The Potential of Membrane Bioreactors for Wastewater Treatment

S. Malamis¹, A. Andreadakis¹ & D. Mamais¹

¹Laboratory of Sanitary Engineering School of Civil Engineering National Technical University of Athens

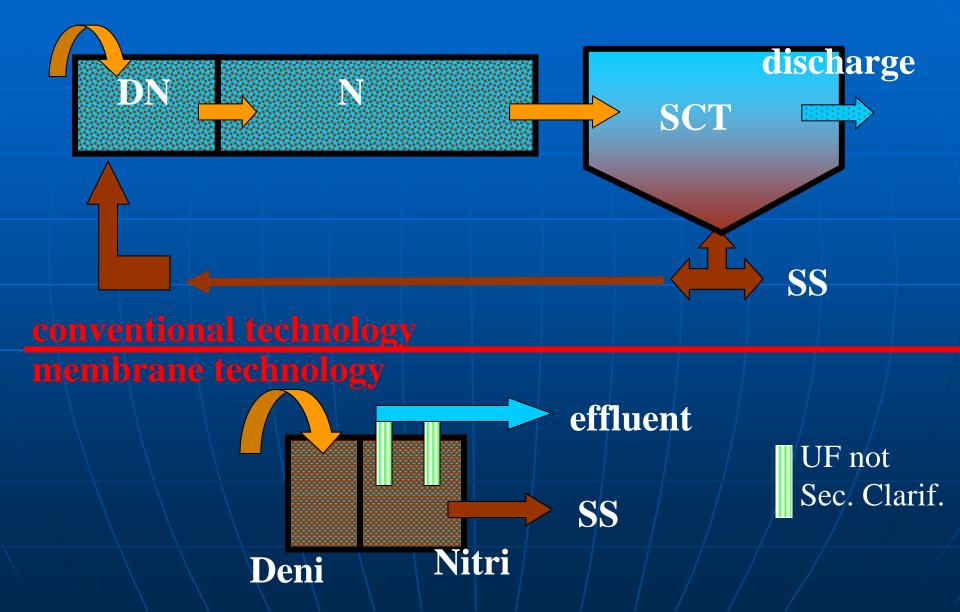
1st International Conference on Sustainable Urban Wastewater Treatment and Reuse

Nicosia 15-16th September 2005

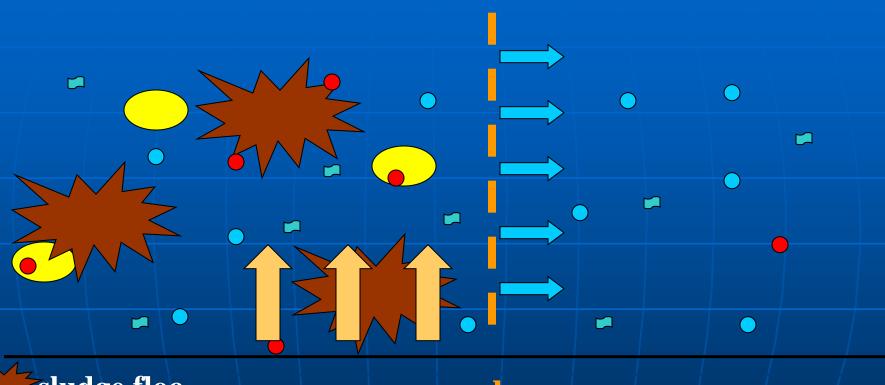
Presentation Aim & Layout

Aims

- To assess the feasibility of Membrane Bioreactors (MBR) in Greece
- To examine state-of-the-art research in the field of secondary treatment of municipal wastewater using MBR technology


Layout

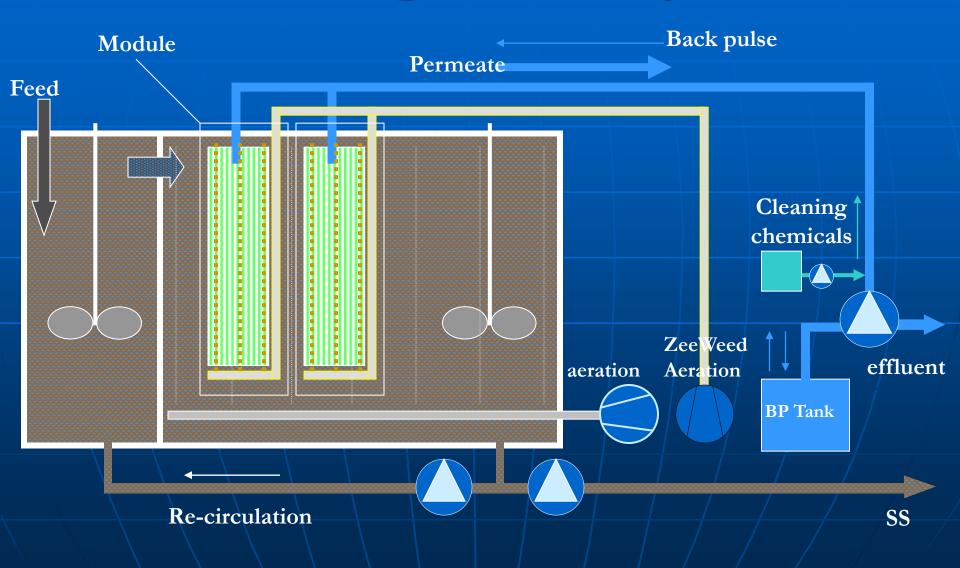
- Basics on MBR for wastewater treatment
- Examination of two full-scale MBR applications
- Adoption of MBR technology in Greece
- State-of-the-art research


Basics on MBR

- Employ biological reactor and membrane filtration as a unified system for the secondary treatment of wastewater
- Membranes perform the separation of the final effluent from the biomass through filtration
- Filtration takes place by the application of a pressure gradient

Process Basics

Process Basics


- sludge floc
- water
- dis. solids
- **b**acteria
 - viruses

membrane

suction kinet energ

Submerged MBR System

Assessment of MBR Technology

- Advantages
 - High effluent quality
 - No sludge settling problems
 - Reduced volume requirements
- Disadvantages
 - Membrane fouling
 - Increased operational costs

Full-Scale WWTP in Germany (1)

- P.E. = 80,000 Largest MBR full-scale installation in the world
- 4 parallel biological reactors:
 - Anoxic zone
 - Swing zone
 - Aerobic zone with immersed membranes
- SRT = 25 days
- MLSS = 10-15 g/l
- 192 cassettes (8 parallel trains)
- Total filtration area = 84,480m²

Full-Scale WWTP in Germany (2)

Parameter	Final Effluent	
SS (mg/l)	Non detectable	
COD (mg/l)	15-20	
BOD ₅ (mg/l)	<3	
NH_4^+ -N (mg/l)	<1	
TN (mg/l)	5-10	
TP (mg/l)	0.7	
Total Coliforms / 100 ml	<100	
Fecal Coliforms /2000 ml	<500	
Salmonella /1000 ml	0	

Final Effluent disposed to a sensitive river

Full-Scale WWTP in Italy (1)

Consists of 3 parallel lines

- Lines A & C: Conventional Lines
- Line B: Upgraded from conventional to MBR system
- Total P.E. = 380,000
- Upgrading of Line B to MBR increased its capacity from 12,200 m³/d to 42,000 m³/d within the same space
- MLSS = 6.5-10 g/l
- SRT > 20 d

Full-Scale WWTP in Italy (2)

Parameter	MBR Effluent mg/l (%)	Conventional Effluent mg/l (%)
SS (mg/l)	<2 (99)	25 (73.2)
BOD ₅ (mg/l)	4 (95.8)	19 (82.3)
COD (mg/l)	27 (88.5)	66 (77.2)
TN (mg/l)	9.2 (73.7)	15.9 (54.5)
TP (mg/l)	2.4 (36.1)	3.4 (8.6)

Conclusions from the examination of full-scale installations (1)

- Full-scale MBR provide a superior effluent quality compared to conventional methods
- The final effluent can meet the requirements of the Urban Wastewater Directive 91/271/EEC even for P.E. >100,000 with disposal to sensitive recipients (TN <10 mg/l, TP < 1mg/l)</p>
- Final effluent conforms to the microbiological requirements for bathing waters (Directive 76/160/EEC), without the need for further disinfection with chlorine or ozone

Conclusions from the examination of full-scale installations (1)

Enhance reuse options of secondary effluent

However:

- the stricter microbiological criteria for agricultural reuse are not met and further disinfection is required
- Main barrier to their wider full-scale adoption is the high operational cost and the lack of economies of scale

Adoption of full-scale MBR in Greece

- Currently there is no full-scale MBR system
- It is an attractive solution for arid and semiarid regions and islands characterized by:
 - Water scarcity
 - Small/Medium P.E.
 - Coastal zones and seas of high aesthetic value
 - Limited land availability
 - Large seasonal changes in populations

State-of-the-art Research

- MBR technology has resulted in multidiscipline research, since it brings together the topics of system design and construction, hydrodynamics, chemistry and microbiology.
- This work focuses on the topics of:
 - Membrane fouling
 - System microbiology

Membrane Fouling (1)

- Biofouling is the dominant type of membrane fouling in MBRs
- <u>Definition:</u> the undesirable deposition and accumulation of microorganisms,
 EPS and cell debris
- Main operating problem impeding the widespread adoption of MBR to fullscale plants

Membrane Fouling (2)

- Biofilm develops due to the following mechanisms:
 - Adsorption of macromolecules
 - Adhesion of micro-molecules which are easily attached from the liquid under suspension to the membrane's surface
 - Creation of colonies and growth of micro-organisms on and within the biofilm
 - Detachment mechanisms attributed mainly to shear forces

Main Parameters Influencing Fouling (3)

- Membrane parameters
 - Configuration
 - Material
 - Pore Size
 - Hydrophobicity
- Operating Parameters
 - HRT/SRT
 - Aeration system
 - TMP and flux
- Biomass characteristics
 - EPS
 - SMP
 - MLSS

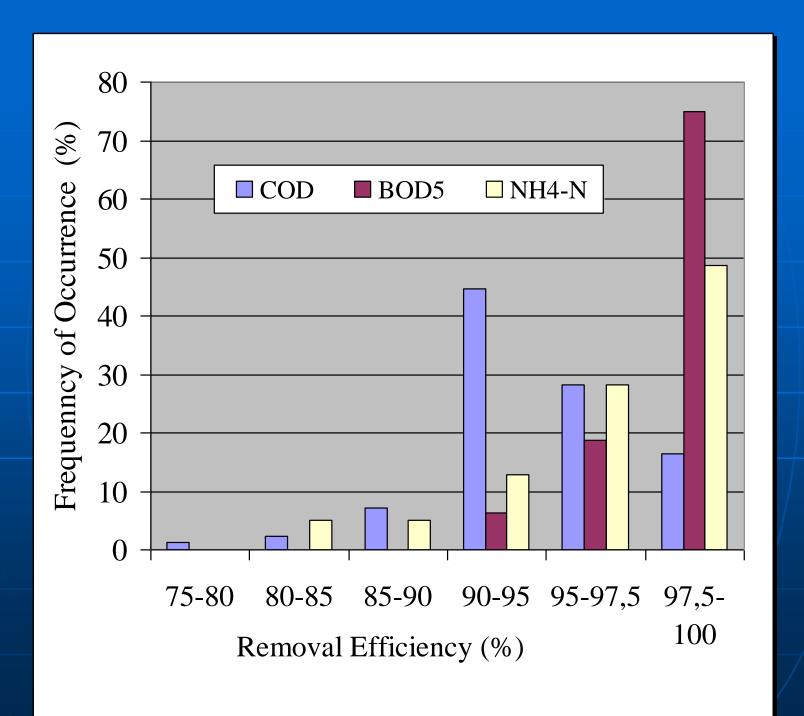
- The degree of influence of each biomass characteristic varies depending on the operating conditions and particularly SRT
- Research is often contradictory
- No universally adopted relationships relating fouling to its main influencing parameters

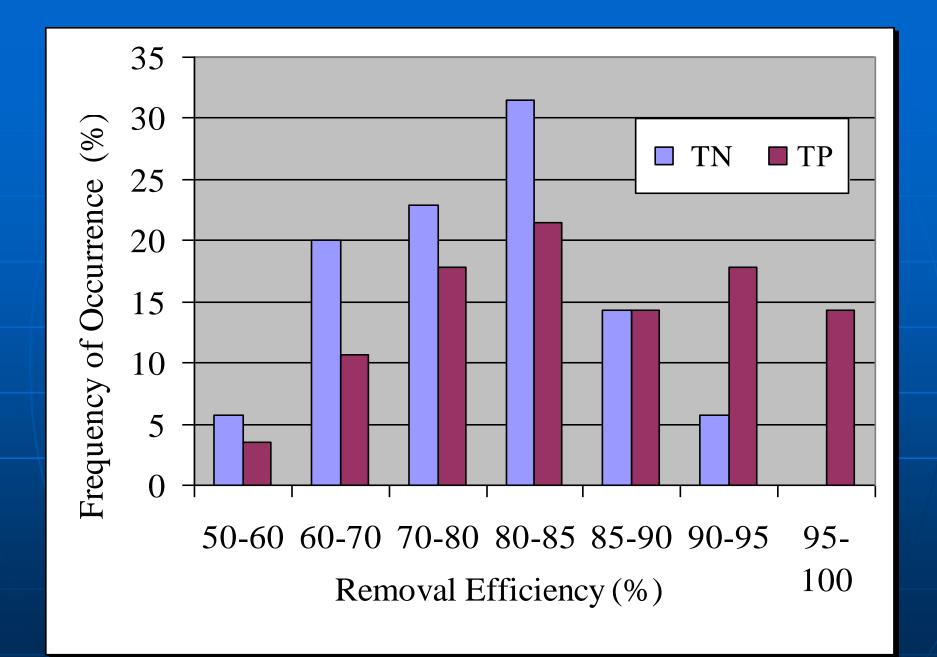
Promising research areas related to membrane fouling (4)

Modeling the development of biofilm (determining thickness, concentration gradient of nutrients and DO etc)

Derive relationships describing the degree of fouling with respect to operating and biomass characteristics

The ultimate goal is to model long-term fouling


Examination of the influence of certain additives (alum, zeolite, activated carbon) on fouling


System Microbiology (1)

- Sludge Filterability
 - Impacts on filtration and fouling
 - Improved sludge filterability retards the degree of fouling and thus prolongs the life of the membrane
- Biomass characteristics
 - MBR produce 20-50% less sludge than conventional systems as they operate at higher SRT
 - Floc size depends on the SRT value and on the MBR configuration
 - Presence of small flocs, single cells and freeswimming bacteria
 - Filamentous micro-organisms are favored (absence of FST, low F/M ratios)

System Microbiology (2)

- Organic & nutrient removal
 - Examined extensively through pilotplants and bench-scale experiments
 - Innovative processes have been tested (e.g. use of a single reactor for simultaneous nitr-denitr by maintaining the DO level at 1mg/l)

Promising research areas related to microbiology (4)

- Extensive analysis of the microbiology and physiology of micro-organisms which develop both in the liquid under suspension and on the membrane surface. Examination of the differences in the microbial populations
- Determine the influence of certain factors (e.g. pH, organic loading, SRT) on filterability

Conclusions

- MBR technology is compatible with Greek needs of wastewater treatment
- Promising research themes:
 - Develop model that will predict long-term fouling
 - Find cost effective additives which can reduce fouling
 - Determine the operating factors which affect filterability
 - Extensive microscopic analysis of the biomass