

METHOD VALIDATION IN ANALYTICAL CHEMISTRY

By Chemist: Amal Mansour

Central Lab of BWADC

Agenda

- I. Basic statistics:
- Overview of statistics
- Terms and Concepts
- 2. Method validation:
- Introduction
- Definitions
- Performance characteristics
- Application of method validation
- Documentation
- Conclusion.

Over View Of Basic statistics:

Statistics Definition

▶ The scientific study of numerical data based on variation in nature.

(Sokal and Rohlf)

A set of procedures and rules for reducing large masses of data into managable proportions allowing us to draw conclusions from those data.

(Mc Carthy)

Over View Of Basic statistics:

Why Use Statistics?

- identify patterns
- 2. distinguish true differences from random variation
- 3. allows hypothesis testing

Over View Of Basic statistics:

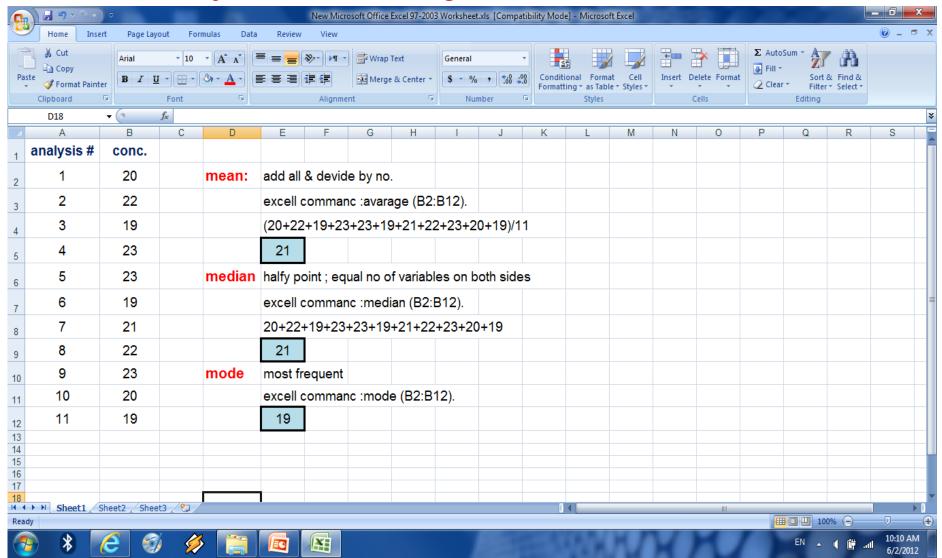
- Types of Statistics:
- A. Descriptive:
- used to organize and describe a Sample.
- Using for ex. (tables Graphs numerical summaries)
- B. Inferential:
- used to extrapolate from a sample to a larger population.
- For drawing conclusions

A. Measures of Central tendency:

- MEAN average.
- MEDIAN -- middle value.
- MODE -- most frequently observed value(s).

B. Measures of Dispersion:

- RANGE.
- STANDARD DEVIATION.
- SKEWNESS.


c. Measures of Association:

correlation

a . <u>Measures of Central tendency</u>

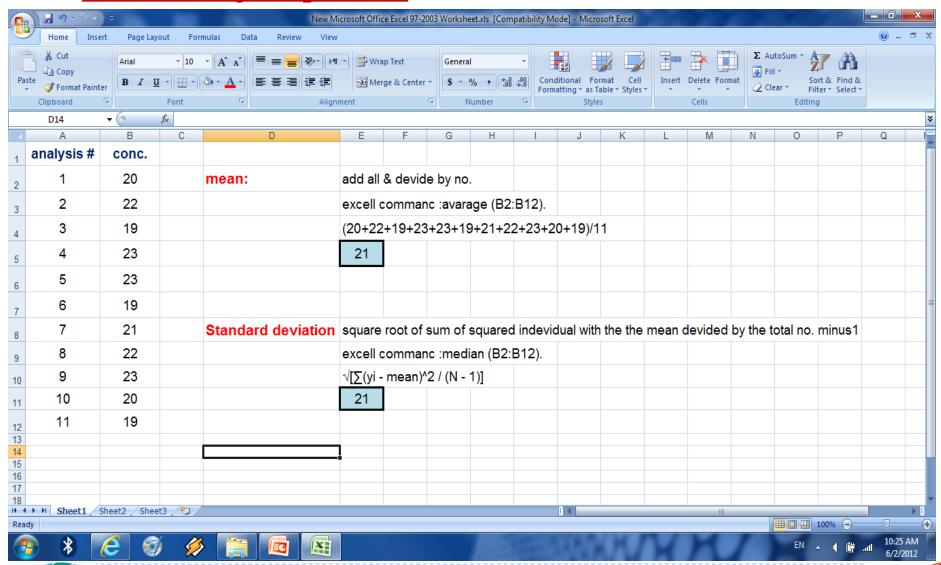
B. Measures of Dispersion

RANGE:

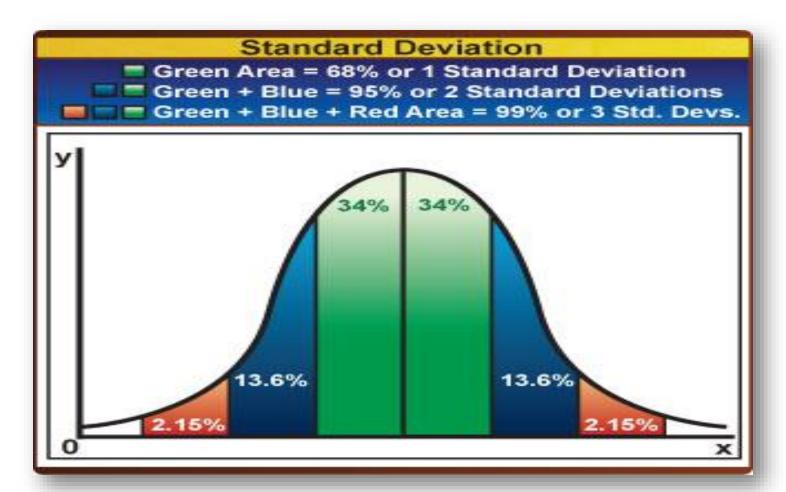
highest to lowest values

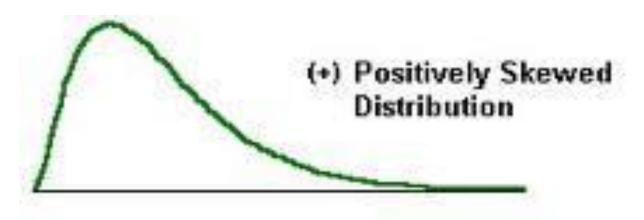
STANDARD DEVIATION:

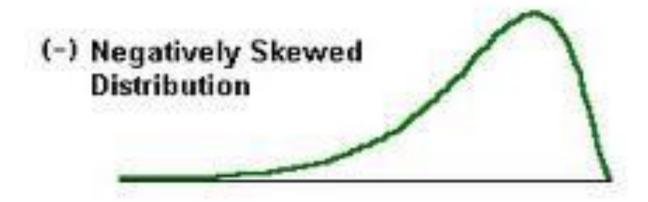
how closely do values cluster around the mean value


SKEWNESS:

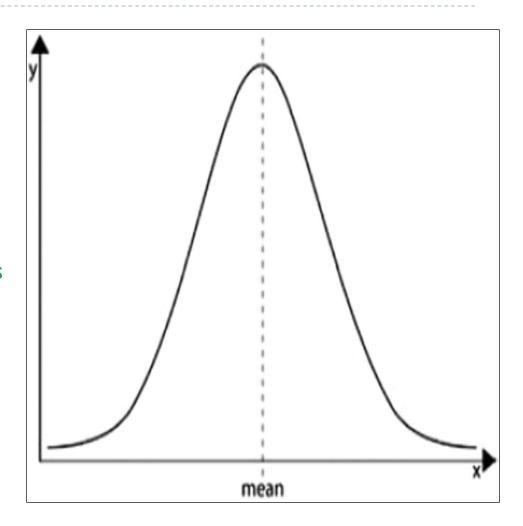
refers to symmetry of curve


c. Measures of Dispersion

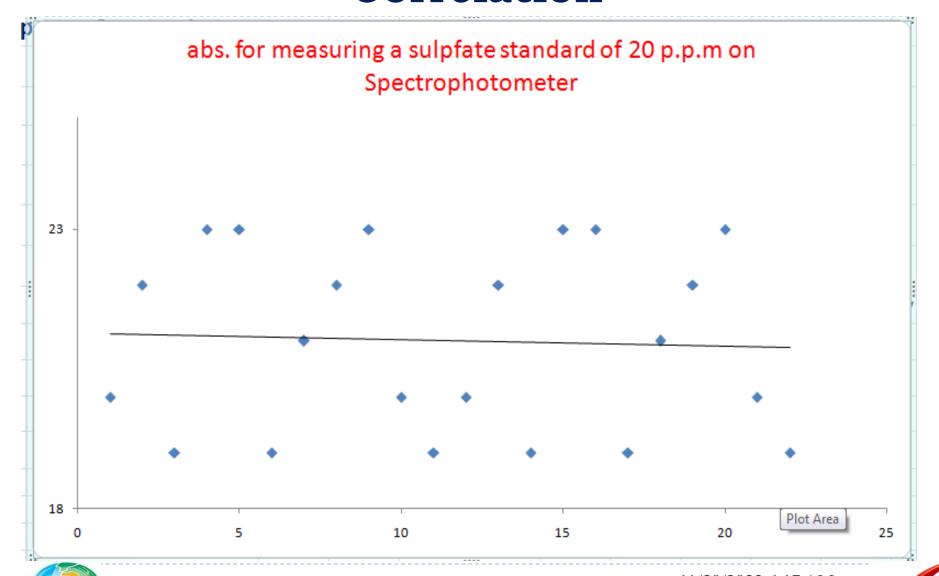

Standard Deviation



SKEWNESS



The Normal distribution


- ▶ Mean = median = mode
- Skew is zero
- ▶ 68% of values fall between I SD
- ▶ 95% of values fall between 2 SDs

Measures of Association Correlation

Inferential Statistics

Types of data

- Numerical (quantitative)
- Continuous

(possible values are in a continuum E.g. measurements in height)

Discrete

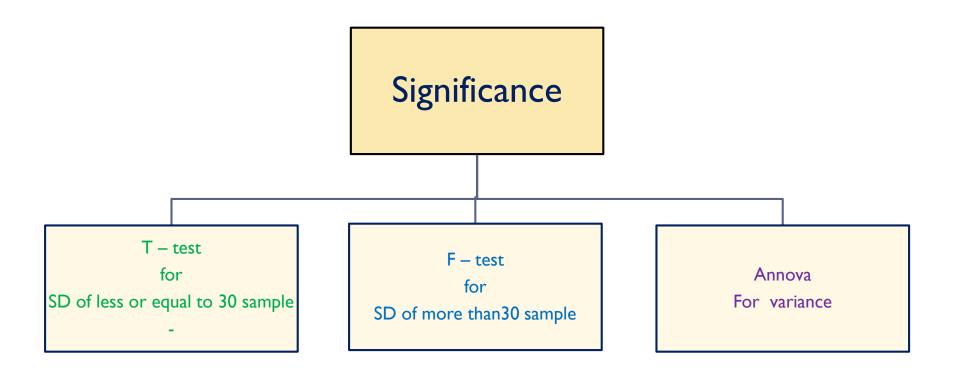
(number of possible values can be counted) (has a fixed no)

- Ordinal

(rank order, (1st, 2nd, 3rd, etc.))

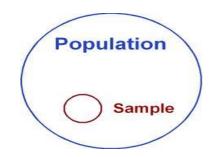
- □ Nominal:
- categorized or labeled data (red, green, blue, male, female) (no order)

Inferential Statistics


- Mull Hypothesis (H0):
- Is a method of making a decision using data.
- Statistical hypotheses usually assume no relationship between variables.
 (There is no association between eye color and height)
- If the result of your statistical test is significant, then the original hypothesis (H0) is false and you can say that the variables in your experiment are somehow related (H1) is retained.

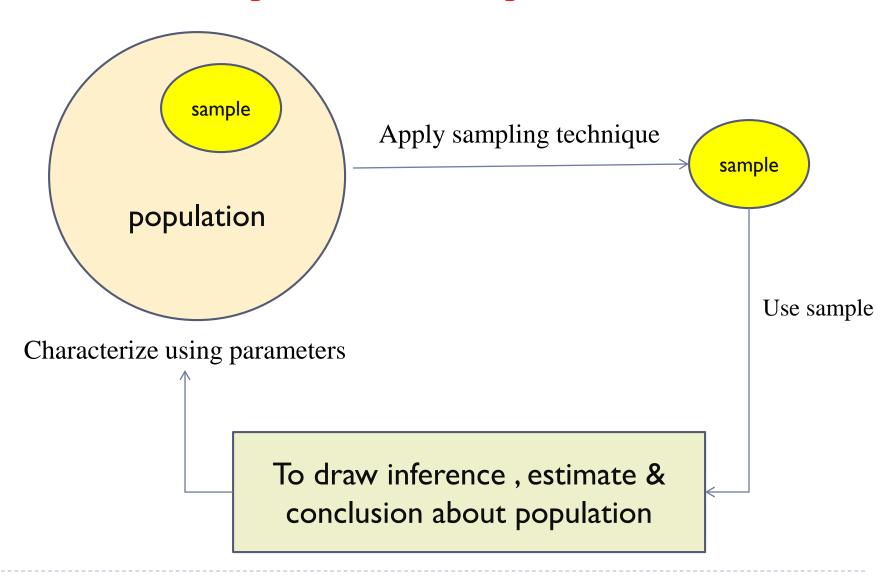
Significant Test

In <u>statistics</u>, a result is called **statistically significant** if it is unlikely to have occurred by <u>chance</u>


Critical Values for the Student t-Test

v IT	60%	75%	80%	85%	90%	95%	97.5%	99%	99.5%	99.9%	99.95%
v 2T	20%	50%	60%	70%	80%	90%	95%	98%	99%	99.8%	99.9%
1	0.3249	1.0000	1.3764	1.963	3.078	6.314	12.706	31.821	63.657	318.3	636.62
2	0.2887	0.8165	1.0607	1.386	1.886	2.920	4.303	6.965	9.925	22.33	31.596
3	0.2767	0.7649	0.9785	1.250	1.638	2.353	3.182	4.541	5.841	10.21	12.941
4	0.2707	0.7407	0.9410	1.190	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	0.2672	0.7267	0.9195	1.156	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	0.2648	0.7176	0.9057	1.134	1,440	1.943	2.447	3.143	3.707	5.208	5.959
7	0.2632	0.7111	0.8960	1.119	1.415	1.895	2.365	2.998	3.499	4.785	5,408
8	0.2619	0.7064	0.8889	1.108	1.397	1.860	2.306	2,896	3.355	4.501	5.041
9	0.2610	0.7027	0.8834	1.100	1.383	1.833	2.262	2.821	3.250	4.297	4,781
10	0.2602	0.6998	0.8791	1.093	1.372	1.812	2.228	2.764	3.169	4.144	4.587
11	0.2596	0.6974	0.8755	1.088	1.363	1.796	2.201	2.718	3.106	4.025	4.437
12	0.2590	0.6955	0.8726	1.083	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	0.2586	0.6938	0.8702	1.079	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14	0.2582	0.6924	0.8681	1.076	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	0.2579	0.6912	0.8662	1.074	1.341	1.753	2.131	2.602	2.947	3.733	4.073
16	0.2576	0.6901	0.8647	1.071	1.337	1.746	2.120	2.583	2.921	3.686	4.015
17	0.2573	0.6892	0.8633	1.069	1.333	1.740	2.110	2.567	2.898	3.646	3.965
18	0.2571	0.6884	0.8620	1.067	1.330	1.734	2.101	2.552	2.878	3.610	3.922
19	0.2569	0.6876	0.8610	1.066	1.328	1.729	2.093	2.539	2.861	3.579	3.883
20	0.2567	0.6870	0.8600	1.064	1.325	1.725	2.086	2.528	2.845	3.552	3.850
21	0.2566	0.6864	0.8591	1.063	1.323	1.721	2.080	2.518	2.831	3.527	3.819
22	0.2564	0.6858	0.8583	1.061	1.321	1.717	2.074	2.508	2.819	3.505	3,792
23	0.2563	0.6853	0.8575	1.060	1.319	1.714	2.069	2.500	2.807	3.485	3.768
24	0.2562	0.6848	0.8569	1.059	1.318	1.711	2.064	2.492	2.797	3.467	3.745
25	0.2561	0.6844	0.8562	1.058	1.316	1.708	2.060	2.485	2.787	3.450	3.725
26	0.2560	0.6840	0.8557	1.058	1.315	1.706	2.056	2.479	2.779	3.435	3.707
27	0.2559	0.6837	0.8551	1.057	1.314	1.703	2.052	2.473	2.771	3.421	3.690
28	0.2558	0.6834	0.8546	1.056	1.313	1.701	2.048	2.467	2.763	3.408	3.674
29		0.6830	0.8542	1.055	1.311	1.699	2.045	2.462	2.756	3.396	3.659

- → Population: all possible data



- <u>Variable</u>: a property with respect to which data from a sample differ in some measurable way.

Population and sample

the probability that an observed difference could have occurred by chance

confidence interval:

The range of values we can be reasonably certain includes the true value.

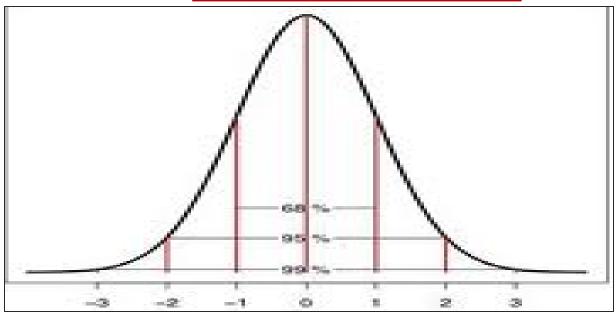
Measure the random error.

Measurement:

assignment of a number to something

→ Data:

collection of measurements



Confidence Interval:

The probability that the unknown population parameter

In confidence interval of 100 trial

Confidence Interval:

$$CI = (1-\alpha) \times 100$$

 α is The probability that the parameter is not within interval of 100 trial

احتمالية عدم الثقة

Types of Error in Experimental Data

Random (indeterminate) Error

Data scattered approx. symmetrically about a mean value. (dealt with statistically)

Systematic (determinate) Error

Several possible sources. Readings all too high or too low. Affects accuracy.

Gross Errors

Usually obvious - give "outlier" readings.

Detectable by carrying out sufficient replicate measurements.

Why do Chemical lab. Need Statistics?

- Lab Chemists are concerned with the chemical analysis processes that quantify analytes in different matrices.
- All these processes are subject to
- systematic variation (e.g. Instrument effects, matrix effect)
- random variation (e.g. measurement errors)
 - Statistics is a tool to help us understand the effects of random variation

Example problem 1

Ten measurements of phosphate standard on spectrophotometer gave the following values

```
0.291 0.2898 0.2923 0.302 0.300 0.296 0.2947 0.2986 0.290 0.288
```

Calculate the average, standard deviation, median

Average=

$$(0.291 + 0.2898 + 0.2923 + 0.302 + 0.300 + 0.296 + 0.2947 \quad 0.2986 + 0.290 + 0.288)/10$$

$$= 0.29424$$

$$(0.288 - 0.29424)^2)$$
 /9] = 0.004791

Median = 0.2935

2-Method validation:

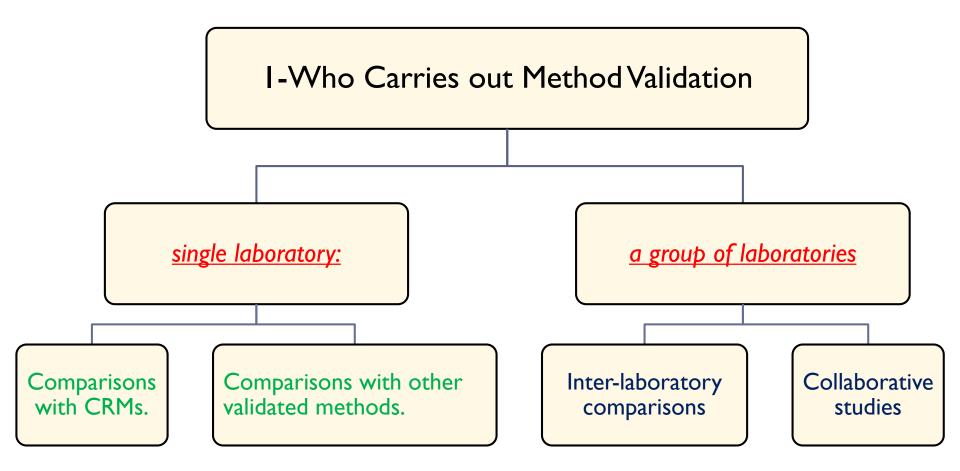
Introduction

What is method validation?

- 1. The process of defining analytical requirements & confirming that the used method has performance characteristics consistent with the application requirements
- 2. The process of establishing performance characteristics of a method.
- 3. The process of verifying that a method is fit for purpose.

2-Method validation:

- Why is Method validation an important requirements in the practice of chemical analysis?
 - 1. To reduce the coast $\underline{because}$ Decision = Coast
 - 2. Important for quality control
 - 3. M.V enable the chemist to be sure that the method used is fit for purpose.
 - 4. Uncertainty has to be evaluated and interpreted (most of the information needed come from validation)
 - 5. M.V is required in ISO 17025 (*clause 5-4-5-2*)


When should methods be validated

- 1. New method development or before introducing a new routine in to routine use.
- 2. Revision of established methods
- 3. When established methods are used in different conditions
- 4. QC indicates method changes and changes outside the scope.
- 5. Comparison of methods

How should Methods be Validated.

♦ How should Methods be Validated?

2-The Analytical Requirement

single laboratory:

Which method is the most suitable?

What degree of validation is required?

How the method will be used?

a group of laboratories

What are the analytes of interest?

What are the expected concentration levels?

Are there any interferences?

How was the sampling done?

Advantages and disadvantages of validation in a single lab. & in a group of lab.

Validation <u>in a single lab.</u> .		Validation <u>in a group of lab</u>	
Intra-lab reproducibility.	×	Inter-lab. Reproducibility	✓
Less expensive & fast.	√	Expensive & slow	×
No compatibility.	$\sqrt{}$	Difficult to get all to conform	×
Sometimes not acceptable by Regulatory.	×	Some procedures can't be validated	×
No official recognition.	×	Esoteric application	×
		Interested lab. Could be competitors	×

- ❖To What Degree Validation is Required?
- 1. Balance between coast & time and need to validate.

It may be prefered to subcontract the analysis to another · lab.

2. Comply with Customers' requirements

3. Follow Existing experience.

4. Compatibility with other similar standard methods as (AOAC)

Definitions

Validation

□ is the process of demonstrating or confirming the performance characteristics of a method of analysis.

• The performance characteristics of a method of analysis:

□ are the functional qualities and the statistical measures of the degree of reliability exhibited by the method under specified operating conditions.

•method of analysis":

☐ is sometimes assigned to the technique, e.g., liquid chromatography or atomic absorption spectrometry

• Verification":

is confirmation by examination and provision of objective evidence that specified requirements have fulfilled

***** The tools of validation:

- 1. Blanks:
 - •Reagent blanks
 - •Sample blank.
- Samples/test materials
- 3. Fortified materials/solutions 8. Certified Reference materials
- Spiked materials
 - 5. Incurred materials

6. Measurement standards

- 7. Reference materials
- 10. Statistics
- 11. Replication

***** The tools of validation:

1. Blanks:

- •Reagent blanks
- •a blank contains everything except for the analyte,
- •(a blank solution that contains the reagents used to dissolve the samples such as acids used for digestion; the reading for this solution is typically substracted from sample readings).
- •Sample blank.
- •They are matrices without analyte:
- •Difficult to obtained.
- •Important to estimate interferences.

2. <u>Samples/test materials:</u>

- Materials taken from real samples
- Useful because of interference.
- 3. Fortified materials/solutions:
- Materials which are fortified (spiked) with the analyte of the interest.
- Useful for calculation of recovery
- 4. Spiked materials:
- Similar to fortified
 - Fortified \longleftrightarrow Spiked

5. Incurred materials

- The analyte has essentially alien but added in points prior to the material be sampled.
- Ex: adding of active ingredient in pharmaceutical formulation at the formulation stages

6. Measurement standards:

Any thing in which a particular parameter has been specified to be used for reference or calibration
 ex: a calibrated thermometer

7. Reference materials:

• The property or the analyte needs to be stable but not essential to Have the high degree of characterization, tractability and certification

8. <u>Certified Reference materials:</u>

- Characterization of parameters in which more strictly controlled than R.M.
- The value of it is certified with uncertainty.
- With very low bias

Certificate

This certificate is designed in accordance with ISO Guide 31 [7] and comprises three pages

Object of certification: Sulfate, certified anion standard solution

Fluka Product No.: 80218 (Lot 1259501)

Composition: Na₂SO₄ (high purity quality) diluted in water *Trace***SELECT** *Ultra (18.2 MΩsm, 0.22 μm filtered)

Density at 20°C: ρ = 999.3 kg m³ μ_e(ρ) = 0.5 kg m³ (using an oscillating u-tube)

Intended use: Calibration of ion chromatography or any other analytical technique

Storing and handling: This reference material shall be stored in the original aloged has between 5°C and 30°C.

After opening the bottle should be stored at reduced temperature. The bottle's temperature

After opening the bottle should be stored at recluded temperature. The bottle's temperature must be 20°C and the bottle has to be shaken well before every use. We highly recommend using this reference material ind langer than 15 months after the aluminum.

was opened.

Explry date: 10. July 2010 (unopened bottle in aluminized trag, latest use = exp. date + shelf life)

Bottle opening date:

(recommended shelf life after opening: 8 months)

Declaration of certified value and uncertainty according to 30 Guide 35 [8] and Eurachem/CiTAC Guide [9]				
Constituent	Certified value at 20°C	Combined expanded ancertainty [U = ku ₆ ; k = 2]	Methods of certification	
Sulfate	1005 mg L ²	8 mg L ⁻¹ 8 mg kg ⁻¹	gravimetric preparation and precipitations analysis	

1. CONCEPT OF CERTIFICATION AND TRACEABILITY STATEMENT

To guarantee highest reliability this certified reference material is certified by two independent certification bodies⁴⁰.

 Gravimetric preparation daying pure materials is a practical realization of concentration units, through conversion of masses and mole fraction to mass fraction in. If the purity of the materials is demonstrated and if contamination and lose of material is strictly prevented this approach allows highest accuracy and small uncertainties.

The perfilled value of this reference material is based on this approach and directly traceable to the SI unit kilogram. The string material is measured against a certified reference material (i.e. NiST, EAM or EMPA) foliowed by grailmetric preparation using balances califorated with SI-fraceable weights. Consequently the value adultated by this unbroken chain of comparisons is traceable to the reference to which the starting material is gompared.

- The bottled solution is certified by BAM (Federal Institute for Materials Research and Testing) using precipitation analysis. The measurements are traced directly to base SI unit: mass and mole.
- 3. Both values were combined for the certified value of this anion standard solution

Certificate page 1 of 3

Performance Characteristics

- Selectivity/Specificity
- 2) Limit of Detection
- 3) Limit of Quantitation
- 4) Linearity
- 5) Accuracy
- 6) Trueness
- 7) Precision
- 8) Ruggedness (or Robustness)
- 9) Recovery

Selectivity:

The ability of the method to determine accurately the analyte of interest in the presence of other components in a sample matrix under the stated conditions of the test.

Specificity:

- a) is a state of perfect selectivity.
- b) The ability of the method to measure only what it is intended to measure

note:

- Selectivity & specificity are often used interchangeably
- It is recommended that the term <u>Selectivity be promoted & that of Specificity be dicouraged</u>

Dispersion device

Entrance slit

How to establish selectivity?

Compare the response of the analyte in a test mixture with the response of a solution containing only the analyte

How to establish selectivity?

The procedure to establish selectivity:

- 1. Analyze samples and reference materials.
- 2. Assess the ability of the methods to confirm identity and measure the analyte.
- 3. Choose the more appropriate method.
- 4. Analyze samples.
- 5. Examine the effect of interferences.

How to indicate selectivity?

Using selectivity Index.

selectivity Index (ban / bint)

ban (slope of calibration curve).

bint (slope of interference)

b int can be determined by application of the procedure on matrix blank and the same blank is spiked with an interferance

a. The lowest content can be measured with statistics

b. The lowest content if actually present that will be detected and identified

How to measure LoD?

$$* LoD = B+3S_0 \text{ or } 0+3S_0$$

• S₀=standard deviation of 10 measurements

Expression of the LoD

→ Analyze

- 10 independent sample blanks and get the mean sample blank value (B) or
- 10 independent sample blanks fortified at lowest acceptable concentration.
- Express LoD as the analyte concentration corresponding to
 - B+3s

(s being the sample standard deviation).

Statistics

□-Determine Standard Deviation:

$$s = \left\{ \frac{\sum_{i} (x_{i} - \overline{x})^{2}}{v} \right\}^{\overline{2}}$$

S: sta ndard deviation

 x_{i} single measurement

 \overline{x} : average = $\sum x_i / n$

v: is the degree of freedom=n-1

□-Determine the hypothesis:

*determine
$$T_{\text{calculated}} = \overline{x} - \mu$$

*determine T critical (from tables of t distribution)

 S/\sqrt{n}

<u>excel commence</u> TINV(0.05,B15-1)

* If
$$T_{calculated} < T_{critical}$$

a) LOD =
$$\bar{x} + 3S$$

b)
$$LOD = 0 + 3S$$

Limit of Quantitation (LoQ)

- The Limit of Quantitation is:
- the content which is equal or grader than the lowest concentration point on the calibration curve (i.e. what level can be measured)
- 2. The lowest conc. Of the analyte can be determined with acceptable level of U.C

Limit of Quantitation (LoQ)

Statistics

- □ Determine Standard Deviation
- □ Determine the hypothesis

$$LoQ = \bar{x} + 5S ; 6S ; 10S$$

Linearity and Working Range

Calibration curve:

Graphical representation of measuring signal as a function of quantity of analyte.

• <u>linearity:</u>

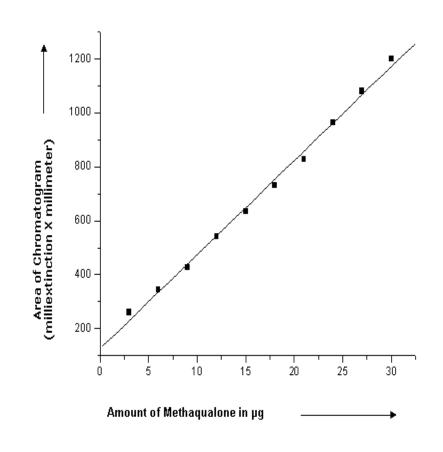
The ability of the method to obtain test results proportional to the concentration of the analyte

Linearity and Working Range

Calibration curve

y = bx + a

b = slope


a = intercept

 r^2 = correlation coefficient

 $r^2 > 0.99$ or 0.98

for very low

concentrations

Linearity and Working Range procedure

- •Analyze Blank plus reference materials or fortified sample blanks at various concentrations
- •- Plot measurement response (y axis) against measurand concentration (x axis)
- •-Visually examine to identify approximate linear range and upper and lower boundaries of the working range.
- •- Calculate appropriate regression coefficient (r).
- •- Calculate and plot residual values S _{residual} (difference between actual y value and the y value predicted by the straight line, for each x value).
- •-Random distribution about the straight line indicate non-linearity confirms linearity

Accuracy/trueness

Accuracy:

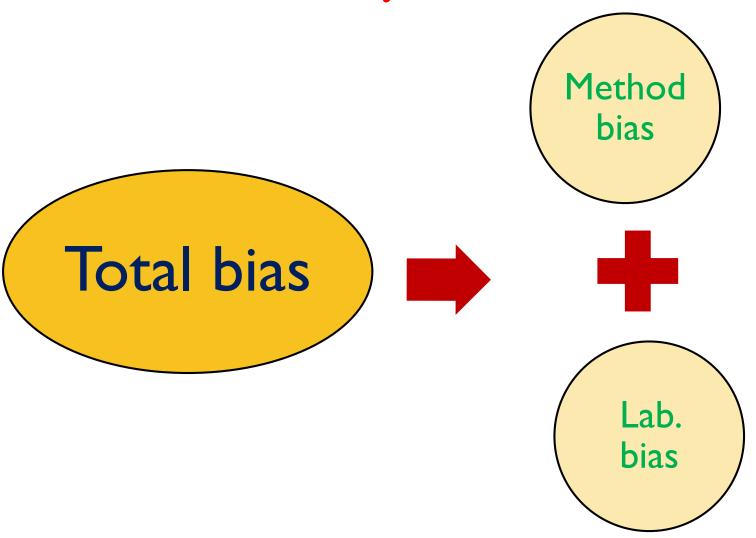
the closeness of a result to a true value

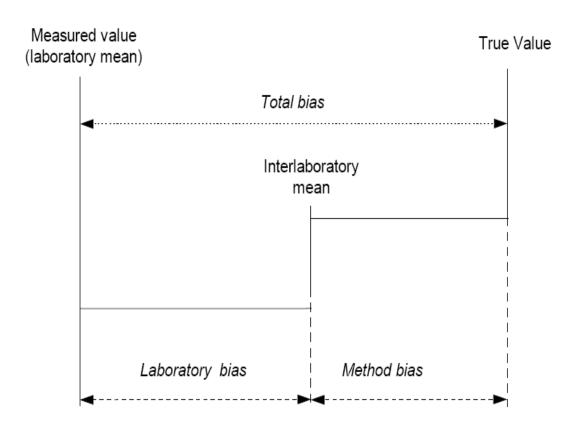
Trueness:

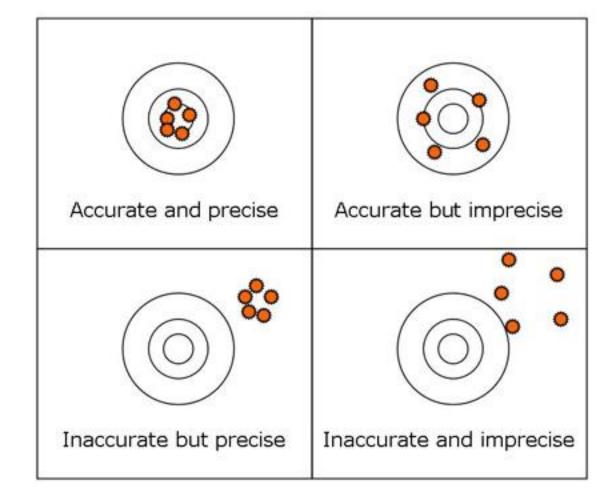
The closeness of agreement between the average value obtained from a large set of test results and an accepted reference value.

Precision:

how close results are to one another


Accuracy/trueness


Accuracy/truness


Accuracy/trueness Interpretation of bias

Accuracy/trueness

Accuracy/truness Trueness Expression of the Trueness

Trueness

<u>Recovery</u>

- Analyze Reagent blank 10 times.
- Analyze reference material 10 times across:

working range ($LoQ - MpL - a 3^{rd} point$)

- \triangleright -Calculate the Mean blank (c_1)
- Calculate the mean value of reference material (c2)
- Subtract Mean blank from mean of reference material.
- >-Compare with true or accepted true values for the reference material (c3)

Accuracy/truness <u>Trueness</u>

Statistics

- ➤ Determine the hypothesis
- >determine the reagent and the analyte mean).
- \triangleright the bias = $C_2 C_1$
- ightharpoonupRecovery (%) = (C1-C2)/C3 X 100

Precision

The closeness of agreement between independent test results obtained under stipulated conditions.

Precision

under repeatability

- 1. Same method
- 2. the same laboratory,
- 3. the same operator
- 4. the same equipment
- within short time intervals

under reproducibility

- 1. Same method
- 2. different laboratories
- 3. different operators
- 4. using different equipment.

Evaluation of Precision

➤ Use Standards, reference materials or fortified sample blanks (across working range LoQ – MpL – a 3rd point).

A. 10times under repeatability conditions

- 1. Determine repeatability standard deviation & relative standard deviation (s_r, RSD_r) at each concentration
- 2. Determine the predicted standard deviation (PRSD) & the HORRAT (r)

3. then determine the repeatability limit.

Evaluation of Precision

B. 10times under reproducibility conditions

- 1. Determine reproducability standard deviation & relative standard deviation (s_r, RSD_r) at each concentration
- 2. Determine the predicted standard deviation (PRSD) & the HORRAT (R)

(HORRAT is the ratio between relative standard deviation and the predicted Relative standard deviation)

3. then determine the reproducibility limit. .

Statistics for precision

A. under repeatability conditions

-
$$PRSD_{r=C}^{(-0.15)}$$

(C is the mass fraction)

$$r = RSD_r/PRSD_r$$

$$r limit = t_{\infty} x \sqrt{2} x \sigma_{r} = 2.8 x \sigma_{r}$$

Statistics for precision

B. <u>reproducibility conditions</u>

$$PRSD_{R} = 2 *_{C} (-0.15)$$
 (C is the mass fraction)

$$r = RSD_R / PRSD_R \qquad (0.5 < R < 2)$$

R limit =
$$t_{\infty} \times \sqrt{2} \times \sigma_{R} = 2.8 \times \sigma_{R}$$

How to convert ppm (mg/l) to decimal fraction

The part P in decimal is equal to the part P in ppm divided by 1000000:

$$P_{\text{(decimal)}} = P_{\text{(ppm)}} / 1000000$$

<u>Example</u>

Find the decimal fraction of 300ppm:

$$P_{\text{(decimal)}} = 300 \text{ppm} / 1000000 = 0.0003$$

How to convert decimal fraction to ppm

The part P in ppm is equal to the part P in decimal times 1000000:

$$P_{\rm (ppm)} = P_{\rm (decimal)} \times 1000000$$

<u>Example</u>

Find how many ppm are in 0.0034:

$$P_{\text{(ppm)}} = 0.0034 \times 1000000 = 3400 \text{ppm}$$

How to convert percent to ppm

The part P in percent (%) is equal to the part P in ppm divided by 10000:

$$P_{(\%)} = P_{(ppm)} / 10000$$

Example

Find how many percent are in 6ppm:

$$P_{(\%)} = 6$$
ppm / $10000 = 0.0006\%$

How to convert ppm to percent

The part P in ppm is equal to the part P in percent (%) times 10000:0

$$P_{(\text{ppm})} = P_{(\%)} \times 10000$$

Example

Find how many ppm are in 6%:

$$P_{\text{(ppm)}} = 6\% \times 10000 = 60000 \text{ppm}$$

Recovery

- 1. Analyze Matrix blanks or samples unfortified and fortified with the analyte of interest at a range of concentrations 6 times..
- 2. -Determine recovery of analyte at the various concentration
- 3. -Fortified samples should be compared with the same sample unfortified.
- 4. -Or Analyze Certified reference materials (CRM)
- 5. -Determine recovery of analyte relative to the certified value

2-Statistics for recovery

- ➤ Determine each recovery Recovery (%) = (C1-C2)/C3 X 100
- Determine hypothesis for each concentration recovery.
- ➤ Determine the highst and the lowest recovery

(the recovery must be included in the method recovery).

Concentration Recovery limits

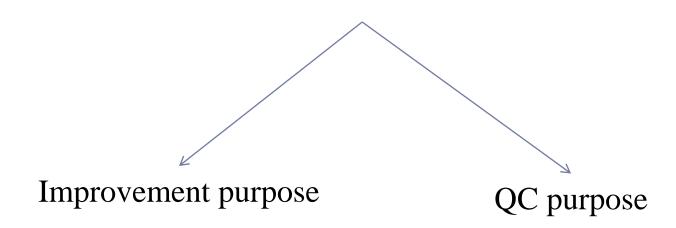
Analyte (%)	Unit	Mean Recovery (%)
100	100%	98-102
10	10%	98-102
1	1%	97-103
0.1	0.1%	95-105
0.01	100 ppm	90-107
0.001	10 ppm	80-110
0.0001	1 ppm	80-110
0.00001	100 ppb	80-110
0.000001	10 ppb	60-115
0.000001	1 ppb	40-120

Source: AOAC (2002). AOAC Requirements for Single Laboratory Validation of Chemical Methods. DRAFT 2002-11-07, \AOACI\eCam\Single-Lab_Validation_47.

Ruggedness and Robustness

- Intra-laboratory study to check changes due to environmental and/or operating conditions
 - > Usually it is part of method development
 - Deliberate changes in
 - Temperature
 - Reagents (e.g. different batches)
 - Extraction time
 - Composition in the sample etc.....

Ruggedness Test


In any method there will be certain stages, if not carried out sufficiently carefully, Will have a *severe effect on method performance* and may result in the method not working at all.

These stages should be identified, and if possible, their influence on method performance evaluated using <u>Ruggedness Test</u> (some times called <u>robustness</u> <u>test</u>)

robustness test

<u>evaluation</u>

- 1. Identify variables which could have a significant effect on the method performance.
- 2. Analyze R.M or C.R.M
- 3. Analyze each set of experimental conditions once.
- 4. Determine the effect of each change of conditions on the mean
- 5. Rank the variables in order of the greatest effect on the method performance.
- 6. Design Q.C in order to control the critical variables.
- 7. Concentrate on these variables for method improvement

Ruggedness Trials

(Plackett-Burman design for 11 factors (N=12))

Ex p .	Factors									Respo nse		
ρ.	A	В	С	D	Е	F	G	Н	I	J	K	-
1	+	+	-	+	+	+	-	-	-	+	-	<i>y</i> ₁
2	-	+	+	-	+	+	+	-	-	-	+	y_2
3	+	-	+	+	-	+	+	+	-	-	-	y_3
4	-	+	-	+	+	-	+	+	+	-	-	y_4
5	-	-	+	-	+	+	-	+	+	+	-	y_5
6	-	-	-	+	-	+	+	-	+	+	+	y_6
7	+	-	-	-	+	-	+	+	-	+	+	y_7
8	+	+	-	-	-	+	-	+	+	-	+	y_8
9	+	+	+	-	-	-	+	-	+	+	-	y_9
10	-	+	+	+	-	-	-	+	-	+	+	<i>y</i> 10
11	+	-	+	+	+	-	-	-	+	-	+	y_{11}
12	-	-	-	-	-	-	-	-	-	-	-	<i>y</i> ₁₂

Ruggedness Trials

(Youden ,W.J. 1975)

Experiment No.	Factor Combinations	Measurement obtained		
1 2 3 4 5 6 7 8	ABCDEFG ABcDefg AbCdEfg AbcdeFG aBCdeFg aBcdEfG abCDefG abcDEFg	X ₁ X ₂ X ₃ X ₄ X ₅ X ₆ X ₇ X ₈		

Example (1):

The response of method for analysis Of a parameter (x) for 10 times of sample blank, were:

0.0049 - 0.0051 - 0.0001 - 0.0056 0.0052 - 0.0003 - 0.0002 - 0.0026 - 0.0235 - 0.0004

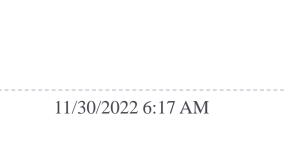
Evaluate the LOQ for your method.

Example (2):

The LOQ of a method to for analysis of parameter (x) was 10 mg/l.

The results of 10 times of analysis of it were:

(10.26 10.32 9.18 10.20 9.65 9.23 10.12 8.25 10.62 10.11)mg/l


And the results of 10 times of analysis of a reagent blank were:

(0.021 - 0.192 - 0.097 - 0.040 - 0.020 - 0.006 - 0.005 - 0.020 0.019 - 0.003) mg/l.

Detect the recovery of the method & detect whether it is accepted or not.

Detect the HORRAT of repeatability & the repeatability limit.

Documentation of Validated Methods

- Documentation of the validation procedure
 - Clear implementation
 - Consistency during application

Information has to be easily understood by everyone using

the method

The Method Documentation Protocol

- ▶ Title
- Scope
- Warning & Safety precautions
- Definitions
- Principle
- Reagents & Materials
- Apparatus and equipment
- Sampling and samples

The Method Documentation Protocol

- Calibration
- Quality Control
- Procedure
- Calculation
- Reporting procedures including expression of results
- Normative references
- Appendix on method validation
- Appendix on measurement uncertainty

Strategy for Method Validation 1.

- 1. Develop a validation protocol, an operating procedure or a validation master plan
- 2. For a specific validation project define owners and responsibilities.
- 3. Develop a validation project plan.
- 4. Define the application, purpose and scope of the method.
- 5. Define the performance parameters and acceptance criteria.
- 6. Define validation experiments.
- 7. Document validation experiments and results in the validation report.

conclusion

- Validation data to give answers and solutions to customer's problems
- Prove "fitness for purpose"
- Is ongoing process
 - New compounds
 - New methods
- prove your ability to detect, identify and quantify analytes reliably

