

Slow Sand Filtration

Marco Bruni, seecon international gmbh

Slow Sand Filtration

Copyright & Disclaimer

Copy it, adapt it, use it - but acknowledge the source!

Copyright

Included in the SSWM Toolbox are materials from various organisations and sources. **Those materials are open source.** Following the open-source concept for capacity building and non-profit use, copying and adapting is allowed provided proper acknowledgement of the source is made (see below). The publication of these materials in the SSWM Toolbox does not alter any existing copyrights. Material published in the SSWM Toolbox for the first time follows the same open-source concept, with all rights remaining with the original authors or producing organisations.

To view an official copy of the the Creative Commons Attribution Works 3.0 Unported License we build upon, visit http://creativecommons.org/licenses/by/3.0. This agreement officially states that:

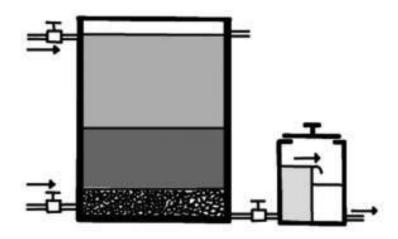
You are free to:

- Share to copy, distribute and transmit this document
- Remix to adapt this document. We would appreciate receiving a copy of any changes that you have made to improve this document.

Under the following conditions:

• Attribution: You must always give the original authors or publishing agencies credit for the document or picture you are using.

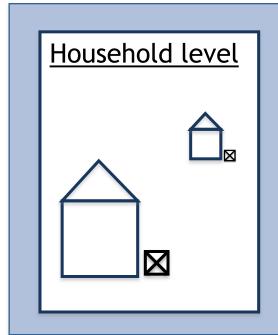
Disclaimer

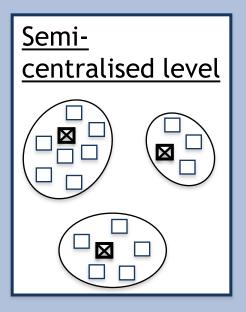

The contents of the SSWM Toolbox reflect the opinions of the respective authors and not necessarily the official opinion of the funding or supporting partner organisations.

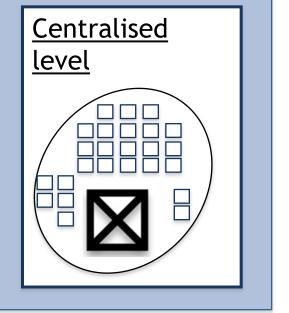
Depending on the initial situations and respective local circumstances, there is no guarantee that single measures described in the toolbox will make the local water and sanitation system more sustainable. The main aim of the SSWM Toolbox is to be a reference tool to provide ideas for improving the local water and sanitation situation in a sustainable manner. Results depend largely on the respective situation and the implementation and combination of the measures described. An in-depth analysis of respective advantages and disadvantages and the suitability of the measure is necessary in every single case. We do not assume any responsibility for and make no warranty with respect to the results that may be obtained from the use of the information provided.

Contents

- 1. Concept
- 2. How Slow Sand Filtration Can Optimise SSWM
- 3. Design Principles
- 4. Treatment Efficiency and Health Aspects
- 5. Construction and Operation & Maintenance
- 6. Applicability
- 7. Advantages and Disadvantages
- 8. References

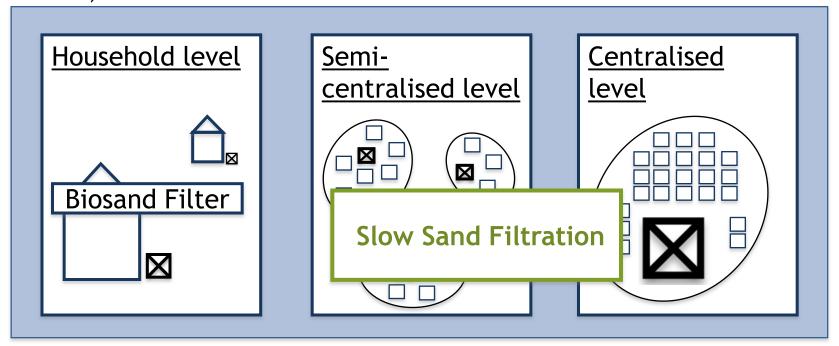



Water Purification


Households

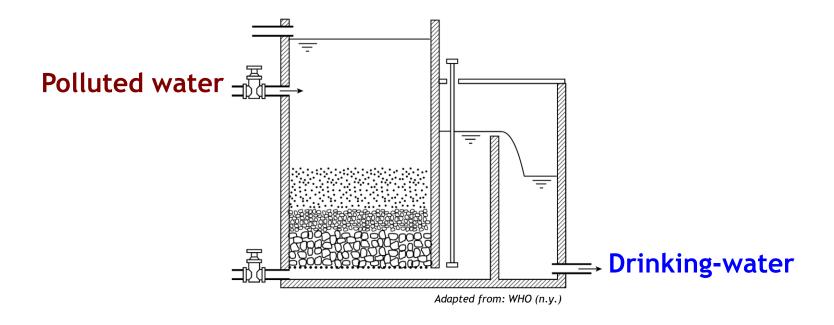
Communities

Water supply systems in densely populated urban areas



Water Purification

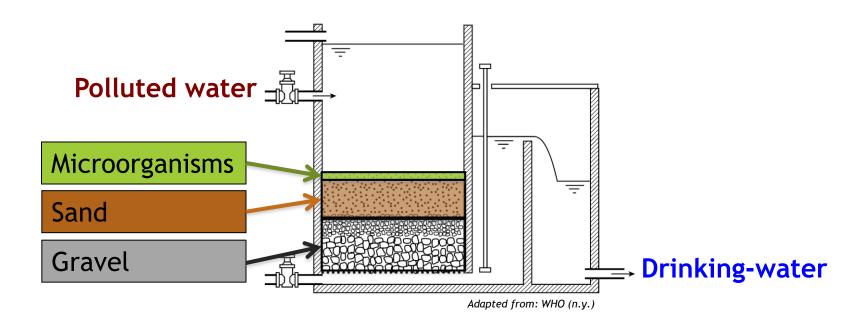
- Slow sand filtration is a type of water purification system on a centralised or semi-centralised level
- The working principle is equivalent to the biosand filter (household level)



Simple but Effective

Working Principle

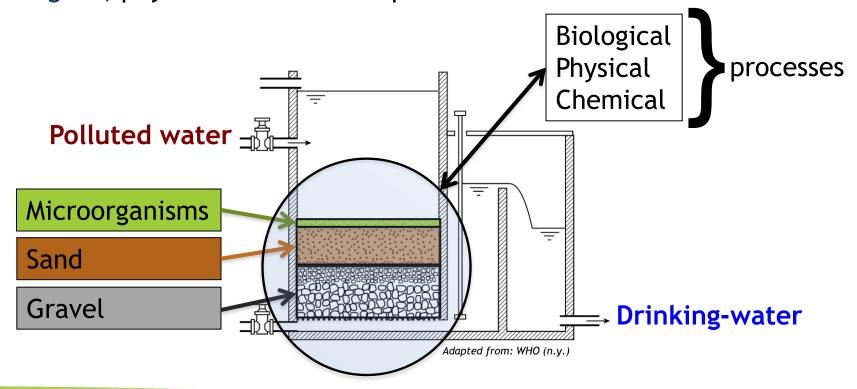
Freshwater flows through a sand-bed with a thin layer populated by microorganisms. Hereby, the water gets purified through various biological, physical and chemical processes.



Simple but Effective

Working Principle

Freshwater flows through a sand-bed with a thin layer populated by microorganisms. Hereby, the water gets purified through various biological, physical and chemical processes.



Simple but Effective

Working Principle

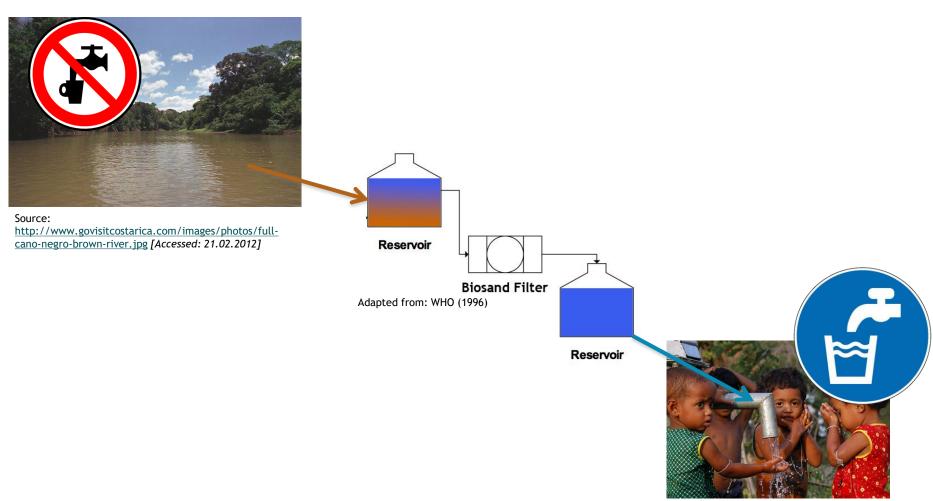
Freshwater flows through a sand-bed with a thin layer populated by microorganisms. Hereby, the water gets purified through various biological, physical and chemical processes.

2. How Slow Sand Filtration Can Optimise SSWM

Or how Surface-water Becomes Drinking-water

Source:

http://www.govisitcostarica.com/images/photos/full-cano-negro-brown-river.jpg [Accessed: 21.02.2012]



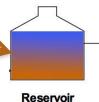
Source: http://water1st.org/waterlog/wp-content/uploads/2009/05/01.jpg [Accessed: 21.02.2012]

2. How Slow Sand Filtration Can Optimise SSWM

Or how Surface-water Becomes Drinking-water

Source: http://water1st.org/waterlog/wp-content/uploads/2009/05/01.jpg [Accessed: 21.02.2012]

expert.com/images/hazardous-chemicals.jpg [Accessed: 21.02.2012]


2. How Slow Sand Filtration Can Optimise SSWM

Or how Surface-water Becomes Drinking-water

NO chemicals required

Biosand Filter

Source:

http://www.govisitcostarica.com/images/photos/full-cano-negro-brown-river.jpg [Accessed: 21.02.2012]

NO electricity or pumps required

Source: http://water1st.org/waterlog/wp-content/uploads/2009/05/01.jpg [Accessed: 21.02.2012]

Source: http://shop.gessato.com/images/fermliving-wall-stickers-power-pole-gessato-gselectthumb.jpg [Accessed: 21.02.2012]

3. Design Principles

Finding the Optimal Solution Adapted for the Local Conditions

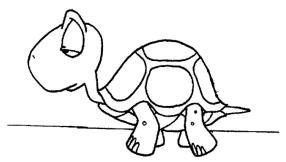
- Different construction types of slow sand filters available
- Choice according to individual needs, possibilities and circumstances
 NOTE: They all work identically!

Source: GLOBAL GIVING (2011)

Simple SSF - synthetic filter chamber

Source: http://www.travelblog.org/Photos/2411254 [Accessed: 21.02.2012]

Sophisticated SSF - solid filter chamber (concrete)


4. Treatment Efficiency and Health Aspects

Efficiency versus Drinking-water Quality

Performance

100-300 litres per hour per m² of surface

- → rather slow rate
- → large land demand

Source: http://www.cibengineering.com/blog/wp-content/uploads/2010/10/dot_net_remoting_marshalling.png [Accessed: 21.02.2012]

Health Aspects

Slow sand filtration provides safe drinking-water.

Highly effective for:	Somewhat effective for	Not effective for:
- Bacteria	- Odour, Taste	- Salts
- Protozoa	- Iron, Manganese	- Fluoride
- Viruses	- Organic Matter	-Trihalomethane (THM)
- Turbidity	- Arsenic	Precursors
- Heavy metals (Zn, Cu,		- Majority of chemicals
Cd, Pb)		

Adapted from: BRIKKE & BREDERO (2003), LOGSDON (2002) and WHO (n.y.)

Typical treatment performance of slow sand filters

5. Construction and Operation & Maintenance

Construction

- Use of local material and knowledge
- Can be built by experienced contractors or communities with little external technical assistance
- Cheap material

Construction Material

- (Reinforced-) concrete, brick-built or synthetic filter chamber
- Pipes
- Valves
- Sand, Gravel
- Tools

Foundation of a slow sand filter

5. Construction and Operation & Maintenance

Operation & Maintenance

- SSF do not need much operational attention
- Maintenance is essential for proper functioning but can easily be conducted by a local caretaker or by communities.
- Cleaning of the filter-bed is labour-intensive and has to be done after several weeks or months of operation (depending on the turbidity level of the initial freshwater)

Cleaning

- Drainage of filter chamber
- Removal of the top layer of the sand
- Drying and cleaning of the removed sand → Reuse!
- Restart (takes some days for the microorganisms to develop)

Tayakome's village water committee cleaning their slow sand filters

6. Applicability

Universally Applicable

Prerequisites

- Availability of large land areas
- Low initial turbidity level (<30 NTU), otherwise pre-treatment necessary
- Moderate climate conditions (filter does not work if temperatures are too low)
- Experienced contractor for construction and trained caretaker for operation and maintenance

Main areas

 Primarily rural communities or small cities where land is no limiting factor

7. Advantages and Disadvantages

Slow Sand Filtration Put in a Nutshell

Advantages:

- Very effective removal of most contaminants
- Simplicity of design (simple and cheap construction)
- High self-help compatibility (simple operation and maintenance)
- No electricity required
- Construction with local material and knowledge
- No chemicals involved
- Long lifespan (> 10 years)

Disadvantages:

- Minimal quality of initial fresh water or pre-treatment required
- Cold climate lowers efficiency
- Majority of chemicals and fluoride is not removed
- Loss of productivity during maintenance
- Possible need for attitudinal change

8. References

BRIKKE, F.; BREDERO, M. (2003): Linking Technology Choice with Operation and Maintenance in the Context of Community Water Supply and Sanitation. Geneva: World Health Organization (WHO). URL:

http://www.who.int/water_sanitation_health/hygiene/om/linkingintro.pdf [Accessed: 06.02.3012].

EWB (2010): Construction of a Slow Sand Filter. Easton: Engineers without Borders (EWB), Lafayette Chapter, Lafayette College. URL: http://sites.lafayette.edu/ewb/files/2010/09/DSC008471.jpg [Accessed: 06.02.3012].

GLOBAL GIVING (2011): Clean Water and Sanitation - Rainforest in Peru. Washington, D.C.: Global Giving. URL: http://www.globalgiving.org/projects/clean-water-for-peru/photos/ [Accessed: 06.02.3012].

LOGSDON, G. et al. (2002): Slow Sand Filtration for small Water Systems. (= Journal of Environmental Engineering and Science (2002), Vol.1 No.5, pp. 339-348) Ottawa: NRC Canada.

WHO (n.y.): Chapter 12: Water Treatment. In: WHO: Seminar Pack for Drinking-water Quality, Water Sanitation and Health (WSH). Geneva: World Health Organization (WHO). URL: http://www.who.int/water_sanitation_health/dwq/S12.pdf [Accessed: 07.02.2012].

WHO (1996): Guidelines for Drinking-Water Quality - Health Criteria and other Supporting Information. Second Edition. Geneva: World Health Organisation (WHO). URL: http://www.who.int/water_sanitation_health/dwq/gdwq2v1/en/index.html [Accessed: 06.02.3012].

"Linking up Sustainable Sanitation, Water Management & Agriculture"

SSWM is an initiative supported by:

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Federal Department of Foreign Affairs FDFA

Swiss Agency for Development and Cooperation SDC

sustainable sanitation alliance

