0.75 – 0.65				
SW	1.0	0.80	0.70 – 0.65				

Long term FF (+ 3 years) depends strongly on:

• Temperature, raw water source, pre-treatment, feed pressure, etc.

ROSA – User Defined Pre-stage Pressure Drop

OSA Control Panel - Pro	oject 8956					
Options <u>H</u> elp	System Permeate Flow: 0.20 m³/h	System Feed Flow: 1.	.33 m³/h System Reco	very: 15.00%		
Project Information						
Notes:		Project Name:	Project 8956			
Project for XYZ Compa Convetional pre-treatm						
Project Cases	Case: 1 🗸 Add Case	Delete Case	Pre-stage P: 0.34	l5 bar		
	r + Highest Temperature					
Project Preferences			Pre-sta	ge Press	sure	Drop (ΔP
Analysis By:	Jane Doe	Small Cor	can be	defined		
Company Name:	Water Filtration 123]	If the sr	Decific AF	D is r	not knowr
Balance Analysis With	: NaCl 🗸		-			
Units Set:	Flow: m3/h, Pressure: bar 🖌		📴 leave th	ne defaul	t val	ue
Temperature Unit:	Celsius (°C) 🔽		Water & Process So	utions		
Default Project Folder:	C:\Program Files\ROSA70\MyProjects	i i				
I) Project Information 2) Fee	edwater Data 3) Scaling Information 4) §	System Configuration	5) Report 6) Cost Analysis			
Monday, Sep	tember 28, 2009	Ready.				

Plant Design using ROSA

- Project Information
- Feedwater Data
- Scaling Information
- System Configuration
- Report

Addition of DOW[™] Ultrafiltration Water Types

ROSA Control Panel

V	ater Type: SELECT				-	Open W	ater Profile Library
e	ed Percenta RO Permeate Well Water SE) < 3		-		Specify Individual Solu	
	Ions Surface Water Ammonium Surface Suppl Potassium Wastewater w	v SDI < 5				Total Dissolved Solids:	2000.0 mg/l
	Sodium (Na Wastewater w Magnesium Seawater with	ith Generic memb ith Conventional Dow Ultrafiltratio	prane filtration, pretreatment, n, SDI < 2.5	, SDI < 3 SDI < 5		Feed Parameters Temperature: 25.	0 °C
_	Calcium (C Seawater with Seawater with Strontium (Sr)	Generic membra Conventional pre	ne filtration, S streatment, SE 0.000	DI < 3)I < 5 0.000	0.00		3 gpd
Ì	Barium (Ba)	0	0.000	0.000	0.00	pH: 7.	6
I	Carbonate (CO3)	0	0.000	0.000	0.00		
1	Bicarbonate (HCO3)	0	0.000	0.000	0.00	Charge Balance	
	Nitrate (NO3)	0	0.000	0.000	0.00		Add Sodium
	Chloride (CI)	1213.25	1711.069	34.221	1213.25	Cations: 0.00	
	Fluoride (F)	0	0.000	0.000	0.00	Anions: 0.00	Add Calcium
	Sulfate (SO4)	0	0.000	0.000	0.00	Anions. 0.00	Adjust Cations
4	Silica (SiO2)	0	n.a.	n.a.	0.00	Balance: 0.00	Adjust Asians
	Boron (B)	0	n.a.	n.a.	n.a.		Adjust Anions
st	em Temp: 25.0 °C	System pH: 3	7.60	Save Water	Profile to Library		Adjust All Ions

¹⁶ Trademark of The Dow Chemical Company ("Dow") or an affiliated company of Dow

ROSA – Introducing Feed water analysis Introduce the water analysis data Check the box: Specify individual solutes Introduce the concentrations Choose Feed water type File Options Help System Permeate Flow: 0.20 gpd System Feed Flow: 1.33 apd System Recovery: 15.00% Water Type: SELEC • Open Water Profile Library SELECT Feed Percenta RO Permeate SDI < 1 Well Water SDI < 3 Surface Water with Dow Ultrafiltration, SDI<2.5 Specify Individual Solutes lons Ammonium Surface Supply SDI < 3 Surface Supply SDI < 5 Total Dissolved Solids: 2000.0 mg/l Potassium Wastewater with Dow Ultrafiltration, SDI < 2.5 Sodium (Na Wastewater with Generic membrane filtration, SDI < 3 Feed Parameters Wastewater with Conventional pretreatment 3DI < 5 Introduce the T and pH Magnesium Seawater with Dow Ultrafiltration, SDI <2.5 Temperature: 25.0 °C Calcium (C Seawater with Generic membrane filvation, SDI < 3 Seawater with Conventional proceedment, SDI < 5 Flow Rate: 1.33 gpd Strontium (Sr) 0.000 0.000 0.00 7.6 pH: 0.000 0.00 Barium (Ba) 0 0.000 Carbonate (CO3) 0 0.000 0.000 0.00 Bicarbonate (HCO3) 0 0.000 0.00 0.000 Charge Balance 0.000 0.000 0.00 Nitrate (NO3) 0 Cations and Anions Add Sodium Chloride (CI) 1213.25 1711.069 34.221 1213.25 Cations: 0.00 should be balanced Add Calcium Fluoride (F) 0 0.000 0.000 0.00 Anions: 0.00 Sulfate (SO4) 0 0.000 0.000 0.00 Adjust Cations Silica (SiO2) 0 0.00 n.a. Balance: 0.00 n.a. Adjust Anions 0 Boron (B) n.a. n.a. n.a. Adjust All lons System Temp: 25.0 °C System pH: 7.60 Save Water Profile to Library 1) Project Information 2) Feedwater Data 3) Scaling Information 4) System Configuration 5) Report 6) Cost Analysis Tuesday, November 08, 2011 Ready...

Choosing feedwater type

Feed water type	Description				
RO Permeate SDI<1	Very-low-salinity, high-purity waters (HPW) coming from the first RO systems (double-pass RO system) or the polishing stage in ultrapure water (UPW) systems with TDS up to 50 mg/L.				
Well Water SDI<3	Water from a ground source that has been accessed via well. Usually, has low fouling potential.				
Surface Water with Dow Ultrafiltration SDI<2.5	Water from rivers, river estuaries and lakes. In most cases it has high TSS, NOM, BOD and colloids. Frequently, surface water quality varies seasonally.				
Surface Supply SDI<3					
Surface Supply SDI<5					
Wastewater with Dow Ultrafiltration SDI<2.5	Industrial and municipal wastewaters have a wide variety of organic and inorganic constituents. Some types of organic components may adversely affect RO/NF				
Wastewater with Generic Membrane Filtration SDI<3	membranes, inducing severe flow loss and/or membrane degradation (organic fouling).				
Wastewater with Conventional Pretreatment SDI<5					
Seawater with Dow Ultrafiltration SDI<2.5	Seawater Dow Ultrafiltration as a pre-treatment				
Seawater with Generic Membrane Filtration SDI<3	Well -water from a beach well with any type of pre-treatment Seawater any with Generic Microfiltration/Ultrafiltration as a pre-treatment				
Seawater (Open Intake) SDI<5	Open intake seawater with conventional pre-treatment				

ROSA	- S a	aving t	ne Water Pro	file			WATER
					Water Profile Libra	ary	
					Select Water Profile:		
Control Panel - Proje	ct 8956						V
Options <u>H</u> elp							
Sys	tem Permeate Flow	/: 0.20 m³/h System Fe	ed Flow: 1,33 m³/h System Regrover: 15.00%		Profile Name:	Example 1	
Water Type: Well Water Si	JI < 3		Oper Water rofile Library		Ammonium (NH4)	0.00 mg/l	pH: 6.52
Feed Percentage: 100.0	(%) Feed Nun	mber: 1 🔽 🛛 Feed Strea	ms: 1 📚		Potassium (K)	0.97 mg/l	Temperature: 20.00 °C
lons	mg/I ppm C	CaCO3 meq/I Total Con	c.(mg/l) Specify Individual Solutes		Sodium (Na)	328.65 mg/	
Ammonium (NH4)	0	0.000 0.000	0.00 Total Dissolved Solids: 1290.190 mg/l		Socialit (Na)	328.60	68.00 [°] F
Potassium (K)	0.97	1.240 0.025	0.97	<i>c</i> 1	Magnesium (Mg)	7.12 mg/l	Add to Library
Sodium (Na) Magnesium (Mg)		14.767 14.295 29.286 0.586	Previous water pro	files ca	n be loaded	9.55 mg/l	<u>A</u> dd to Library
Calcium (Ca)		23.827 0.477	9.55			0.00	Delete from Library
Strontium (Sr)		11.413 0.228	10.00 Flow Rate: 1.33 m ³ /h		Strontium (Sr)	10.00 mg/l	Detete from Earlary
Barium (Ba)	0.14	0.102 0.002	0.14 pH: 6.52		Barium (Ba)	0.14 mg/l	
Carbonate (CO3)	0.239	0.399 0.008	0.24		Carbonate (CO3)	0.24 mg/l	
Bicarbonate (HCO3)	869.76	urrent wat	er profile can be			0.24 mg/l	
Nitrate (NO3)	2.65	2.137 0.043	-2.60		Bicarbonate (HCO3)	869.76 mg/l	
Chloride (CI)	^{34.29} a	dded to the			Nitrate (NO3)	2.65 mg/l	
Fluoride (F)	0.2	0.526 0.011	0.20 Add Calcium				
Sulfate (SO4)		16.396 0.328	Adjust Searons		Chloride (Cl)	34.29 mg/l	
Silica (SiO2) Boron (B)	10 0.154	n.a. n.a.	10.00 Balance: 0.00 Adjust Anions		Fluoride (F)	0.20 mg/l	
		II.a II.a.			Sulfate (SO4)		
tem Temp: 20.0 °C	System pH: 7.6	80 Save Water Prof	le to Library Adjust All Ions		Suilate (SO4)	15.74 mg/l	
te: Any changes in raw feed	water composition v	will affect services calculations. F	lease rentew scaling calculations.		Silica (SiO2)	10.00 mg/l	Close and copy to <u>F</u> eed
					Boron (H3BO3)	0.88 mg/l	Close
oiect Information 2) Feedw	ater Data 3) Scalir	ing Information 4) System Conf	iguration 5) Report 6) Cost Analysis				2030

Plant Design using ROSA

- Project Information
- Feedwater Data
- Scaling Information
- System Configuration
- Report

ROSA – Scaling Information

<u>_</u>	<u>O</u> ptions <u>H</u> elp				
	System	Permeate Flow:	0.20 m³/h	System Feed Flow:	1.33 m³/h System Recovery: 15.00%
-	Scaling Calculations Options				lon-exchange Leakage
	No chemicals added				Ca Leakage: 0.1 (mg/L)
	•				
	O User-adjusted pH		Mg Leakage: 0 (mg/L)		
	O lon-exchange softening				
ł	ntiscalants are required. Consult your antiscalant manufacturer for dosing and maximum allowable system recovery.				
_	-				Recovery and Temperature
	pH	Feed 6.52	Adj. Feed 6.52	Concentrate 6.59	Necovery and Temperature
•					Recovery: 15.00 (%)
	LSI	-1.290			Temperature: 20.0 °C
	Stiff & Davis Index	-0.821			20.0
	TDS (mg/l)	1,290			 Use original feed
	Ionic Strength (molal)	0.016	0.016	0.019	O Use adjusted feed
	HCO3 (mg/l)	869.760	869.760	1023.247	
	CO2 (mg/l)	345.534	345.534	345.534	
	CO3 (mg/l)	0.239	0.239	0.282	
	CaSO4 (% Saturation)	0.034	0.034	0.044	User-adjusted pH
_	BaSO4 (% Saturation)	72.67	72.67	100.58	
	SrSO4 (% Saturation)	3.17	3.17	3.82	Dosing Chemical: H2SO4
	CaF2 (% Saturation)	0.051	0.051	0.083	pH: 6.52 GO
	SiO2 (% Saturation)	8.20	8.20	9.73	
	Mg(OH)2 (% Saturation)	0.00000	0.00000	0.00000	Concentrate LSI: -1.085 GO

Plant Design using ROSA

- Project Information
- Feedwater Data
- Scaling Information
- System Configuration
- Report

ROSA - Introduction of known data

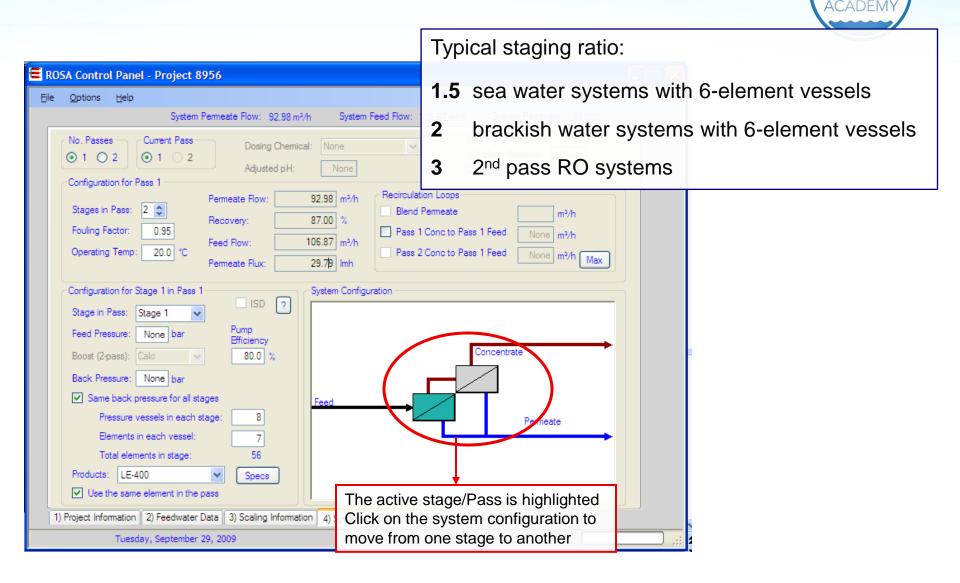
The Flow Calculator

- New way to enter project input
- Flows and recoveries of both passes can be defined at the same time
- The quantity of permeate blending or permeate split can be determined at the same time

E Flow Calculator				
Pass 1	D	Remarks Rem	D	Democra Cella
Feed Flow	Recovery	Permeate Flow	Flux	Permeate Split
93.72 m³/h	92.83 %	87.00 m³/h ✓ Specify	27.87 Imh	0.00 %
Specify two of the three				
Specify two of the three	parameters.		Blend	m³/h
Pass 2				
Feed Flow	Recovery	Permeate Flow	Flux	Final Permeate
0.00 m³/h	0.00 %	0.00 m³/h	0.00 Imh	m³/h
	Specify	Specify		
Help	<u>R</u> ecalculate	R <u>e</u> set	Cancel <u>A</u> cce	pt Changes and Close

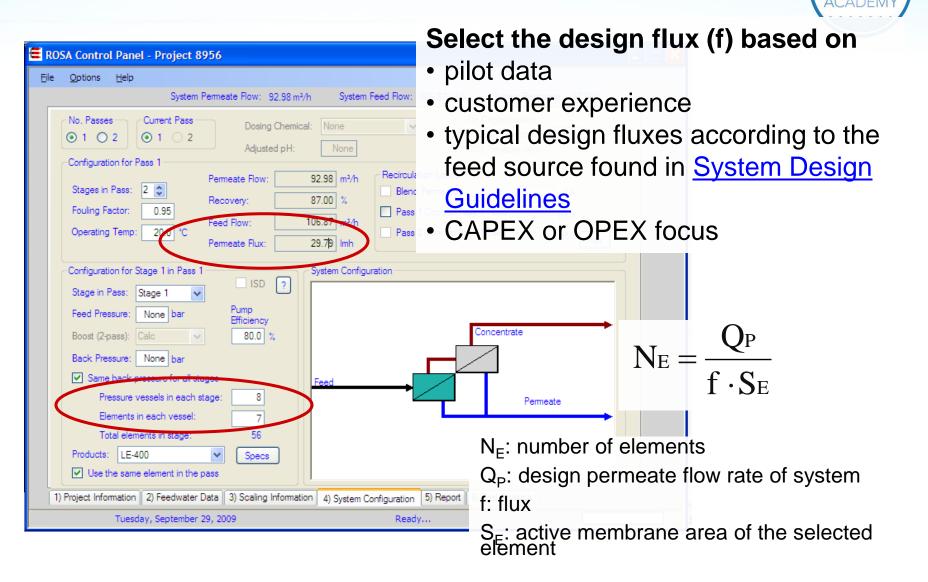
ROSA - Introduction of known data

🗄 RO	SA Control	Panel - Project 8956	To introduce the Flow and Recovery data:
Eile	<u>O</u> ptions	Help	1. Double click on any of the boxes:
		System Permeate Flow: 87.00 m³/h System Feed Flo	
	No. Passes	Dosing Chemical: None	Permeate Flow, Recovery, Feed Flow or
		Adjusted pH: None	Permeate Flux
	-	Permeate from: 87.00 miles Reci	2. Pop-up window (Flow Calculator) will
	Stages in I Fouling Fa	Pass: 2 C Ricovery: 92.83 %	
	Operating	Feed Flow: 93.72 m ² /h	3. Specify two parameters to be introduced
		💀 Flow Calculator	by checking the Specify box
	Configuratio		4. Introduce the data
	Stage in P	Pass 1 Feed Flow Recovery Permeate Flow	
	Feed Pres	Feed Flow Recovery Permeate Flow 93.72 m³/h 92.83 % 87.00 m³/h	5. Click on Recalculate
	Boost (2-p	Specify ✓ Specify ✓ Specify	6. Click on Accept Changes and Close
	Back Pres	Specify two of the three parameters.	Blend m ³ /h
	Pre		
	Ele	Pass 2 Feed Flow Recovery Permeate Flow	Flux Final Permeate
	Tot	0.00 m³/h 0.00 % 0.00 m³/h	0.00 lmh m³/h
	Products:	Specify Specify	
	Project Infon		
,		Help Recalculate Reset C	Cancel Accept Changes and Close


ROSA – Membrane Element Selection

RUSA Control Panel - Project 8956	
Eile Options Help	
System Permeate Flow: 0.20 m³/h System Feed Flow: 1.33 m³/h System Recovery: 15.00%	
No. Passes Current Pass I <td></td>	
Configuration for Pass 1 Permeate Flow: 0.20 m³/h Recirculation Loops Stages in Pass: 1 Recovery: 15.00 % Fouling Factor: 0.85 Permeate Flow: 1.33 m³/h Operating Temp: 20.0 °C Permeate Flux: 25.33 lmh	
Configuration for Stage 1 in Pass 1 Stage in Pass: Stage 1 V Feed Pressure: None bar Pump Efficiency Boost (2-pass): Calc V Back Pressure: None bar	
✓ Same back pressure for all stages Pressure vessels in each stage: 1 Elements in each vessel: 1 Total elements in stage: 1 Products: SW30HRLE-4040 ✓ Use the BW30-4040	
1) Project Inform XLE-4040 LE-4040 3) Scaling Information LP-4040 09 Ready	

Multistage systems: Staging ratio calculation



Number of Elements per Pressure Vessel Selection

🗧 ROSA Control Panel - Project 8956	
Eile Options Help	
System Permeate Flow: 92,98 m³/h System Feed Flow: 106,87 m³/h System Recovery: 87,00%	_
No. Passes Current Pass I I I I Adjusted pH: None Image: None Image: None Image: None	
Configuration for Pass 1	
Stages in Pass: 2 Permeate Flow: 92.98 m³/h Recirculation Loops Fouling Factor: 0.95 Recovery: 87.00 % Blend Permeate m³/h Feed Flow: 106.87 m²/h None m³/h	
Operating Temp: 20.0 °C Permeate Flux: 29.7 min Pass 2 Conc to Pass 1 Feed None m ³ /h Max	
Configuration for Stage 1 in Pass 1 Stage in Pass: Stage 1 ISD ?	
Feed Pressure: None Pump Efficiency Boost (2-pass): Concentrate	
Back Pressure: None bar	
Same back pressure for all stages Feed Pressure vessels in each stage: 8 Permeate	
Elements in stage: 7 Total elements in stage: 56	
Products: LE-400 Specs	
1) Project Information 2) Feedwater Data 3) Scaling Information 4) System Configuration 5) Report 6) Cost Analysis	
Tuesday, September 29, 2009 Ready	

Number of Elements selection: Average system flux

Plant Design using ROSA

- Project Information
- Feedwater Data
- Scaling Information
- System Configuration
- Report

Example - ROSA Report

Project Information: Project for XYZ Company Conventional pre-treatment

Case-specific: Highest Fouling Factor + Highest Temperature

System Details

Feed Flow f Raw Water Feed Press Fouling Fa	r Flow to System ure	m		106.8	87 m³/h 87 m³/h 37 bar 95	Pass 1 Perme Pass 1 Recove Feed Temper Feed TDS	very	86 2	2.97 m³/h 6.99 % 20.0 C 0.21 mg/l	Osmotic	c Pressure: F Concenti Aver		ar
Chem. Dos Total Activ				Non 3121.4		Number of E Average Pass		2(84 9.78 lmh	Average Power	e NDP	7.13 ba 42.20 ki	
Water Clas	ssification: Wel	ll Water	SDI < 3			Ū			-	Specific	c Energy	0.45 k'	Wh/m³
Stage	Element	#PV	#Ele	Feed Flow (m³/h)	Feed Press (bar)	Recirc Flow (m³/h)	Conc Flow (m³/h)	Conc Press (bar)	Perm Flow (m³/h)	Avg Flux (lmh)	Perm Press (bar)	Boost Press (bar)	Perm TDS (mg/l)
1	LE-400	8	7	106.87	11.02	0.00	32.83	8.90	74.05	35.58	0.00	0.00	21.28
2	LE-400	4	7	32.83	8.56	0.00	13.91	7.44	18.92	18.18	0.00	0.00	105.54

			Pass Streams (mg/l as Ion)				
Mamo	Feed	Adjusted Feed	Concer	ntrate		Permeate	
Name	reeu	Adjusted Feed	Stage 1	Stage 2	Stage 1	Stage 2	Total
NH4	0.00	0.00	0.00	0.00	0.00	0.00	0.00
K	0.97	0.97	2.83	5.82	0.14	0.64	0.24
Na	328.65	328.67	1058.55	2461.66	5.12	27.05	9.58
Mg	7.12	7.12	23.04	53.96	0.06	0.31	0.11
Ca	9.55	9.55	30.91	72.40	0.08	0.41	0.15
Sr	10.00	10.00	32.37	75.81	0.08	0.43	0.16
Ba	0.14	0.14	0.45	1.06	0.00	0.01	0.00
CO3	0.24	0.24	3.24	22.86	0.00	0.00	0.00
HCO3	869.76	869.76	2796.09	6471.17	14.44	71.78	25.88
NO3	2.65	2.65	7.90	16.65	0.32	1.47	0.56
Cl	34.29	34.29	111.04	260.07	0.27	1.48	0.51
F	0.20	0.20	0.64	1.50	0.00	0.02	0.01
S04	15.74	15.74	51.07	119.96	0.08	0.42	0.15
SiO2	10.00	10.00	32.36	75.85	0.09	0.38	0.15
Boron	0.15	0.15	0.27	0.36	0.10	0.20	0.12
C02	345.56	345.56	346.91	355-53	345.17	348.66	346.04
TDS	1290.19	1290.21	4152.04	9640.84	21.28	105.54	38.20
рН	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Example - ROSA Report

Design Warnings

WARNING: Maximum recommended element permeate flow rate has been exceeded. Please change your system design to reduce the element permeate flows. (Product: LE-400, Limit: 1.44m³/h) WARNING: Maximum element recovery has been exceeded. Please change your system design to reduce the element recoveries. (Product: LE-400, Limit: 19.00%)

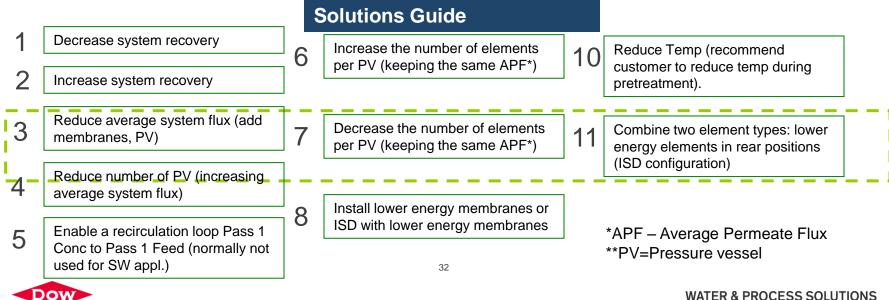
Solubility Warnings

Langelier Saturation Index > 0 Stiff & Davis Stability Index > 0 BaSO4 (% Saturation) > 100% Antiscalants may be required. Consult your antis

Designs of systems in excess of the guidelines results in a warning on the ROSA Report.

Stage Details

Stage 1	Element	Recovery	Perm Flow (m³/h)	Perm TDS (mg/l)	Feed Flow (m ³ /h)	Feed TDS (mg/l)	Feed Press (bar)
	1	0.12	1.57	11.70	13.36	1290.21	11.02
	2	0.12	1.47	13.56	11.79	1460.17	10.50
	3	0.13	1.39	16.02	10.32	1666.56	10.07
	4	0.15	1.31	19.36	8.93	1923.00	9.72
	5	0.16	1.25	24.04	7.62	2251.13	9.43
	6	0.18	1.18	30.99	6.37	2686.19	9.20
	7	0.21	1.10	41.87	5.20	3286.44	9.03
Stage 2	Element	Recovery	Perm Flow (m³/h)	Perm TDS (mg/l)	Feed Flow (m ³ /h)	Feed TDS (mg/l)	Feed Press (bar)
	1	0.12	1.01	50.77	8.21	4152.04	8.56
	2	0.12	0.90	63.99	7.20	4724.16	8.30
	3	0.12	0.79	81.83	6.30	5386.59	8.08
	4	0.12	0.67	106.30	5.52	6141.11	7.90
	5	0.12	0.56	140.36	4.84	6977.61	7.76
	6	0.11	0.45	188.48	4.28	7869.93	7.63
	7	0.09	0.35	256.91	3.83	8774.98	7.53



Warnings and typical solutions – For one stage systems

Design warning	Solutions
Max. element permeate flow exceeded	3, 5, 7, 11
The concentrate flow less than minimum	1, 5, 4 together with 6
The feed flow greater than maximum	2 unless the feed flow is fixed, 3
Maximum feed pressure exceeded	1, 3, 8
Temperature is above acceptable value	10
 Max. element recovery exceeded: If the problem is encountered in front element If the problem is encountered in rear element 	

WATER & PROCESS SOLUTIONS

Warnings and typical solutions – For multistage systems

9

5

Enable a recirculation loop: Pass

1 Conc to Pass 1 Feed (normally

not used for SW appl.)

Dow

	Design warning				Solutions	/
	Max. element permeat	e flov	v exceeded		3, (5), 6, 10, 13	
	The concentrate flow	less t	han minimum		1, 4, (5), 6, 7, (10 and 11 only for the 1 st stage)	
	The feed flow greater t	than r	maximum in any of the stages		2, 3	
	Maximum feed pressu	re ex	ceeded		1, 3, 9	
	Temperature is above	acce	ptable value		12	
		tered i	eeded: n front elements (front stage/s) n rear elements (rear stage/s)		1, (5), 6, 7, 10, 13 1, (5), 7	
Docr	ease system recovery		Solutions Guide			
	ease system recovery	6	Add backpressure in first and/or second stages permeate streams	10	Add booster pump in first or secon concentrate	d stage
	ease number of PV (reducing age system flux)	7	Increase the number of elements per PV (keeping the same APF)	11	Use a lower active area membrane element (keeping the same APF)	9
	uce number of PV (increasing age system flux)	8	Decrease the number of elements per PV (keeping the same APF)	12	Reduce Temp (recommend custor reduce temp during pretreatment).	

*APF – Average Permeate Flux PV=Pressure Vessel

Install lower energy membranes or

ISD with lower energy membranes

33

13

Combine two element types: lower energy

elements in second or third stages

Irther Help – Answer Center	WAT
HOME MARKETS PRODUCTS RESOURCES NEWS ANSWER CENTER	CONTACT
Dow Water & Process Solutions Answer Center	Logout
SUPPORT HOME UF RO/NF IX EDI MY INFORMATION -	
Advanced Search Search our knowledge base ROSA Search	Contact Us
Search filters applied Product	Ask the Expert Submit a question to our support team.
FILMTEC RO / NF Elements < Previous 1 2 3 4 5 6 Next > Results 31 - 45 of 207 for RC	Contact Us If you can't find what you're looking OSA for on our site, give us a call.
Summary	Give Feedback
FILMTEC Membranes - ROSA - Change report language FILMTEC Membranes - e-mail pdf version of projection	How can we make this site more useful for you?
FILMTEC Membranes - pH Adjustment in the Second Pass in ROSA FILMTEC Membranes - EVA (Element Value Analysis) FILMTEC Membranes - Blending in ROSA	

Questions?

For more information please visit our web site or contact your local Dow representative. http://www.dowwaterandprocess.com/

NOTICE: Although the information and recommendations in this presentation (hereinafter "Information") is presented in good faith and believed to be correct, Dow makes no representations or warranties as to the completeness or accuracy of Information. Information is supplied upon the condition that the persons receiving same will make their own determination as to its suitability for their purposes prior to use. In no event will Dow be responsible for damages of any nature whatsoever resulting from the use of or reliance upon Information or the products to which Information refers. References to "Dow" or the "Company" mean the Dow legal entity selling the products to Customer unless otherwise expressly noted. NO WARRANTIES ARE GIVEN; ALL IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY EXCLUDED.

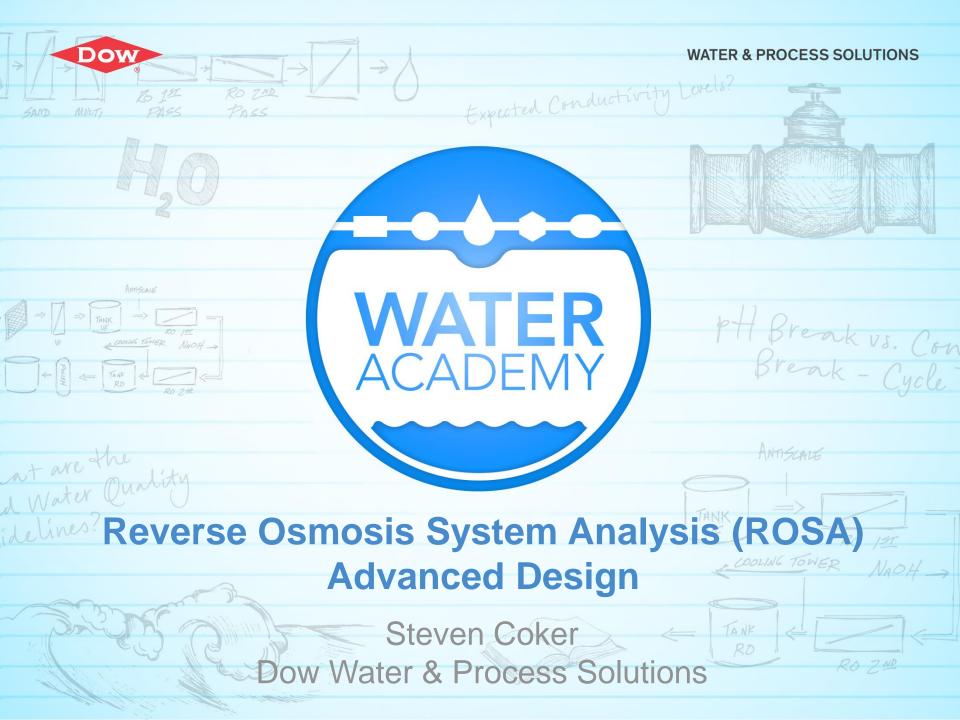
®TM Trademark of The Dow Chemical Company ("Dow") or an affiliated company of Dow

RO System Design Webinar Series

Reverse Osmosis System Design Basics

Date & Time Sept 9, 2015 1-3 pm CDT **RO Webinar Series Speakers:**

Advanced Reverse Osmosis System Design


Date & Time Sept 23, 2015 1-3 pm CDT

ROSA System Design Basics

Date & Time Sept 11, 2015 1-3 pm CDT Scott Beardsley & Steven Coker Technical Service Specialists Advanced RO System Design with ROSA

Date & Time Sept 30, 2015 1-3 pm CDT

RO System Design Webinar Series

Reverse Osmosis System Design Basics

Date & Time Sept 9, 2015 1-3 pm CDT **RO Webinar Series Speakers:**

ROSA System Design Basics

Date & Time Sept 11, 2015 1-3 pm CDT Scott Beardsley & Steven Coker Technical Service Specialists Advanced Reverse Osmosis System Design

Date & Time Sept 23, 2015 1-3 pm CDT

Advanced RO System Design with ROSA

Date & Time Sept 30, 2015 1-3 pm CDT

ROSA – Advanced RO Plant Design

- Review of a few ROSA basics
- ROSA procedures for Advanced RO Designs
- Temperature History Effect SWRO
- Batch Processor Option
- System Optimization Design Warning Mitigation

	t 2015 - 275			
<u>F</u> ile <u>O</u> ptions <u>H</u> elp				
5	System Permeate Flow: 0.20 gpm	System Feed Flow: 1.33 gpm	System Recovery: 15.0	0%
Project Information				
Notes:	C	Project Name: Project 2015	- 275	
			*	
			*	
Project Cases				
Notes for Current Case:	Case: 1 👻 Add Case	Delete Case Manage Pre	-stage ΔP: 5.000 psig	
Notes for Culterit Case.				
				-2
Project Preferences				
Analysis By:	John Doe	Small Commercial Syst	tem	
Analysis By: Company Name:	The Good Guys	Small Commercial Syst	tem	
Analysis By: Company Name: Balance Analysis With:	The Good Guys NaCl 🗸		tem	
Analysis By: Company Name: Balance Analysis With: Units Set:	The Good Guys NaCl Flow: gpm, Pressure: psig			
Analysis By: Company Name: Balance Analysis With:	The Good Guys NaCl 🗸		tem α Process Solutions	

	A Control Panel - Project	t 2015 - 275			
<u>F</u> ile	Options <u>H</u> elp				\frown
	÷.	System Permeate Flow: 0.20 gpm	m System Feed Flow: 1.33 gpm	System Recovery: 1	
1.5	Project Information				Case
	Notes:		Project Name: Project 20)15 - <mark>2</mark> 75	
	Project 2015-275 Preliminary Design				*
	Treaminary Deargh				-
	Project Cases Notes for Current Case:	Case: 8 ▼ Add Ca	ïase Delete Case Manage	Pe-stage ΔP: 5.000 pt	sig
	Notes for Current Case: Year 3 - Maximum Temp		ase Delete Case Manage		sig
	Notes for Current Case: Year 3 - Maximum Temp Project Preferences	nperature - 85% Recovery			
	Notes for Current Case: Year 3 - Maximum Temp Project Preferences Analysis By:	John Doe	Case Delete Case Manage		* * •
	Notes for Current Case: Year 3 - Maximum Temp Project Preferences Analysis By: Company Name:	John Doe The Good Guys			• • • • • • • • • • • • • • • • • •
	Notes for Current Case: Year 3 - Maximum Temp Project Preferences Analysis By:	John Doe The Good Guys			• • • • • • • • • • • • • • • • • • •
	Notes for Current Case: Year 3 - Maximum Temp Project Preferences Analysis By: Company Name: Balance Analysis With:	John Doe The Good Guys NaCl Flow: gpm, Pressure: psig	Small Commercial S		● 8 ○ 7 ○ 6 ○ 5
	Notes for Current Case: Year 3 - Maximum Temp Project Preferences Analysis By: Company Name: Balance Analysis With: Units Set:	John Doe The Good Guys NaCl Flow: gpm, Pressure: psig Celsius (°C)	Small Commercial S	System	● 8 ○ 7 ○ 6 ○ 5

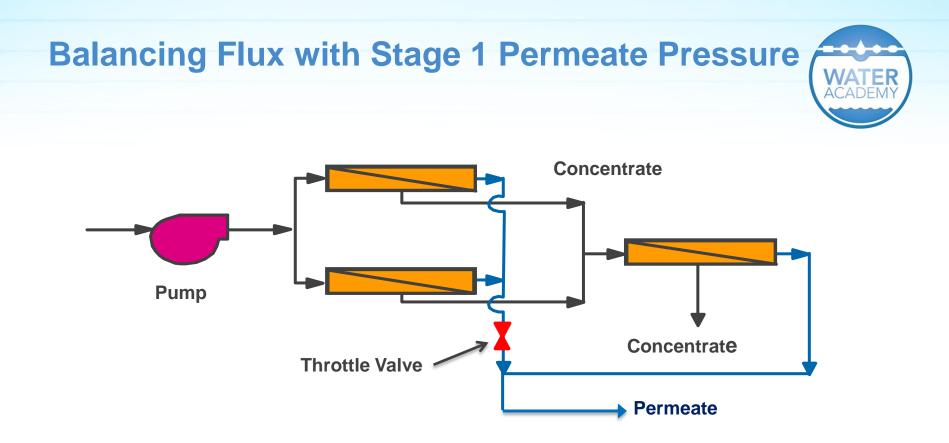
ROSA Control P	anel - Project 201	5 - 275		22
<u>F</u> ile <u>Options</u>	<u>H</u> elp			
	Syste	m Permeate Flow: 0.20 gpm System Feed Flow: 1.33 gpm	System Recovery: 15.00%	
Project				Case:
	🖳 Case Mana	ger		P
Proje				1.1
Prelin	Case No.	Case Note		-
	1	Year 0 - Min T		
100	2	Year 0 - Max T		
Project	3	Year 1 - Min T		1.75
Notes	4	Year 1 - Max T		2.1
Year	5	Year 2 - Min T		
	6	Year 2 - Max T		
	7	Year 3 - Min T		
Project	8	Year 3 - Max T		
i loject				
Analy				8
Comp				07
Balar				06
Units				
Units			Close	⊙ 5
Tem				\odot 4

Overview of Using ROSA

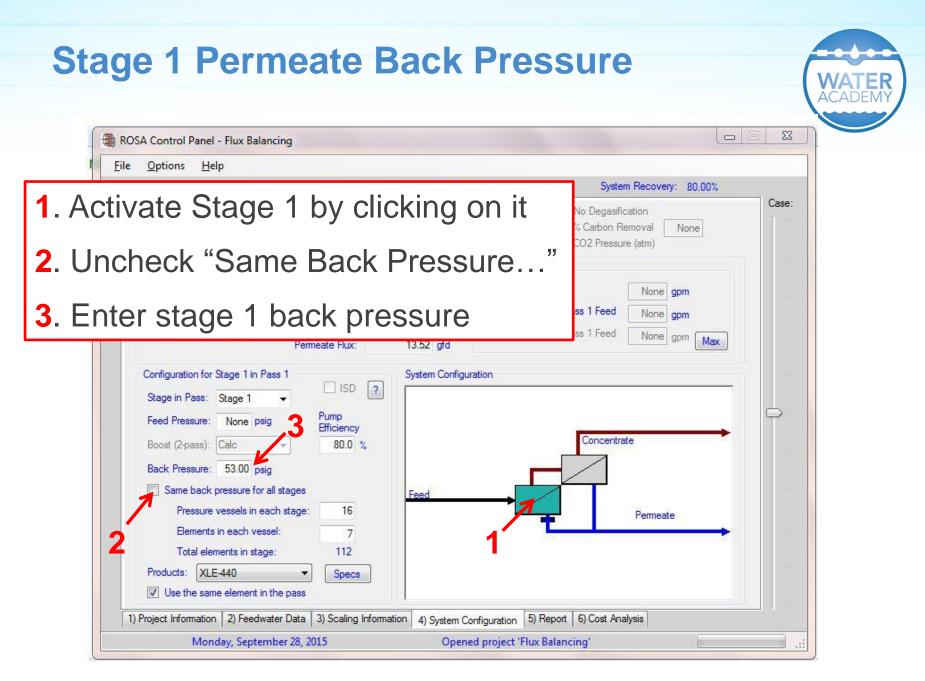
WATER ACADEMY

- Enter project information
- Enter feed water data
- If needed, enter pH modification for scale control
- Enter system configuration and select membranes
 - Run report
 - Evaluate report and iterate to optimize if needed

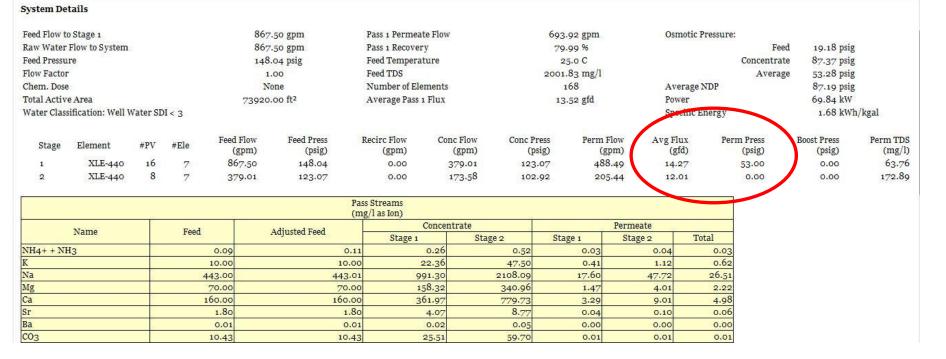
Advanced RO System Design Options

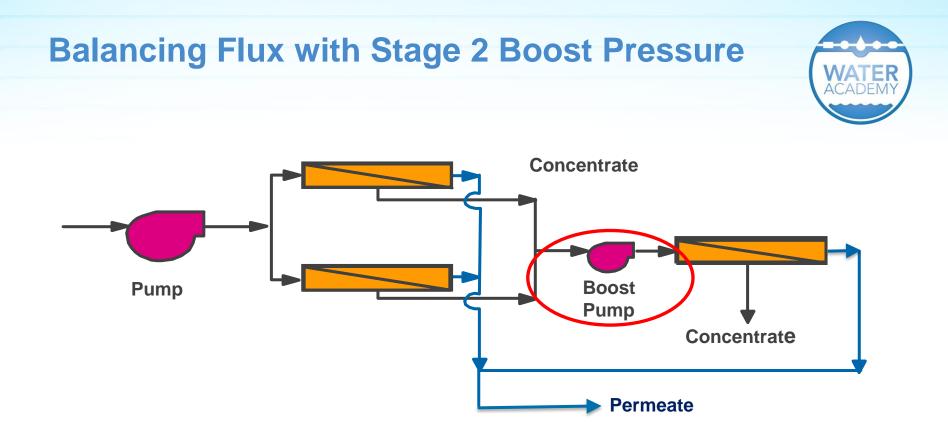

Managing Flux Balance

- Stage 1 permeate backpressure
- Stage 2 boost pump
- Multi-element hybrid array
- Internally Staged Design (ISD) array

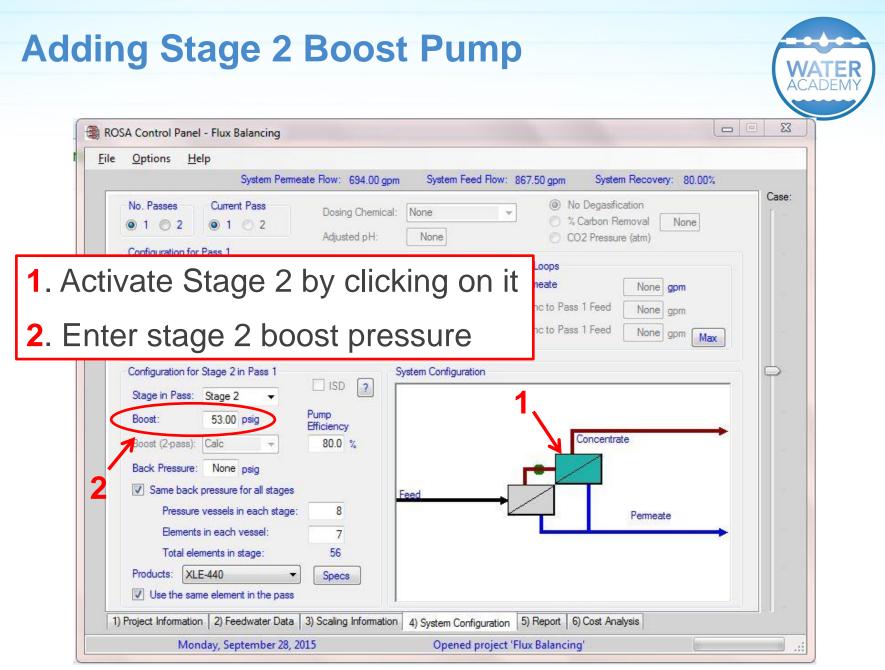

Managing Permeate Quality

- RO with feed water/permeate blending
- 2 pass RO system
- 2 pass RO system w/ partial 2nd pass
- 2 pass RO system w/ permeate split design

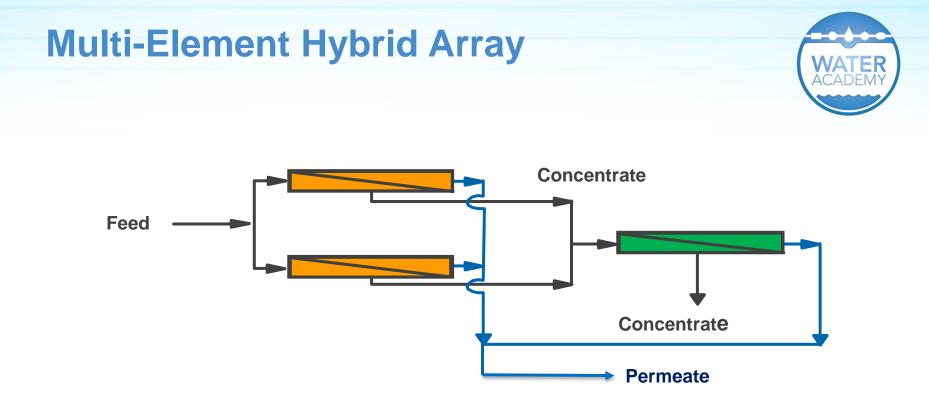




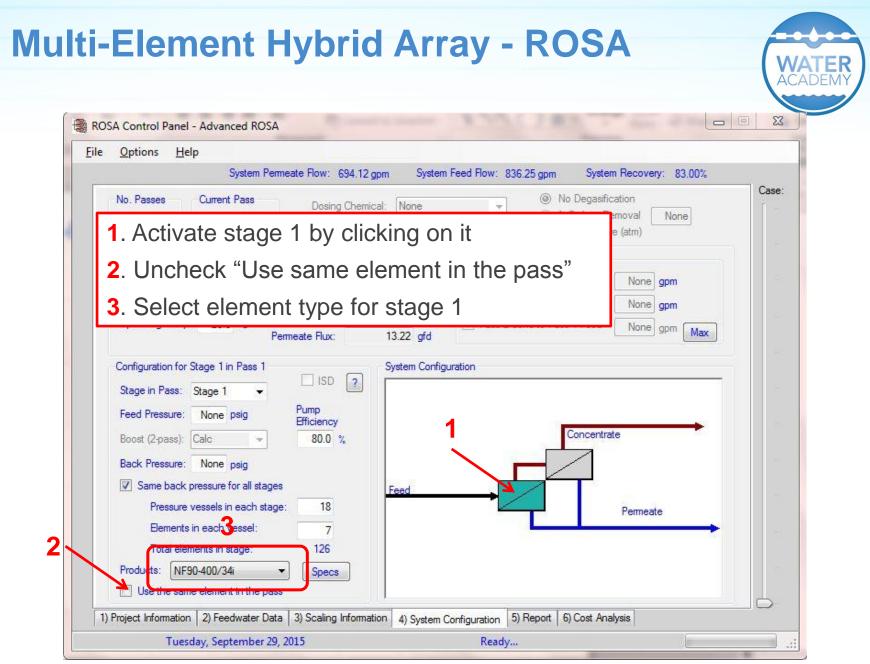
- Stage 1 permeate back pressure is shown in System Details in ROSA report
- Impact of back pressure is seen by comparing stage-wise flux values


Stage 1 Permeate Back Pressure - Report

Boost pump can be driven electrically or by energy recovery device.

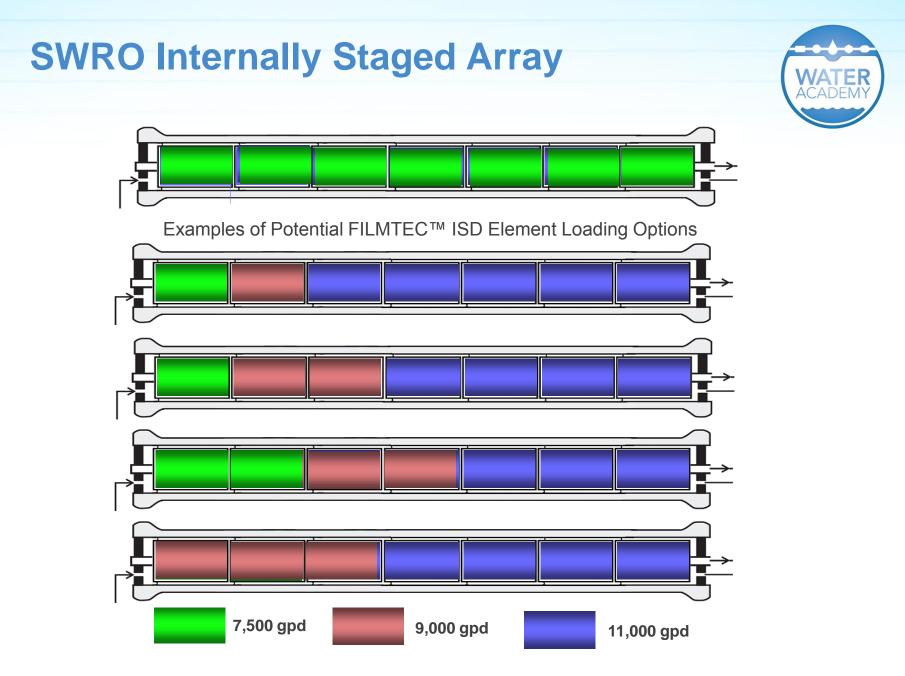


Stage 2 Boost Pressure - Report


System Details

Feed Flow t	to Stage 1			867	.50 gpm	Pass 1 Permeate F	low		694.04 gpm	0	smotic Pressur	re:		
Raw Water	Flow to System			867	.50 gpm	Pass 1 Recovery			80.01 %			Feed	1 19.18 psi	g
Feed Pressu	ire			102	.67 psig	Feed Temperature	e		25.0 C			Concentrate		73
Flow Facto	r				.85	Feed TDS			2001.83 mg/l			Average	C	
Chem. Dos	e			N	one	Number of Eleme	nts		168	A	verage NDP	B	59.25 psi	-
Total Activ	e Area			73920	.00 ft2	Average Pass 1 Fl	ux		13.52 gfd		ower		59.44 kW	
Water Clas	sification: Well V	Vater SI	DI < 3							S	pecific Energy		1.43 kW	
Stage	Element	#PV	#Ele	Feed Flow (gpm)	Feed Press (psig)	Recirc Flow (gpm)	Conc Flow (gpm)	Conc Pro		Flow Avg	Flux Po (gfd)	erm Press (psig)	Boost Press (psig)	Perm TDS (mg/l)
1	XLE-440	16	7	867.50	102.67	0.00	381.55	77.	-		4.20	0.00	0.00	63.32
2	XLE-440	8	7	381.55	130.30	0.00	173.46	109.			2.16	0.00	53.00	168.90
		63				ass Streams mg/l as Ion)								
	Name		Feed		Adjusted Feed	Con	centrate			Permeate				
	Maine		reeu		Aujusteu reeu	Stage 1	Stage	82	Stage 1	Stage 2	Total			
NH4 + N	H3	Č.		0.09	0.1	1 0.3	26	0.52	0.03	0.04				
K	01452		Î	10.00	10.0			47.56	0.41	1.09	10000			
Na				43.00	443.0			2110.73	17.47	46.62				
Mg				70.00	70.0			341.30	1.46	3.92		0		
Ca			1	60.00	160.0			780.50	3.27	8.80				
Sr				1.80	1.8			8.78	0.04	0.10				
Ba				0.01	0.0			0.05	0.00	0.00				
C03				10.43	10.4			59.77	0.01	0.01				
HCO3			2	00.00	200.0			954.80	5.31	13.85		15		
NO3				0.00	0.0		0.4.01 (10)	0.00	0.00	0.00	20202	8		
Cl			9	34.40	934-4		0	4476.28	32.78	87.59	Y			
F				0.00	0.0	0.0	00	0.00	0.00	0.00	0.0	0		

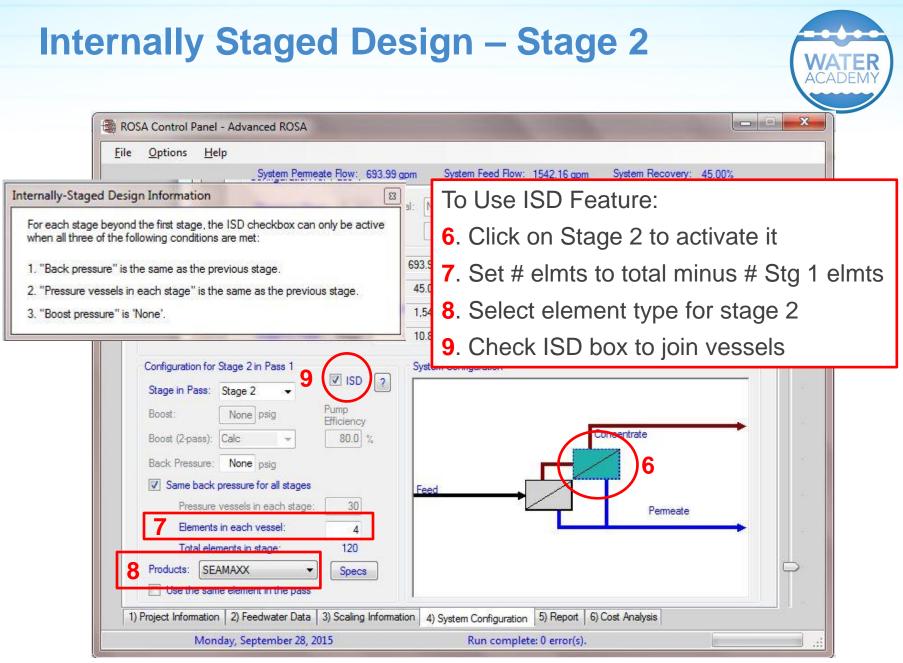
File Options Help System Permeate Flow: 694.12 gpm System Feed Flow: 836.25 gpm System Recovery: 83.00%	ti-Element Hybrid	Array - ROSA
System Permeate Row: 634,12 gpm System Feed Row: 836,25 gpm System Recovery: 83.00% No. Passes Current Pass Dosing Chemical: None % Carbon Removal None 1. Activate stage 2 by clicking on it % Carbon Removal None % Carbon Removal None % Carbon Removal None Carbon Removal None % Carbon Removal None % Carbon Removal None % Carbon Removal None % Carbon Removal None % Carbon Removal None % Carbon Removal None % Carbon Removal None % Carbon Removal None % Carbon Removal None % Carbon Removal None % Carbon Removal None % Carbon Removal None % Carbon Removal None % % Corbon Removal None % % Social Science %	ROSA Control Panel - Advanced ROSA	
No. Passes Current Pass Dosing Chemical: None Image: None	<u>File Options H</u> elp	
2. Select element type for stage 2 Pemeate None gpm Pow Factor: 1.00 Feed Flow: 836.25 gpm Pass 1 Conc to Pass 1 Feed None gpm Operating Temp: 20.0 °C Feed Flow: 13.22 grd Pass 2 Conc to Pass 1 Feed None gpm Configuration for Stage 2 in Pass: Stage 1 ISD ? Pump Pump Boost: None psig Pifficiency 80.0 % 80.0 % Pemeate Pemeate Pemeate Pemeate Boost: None psig Pump Bifficiency 80.0 % Pemeate	No. Passes Current Pass Dosing Chemical	al: None
Stage in Pass: Stage 2 Boost: None psig Boost: None psig Boost (2-pass): Calc Book Pressure: None psig Image: Stage 2 80.0 % Back Pressure vessels in each stage: 9 Elements in each stage: 9 Elements in stage: 63 Produtts: NF270-400/34i Specs Specs	Flow Factor: 1.00 Operating Temp: 20.0	Stage 2 I Permeate None gpm 00.00 % Pass 1 Conc to Pass 1 Feed None gpm 836.25 gpm ✓ Pass 2 Conc to Pass 1 Feed None gpm
Pressure vessels in each stage: 9 Elements in each stage: 7 I otal elements in stage: 63 Products: NF270-400/34i Specs Use the same element in the pass	Stage in Pass: Stage 2 ISD ISD Boost: None psig Pump Boost (2-pass): Calc 80.0 % Back Pressure: None psig	1 Concentrate
1) Project Information 2) Feedwater Data 3) Scaling Information 4) System Configuration 5) Report 6) Cost Analysis	Pressure vessels in each stage: 9 Elements in each essel: 7 Total elements in stage: 63 Products: NF270-400/34i	
	1) Project Information 2) Feedwater Data 3) Scaling Information	n 4) System Configuration 5) Report 6) Cost Analysis


Using Multiple Elements in an Array

Stage 1 2	Element NF90-400/34i NF270-400/34i		#Ele 7 7	Feed Flow (gpm) 836.25 359.94	Feed Press (psig) 54.23 43.50	(gpm) 0.00	Conc Flow (gpm) 359.94 142.13	Conc Press (psig) 43.50 32.84	Perm Flow (gpm) 476.31 217.81	Avg Flux (gfd) 13.61 12.45	Perm Press (psig) 0.00 0.00	Boost Press (psig) 0.00 0.00	Perm TDS (mg/l) 36.26 805.39
	\smile					ass Streams ng/l as Ion)							
		_			2	Concer	ntrate	S	Permeate				
1	Name	Feed		Adjusted Fe	ed	Stage 1	Stage 2	Stage 1	Stage 2	Total			
NH4 + NH3	1	(D.11		0.11	0.24	0.37	0.02	0.1	4	0.06		
K		10	0.00		10.00	21.96	31.50	0.96	15.7	3	5.60		
Na		113	3.37		113.37	250.38	355.41	9.83	181.8	4	62.81		
Mg		25	5.00		25.00	57.16	115.65	0.70	18.9	9		reased	тн
Ca		55	5.00		55.00	125.80	230.16	1.50	57.7	0	19.13	leaseu	
Sr		1	1.80		1.80	4.12	7.77	0.05	1.7	3	0.58		
Ba		0	0.01		0.01	0.02	0.04	0.00	0.0	1	0.00		
CO3			1.10		1.10	4.29	9.92	0.00	1.1		0.13		A 11
HCO3		140	0.00		140.00	314.84	560.31	5.25	153.5	4	52.24) INC	reased	AIK
NO3		c	0.00		0.00	0.00	0.00	0.00		22 I	0.00		
Cl			5-37		195.42	433.51	585.58				15.53		
F		287	3.00		8.00	17.52	23.48	0.81	13.6	2	4.83		
SO4			5.00		85.00	196.05	489.81	1.08		22	2.11		
SiO2			2.00		12.00	27.13	34.61	20 21	22.2	-	7.37		
Boron			0.00		0.00	0.00	0.00	0.00			0.00		
CO2			1.89		1.89	2.87	4.56	2.07	2.1	0.2 5-	1.94	raaad	TDC
TDS			5.76		646.82	1453.03	2444.65	36.26	2.000 E 19 E			reased	102
pH		8	3.00		8.00	8.13	8.13	6.62	7.9	8	7.60		

Design Warnings

-None-

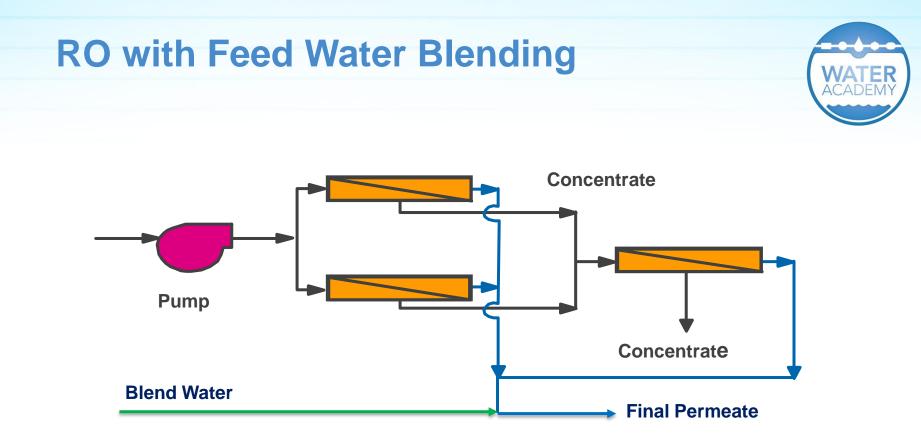


Eile Options Help System Permeate Flow: 693.99 No. Passes Current Pass Dosing Chemi Image: Configuration for Pass 1 0 1 2	
1 2	To Use ISD Feature:
	1. Complete design with single stage arr
2 Stages in Pass: 2 < Permeate Flow:	 2. Increase number of stages to 2 3. Adjust number of elmts / vessel in stages
Configuration for Stage 1 in Pass 1 Stage in Pass: Stage 1 Food Pressure: New Pain Pump	4. Uncheck "Use same element in the part of th
Feed Pressure: None psig Pump Efficiency Boost (2-pass): Calc ▼ 80.0 % Back Pressure: None psig ✓ ✓ Same back pressure for all stages 90 3 Total elements in stage: 90 90 5 Products: SW30XHR-440i ✓ ✓ Use the same element in the pass ✓	Feed Permeate

EMY

Internally	Staged	Design –	ROSA	Report

Case-specific: ISD - SW30XHR-440i - SEAMAXX


System Details

Feed Flow t	o Stage 1				1542.16 gp	m	Pass 1 Permeate Fl	ow	693	.99 gpm		Osmotic Pre	ssure:		
	Flow to System				1542.16 51		Pass 1 Recovery			.00 %			Feed	381.55	psig
Feed Pressu					795.30 ps		Feed Temperature		100.00	4.0 C			Concentrate	712.31	
Flow Factor					1 00	-	Feed TDS			.89 mg/l			Average	546.93	and the second sec
Chem, Dos					None		Number of Elemer	ts	22.010.000	210		Average NI		253.84	
Total Activ	P				92400.00 ft		Average Pass 1 Flu	5703-		.82 gfd		Power		667.00	
	sification: Seawater with	DOW III	trafiltrat	tion SDL o c	92400.00 10		Average 1 ass 1 110	A	10	.02 giu		Specific Ene	POV	<u>e</u>	kWh/kgal
Water clas	sincation, seawater with	DOW CI	traintrat	.1011, 501 < 2.5								opecific bite	*8)	10.02	Ktvii/ Kgui
Stage	Element	#PV	#Ele	Feed Flow (gpm)	Feed Press (psig)	Recirc Flow (gpm)	Conc Flow (gpm)	Conc Press (psig)	Per	m Flow A (gpm)	vg Flux (gfd)	Perm	Press Bo (psig)	oost Press (psig)	Perm TDS (mg/l)
1	SW30XHR-440i	30	3	542.16	795.30	0.00	1214.43	780.24	-	327.72	11.92		0.00	0.00	77.73
2	SEAMAXX	30	4	1214.43	780.24	0.00	848.16	767.47		366.27	9.99		0.00	0.00	475.29
					Pas	s Streams									
					(m	g/l as Ion)									
	Name	Feed		Adjusted	Feed	Conce	A P I I P I I P I I P I P I P I P I P I	-	12	Permeate					
						Stage 1	Stage 2	Stage		Stage 2	Tota				
NH4 + N	Нз		0.00		0.00	0.00		.00	0.00	0.00		0.00			
K			405.00		405.00	514.01	73:		1.06	6.54		3.95			
Na		1	2853.13		12853.15	16313.94	2328:		28.67	176.89	1	106.90			
Mg			183.00		183.00	232.37	332	10	0.04	0.24		0.14			
Ca Sr			410.00 5.61		410.00 5.61	520.62 7.12	745	.22	0.00	0.52		0.32			
Ba			0.00		0.00	0.00	2.0000	.20	0.00	0.01		0.00			
CO3			16.73	10	16.73	21.99		.81	0.00	0.00		0.00			
HCO3			142.40	-	142.40	179.54	253		0.60	3.08		1.90			
NO3			0.24		0.24	0.30		.42	0.01	0.03	6	0.02			
Cl	12	1	9500.00		19500.00	24750.20	35319		44.65	275.42		166.44			
F		-	0.57		0.57	0.72		.03	0.00	0.01		0.01			
S04	l.	8	2500.00		2500.00	3174.46	4543		0.68	4.20		2.53			
SiO2			4.00		4.00	5.08		.23	0.01	0.09		0.05			
Boron	2		3.89		3.89	4.84		.31	0.34	1.44		0.92			
C02			0.74		0.74	1.01		.61	0.70	0.91		0.82			
TDS		3	6042.87	/	36042.89	45748.03	65297	.65	77.73	475.29		287.54			
pH			8.00	,	8.00	7.95	7	.93	6.12	6.65		6.51			

Design Warnings

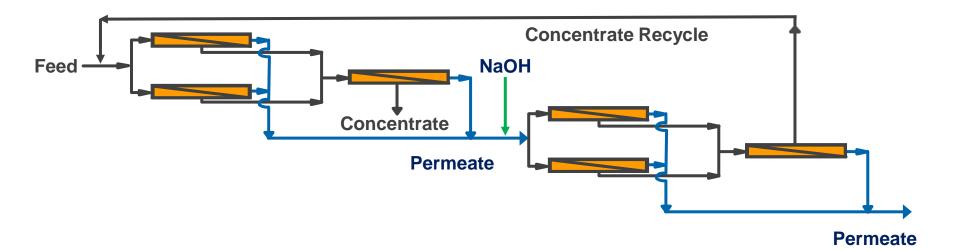
-None-

A Control	Panel - Advanced ROSA	23
<u>O</u> ptions	Help	
Vo. Passe	System Permeate Flow: 694.02 gpm System Feed Flow: 845.75 gpm System Recovery: 82.06%	Case:
1	Dosing Chemical: None	1 -
Configu	P Flow Calculator	
Stage	Berry 1	
Flow	Pass 1 Feed Flow Recovery Permeate Flow Pux Permeate Split	P
Opera	758.78 gpm 80.00 % 607.02 gpm 13.51 gfd 0 %	
	Specify Specify Specify	
Config	Specify two of the three parameters.	
Stage		-
Boost	Pass 2 Feed Flow Recovery Permeate Flow Flux Final Permeate	
Boost	0.00 gpm 0.00 % 0.00 gpm 0.00 gfd gpm	
Pe	rmeate Flow + Blend Flow = Total Product Flow	
		-
	Help Recalculate Reset Cancel Accept Changes and Close	

RO with Feed Water Blending – ROSA Report

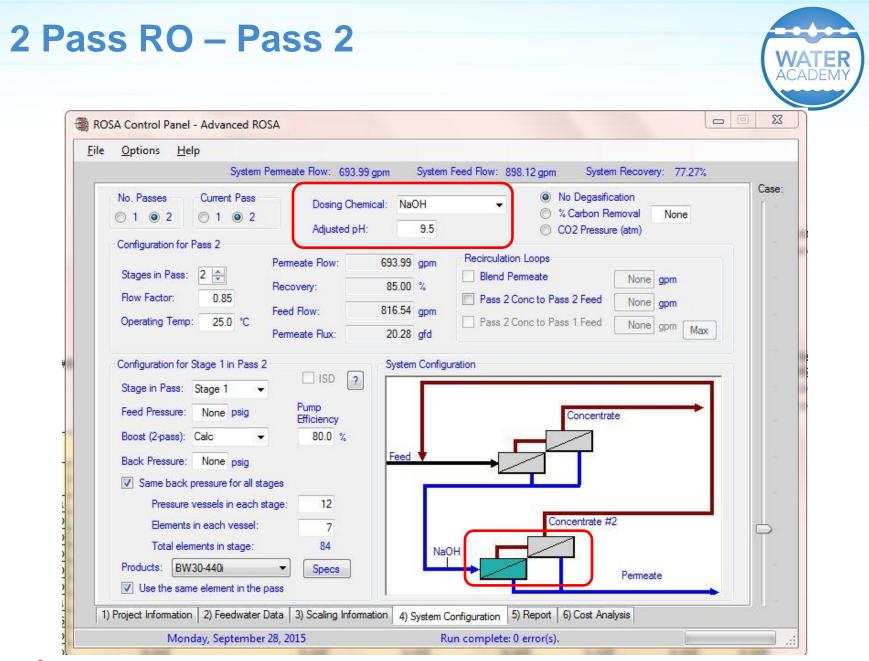
System Details

Feed Flow to	Stage 1			758.7	75 gpm	Pass 1 Permeat	e Flow	607	.02 gpm	Osmotic P	ressure:		
Raw Water	Flow to System			845.7	75 gpm	Pass 1 Recovery	7	80	.00 %		Fee	d 13.43 psig	5
Feed Pressu	re			109.6	53 psig	Feed Temperat	ure	2	5.0 C		Concentra	te 62.42 psig	5
Flow Factor				0.8	35	Feed TDS		1498	.73 mg/l		Avera	ge 37.92 psig	5
Chem. Dose				Noi	ne	Number of Elei	nents		147	Average 1	NDP	67.75 psig	5
Total Active	e Area			64680.0	oo ft²	Average Pace 1			i gfd	Power		45.24 kW	
Water Class	ification: Well W	ater SD	I < 3			Bypass Blendin	g Flow	87	.oo gpm	Specific E	nergy	1.09 kW	h/kgal
System Reco	overy			82.0	06 %	Total Blended H	roduct	694	.02 gpm				
Stage	Element	#PV	#Ele	Feed Flow (gpm)	Feed Press (psig)	Recirc Flow (gpm)	Conc Flow (gpm)	Conc Press (psig)	Perm Flow (gpm)	Avg Flux (gfd)	Perm Press (psig)	Boost Press (psig)	Perm TDS (mg/l)
1	ECO-440i	14	7	758.75	109.63	0.00	279.69	97.31	479.06	16.00	0.00	0.00	11.28
2	ECO-440i	7	7	279.69	97.31	0.00	151.73	87.71	127.96	8.55	0.00	0.00	63.15


			Pass Strea (mg/l as l					
Name	Feed	Adjusted Feed	Concen	trate		1	Permeate	
Name	reed	Aujusteu reeu	Stage 1	Stage 2	Stage 1	Stage 2	Total	Blended Total
NH4+ + NH3	0.09	0.11	0.31	0.55	0.02	0.04	0.03	0.02
K	10.00	10.00	26.91	48.96	0.13	0.76	0.26	1.48
Na	245.00	245.04	660.65	1206.25	2.39	13.73	4.78	34.90
Mg	70.00	70.00	189.34	347.48	0.33	1.83	0.64	9.34
Ca	160.00	160.00	432.81	794.35	0.73	4.14	1.44	21.32
Sr	1.80	1.80	4.87	8.94	0.01	0.05	0.02	0.24
Ba	0.01	0.01	0.03	0.05	0.00	0.00	0.00	0.00
CO3	9.48	9.48	28.29	55.13	0.00	0.01	0.00	0.38
HCO3	200.00	200.00	532.52	961.35	3.29	17.13	6.20	32.05
NO3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cl	630.23	630.23	1702.94	3119.81	3.95	22.95	7.95	85.96
F	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S04	160.00	160.00	433.32	796.78	0.43	2.38	0.84	20.79
SiO2	12.00	12.00	32.49	59.77	0.04	0.15	0.06	1.56
Boron	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CO2	0.56	0.56	1.81	3.95	0.59	1.64	0.81	0.26
TDS	1498.67	1498.73	4044.51	7399.43	11.28	63.15	22.21	208.06
pH	8.60	8.60	8.44	8.30	6.95	7.20	7.08	8.24

Design Warnings

-None-



2 Pass RO – Pass 1 23 ROSA Control Panel - Advanced ROSA File Options Help System Permeate Flow: 693.99 gpm System Feed Flow: 898.12 gpm System Recovery: 77.27% Case: No Degasification No. Passes Current Pass Dosing Chemical: NaOH 100 % Carbon Removal None 0102 0102 Adjusted pH: 9.5 CO2 Pressure (atm) Configuration for Pass 1 Recirculation Loops Permeate Flow: 816.54 gpm Stages in Pass: 2 🚔 Blend Permeate None gpm 80.00 % Recovery: Flow Factor: 1.00 Pass 1 Conc to Pass 1 Feed None 1,021 gpm Feed Flow: Operating Temp: Pass 2 Conc to Pass 1 Feed 25.0 °C 122.47 gpm Max Permeate Flux: 14.00 gfd Configuration for Stage 1 in Pass 1 System Configuration ISD ? Stage in Pass: Stage 1 * Pump Feed Pressure: None psig Concentrate Efficiency Boost (2-pass): Calc 80.0 % Feed Back Pressure: None psig Same back pressure for all stages Pressure vessels in each stage: 20 Concentrate #2 Elements in each vessel: 7 Total elements in stage: 140 NaOH Products: BW30-400/34i -Specs Permeate Use the same element in the pass 4) System Configuration 5) Report 6) Cost Analysis 1) Project Information 2) Feedwater Data 3) Scaling Information Run complete: 0 error(s). Monday, September 28, 2015

Pass 1					
Feed Flow	Recovery	Permeate Flow	Flux		Permeate Split
1020.58 gpm	80.00 %	816.46 gpm		14.00 gfd	0.00 %
Specify	Specify				
To calculate the system	flows based on pa	iss 1 feed, specify two		Blend	gpm
parameters in pass 1, pl	us one parameter ir	n pass 2.			
Pass 2					
Feed Flow	Recovery	Permeate Flow	Flux		Final Permeate
816.46 gpm	85.00 %	693.99 gpm		20.28 gfd	693.99 gpm
	Specify	Specify			

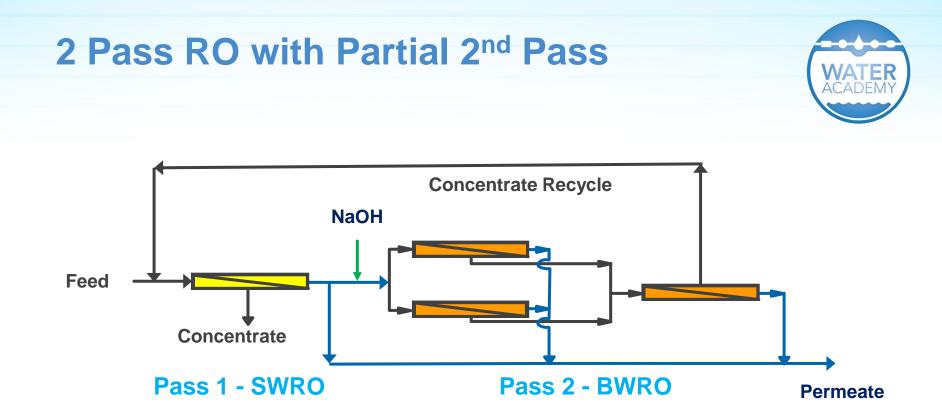
2 Pass RO – Pass 1 ROSA Report

Case-specific: 2 Pass RO

Feed Flow to S				1020.59 gpm		1 Permeate Flow		816.56 gpm		Osmotic Pressure:	- 1		
Raw Water Fl	ow to System			898.12 gpm		1 Recovery		80.01 %			Feed	17.28 psig	5
Feed Pressure				156.37 psig	Feed	l Temperature		25.0 C			Concentrate	81.01 psig	5
Flow Factor				1.00	Feed	TDS		1793.34 mg/l			Average	49.15 psig	ţ
Chem. Dose				None	Nun	nber of Elements		210		Average NDP		104.19 psig	5
Total Active	Area		8	4000.00 ft ²	Ave	rage Pass 1 Flux		14.00 gfd		Power		86.80 kW	
Water Classif	ication: Well Water SD	I < 3								Specific Energy		1.77 kW	h/kgal
System Recov	very			77.27 %						Conc. Flow from Pas	S 2	122.47 gpn	n
Stage	Element	#PV	#Ele	Feed Flow (gpm)	Feed Press (psig)	Recirc Flow (gpm)	Conc Flow (gpm)	Conc Press (psig)	Perm Flov (gpm		Perm Press (psig)	Boost Press (psig)	Perm TDS (mg/l)
1	BW30-400/34i	20	7	1020.59	156.37	0.00	392.37	141.69	628.20	6 16.16	0.00	0.00	17.95
2	BW30-400/34i	10	7	392.37	141.69	0.00	204.06	130.69	188.30	9.68	0.00	0.00	68.03

				Pass Streams (mg/l as Ion)					
Nama	Faed		Adju	isted Feed	Concent	trate		Permeate	
Name	Feed	Initial		After Recycles	Stage 1	Stage 2	Stage 1	Stage 2	Total
NH4+ + NH3	0.11		0.11	0.10	0.26	0.49	0.01	0.01	0.0
K	10.00	1	0.00	8.95	23.10	44.02	0.11	0.43	0.1
Na	443.00	44	3.00	398.39	1028.58	1960.65	4.82	18.51	7.9
Mg	70.00	7	0.00	62.13	160.96	308.11	0.41	1.51	0.6
Ca	160.00	16	0.00	141.98	367.89	704.25	0.90	3.38	1.4
Sr	1.80		1.80	1.60	4.14	7.92	0.01	0.04	0.0
Ba	0.01		0.01	0.01	0.02	0.04	0.00	0.00	0.0
CO3	1.65		1.65	2.28	9.85	25.05	0.00	0.00	0.0
HCO3	200.00	20	0.00	182.94	463.91	871.22	2.56	9.15	4.0
N03	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.0
Cl	934.40	94	4.75	842.67	2178.46	4158.80	8.43	32.41	13.9
F	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.0
SO4	160.00	16	0.00	141.61	367.35	704.22	0.62	2.29	1.0
SiO2	12.00	1	2.00	10.67	27.62	52.82	0.09	0.31	0.1
Boron	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.0
CO2	3.41		3.41	2.00	4.04	7.57	2.46	5.01	3.0
TDS	1992.98	200	3.33	1793.34	4632.16	8837.60	17.95	68.03	29.4
pH	7.80		7.80	8.00	8.02	7.96	6.22	6.44	6.3

2 Pass RO – Pass 2 ROSA Report



Case-specific: 2 Pass RO

Feed Flow to Raw Water H Feed Pressur	Flow to System re			816.56 898.12 202.72	gpm psig	Pass 2 Permeat Pass 2 Recovery Feed Temperat Feed TDS	7	693.99 84.99 25.0	96	Osmotic Pre	ssure: Feed Concentrate Average	0.38 psig 2.49 psig 1.44 psig	g
Total Active	(100% NaOH) Area ification: RO Perme	ate SDI	< 1	4.82 49280.00	mg/l ft ^a	Number of Eler Average Pass 2		20.28	2	Average NE Power Specific Ene)P	175.94 psig 90.02 kW 2.16 kW	g
System Reco	overy			77.27	%						05		8 H
Stage	Element	#PV	#Ele	Feed Flow (gpm)	Feed Press (psig)	Recirc Flow (gpm)	Conc Flow (gpm)	Conc Press (psig)	Perm Flow (gpm)	Avg Flux (gfd)	Perm Press (psig)	Boost Press (psig)	Perm TDS (mg/l)
1	BW30-440i	12	7	816.56	202.72	0.00	274.13	168.99	542.43	21.13	0.00	0.00	0.17
2	BW30-440i	4	7	274.13	168.99	0.00	122.58	131.58	151.56	17.71	0.00	0.00	0.47

			treams as Ion)				
NTerman	Tend	A directed Food	Concenti	ate		Permeate	
Name	Feed	Adjusted Feed	Stage 1	Stage 2	Stage 1	Stage 2	Total
NH4+ + NH3	0.01	0.00	0.02	0.03	0.00	0.00	0.00
ζ.	0.18	0.18	0.55	1.22	0.00	0.00	0.00
Na	7.98	10.75	31.95	71.32	0.03	0.11	0.05
мg	0.66	0.66	1.96	4.39	0.00	0.00	0.00
Ca	1.47	1.47	4.38	9.78	0.00	0.01	0.00
Sr	0.02	0.02	0.05	0.11	0.00	0.00	0.00
Ba	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CO3	0.00	1.14	5.58	15.26	0.00	0.00	0.00
HCO3	4.08	7.14	19.02	39.60	0.03	0.09	0.04
N03	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C1	13.96	13.96	41.49	92.62	0.04	0.14	0.06
F	0.00	0.00	0.00	0.00	0.00	0.00	0.00
504	1.01	1.01	3.00	6.70	0.00	0.00	0.00
SiO2	0.14	0.14	0.41	0.91	0.00	0.00	0.00
Boron	0.00	0.00	0.00	0.00	0.00	0.00	0.00
02	3.05	0.00	0.01	0.01	0.00	0.00	0.00
rds	29.49	37.01	109.24	242.89	0.17	0.47	0.24
рН	6.32	9.50	9.70	9.75	8.62	8.82	8.67

_	S RO with Partial 2 nd Pass	ACA
Eile	<u>Options</u> <u>H</u> elp System Permeate Flow: 693,93 gpm System Feed Flow: 1622,90 gpm System Recovery: 42,76%	
	No. Passes Current Pass Dosing Chemical: NaOH Image: NaOH	Case:
	Configuration for Pass 1 Permeate Flow: 759.93 gpm Recirculation Loops Stages in Pass: 1 + Permeate Flow: 759.93 gpm Permeate 100.00 gpm Recovery: 45.00 % Permeate Permeate 100.00 gpm Operating Temp: 31.0 °C Permeate Flux: 8.88 gfd Permeate 65.99 gpm	
	Configuration for Stage 1 in Pass 1 Stage in Pass: Stage 1 Feed Pressure: None psig Boost (2-pass): Calc Stage 1 Feed Pressure: Stage	
	Back Pressure: None psig Image: Same back pressure for all stages Pressure vessels in each stage: 40 Elements in each vessel: 7	
	Sw30XLE-440i Specs Image: 280 NaOH Image: Products: Sw30XLE-440i Specs Image: Specs Blend	

Flow Calculator	The second se					
Pass 1						
Feed Flow	Recovery	Permeate Flow		<u>Flux</u>		<u>Permeate Split</u>
1688.71 gpm	45.00 %	759.92	gpm		8.88 gfd	0 %
Specify	V Specify					
To calculate the system parameters in pass 1, pli			wo	(🔽 Blend	100 gpm
Pass 2						
Pass 2 Feed Flow	Recovery	Permeate Flow		<u>Flux</u>		<u>Final Permeate</u>
	Recovery 90.00 %	Permeate Flow 593.93	gpm	<u>Flux</u>	19.09 gfd	Final Permeate 693.93 gpm

Pass 2 Permeate Flow + Blend Flow = Final Permeate Flow

2 Pass RO with Partial 2 nd Pass - ROS

Case-specific: 2 Pass RO with Partial 2nd Pass

Feed Flow to :	Stage 1				1688.89 gpm	Pa	iss 1 Permeate Flow		760.01 gpm	Osmoti	ic Pressure:		
Raw Water F	low to System				1622.90 gpm	Pa	iss 1 Recovery		45.00 %			Feed 433.70	psig
Feed Pressure	е				881.75 psig	Fe	ed Temperature		31.0 C		Concer	ntrate 816.00	psig
Flow Factor					0.85	Fe	ed TDS	39	9878.76 mg/l		Av	erage 624.89	5 psig
Chem. Dose					None	N	umber of Elements		280	Averag	ge NDP	252.14	psig
Total Active.	Area			1	23200.00 ft ²		vorago Pace + Flux		8.88 gfd	Power		809.86	5 kW
Water Classif	fication: Seawater with	DOW U	ltrafiltrati	on, SDI < 2.5		By	pass Blending Flow		100.00 gpm	Specifi	c Energy	17.76	6 kWh/kgal
System Reco	very				42.75 %					Conc. I	flow from Pass 2	65.99	9 gpm
Stage	Element	#PV	#Ele	Feed Flow (gpm)	Feed Press (psig)	Recirc Flow (gpm)	Conc Flow (gpm)	Conc Press (psig)	Perm Flow (gpm)	Avg Flux (gfd)	Perm Press (psig)	Boost Press (psig)	Perm TDS (mg/l)
1	SW30XLE-440i	40	7	1688.89	881.75	0.00	928.87	864.26	760.01	8.88	0.00	0.00	338.38

			Pass Streams (mg/l as Ion)				
Name	Feed	Adjı	usted Feed	Concentrate	Permeate		
Name	reed	Initial After Recycles		Stage 1	Stage 1	Total	
NH4+ + NH3	0.00	0.00	0.00	0.00	0.00	0.00	
K	405.00	405.00	390.77	707.14	4.10	4.10	
Na	14800.00	14801.49	14276.26	25854.37	125.61	125.61	
Mg	213.00	213.00	204.75	372.14	0.17	0.17	
Ca	440.00	440.00	422.95	768.74	0.34	0.34	
Sr	5.61	5.61	5.39	9.80	0.00	0.00	
Ba	0.00	0.00	0.00	0.00	0.00	0.00	
C03	24.16	24.16	26.53	50.55	0.00	0.00	
HCO3	142.40	142.40	134.75	240.15	2.13	2.13	
N03	0.24	0.24	0.24	0.42	0.02	0.02	

2 Pass RO with Partial 2nd Pass - ROSA

WATER ACADEMY

Feed Flow to S	tage 1			660.01 gpm		Pass 2 Permeate Fl	ow	593.83	gpm	Osmotic Pre	ssure:		
Raw Water Flo	ow to System			1622.90 gpm		Pass 2 Recovery		89.97	96		Feed	4.12 psig	
Feed Pressure				89.38 psig		Feed Temperature		31.0	С		Concentrate	38.44 psig	
Flow Factor				0.90		Feed TDS		346.03	mg/l		Average	21.28 psig	
Chem. Dose (1	.oo% NaOH)			9.58 mg/l		Number of Elemer	its	112		Average ND	P	68.61 psig	
Total Active A	rea			44800.00 ft2		Average Pass o Elu	12	19.09		Power		32.08 kW	
Water Classifi	cation: RO Permeate SI	DI < 1			ſ	Bypass Blending F	low	100.00	S-17	Specific Ene	rgy	0.77 kWł	n/kgal
System Recov	ery			42.75 %	U	Total Blended Prod	luct	693.83	gpm				
Stage	Element	#PV	#Ele	Feed Flow (gpm)	Feed Press (psig)	Recirc Flow	Conc Flow (gpm)	Conc Press (psig)	Perm Flow (gpm)	Avg Flux (gfd)	Perm Press (psig)	Boost Press	Perm TDS (mg/l)
1	XFRLE-400/34i	12	7	660.01	89.38	0.00	172.98	79.71	487.02	20.87	0.00	0.00	8.04
2	XFRLE-400/34i	4	7	172.98	79.71	0.00	66.17	72.22	106.81	13.73	0.00	0.00	34.71

			(mg/l as	Ion)				
Name	Feed	Adjusted Feed	Concent	rate	18	P	ermeate	
Ivallie	Teeu	Aujusteu reeu	Stage 1	Stage 2	Stage 1	Stage 2	Total	Blended Total
NH4+ + NH3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
К	4.10	4.10	15.13	38.16	0.18	o 86	0.31	0.8
Na	125.61	131.11	493.08	1269.92	2.55	11.84	4.22	21.7:
Mg	0.17	0.17	0.64	1.67	0.00	0.00	0.00	0.03
Ca	0.34	0.34	1.31	3.41	0.00	0 01	0.00	0.03
Sr	0.00	0.00	0.02	0.04	0.00	0.00	0.00	0.00
Ba	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CO3	0.00	1.18	7.22	22.00	0.01	0 13	0.02	0.06
HCO3	2.13	1.49	2.69	3.21	0.08	0 28	0.12	0.43
N03	0.02	0.02	0.08	0.18	0.00	0 01	0.00	0.0:
Cl	194.81	194.81	732.60	1886.73	3.79	17 62	6.28	33.45
5	0.01	0.01	0.02	0.06	0.00	0.00	0.00	0.00
504	3.35	3.35	12.71	33.02	0.03	0 12	0.04	0.5:
SiO2	0.06	0.06	0.21	0.56	0.00	0.00	0.00	0.0
Boron	1.36	1.36	4.74	11.71	0.16	0.43	0.21	0.3
0.02	0.41	0.00	0.00	0.00	0.00	0.00	0.00	0.0

Split Permeate SWRO with Partial 2 Pass Design Concentrate Recycle NaOH Feed Rear Permeate **Concentrate Final Permeate Front Permeate**

- Split permeate SWRO systems withdraw permeate from both ends of the first pass pressure vessels
- Front permeate is lower in salinity and is directly blended into the final permeate stream
- Many split permeate SWRO systems use ISD with elements chosen specifically to reduce front permeate TDS and/or control lead element flux

	with Partial 2 Pass Des	
🖏 ROSA Control Panel - Advanced ROSA		
<u>File Options H</u> elp		
System Permeate Flow: 1389	.15 gpm System Feed Flow: 3231.72 gpm System Recovery: 42.98	St. And a state of the state of
No. Passes Current Pass Dosing Che ◎ 1 ◎ 2 ◎ 1 ◎ 2 Adjusted pH	Carbon Removal None	Case:
Configuration for Pass 1 Stages in Pass: 1 - Permeate Flow: Flow Factor: 0.85 Operating Temp: 31.0 °C Feed Flow: Permeate Flux:	1.478 gpm Recirculation Loops 45.00 % Blend Permeate None gpm 3.284 gpm Pass 1 Conc to Pass 1 Feed None gpm 8.64 gfd V Pass 2 Conc to Pass 1 Feed 52.24 gpm	ax
Configuration for Stage 1 in Pass 1	System Configuration	
Stage in Pass: Stage 1 → ISD 2		
Feed Pressure: None psig Pump Efficiency		-
Boost (2-pass): Calc 👻 80.0 %	Concentrate	e).
Back Pressure: None psig	Feed *	
Same back pressure for all stages Pressure vessels in each stage: 80		
Elements in each vessel: 7	Concentrate #2	-
Total elements in stage: 560	NaOH	
Products: SW30XLE-440i	Permeate	
1) Project Information 2) Feedwater Data 3) Scaling Inform	D David (Carl Archite)	

Flow Calculator		-			
Pass 1					
Feed Flow		Recovery	Permeate Flow	Flux	Permeate Split
3285.22	gpm	45.00 %	1478.35 gpm	8.64 g	fd 40.00 %
Specify		V Specify			591.34 gpm
To calculate the sy parameters in pass			iss 1 feed, specify two n pass 2.	🕅 Blen	d gpm
Pass 2					
Feed Flow		Recovery	Permeate Flow	Flux	Final Permeate
And the second s			798.31 gpm	20.53 g	fd 1389.65 gpm
887.01	gpm	90.00 %	rootor gpin		

Split Permeate SWRO – Pass 1 ROSA Report

WATER ACADEMY

Case-specific: Split Permeate 2 Pass RO

Feed Flow to	Stage 1			32	285.22 gpm	Pass 1	Permeate Flow	147	8.31 gpm	Osmotic	Pressure:		
Raw Water F	low to System			32	85.22 gpm	Pass 1	Recovery	4	5.00 %]	Feed 450.33	psig
Feed Pressure	e				911.19 psig	Feed 1	'emperature		31.0 C		Concent	rate 848.99	psig
Flow Factor					0.85	Feed 7	DS	4135	5.45 mg/l		Ave	age 649.66	psig
Chem. Dose					None	Numb	er of Elements	560		Average NDP		290.68	psig
Total Active	'otal Active Area			2464	00.00 ft2	Avera	ge Pass 1 Flux	8.64 gfd		Power		1627.95	kW
Water Classif	fication: Seawater with	DOW U	trafiltration,	SDI < 2.5		Perme	ate Split Stream	59	1.34 gpm	Specific 1	Energy	18.35	kWh/kgal
System Reco	very			42.30 %						Conc. Flo	ow from Pass 2	0.00	gpm
Stage	Element	#PV	#Ele	Feed Flow (gpm)	Feed Press (psig)	Recirc Flow (gpm)	Conc Flow (gpm)	Conc Press (psig)	Perm Flow (gpm)	Avg Flux (gfd)	Perm Press (psig)	Boost Press	Perm TDS (mg/l)
1F	1F SW30XLE-440i 80 1.4106		3285.22	911.19	0.00	2681.46	906.36	591.34	17.15	0.00	0.00	148.54	
1R	SW30XLE-440i	80	5.5894	2681.46	906.36	0.00	1806.92	894.43	874.55	6.40	0.00	0.00	506.86

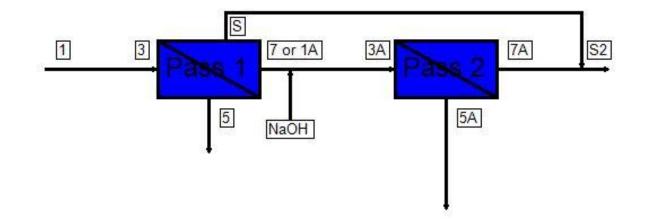
				Streams /l as Ion)		_			
	Feed	Adjus	ted Feed	Concen	itrate	Permeate			
Name	Feed	Initial	After Recycles	Stage 1F	Stage 1R	Stage 1F	Stage 1R	Total to Pass 2	
NH4+ + NH3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
K	405.00	405.00	400.67	490.85	726.85	1.74	6.13	6.13	
Na	14800.00	14801.49	14640.22	17937.48	26579.91	54.31	187.23	187.23	
Mg	213.00	213.00	210.33	257.86	383.29	0.08	0.25	0.2	
Ca	440.00	440.00	434.49	532.67	791.78	0.15	0.51	0.5	
Sr	5.61	5.61	5.54	6.79	10.10	0.00	0.01	0.0	
Ba	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
CO3	24.16	24.16	25.38	31.76	48.50	0.00	0.00	0.00	
HCO3	142.40	142.40	139.63	170.10	249.53	1.01	3.06	3.00	
N03	0.24	0.24	0.24	0.29	0.42	0.01	0.03	0.03	
Cl	22192.65	22192.65	21950.81	26893.95	39846.94	84.16	290.46	290.40	
F	0.57	0.57	0.56	0.69	1.02	0.00	0.01	0.0	
S04	3100.00	3100.00	3061.35	3753.05	5577.96	1.52	4.96	4.90	
SiO2	4.00	4.00	3.96	4.85	7.17	0.02	0.08	0.08	
Boron	4.61	4.61	4.77	5.68	7.57	0.74	1.80	1.80	
CO2	0.62	0.62	0.57	0.75	1.27	0.44	0.57	0.57	
TDS	41353.96	41355.45	40900.42	50112.80	74266.70	147.22	503.04	503.04	
pH	8.00	8.00	8.03	7.99	8.00	6.49	6.82	6.8:	

Split Permeate SWRO – Pass 2 ROSA Report

Case-specific: Split Permeate 2 Pass RO

Feed Flow to S	Stage 1			887.01 gpm		Pass 2 Permeate Flo	W	798.3	5 gpm	Osmotic Pr	essure:		
Raw Water Fl	low to System			3285.22 gpm		Pass 2 Recovery		90.0	1 96		Feed	6.13 psig	<u>i</u>
Feed Pressure	8			104.67 psig		Feed Temperature		31.	o C		Concentrate	Concentrate 57.22 psig	
Flow Factor				0.90		Feed TDS		515.9	5 mg/l		Average	31.67 psig	3
Chem. Dose (100% NaOH)			11.54 mg/l		Number of Element	S	14	0	Average N	DP	75.94 psig	5
Total Active Area 56		56000.00 ft2	(Average Pass 2 Flux		20.53 giù		Power		50.49 kW			
Water Classif	ication: RO Permeate SI)I < 1				Permeate Split Stre	am	591.3	4 gpm	Specific En	ergy	1.05 kW	h/kgal
System Recov	very			42.30 %	l	Total System Produ	ct	1389.6	9 gpm				
Stage	Element	#PV	#Ele	Feed Flow (gpm)	Feed Press (psig)	Recirc Flow (gpm)	Conc Flow (gpm)	Conc Press (psig)	Perm Flow (gpm)	Avg Flux (gfd)	Perm Press (psig)	Boost Press	Perm TDS (mg/l)
1	1 XFRLE-400/34i 15		7	887.01	104.67		216.19	94.31	670.81	23.00	0.00	0.00	11.23
2	XFRLE-400/341	5	7	216.19	94.31	0.00	88.65	86.76	127,54	13.12	0.00	0.00	55.76

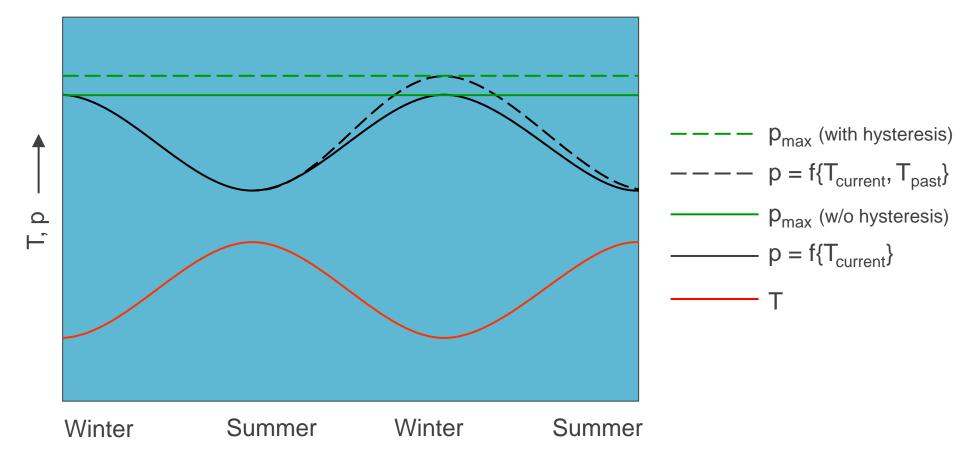
				treams as Ion)				
Name	Feed	Adjusted Feed	Concent	trate	30		Permeate	
INdiffe	reeu	Aujusteu reeu	Stage 1	Stage 2	Stage 1	Stage 2	Total	Perm Split Total
NH4+ + NH3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
K	6.18	6.18	24.52	57.73	0.27	1.44	0.46	1.0.
Na	188.80	195.43	790.39	1899.46	3.68	19.47	6.21	26.9:
Mg	0.25	0.25	1.03	2.51	0.00	0.01	0.00	0.03
Ca	0.52	0.52	2.11	5.13	0.00	0.01	0.00	0.07
Sr	0.01	0.01	0.03	0.07	0.00	0.00	0.00	0.00
Ba	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CO3	0.00	1.84	11.93	32.96	0.02	0.21	0.03	0.02
HCO3	3.06	2.11	3.82	4.41	0.12	0.45	0.18	0.53
N03	0.03	0.03	0.12	0.27	0.00	0.01	0.00	0.01
Cl	292.90	292.90	1184.62	2846.85	5.52	29.19	9.30	41.5
F	0.01	0.01	0.04	0.09	0.00	0.00	0.00	0.00
S04	5.01	5.01	20.41	49.50	0.04	0.20	0.07	0.69
SiO2	0.08	0.08	0.35	0.84	0.00	0.00	0.00	0.0:
Boron	1.75	1.75	6.56	15.13	0.20	0.61	0.26	0.46
CO2	0.67	0.00	0.00	0.00	0.00	0.00	0.00	0.21
TDS	506.86	515.95	2080.18	4990.96	11.23	55.76	18.35	73.75
pH	6.75	10.00	10.36	10.55	9.42	9.90	9.55	6.43



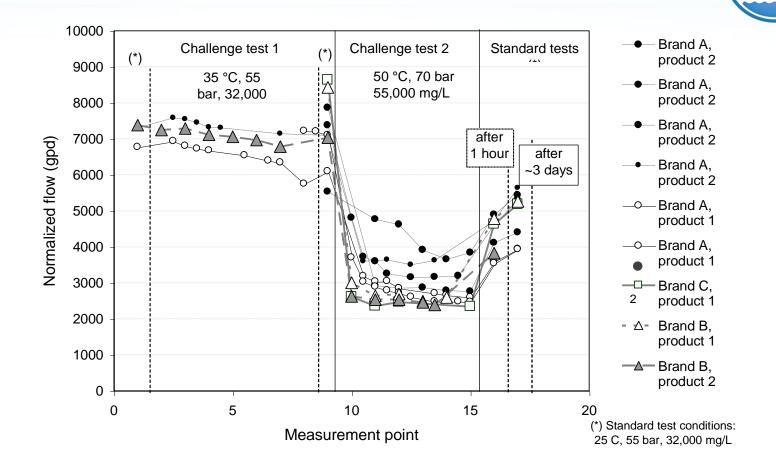
Split Permeate SWRO – Overview ROSA Report

Í	Pass	:1		Pass 2						
Stream #	Flow (gpm)	Pressure (psig)	TDS (mg/l)	Stream #	Flow (gpm)	Pressure (psig)	TDS (mg/l)			
1	3285.22	0.00	41353.96	1A	1478.31	9.72	506.86			
3	3285.22	911.19	41355.45	3A	887.01	104.67	515.95			
5	1806.92	894.43	74893.91	5A	88.65	86.76	4990.96			
7	1478.31		506.86	7A	798.35	- 1960 ()	18.35			
S	591.34	0.00	148.54	<u>\$2</u>	1402.11	0.00	73.75			
7/1	% Recovery	45.00		7A/1A	% Recovery	90.	01			

Temperature History Effect - SWRO designs


- RO operation at elevated temperatures (35°C and above) causes an irreversible flow loss.
- Flow loss becomes apparent if the system is later operated at lower temperatures (20-35°C).
- This is a phenomenon common to all thin film composite RO membranes operated under similar conditions.

WATER & PROCESS SOLUTIONS



Simplified model for feed pressure "p" as function of feed temperature "T" in an RO system

High Temp. Tests with SWRO elements

The hysteresis effect is inherent for all polyamide spiral wound RO modules.

le <u>O</u> ptions	
<u>options</u>	
	System Permeate Flow: 1389.69 gpm System Feed Flow: 3285.22 gpm System Recovery: 42.30%
Water Ty	pe: Seawater with DOW Ultrafiltration, SDI < 2.5
Feed Per	rcentage: 100.0 (%) Feed Number: 1 Feed Streams: 1
Ions Ammo	ni 📭 High Temperature Effect
Potas	issolved Solids: 41354.0 mg/l
Sodiur	
Magne	esi operating temperature under high pressure, check the box below and enter the maximum operating temperature that the erature: 31.0 °C Max Temp
Calciu	
Stront	
Bariur	
Carbo	
Bicart	pe balance
Nitrate Chlori	Maximum Temperature: 38.0 °C Add Sodium
Fluori	15. 055.72
Sulfate	s: 693.79
Silica	Adjust Cations Adjust Cations
	Adjust Anions

Options Help		
Batch Processor	Remeste Rem 0.20m24	Batch Processor:
Eiles and Folders		allows the software to run
User Data		multiple projections
		automatically
Project Cases	· ·	
Notes for Current Case:	Case: 1 <u>Add Case</u>	Delete Case Manage Pre-stage ΔP: 0.345 bar
Project Preferences		
Analysis By:	Justyna Warczok	Small Commercial System
	The Dow Chemical Company	
Company Name:	(Contraction of the second se	
Balance Analysis With:	NaCl	DOW
	NaCl Flow: m3/h, Pressure: bar Celsius (°C)	Water & Process Solutions

Batch Processor

Input Variables

- Flow Factor: Start-up and Long term
- Temperature: Maximum & Minimum and desired number of intermediate points
- Option to activate the "High Temperature Effect"

Output

- ROSA will generate projections for each temperature at each Flow Factor indicated
- Projections can be stored in the same folder as the ROSA file
- A summary excel file can be generated as well. The parameters to be included in this summary are selected by the user

Batch Processor

1. Go to options>Batch processor once feedwater & design are defined

😸 Batch Processing	
Input Parameters Output Parameters	
Temperature Range Intermediate Min Temp Max Temp Points 25 40 4 Note: Enter minimum and maximum temperal intermediate points. pressing the [Enter] ke increment and number of runs will be calculated to the c	y on each field. The
Membrane Row Factor Range Start-up Long-term Pass 1: 0.85 Pass 2: >=	
High Temperature Effect High Temperature Effect On Maximum Temperature:	Note: Applies only for seawater membranes, and when a long-term fouling factor is present in the first pass.
☑ Batch Mode On	Cancel Accept and Close

3. Output parameters: Select from the list those parameters to be included in the summary table

2. Input parameters: Indicate temperature range, FF and "high temperature effect"

Batch Processing	ameters	
System ✓ Feed Temperature ✓ Feed TDS ✓ Feed Boron ✓ Permeate Flow ✓ Permeate TDS ✓ Permeate Boron ✓ System Recovery	Pass 1 Image: Flow Factor Recovery Feed Pressure Average Flux Feed pH Permeate Flow Permeate Boron Front Permeate TDS Front Permeate Boron Front Permeate Boron Rear Permeate Flow Rear Permeate TDS Rear Permeate TDS	Pass 2 Row Factor Recovery Feed Pressure Average Flux Feed pH Permeate Flow Permeate TDS Permeate Boron
Check All Uncheck All	Check All Uncheck All	Check All Uncheck All
✓ Batch Mode On		el <u>A</u> ccept and Close

Input

Tempe	erature	Flow Factor (FF)		Intermediate points, nº
Minimum	Maximum	Start up	Long term	2
10°C	30°C	1	0.75 – 0.65	3

Note: in case of a two pass system, FF for both passes should be indicated.

Output

The following projections will be generated

	10ºC	15°C	20°C	25°C	30°C
FF 1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
FF 0.7	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Batch Processor – Output 1

Once all of the projections are finished, the user can save the results as a summary excel file

	FeedTemp	P1FF	FeedTDS	FeedBoron	SysPermFlow	SysPermTDS	SysPermB	SysRec	F
1	10.00	0.70	37054.83	5.02	10099.96	61.03	0.00	0.45	
2	10.00	1.00	37054.83	5.02	10099.82	61.81	0.00	0.45	
3	15.00	0.70	37054.83	5.02	10099.95	82.12	0.00	0.45	
4	15.00	1.00	37054.83	5.02	10100.45	83.32	0.00	0.45	
5	20.00	0.70	37054.83	5.02	10099.58	109.48	0.00	0.45	
6	20.00	1.00	37054.83	5.02	10101.73	111.25	0.00	0.45	
7	25.00	0.70	37054.83	5.02	10099.85	144.61	0.00	0.45	
8	25.00	1.00	37054.83	5.02	10100.14	147.14	0.00	0.45	
9	30.00	0.70	37054.83	5.02	10099.81	188.94	0.00	0.45	
10	30.00	1.00	37054.83	5.02	10099.95	192.42	0.00	0.45	_
•	m								

Batch Processor – Output 2

WATER ACADEMY

As a result, the user will get all the projections and the summary excel file

Note: to ensure projections are saved in the same folder as the original ROSA file \rightarrow go to options \rightarrow files and folders and select: save the output file in the same folder as the input file

	😋 Back 🝷 🌍 👻 🇊 💕	🔎 Search 🌔 Folders 🕼 🕑	× 🏼 🖾 -
	Address 🗁 C: \Documents and Setting	s\u389418\Data\My Documents\Techni	cal stuff\ROSA\ROSA 6.2 testing\Parametrics
	Name 🔺	Size Type	Date Modified
ROSA file	TEST.rosa	4 KB ROSA 70 Document	7/20/2010 9:49 AM
	🕘 TEST0 1B 1Detail. html	15 KB HTML Document	7/20/2010 9:50 AM
	TEST01B1Overview.html	7 KB HTML Document	7/20/2010 9:50 AM
	🕘 TEST0 1B2Detail.html	15 KB HTML Document	7/20/2010 9:50 AM
	TEST01B2Overview.html	7 KB HTML Document	7/20/2010 9:50 AM
	🕘 TEST0 1B3Detail.html	15 KB HTML Document	7/20/2010 9:50 AM
	EST0 1B3Overview.html	7 KB HTML Document	7/20/2010 9:50 AM
	EST0 1B4Detail.html	15 KB HTML Document	7/20/2010 9:50 AM
	EST0 1B4Overview.html	7 KB HTML Document	7/20/2010 9:50 AM
Generated	TEST0 1B5Detail.html	15 KB HTML Document	7/20/2010 9:50 AM
	EST01B5Overview.html	7 KB HTML Document	7/20/2010 9:50 AM
projections	🕘 TEST0 1B6Detail.html	15 KB HTML Document	7/20/2010 9:50 AM
	EST01B6Overview.html	7 KB HTML Document	7/20/2010 9:50 AM
	EST0 1B7Detail.html	15 KB HTML Document	7/20/2010 9:50 AM
	ETEST01B7Overview.html	7 KB HTML Document	7/20/2010 9:50 AM
	- 🙋 TEST0 1B8Detail.html	15 KB HTML Document	7/20/2010 9:50 AM
	EST01B8Overview.html	7 KB HTML Document	7/20/2010 9:51 AM
	E TESTO 1B9Detail.html	15 KB HTML Document	7/20/2010 9:51 AM
	EST0 1B 10Detail.html	15 KB HTML Document	7/20/2010 9:51 AM
	EST01B9Overview.html	7 KB HTML Document	7/20/2010 9:51 AM
	EST01B10Overview.html	7 KB HTML Document	7/20/2010 9:51 AM
	EST01B11Detail.html	15 KB HTML Document	7/20/2010 9:51 AM
	TEST01B11Overview.html	7 KB HTML Document	7/20/2010 9:51 AM
	ETEST0 1B 12Detail.html	15 KB HTML Document	7/20/2010 9:51 AM
Summary file ———	TEST0 1B 12Overview.html	7 KB HTML Document	7/20/2010 9:51 AM
	summary test.xls	9 KB Microsoft Excel Wor	7/20/2010 9:54 AM

ROSA Report – Warnings!

Design Warnings

WARNING: Maximum recommended element permeate flow rate has been exceeded. Please change your system design to reduce the element permeate flows. (Product: LE-400, Limit: 1.44m³/h) WARNING: Maximum element recovery has been exceeded. Please change your system design to reduce the element recoveries. (Product: LE-400, Limit: 19.00%)

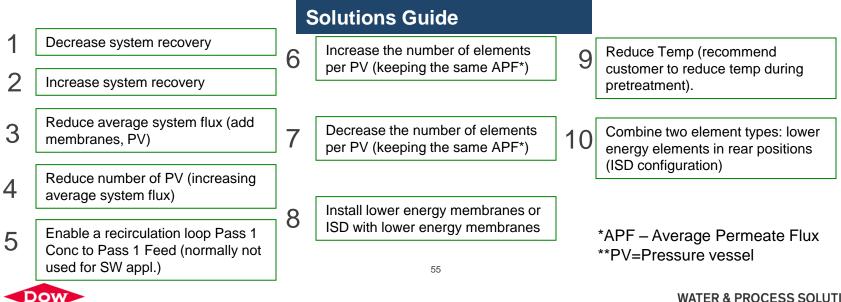
Solubility Warnings

Langelier Saturation Index > 0 Stiff & Davis Stability Index > 0 BaSO4 (% Saturation) > 100% Antiscalants may be required. Consult your antis

Designs of systems in excess of the guidelines results in a warning on the ROSA Report.

Stage Details

Stage 1	Element	Recovery	Perm Flow (m³/h)	Perm TDS (mg/l)	Feed Flow (m³/h)	Feed TDS (mg/l)	Feed Press (bar)
	1	0.12	1.57	11.70	13.36	1290.21	11.02
	2	0.12	1.47	13.56	11.79	1460.17	10.50
	3	0.13	1.39	16.02	10.32	1666.56	10.07
	4	0.15	1.31	19.36	8.93	1923.00	9.72
	5	0.16	1.25	24.04	7.62	2251.13	9.43
	6	0.18	1.18	30.99	6.37	2686.19	9.20
	7	0.21	1.10	41.87	5.20	3286.44	9.03
Stage 2	Element	Recovery	Perm Flow (m³/h)	Perm TDS (mg/l)	Feed Flow (m ³ /h)	Feed TDS (mg/l)	Feed Press (bar)
	1	0.12	1.01	50.77	8.21	4152.04	8.56
	2	0.12	0.90	63.99	7.20	4724.16	8.30
	3	0.12	0.79	81.83	6.30	5386.59	8.08
	4	0.12	0.67	106.30	5.52	6141.11	7.90
	5	0.12	0.56	140.36	4.84	6977.61	7.76
	6	0.11	0.45	188.48	4.28	7869.93	7.63
	7	0.09	0.35	256.91	3.83	8774.98	7.53



Warnings and typical solutions – For one stage systems

Design warning	Solutions		
Max. element permeate flow exceeded	3, 5, 7, 10		
The concentrate flow less than minimum	1, 5, 4 together with 6		
The feed flow greater than maximum	2 unless the feed flow is fixed, 3		
Maximum feed pressure exceeded	1, 3, 8		
Temperature is above acceptable value	9		
 Max. element recovery exceeded: If the problem is encountered in front elements If the problem is encountered in rear elements 	1, 5, 6, 10 1, 5, 6		

Warnings and typical solutions – For multi-stage systems

9

3

5

Dow

Design warning	Solutions	/			
Max. element permeat	e flov	w exceeded		3, (5), 6, 10, 13	
The concentrate flow	less t	than minimum	1, 4, (5), 6, 7, (10 and 11 only for the 1 st stage)		
The feed flow greater	than i	maximum in any of the stages	2, 3		
Maximum feed pressu	re ex	ceeded		1, 3, 9	1
Temperature is above	acce	ptable value		12	1
If the problem is encount	 Max. element recovery exceeded: If the problem is encountered in front elements (front stage/s) If the problem is encountered in rear elements (rear stage/s) 				
crease system recovery		Solutions Guide	110	Add booster pump in first or seco	nd st
rease system recovery	6	Add backpressure in first and/or second stages permeate streams	10	concentrate	
rease number of PV (reducing erage system flux)	7	Increase the number of elements per PV (keeping the same APF)	 11	Use a lower active area membran element (keeping the same APF)	
duce number of PV (increasing erage system flux)	8	Decrease the number of elements per PV (keeping the same APF)	12	Reduce Temp (recommend custor reduce temp during pretreatment	
able a recirculation loop: Pass	0	Install lower energy membranes or	์ 13	Combine two element types: lowe	er ene

Install lower energy membranes or

ISD with lower energy membranes

56

Enable a recirculation loop: Pass 1 Conc to Pass 1 Feed (normally not used for SW appl.)

*APF – Average Permeate Flux **PV=Pressure Vessel**

13

WATER & PROCESS SOLUTIONS

elements in second or third stages

Irther Help – Answer Center	WAT
HOME MARKETS PRODUCTS RESOURCES NEWS ANSWER CENTER CONTAG	ст
Dow Water & Process Solutions Answer Center	Logout
SUPPORT HOME UF RO/NF IX EDI MY INFORMATION	
Advanced Search	Contact Us
Search our knowledge base ROSA Search Search filters applied Product	Ask the Expert Submit a question to our support team.
FILMTEC RO / NF Elements < Previous 1 2 3 4 5 6 Next > Results 31 - 45 of 207 for ROSA	Contact Us If you can't find what you're looking for on our site, give us a call.
Summary	Give Feedback
FILMTEC Membranes - ROSA - Change report language FILMTEC Membranes - e-mail pdf version of projection	How can we make this site more useful for you?
FILMTEC Membranes - pH Adjustment in the Second Pass in ROSA FILMTEC Membranes - EVA (Element Value Analysis) FILMTEC Membranes - Blending in ROSA	
FILMTEC Membranes - Biending in ROSA FILMTEC Membranes - ROSA - Different Feed Water Streams	

Questions?

For more information please visit our web site or contact your local Dow representative. http://www.dowwaterandprocess.com/

NOTICE: Although the information and recommendations in this presentation (hereinafter "Information") is presented in good faith and believed to be correct, Dow makes no representations or warranties as to the completeness or accuracy of Information. Information is supplied upon the condition that the persons receiving same will make their own determination as to its suitability for their purposes prior to use. In no event will Dow be responsible for damages of any nature whatsoever resulting from the use of or reliance upon Information or the products to which Information refers. References to "Dow" or the "Company" mean the Dow legal entity selling the products to Customer unless otherwise expressly noted. NO WARRANTIES ARE GIVEN; ALL IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY EXCLUDED.

®TM Trademark of The Dow Chemical Company ("Dow") or an affiliated company of Dow