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Topics

Fundamentals
 Starting relationships

• Thermodynamic relationships

• Bernoulli’s equation

 Simplifications
• Pumps – constant density compression

• Compressors – reversible ideal gas 
compression

 Use of PH & TS diagrams

 Multistaging

Efficiencies
 Adiabatic/isentropic vs. mechanical

 Polytropic

Equipment
 Pumps

• Centrifugal pumps

• Reciprocating pumps

• Gear pumps

 Compressors
• Centrifugal compressors

• Reciprocating compressors

• Screw compressors

• Axial compressors

 Turbines & expanders
• Expanders for NGL recovery

• Gas turbines for power production

o What is “heat rate”?
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Fundamentals
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Review of Thermodynamic Principals

1st Law of Thermodynamics – Energy is conserved
 (Change in system’s energy) = (Rate of heat added) – (Rate of work performed)

 Major energy contributions
• Kinetic energy – related to velocity of system
• Potential energy – related to positon in a “field” (e.g., gravity)
• Internal energy – related to system’s temperature

o Internal energy, U, convenient for systems at constant volume & batch systems

o Enthalpy, H = U+PV, convenient for systems at constant pressure & flowing systems
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Review of Thermodynamic Principals

2nd Law of Thermodynamics
 In a cyclic process entropy will either stay the same (reversible process) or 

will increase

Relationship between work & heat
 All work can be converted to heat, but…
 Not all heat can be converted to work

5
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Common Paths for Heat and Work

6

Isothermal constant temperature ΔT = 0

Isobaric constant pressure ΔP = 0 

Isochoric constant volume ΔV = 0

Isenthalpic constant enthalpy ΔH = 0

Adiabatic no heat transferred Q = 0

Isentropic
(ideal reversible) 

no increase in entropy ΔS  = 0
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1st Law for steady state flow

Equation 1.19a (ΔH  ΔU for flowing systems)

For adiabatic, steady-state, ideal (reversible) flow (using WS as positive value)

 The work required is inversely proportional to the mass density
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Thermodynamics of Compression

Work depends on path – commonly assume adiabatic or polytropic compression

Calculations done with:
 PH diagram for ΔH

 Evaluate integral using equation of state
• Simplest gas EOS is the ideal gas law
• Simplest liquid EOS is to assume incompressible (i.e., constant density with respect to 

pressure)
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Liquid vs. Vapor Compression

Can compress liquids with little temperature change

9

GPSA Data Book, 13th ed.

ΔH for gas compression much 
larger than for liquid pumping
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Mechanical Energy Balance

Differential form of Bernoulli’s equation for fluid flow (energy per unit mass)

 Frictional loss term is positive
 Work term for energy out of fluid – negative for pump or compressor

If density is constant then the integral is straight forward – pumps

If density is not constant then you need a pathway for the pressure-density 
relationship – compressors 
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Pump equations

Pumping requirement expressed in terms of power, i.e., energy per unit time

Hydraulic horsepower – power delivered to the fluid
 Over entire system

 Just across the pump, in terms of pressure differential or head:

Brake horsepower – power delivered to the pump itself
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Pump equations for specific U.S. customary units

U.S. customary units usually used are gpm, psi, and hp

Also use the head equation usually using gpm, ft, specific gravity, and hp
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Static Head Terms

13

Fundamentals of Natural Gas Processing, 2nd ed.
Kidnay, Parrish, & McCartney
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Pump Example
Liquid propane (at its bubble point) 
is to be pumped from a reflux drum 
to a depropanizer. 
 Pressures, elevations, & piping 

system losses as shown are shown in 
the diagram. 
 Max flow rate 360 gpm. 
 Propane specific gravity 0.485 @ 

pumping temperature (100oF)
 Pump nozzles elevations are zero & 

velocity head at nozzles negligible

What is the pressure differential 
across the pump? 
What is the differential head?
What is the hydraulic power?

14

GPSA Data Book, 13th ed.
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Pump Example
Pressure drop from Reflux Drum to Pump inlet:

Pressure drop from Pump outlet to Depropanizer:
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Pump Example
Pump pressure differential:

Pump differential head:

Hydraulic power:
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PH Diagrams

17

Ref: GPSA Data Book, 13th ed.
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TS Diagram

18
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Thermodynamics of Compression

Assume ideal gas: PV = RT

Choices of path for calculating work:

 Isothermal (ΔT = 0)  

• Minimum work required but unrealistic

 Adiabatic & Isentropic (ΔS = 0)

• Maximum ideal work but more realistic

 Polytropic – reversible but non-adiabatic

• Reversible work & reversible heat proportionately added or removed along path

• More closely follows actual pressure-temperature path during compression
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Thermodynamics of Compression

Ideal gas isentropic (PV = constant) where  = CP/CV

Molar basis Mass basis

Polytropic (PV= constant) where  is empirical constant usually 
greater than 
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Thermodynamics of Compression

Calculation of  for gas mixture

Use the ideal gas heat capacities, not the real gas heat capacities

Heat capacities are functions of temperature. Use the average 
value over the temperature range
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Example Compression Calculation

Want to compress sales gas (assume pure methane) from initial 
conditions of 40oF & 100 psig to 400 psig.

Compute work of compression on mass basis…
 Using PH diagram
 Assuming ideal gas and adiabatic compression
 Using a process simulator

25
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Example Calculation – PH Diagram

26

H1 = 370 Btu/lb

H2 = 462 Btu/lb

WS = (H2 – H1) = 92 Btu/lb
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Example Calculation – Ideal Gas Compression

For methane:
  = 1.3
 M = 16
 T1 = 40oF = 500oR
 P1 = 100 psig = 114.7 psia
 P2 = 400 psig = 414.7 psia
 R = 1.986 Btu/lb.mol oR
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Example Calculation – Using a Simulator

Work Btu/lb Outlet oF

HYSYS Peng-Robinson 90.52 212.8

HYSYS Peng-Robinson & Lee-
Kesler

90.96 211.6

HYSYS SRK 91.14 212.4

HYSYS BWRS 90.82 211.9

Aspen Plus PENG-ROB 90.62 214.0

Aspen Plus SRK 91.27 213.6

Aspen Plus BWRS 90.93 213.1

Aspen Plus BWR-LS 91.09 213.1
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Discharge temperature

For ideal gas compression

For the example problem:
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Thermodynamics of Compression

If customer wants 1,000 psig (when the inlet pressure 100 psig)…
 Then pressure ratio of (1015/115) = 8.8 
 Discharge temperature for this ratio is ~360oF

For reciprocating compressors the GPSA Engineering Data Book 
recommends 
 Maximum discharge temperature of 250 to 275oF for high pressure systems 

AND …
 Pressure ratios of 3:1 to 5:1 

To obtain pressure ratios higher than 5:1 must use multistage 
compression with interstage cooling

30
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Multistaging

To minimize work need good interstage cooling and equal pressure ratios in 
stages.

The number of stages is calculated using

To go from 100 to 1000 psig with a single-stage pressure ratio of 3 takes 2 
(1.98) stages & the stage exit temp ~183oF (starting @ 40oF)
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Multistaging

Work for a single stage of compression

Work for two stages of compression (interstage cooling to 40oF)
 Intermediate pressure

 Total work
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Compression Efficiency

Compression efficiencies account for 
actual power required compared to 
ideal
 Isentropic (also known as adiabatic) 

efficiency relates actual energy to 
fluid to energy for reversible 
compression

 Mechanical efficiency relates total 
work to device to the energy into the 
fluid
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Compressor Efficiency – Discharge Temperature

GPSA Engineering Data Book suggests the isentropic temperature 
change should be divided by the isentropic efficiency to get the 
actual discharge temperature
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Polytropic Compression & Efficiency

Definition of polytropic compression (GPSA Data Book 14th ed.):

A reversible compression process between the compressor inlet 
and discharge conditions, which follows a path such that, 
between any two points on the path, the ratio of the reversible 
work input to the enthalpy rise is constant. In other words, the 
compression process is described as an infinite number of 
isentropic compression steps, each followed by an isobaric heat 
addition. The result is an ideal, reversible process that has the 
same suction pressure, discharge pressure, suction temperature 
and discharge temperature as the actual process.
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Polytropic Efficiency

Polytropic path with 100% efficiency is adiabatic & is the same as 
the isentropic path
 Polytropic efficiency, p, is related to the isentropic path

In general P > IS

Polytropic coefficient from discharge temperature

36

 
 

1

2 12
2 1

1 2 1

ln /1
  where  

1 ln /

T TP
T T

P P P

 
   

         

 
 P

1 /

1 /

  
 

  



Updated: February 6, 2018
Copyright © 2017 John Jechura (jjechura@mines.edu)
Updated: February 6, 2018
Copyright © 2017 John Jechura (jjechura@mines.edu)

Polytropic Efficiency

Actual work is calculated from the polytropic expression divided by 
its efficiency

Note:
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Compressor efficiency example

Compress methane from 40oF & 100 psig to 400 psig @ 80% 
isentropic efficiency & 10% mechanical losses

Actual work required is:

Discharge temperature:
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Compressor efficiency example

Using polytropic pathway:
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Compressor efficiency example

Can use either expression for the power to the fluid to determine 
the total power to the compressor
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Why Use Polytropic Equations?

Polytropic equations give consistent P-T pathway between the initial 
& discharge conditions  
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Compression vs. Expansion Efficiency

Work to compressor is greater
than what is needed in the 
ideal case
Work to the fluid

 Total work to the device

Work from expander is less
than what can be obtained in 
the ideal case
Work from the fluid

 Total work from the device
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Equipment:
Pumps, Compressors, 
Turbines/Expanders
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Pump & Compressor Drivers

Internal combustion engines
 Industry mainstay from beginning
 Emissions constraints
 Availability is 90 to 95%

Electric motors
 Good in remote areas
 Availability is > 99.9%

Gas turbines
 Availability is > 99%
 Lower emissions than IC engine

Steam turbines
 Uncommon in gas plants on 

compressors
 Used in combined cycle and Claus 

units
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Pump Classifications

45

Fundamentals of Natural Gas Processing, 2nd ed.
Kidnay, Parrish, & McCartney
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Centrifugal Pump Performance Curves

46

Fundamentals of Natural Gas Processing, 2nd ed.
Kidnay, Parrish, & McCartney
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Compressor Types

Positive displacement –
compress by changing 
volume
 Reciprocating
 Rotary screw
 Diaphragm
 Rotary vane

Dynamic – compress by 
converting kinetic 
energy into pressure
 Centrifugal
 Axial

47
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Reciprocating Compressors

Workhorse of industry since 
1920’s

Capable of high volumes and 
discharge pressures

High efficiency – up to 85%

Performance independent of 
gas MW

Good for intermittent service

Drawbacks
 Availability ~90 to 95% vs 

99+% for others, spare 
compressor needed in critical 
service
 Pulsed flow
 Pressure ratio limited, typically 

3:1 to 4:1
 Emissions control can be problem 

(IC drivers)
 Relatively large footprint
 Throughput adjusted by variable 

speed drive, valve unloading or 
recycle unless electrically driven
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Reciprocating Compressors - Principle of Operation

Double Acting – Crosshead

Typical applications:
 All process services, any gas & up 

to the highest pressures & power 

Single Acting - Trunk Piston

Typical Applications:
 Small size standard compressors 

for air and non-dangerous gases
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Reciprocating Compressors - Compression Cycle

50
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Reciprocating Compressors - Main Components

51
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Reciprocating Compressors

52

https://www.youtube.com/watch?v=E6_jw841vKE
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Rotary Screw Compressor

Left rotor turns clockwise, right rotor 
counterclockwise.
Gas becomes trapped in the central 
cavity

The Process Technology Handbook, Charles E. Thomas,
UHAI Publishing, Berne, NY, 1997. 
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Courtesy of Ariel Corp
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Rotary Screw Compressors

Oil-free

First used in steel mills because handles “dirty” 
gases

Max pressure ratio of 8:1 if liquid injected with 
gas

High availability (> 99%)
 Leads to low maintenance cost

Volumetric efficiency of ~100%

Small footprint (~ ¼ of recip)

Relatively quiet and vibration-free

Relatively low efficiency
 70 – 85% adiabatic efficiencies

Relatively low throughput and discharge 
pressure

Oil-injected 

Higher throughput and discharge pressures

Has two exit ports
 Axial, like oil-free
 Radial, which permits 70 to 90% turndown 

without significant efficiency decrease

Pressure ratios to 23:1

Tight tolerances can limit quick restarts

Requires oil system to filter & cool oil to 140oF

Oil removal from gas

Oil compatibility is critical

Widely used in propane refrigeration systems, 
low pressure systems, e.g., vapor recovery, 
instrument air

54



Updated: February 6, 2018
Copyright © 2017 John Jechura (jjechura@mines.edu)
Updated: February 6, 2018
Copyright © 2017 John Jechura (jjechura@mines.edu)

Dynamic Compressors

Centrifugal 
 High volumes, high discharge pressures

Axial
 Very high volumes, low discharge pressures

Use together in gas processing
 Centrifugal for compressing natural gas
 Axial for compressing air for gas turbine driving centrifugal compressor
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Centrifugal compressors

Single stage (diffuser) Multi-stage

56

Bett,K.E., et al 
Thermodynamics for Chemical Engineers 
Page 226



Updated: February 6, 2018
Copyright © 2017 John Jechura (jjechura@mines.edu)
Updated: February 6, 2018
Copyright © 2017 John Jechura (jjechura@mines.edu)

Centrifigual Compressor

57

Siemens
https://www.energy.siemens.com/br/en/compression-
expansion/product-lines/single-stage/stc-sof.htm

https://www.youtube.com/watch?v=s-bbAoxZmBg
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Centrifugal Compressor

58
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Centrifugal Compressors vs. Reciprocating 
Compressors

Centrifugal
Constant head, variable volume
Ideal for variable flow
- MW affects capacity
++ Availability > 99%
+ Smaller footprint 
- ηIS = 70 – 75%
CO & NOx emissions low
- Surge control required
++ Lower CAPEX and maint.

(maint cost  ~1/4 of recip)

Reciprocating
Constant volume, variable pressure
Ideal for constant flow
+ MW makes no difference
- Availability 90 to 95%
- Larger footprint
+ ηIS = 75 – 92%
Catalytic converters needed
++ No surge problems
++ Fast startup & shutdown
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Gas Turbine – Centrifugal Compressor

Low Pressure Gas

High Pressure Gas
Fuel Gas

Air

Axial 
Compressor

Combustion 
Turbine

Exhaust 
Gas

Centrifugal 
Compressor
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Industrial Gas Turbines

61

Ref: GPSA Data Book, 13th ed.
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What is “heat rate”?

Heat rate is the amount of fuel gas needed (expressed heating 
value) to produce a given amount of power
 Normally LHV, but you need to make sure of the basis

Essentially the reciprocal of the thermal efficiency

 Example: Dresser-Rand VECTRA 30G heat rate is 6816 Btu/hp·hr

Includes effects of adiabatic & mechanical efficiencies
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Gas Turbine

63

Courtesy of Nuovo Pignone Spa, Italy
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Combustion
chamber

Compressor Turbine Load

Gas Turbine Engine
From:  F.W.Schmuidt, R.E. Henderson, and C.H. Wolgemuth,

 “Introduction to Thermal Sciences, second edition” Wiley, 1993

shaft shaft

Atmospheric air

Fuel

Combustion
products

Assumptions

To apply basic thermodynamics to the process above, it is necessary to make a number of 
assumptions, some rather extreme.

1) All gases are ideal, and compression processes are reversible and adiabatic (isentropic)

2) the combustion process is constant pressure, resulting only in a change of temperature

3) negligible potential and kinetic energy changes in overall process

4) Values of Cp are constant

P1

P2

P3

P4

Gas Turbine Engine
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wS = -∆h = -CP∆T     (9.1 and 1.18)

Note the equations apply to both the compressor and the turbine,since
thermodynamically the turbine is a compressor running backwards

Neglecting the differences in mass flow rates between the compressor and 
the turbine, the net work is:

wnet = wt – wc = CP(T3 – T4) – (T2 -T1) 

Since (T3 – T4) > (T2 – T1)                (see T – S diagram)

Since wnet is positive work flows to the load

Gas Turbine Engine
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GT - Principle of Operation

66

Simple Cycle Gas Turbine
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Modeling Gas Turbine with Aspen Plus

Basics to tune model
 Combine heat rate & power output to determine the fuel required
 Determine the air rate from the exhaust rate
 Adjust adiabatic efficiencies to match the exhaust temperature
 Adjust the mechanical efficiencies to match the power output
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Turboexpanders

GPSA Engineering Data Book, 14th ed.
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Summary
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Summary

Work expression for pump developed 
assuming density is not a function of 
pressure

Work of compression is much greater than 
that for pumping – a great portion of the 
energy goes to increase the temperature 
of the compressed gas

Need to limit the compression ratio on a 
gas

• Interstage cooling will result in 
decreased compression power required

• Practical outlet temperature limitation –
usually means that the maximum 
compression ratio is about 3

There are thermodynamic/adiabatic & 
mechanical efficiencies

• Heat lost to the universe that does 
affect the pressure or temperature of 
the fluid is the mechanical efficiency
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Reciprocating Compressors
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Propane Refrigeration Compressors
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Propane Compressors with Air-cooled Heat Exchangers
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Reciprocating Compressor at Gas Well
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2 stage 2,000 HP Reciprocating Compressor
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Courtesy of Ariel Corp
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Oil-Injected Rotary Screw Compressor
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Courtesy of Ariel Corp
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Two-stage screw compressor
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Courtesy of MYCOM / Mayekawa Mfg
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Centrifugal Compressors – Issues 

Surge

• Changes in the suction or 
outlet pressures can cause 
backflow; this can 
become cyclic as the 
compressor tries to adjust. 
The resulting pressure 
oscillations are called 
SURGE

Stonewall

• When gas flow reaches 
sonic velocity flow cannot 
be increased. 
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Air & Hot Gas Paths

Gas Turbine has 3 main sections: 

A compressor that takes in clean outside air and then compresses it through a series of rotating and 
stationary compressor  blades
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Air & Hot Gas Paths

Gas Turbine has 3 main sections: 

A combustion section where fuel is added to the pressurized air and ignited. The hot pressurized combustion 
gas expands and moves at high velocity into the turbine section.
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Air & Hot Gas Paths

Gas Turbine has 3 main sections: 

A turbine that converts the energy from the hot/high velocity gas flowing from the combustion chamber into 
useful rotational power through expansion over a series of turbine rotor blades
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