Presentation

Seawater Desalination Current Status and Trends

Water Globe Consultants Nikolay Voutchkov, PE, BCEE

Desalination – Where Are We Today?

20,000 Desalination Plants Worldwide – 27,500 MGD of Installed Capacity

Global Desalination Capacity

Source: IDA Desalination Yearbook 2018-2019

US Desalination Plants – Cumulative Capacity

US Desalination Plants – Cumulative Number

What is Membrane Desalination?

Separation of Fresh Water from Seawater by Filtration Through Special Membranes Under Very High Pressure

Pressure Applied for Separation = 60 to 70 Times the Atmospheric Pressure

Process Used for Separation – Reverse Osmosis

Membranes are Semi-permeable – they Reject over 99.5% of the Salts in the Water

What is Osmosis and Why It Has to be Reversed?

MEMBRANE FILTRATION

REVERSE OSMOSIS

Reversing the Natural Flow of Water to Keep the Fresh Water Separated from the Saline Feed Water

One SWRO Membrane Has...

Diameter = 8 inches Length = 40 inches Weight = 36 lbs Cost = US\$400

Production of 3500 to 4000 gallons/day – Water for 50 people

Schematic of Typical SWRO Desalination Plant

50 MGD Carlsbad SWRO Plant – the Largest in the USA

SWRO Membrane Train with Energy Recovery System

Typical Cost and Energy Ranges (Medium & Large SWRO Plants)

Classification	Cost of Water Production (US\$/kgal)	SWRO System Energy Use (kWh/kgal)
Low-End Bracket	2.0 - 3.0	9.5 – 10.5
Medium Range	3.5 – 5.0	11.0 - 12.0
High-End Bracket	6.5 - 11.5	12.5 – 14.0
Average	4.0	11.5

Costs of Recent US SWRO Projects

Project	Status	Capital Cost (US\$)	Annual O&M Cost (US\$/kgal)	Cost of Water (US\$/kgal)
0.6 MGD Sand City, CA	In Operation since 2010	US\$11.9 MM	US\$2.6/kgal	US\$4.2/kgal
25 MGD Tampa Bay, FL	In Operation since 2008	US\$138 MM	US\$1.4/kgal	US\$3.6/kgal
50 MGD Carlsbad, CA	In Operation since 2015	US\$860 MM	US\$3.6/kgal	US\$6.5/kgal
7.5 MGD Santa Barbara, CA	In Operation since May 2017	US\$48 MM	US\$2.4/kgal	US\$4.4/kgal

Cost of Water Breakdown

Key Factors Affecting Costs

- Plant Size Bigger is Better
- Source Water Quality TDS, Temperature and Solids
- Product Water Quality TDS, Disinfection Compatibility
- Concentrate Disposal Method;
- > Power Supply & Unit Power Costs;
- Project Delivery Method & Financing;
- > Other Factors:
 - Intake and Discharge System Type;
 - Pretreatment & RO System Design;
 - Plant Capacity Availability Target.

Desalination Plant Construction Cost as Function of Capacity

Unit Construction Cost (US\$ MM/MGD)

Larger Desalination Plants Typically Use Less Energy

Plant	SWRO Plant Energy Use (w/o Water Delivery) (kWh/kgal)
0.5 MGD	22-25
10 MGD	16-18
50 MGD	13-15

Example – The Energy Use of the Carlsbad SWRO Plant

Putting Desalination Energy Use In Perspective

Power Needed to Produce Drinking Water from Seawater for One Family for One Year = Power Used by Family's Refrigerator (2,100 kW/yr)!

Treatment	Power Use (kWh/kgal)
Conventional Surface Water	1.5 to 2.2
Brackish Water Desalination	2.5 to 6.5
Reclamation Of Municipal Wastewater	3.0 to 3.5
Seawater Desalination	10.0 to 15.0

Main Desalination Challenges & Industry Response

Challenge	Industry Response
Relatively High Fresh Water Production Costs	Accelerated Development of Higher Productivity RO Membranes and Lower Cost Pretreatment Systems and Plant Components
High Energy Use	Advances in Low Energy Desalination Technologies & RO Energy Recovery Systems
Environmental Impacts	Coupling of Desalination Plants with Green Power Sources (Wind Power)

Concentrate Management – Key Challenges

Establishing the Salinity Tolerance Threshold in the Area of Discharge;

Providing Efficient Salinity Dispersion:

- Disposal of Brine Through Existing Wastewater & Power Plant Outfalls;
- Mixing with Ambient Seawater vs. Long Outfalls;
- Near-Shore vs. Off-Shore Discharge;
- Shallow Coastal Well Disposal.

Concentrate Management – US Experience

Concentrate Management – Texas Experience

Disposal through Existing Outfalls – Most Commonly Used for Seawater Desalination Plants

Key Desalination Project Implementation Steps

- 1. Determine Desired Plant Size;
- 2. Select Plant Site;
- 3. Decide on Intake and Concentrate Discharge Types;
- 4. Assess Source Water Quality;
- 5. Determine Product Water Quality;
- 6. Complete Environmental Impact Analysis;
- 7. Pilot Test Alternative Technologies and Designs;
- Complete Detailed Plant Design, Construction and Start-up.

Concluding Remarks

- Seawater Desalination is Drought Proof Allows to Tap Into 97.5% of the Water Resources on the Planet
- Seawater Desalination is Affordable if Plant Site and Size are Selected Appropriately
- Energy Use for Seawater Desalination is Reasonable Comparable to Energy Use for Food Refrigeration
- Seawater Desalination is Environmentally Safe if Plant Intake and Discharge are Designed Appropriately
- Science and Technology Developments Are Likely to Result in Further Reduction of Energy Use and Costs for Production of Desalinated Water