

Cartwright Consulting Co., LLC

www.cartwright-consulting.com

pscartwright@msn.com

United States Office

8324 16th Avenue South Minneapolis, MN 55425-1742

Phone: (952) 854-4911 Fax: (952) 854-6964

European Office

President Kennedylaan 94 2343 GT Oegstgeest The Netherlands

Phone: 31-71-5154417

Wastewater Recovery & Reuse – Part I

Presented at:

Saudi Arabia Water Environment Association

by Peter S. Cartwright, PE

Introduction

Wastewater Sources

Rainwater/Stormwater

Residential Discharges

Municipal Sewage

Industrial/Commercial Discharges

Rainwater Harvesting

Introduction

Rainfall Patterns

Rainwater Quality

System Components

System Design

Stormwater Collection

Graywater

Residential Discharges

Introduction

Water Usage

Typical Graywater Constituents

Non-Residential Discharges

Introduction

Standards

Testing Requirements

Residential Systems

Commercial Systems

Hydraulic Loading and Schedules

Effluent Quality Requirements

Regulations

Treatment

Example System

Designs

Conclusions

Industrial/Commercial Discharges

Introduction

Treatment Technologies

Introduction Filtration

Media Filters

Cartridge Filters

Bag Filters

Materials

Removal Mechanisms

Carbon & Specialty Filters

Construction

Pore Size Ratings

Continuous Filters

Treatment Technologies (con't)

Membranes

Technology Review

Microfiltration

Ultrafiltration

Nanofiltration

Reverse Osmosis

Mechanisms

Element Configurations

Plate & Frame

Tubular

Hollow Fiber

Spiral Wound

Membrane Polymers

Basic Calculations

System Design

Recovery

Osmotic Pressure

Treatment Technologies (con't)

Design Development

Fouling

Fouling Mitigation

Cleaning & Disinfection

Testing for Membrane Applications

Case Histories

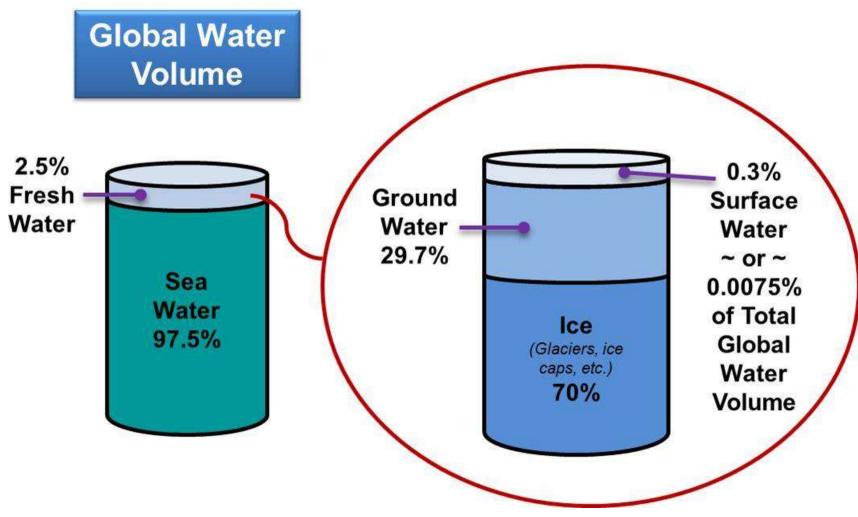
Zero Liquid Discharge of Cooling Tower Blowdown Orange County Ground Water Replenishment System Food Processing Wastewater Recovery & Reuse Ethanol Plant Thin Stillage

Glossaries

Rainwater

Membrane

Introduction


Distribution of Global Water Supply (m³ x 10°)

	FRESH	SALINE	TOTAL
Rivers and streams	1,250	7	-
Freshwater lakes	125,000		<u> </u>
Salt lakes and inland seas		104,000	-
Total surface water	126,000	104,000	230,000
Soil moisture and seepage	67,000	=	×-
Underground water to 1/2 mile depth	4,200,000	== ;	-
Underground water below 1/2 mile	4,200,000	22	
Total ground water	8,467,000		8,467,000
Glaciers and ice caps	29,180,000	<u>-</u> -	«
Oceans	-	1,321,460,000	_
Total world water supply	37,773,000	1,321,564,000	1,359,337,000

Global Water Supplies

Wastewater Sources

Wastewater Sources

- Rainwater/Stormwater
- Residential Discharges
- Municipal Sewage
- Industrial/Commercial Discharges

Rainwater Harvesting

The Attributes of Harvested Rainwater

- Water is free; only utility costs are for collection and use.
- The collected water is used close to the source; little cost for distribution.
- Rainwater harvesting reduces flows to stormwater drains and reduces nonpoint pollution.
- Rainwater is both hardness and sodium-free.
- Rainwater harvesting reduces expansion pressure on municipal water treatment plants.
- Collection tank overflows can recharge aquifers.
- Augments or replaces limited quantities of groundwater.
- Provides good-quality water if groundwater quality is unacceptable.
- Provides a source if tap charges are too high for water supply connection.
- Reduces erosion in urban environments.

The Attributes of Harvested Rainwater (con't)

- Source of water that is naturally soft (no need for water softeners).
- Provides water that is pH neutral/slightly acidic.
- Water that is sodium-free, important for those on low-sodium diets
- Good quality water for landscape irrigation
- Water for nonpotable indoor uses
- Safe water for human consumption, after appropriate treatment
- Helps utilities in reducing peak demands in the summer
- Provides water for cooling and air-conditioning plants
- Reduces the demands on groundwater
- Provides water for fire protection
- Saves money for the consumer in utility bills

Rainfall Quality

- Particles
 - Liquids
 - Salts
 - Gases

A function of location

Water Contaminants

Class	Examples	
Suspended solids	Dirt, clay, colloidal materials, silt, dust, insoluble metal oxides and hydroxides	
Dissolved organics	Trihalomethanes, synthetic organic chemicals, humic acids, fulvic acids	
Dissolved ionics (salts)	Heavy metals, silica, arsenic nitrate, chloride, carbonates	
<mark>Microorgani</mark> sms	Bacteria, viruses, protozoan cysts, fungi, algae, molds, yeast cells	
Gases	Hydrogen sulfide, methane, sulfur dioxide, carbon dioxide	

Rainwater Harvesting System Components

A rainwater harvesting system is comprised of the following components:

- 1. Collection surface (usually a roof).
- 2. Conveying system (gutters, downspouts and piping).
- 3. "First Flush" diverter and filters for roof trash removal.
- 4. Collection tank/cistern.
- 5. Distribution system.
- If required, the collected water is treated with technologies dictated by intended use and/or regulatory requirements.
- An optional approach is to include a "day tank" for internal storage, distribution and municipal water makeup.

Collection Surface Materials

Metals:

Aluminum

Galvanized Sheet Metal

Sheet Steel

NO LEAD/COPPER FLASHINGS

Composites:

Asphalt

Ceramics:

Clay Tiles

Concrete Tiles

Slate Tiles

Wood

Collection Surface Contaminants

Roofing Material	Contaminants	
Aluminum	aluminum salts	
Galvanized metal	lead, cadmium, zinc salts	
Sheet metal	lead	
Ceramic materials	mold, algae, bacteria, moss	
Composite materials	mold, algae, bacteria, moss, dust, soot, petroleum compounds, gravel grit, copper, organics, fillers	
Wood	mold, algae, bacteria, moss, wood preservatives	

Other Components

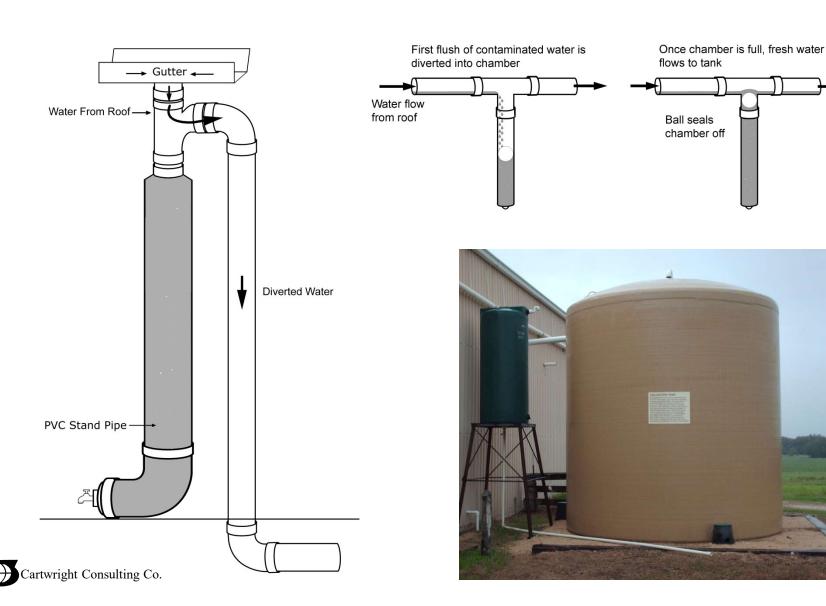
Conveying System

Gutters

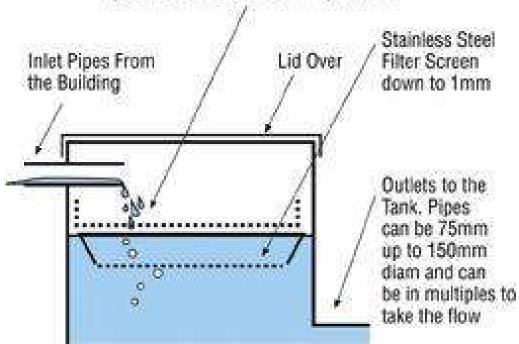
Downspouts

Siphonic Drains

Materials of Construction


Diverters & Filters

First-flush diverts 5-10% of flow


"First-Flush" Diverters

21

Roof Filter

Optional Junk Basket 6mm Apertures

Collection Tank

Characteristic	Above Ground	Below Ground
Installation cost	Low	High
UV resistant material	Yes	No (exposed surfaces only)
Opaque walls	Yes	No
Ease of inspection & maintenance	High	Low
Stored water temperature	Ambient	Cool

Collection Tank Materials

	Tank Materials	Strengths	Weaknesses	Relative Cost
Plasic	Fiberglass	commercially available minimal maintenance light weight	must be sited on smooth, solid footing UV-degradable solid, level footing, fittings, molded relatively fragile	2
	Polyethylene and polypropylene	commercially available minimal maintenance	UV-degradable fittings may leak	3
Metal	Galvanized steel tanks	commercially available light weight	possible corrosion (will not rust below ground)	1
	Concrete	durable, immovable available "poured-in-place" or prefabricated neutralizes pH	potential to crack and leak	5
Ceranic	Ferrocement	durable, immovable, versatile neutralizes pH	potential to crack and leak must be fabricated on site	4
	Concrete block, tile	durable, immovable keeps water cool in hot climates	difficult to maintain expensive to build must be fabricated on site	6
Wood	Redwood, cedar, cypress, etc.	aesthetically appealing	high maintenance will rot below ground must be fabricated on site	7

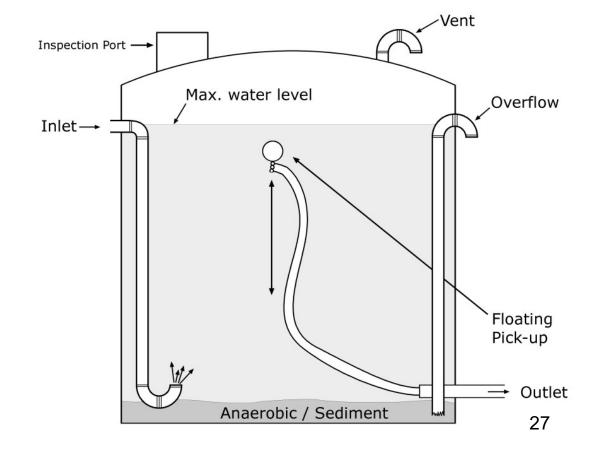
Relative cost: installed cost, with "1" being the lowest

Tank Size Factors

Available collection area

Rainfall patterns (volume and frequency)

Collected water use


Daily and instantaneous flow requirements

Water Going In and Out

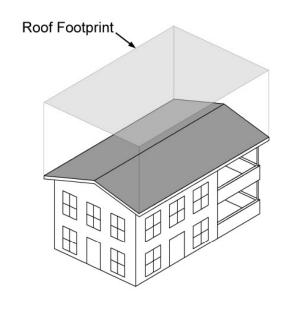
- Inlet side or top or bottom
- Outlet
- Overflow
- Inspection Port
- Vent

Opinion:

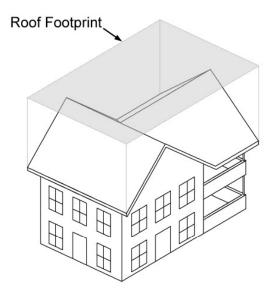
STORAGE TANKS MUST BE DISINFECTED CONTINUOUSLY

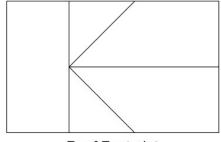
Surface Collection Volume

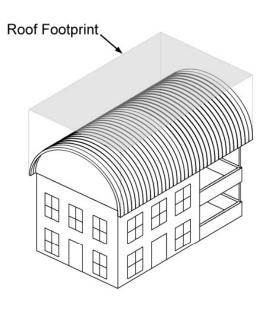
For every square foot of roof footprint,

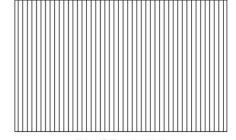

1" of rainfall will deposit 0.62 gallons of water.

To account for first flush, evaporation & water losses, it is recommended to lower this figure to 0.50 gallons/ft².




Footprint of the Building





Roof Footprint

Jet Pump – on demand pump

Submersible Pump

Pressure Tanks

Supply and Demand

Size of collection surface and rainfall frequency determine **SUPPLY**

Usage determines **DEMAND**

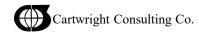
Demand determines

COLLECTION TANK SIZE

Category of Use	Rainwater Quality for Nonpotable Indoor Use	Rainwater Quality for Potable Uses
	Total Coliforms <500 cfu/100 ml	Total Coliform - 0 Fecal Coliform - 0 Protozoan Cysts - 0
Single Family Households	Fecal Coliforms <100 cfu/100 ml	Viruses - 0 Turbidity <1 NTU
	Water testing recommended annually	Water testing recommended every 3 months
	Total Coliforms <500 cfu/100 ml Fecal Coliforms	Total Coliform - 0 Fecal Coliform - 0 Protozoan Cysts - 0 Viruses - 0
	<100 cfu/100 ml	Turbidity <0.3 NTU
Community or Public Water System	Water testing recommended annually	Water testing required monthly
		In addition, the water must meet all other applicable public water supply regulations and water testing requirements

Minimum Indoor Water Quality Guidelines

Indoor Domestic Demand


	Water Consumption using Conserving Fixtures	Assumptions from AWWA Residential End-Use Study
Toilets		
ULFT	1.6 gal/flush	6 flushes/person/day
Dual Flush	1 gal/flush - liquids 1.6 gal/flush - solids	6 flushes/person/day
Baths & Showers		
Showerhead	2.2 gal/min	5 minutes/person/day
Bath	50 gal/bath	NA
Faucets		
Personal hygiene, cooking, and cleaning of surfaces	2.2 gal/faucet/min	5 minutes/person/day
Appliances or uses which are measured on a per- use basis (not a per-person basis)		
Clothes Washer (Front-loading horizontal-axis)	18-25 gal/load	2.6 loads/week
Dishwasher	8 gal/cycle	0.7 cycles/day ₃₄

Indoor Office Demand*

	Gallons/use	Uses/person	Gallons/person/day
Toilet/urinal	1.6	4	6.4
Lavatory sink	1.0	4	4.0
Shower	25	0.4	10.0
		Total daily usa	ge/person = 20.4 gallons

^{*} Does not include outdoor or cooling water usage

Potential Water Uses

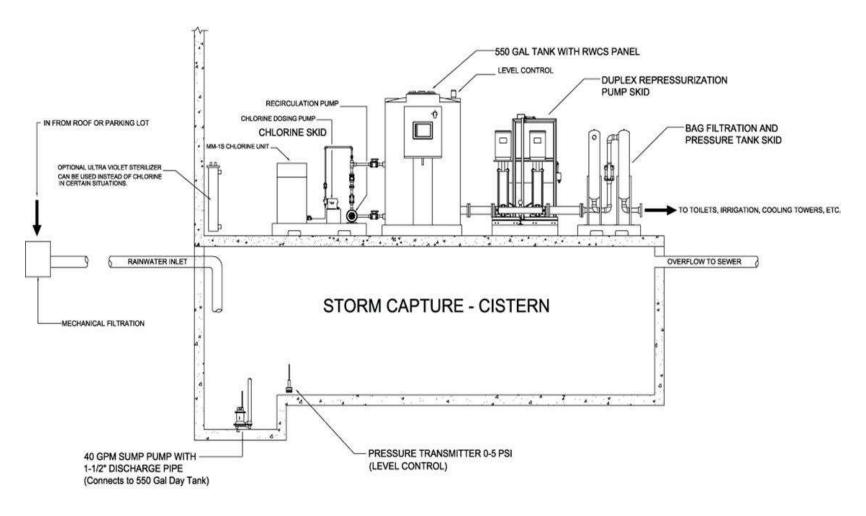
Nonpotable		Potable
Landscape irrigation	 Building washing 	Drinking water
Garden watering	 Cooling towers 	 Cooking/culinary
 Vehicle washing 	 Fire suppression 	 Showering/bathing
Toilet/urinal flushing	 Household cleaning 	Dishwashing
• Laundry	 Pool/pond filling 	

Residential Installation

Industrial Installation

Pathogens in Harvested Rainwater

- Salmonella
- Campylobacter
- Legionella
- Clostridium
- Giardia Lamblia
- Cryptosporidium Parvum



Stormwater

Stormwater Collection

Graywater

Definitions

Graywater

Also called "greywater", "gray water" and "greywater", untreated wastewater from domestic activities:

- Bathing
- Showering
- Laundry
- Lavatory sinks

"Blackwater" not included:

- Toilets
- Urinals
- Dishwashers
- Kitchen sinks
- Garbage disposers

Blackwater

Toilet/Urinal
Kitchen Sink
Dishwasher
Disposer

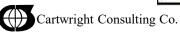
Graywater

Bath/Shower Lavatory Sink Washing Machine

Indoor Wastewater Generation

Water Source	Gallons/person/ day		
Laundry	13.0		
Bath	1.0		
Shower	10.2		
Handwashing	9.5		
Toilet Flushing	16.2		
Dishwasher	8.0		
Leakage	8.3		
Other	1.0		

Ranges of Significant Contaminants


Parameter	Unit	Range
BOD₅ (Biochemical Oxygen Demand)	mg/L	60-300
TSS (Total Suspended Solids)	mg/L	30-185
E.Coli (Bacteria)	cfu*/100 ml	80-30,000
Fecal Coliform (Bacteria)	cfu*/100 ml	50-100,000
P _{total} (Phosphorus)	mg/L	1-15
N _{total} (Nitrogen)	mg/L	4-30
pH (Acidity/Alkalinity)	units	5-10

^{*}Colony Forming Units

Typical Sources of Graywater Contaminants

Ingredient	Concentration (mg/L)		
Sunscreen	1500		
Moisturizer	1000		
Toothpaste	3250		
Deodorant	1000		
Na ₂ SO ₄ (Sodium sulfate)	3500		
NaHCO ₃ (Sodium bicarbonate)	2500		
Na ₃ PO ₄ (Trisodium phosphate)	3900		
Clay	5000		
Vegetable Oil	700		
Shampoo or Hand Soap	7200		
Laundry Detergent	15000		
Boric Acid	140		
Lactic Acid	2800		

NON-RESIDENTIAL GRAYWATER

Non-Residential Sources

Hospitals
Schools
Hotels
Office Buildings
Restaurants

Water Usage by Building Type

	Hospitals	Schools	Hotels	Office Buildings	Restaurants
Landscape Irrigation	10%	38%	21%	10%	3%
Restrooms, Showers	30%	43%	23%	39%	30%
Laundry	5%	3%	10%	-	_
Cleaning, Sanitation	5%	1%	12%	-	2%
Cooling, HVAC	30%	4%	5%	37%	2%
Kitchen	5%	6%	15%	2%	50%
Miscellaneous	15%	5%	14%	12%	13%

Extracted from MCERF, "Water-Efficience Technologies for Mechanical Contractors:

New Business Opportunities", Figure 1.

Testing Protocols

NSF is a Global Leader in Public Health and Safety

- Independent, Not-for-profit organization
- Developer of over 72 national consensus standards
- Steadfast ties with key associations and govt. agencies
- Service provider to over 12,000 companies in 100 countries

Product Standards

NSF 350 Onsite residential and commercial reuse treatment systems

and

NSF 350-1 Onsite residential and commercial graywater treatment systems for subsurface discharge

Product Test Conditions

- Installed per manufacturer's instructions.
- No restriction for seasons.
- Operated in accordance with manufacturer's instruction.
- Minimum six month evaluation.
- No service or maintenance during entire test.
- All test data reported.
- No allowance for discard of any data, except if test facility fails to provide an acceptable test.

NSF/ANSI STANDARD 350

Scope: Standard 350

- Residential and commercial treatment systems
- Sources; graywater and combined wastewater
 - Graywater: laundry and bathing, excluding toilet and kitchen.
- Non-potable effluent use
 - Indoor; toilet and urinal flushing.
 - Outdoor; subsurface discharge.

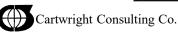
NSF 350 – Building Types

Residential (Class R) – Up to 1500 gpd Commercial (Class C) - >1500 gpd Commercial Laundry Water – All volumes

NSF/ANSI STANDARD 350-1

NSF/ANSI 350-1 applies to subsurface discharge only

NSF 350-1 – Building Types


Residential – Up to 1500 gpd Commercial - >1500 gpd Commercial Laundry Water – All volumes

Challenge Water - Bathing Water Only

Parameter	Required Range	
TSS (Total Suspended Solids)	50-100 mg/L	
BOD ₅ (Biochemical Oxygen Demand)	100-180 mg/L	
Temperature	25-35°C	
pH (Acidity/Alkalinity)	6.0-7.5 units	
Turbidity	30-70 NTU	
P _{total} (Phosphorus)	1.0-4.0 mg/L	
N _{total} (Nitrogen)	3.0-5.0mg/L	
COD (Chemical Oxygen Demand)	200-400 mg/L	
TOC (Total Organic Carbon)	30-60 mg/L	
Total Coliform (Bacteria)	10 ³ -10 ⁴ cfu/100 mL	
E.coli (Bacteria)	10 ² -10 ³ cfu/100 mL	

Bathing Challenge Water Constituents

Wastewater Component	Amount/100 L	
Body wash with moisturizer	30 g	
Toothpaste	3 g	
Deodorant	2 g	
Shampoo	19 g	
Conditioner	21 g	
Lactic Acid	3 g	
Secondary effluent	2 L	
Bath cleaner	10 g	
Liquid hand soap	23 g	
Test dust	10g	

Laundry Wastewater From:

- Hotels
- Hospitals
- Rental Uniform Companies

Challenge Water -Laundry Water Only

Parameter	Required Range	
TSS (Total Suspended Solids)	50-100 mg/L	
BOD ₅ (Biochemical Oxygen Demand)	220-300 mg/L	
Temperature	25-35°C	
pH (Acidity/Alkalinity)	7.0-8.5 units	
Turbidity	50-90 NTU	
P _{total} (Phosphorus)	<2 mg/L	
N _{total} (Nitrogen)	4.0-6.0 mg/L	
COD (Chemical Oxygen Demand)	300-500 mg/L	
TOC (Total Organic Carbon)	50-100 mg/L	
Total Coliform (Bacteria)	10 ³ -10 ⁴ cfu/100 mL	
E.coli (Bacteria)	10 ² -10 ³ cfu/100 mL	

Laundry Challenge Water Constituents

Wastewater Component	Amount/100 L		
Liquid detergent (2X)	40 mL		
Test dust	10 g		
Secondary effluent	2 L		
Liquid laundry fabric softener	21 mL		
Na ₂ SO ₄	4 g		
NaHCO ₃	2 g		
Na ₃ PO ₄	4 g		

Both Bathing and Laundry Waters:

Mix bathing challenge water and laundry challenge water in ratio of 53:47

Challenge Water – Combined Sources

Parameter	Range
TSS (Total Suspended Solids)	80-160 mg/L
BOD ₅ (Biochemical Oxygen Demand)	130-180 mg/L
Temperature	25-30°C
pH (Acidity/Alkalinity)	6.5-8.0 units
Turbidity	50-100 NTU
P _{total} (Phosphorus)	1-3 mg/L
N _{total} (Nitrogen)	3-5 mg/L
COD (Chemical Oxygen Demand)	250-400 mg/L
TOC (Total Organic Carbon)	50-100 mg/L
Total Coliform (Bacteria)	10 ³ -10 ⁴ cfu/100 mL
E.coli (Bacteria)	10 ³ -10 ⁴ cfu/100 mL

Summary of Effluent Criteria for Individual Classifications

	Class R		Class C	
Measure	Test Average	Single Sample Maximum	Test Average	Single Sample Maximum
TSS (Total Suspended Solids) mg/L	10	30	10	30
BOD ₅ (Biochemical Oxygen Demand) mg/L	10	25	10	25
Turbidity NTU	5	10	2	5
E.coli ² (Bacteria) MPN/100 mL	14	240	2.2	200
pH (Acidity/Alkalinity) SU	6.0-9.0	NA ¹	6.0-9.0	NA
Storage Vessel Disinfection mg/L	≥ 0.5 - ≤ 2.5			
Color	MR ³	NA	MR	NA
Odor	Non-offensive	NA	Non-offensive	NA
Oily Film and Foam	Non-detectable	Non-detectable	Non-detectable	Non-detectable
Energy Consumption	MR	NA	MR	NA
SAR	MR	MR	MR	MR

¹ NA not calculated

² Calculated as geometric mean

³ MR measured and reported only

Treated Effluent Criteria

Measure	Class R		Class C	
	Test Average	Single Sample Maximum	Test Average	Single Sample Maximum
TSS (Total Suspended Solids) mg/L	10	30	10	30
BOD ₅ (Biochemical Oxygen Demand) mg/L	10	25	10	25
Turbidity NTU	5	10	2	5
E.coli ² (Bacteria) MPN/100 mL	14	240	2.2	200
pH (Acidity/Alkalinity) SU	6.0-9.0	NA ¹	6.0-9.0	NA
Storage Vessel Disinfection mg/L	≥ 0.5 - ≤ 2.5			
Color	MR ³	NA	MR	NA
Odor	Non-offensive	NA	Non-offensive	NA
Oily Film and Foam	Non-detectable	Non-detectable	Non-detectable	Non-detectable
Energy Consumption	MR	NA	MR	NA
SAR	MR	MR	MR	MR

¹ NA not calculated

³ MR measured and reported only

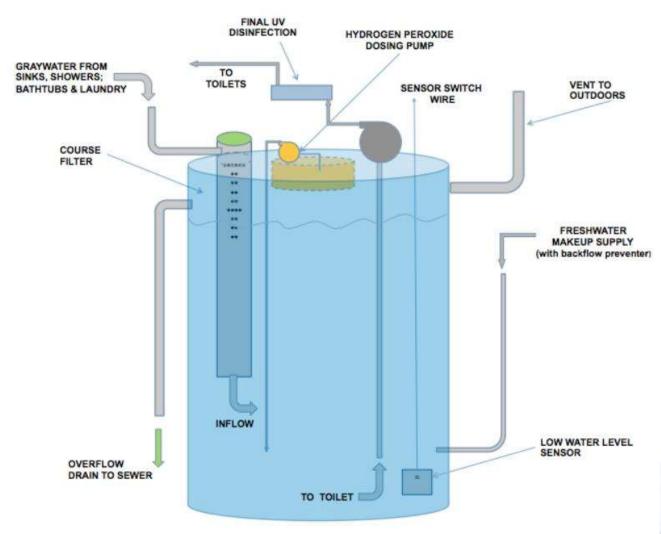
² Calculated as geometric mean

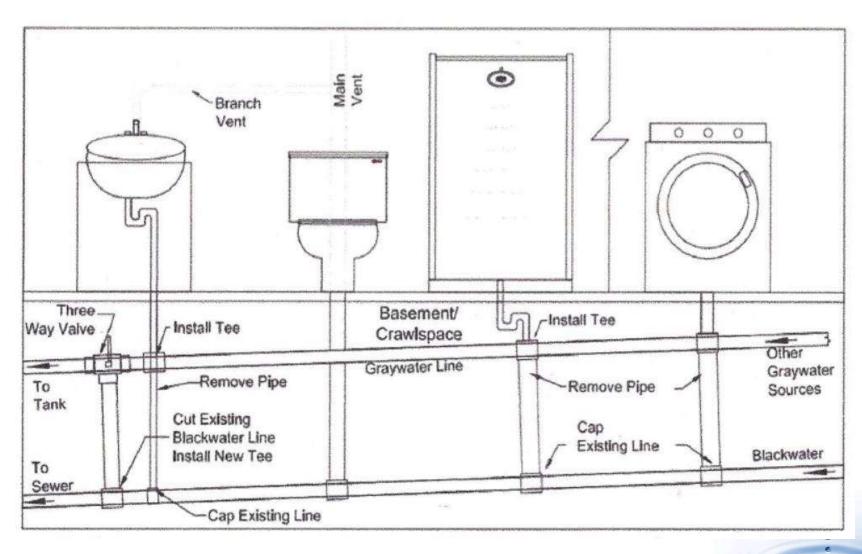
Effluent Criteria

```
CBOD_5 - <25 mg/L TSS - <30 mg/L pH - 6-9
```

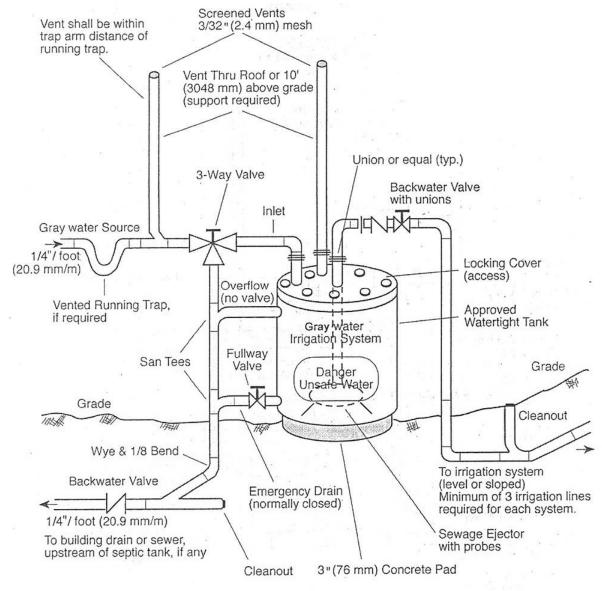

Technology Selection Factors

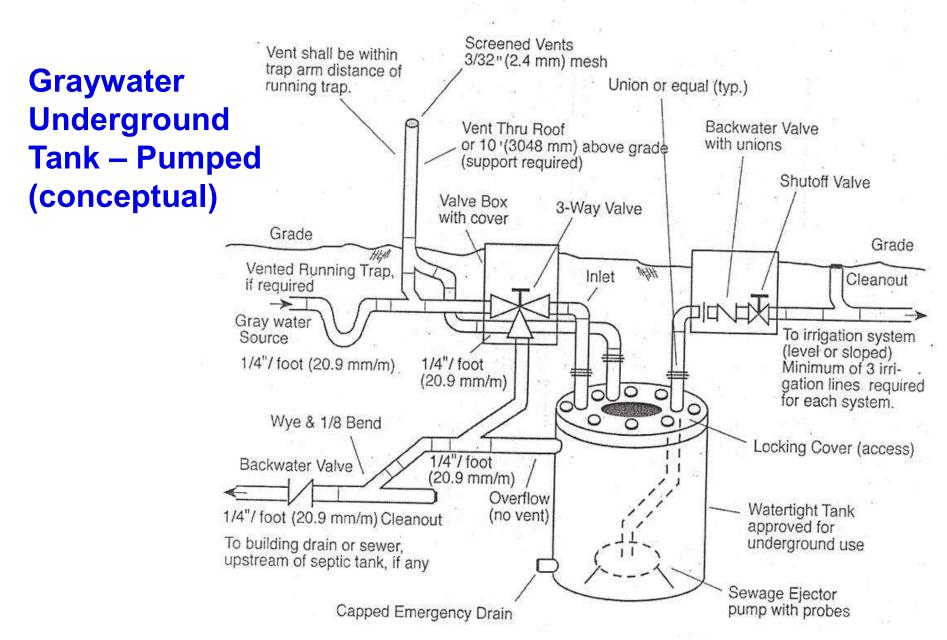
- Ultimate use of the recovered graywater.
- Specific contaminants in the graywater to be reduced.
- > Total volume requirements.
- > Regulations.


Example System



Example System

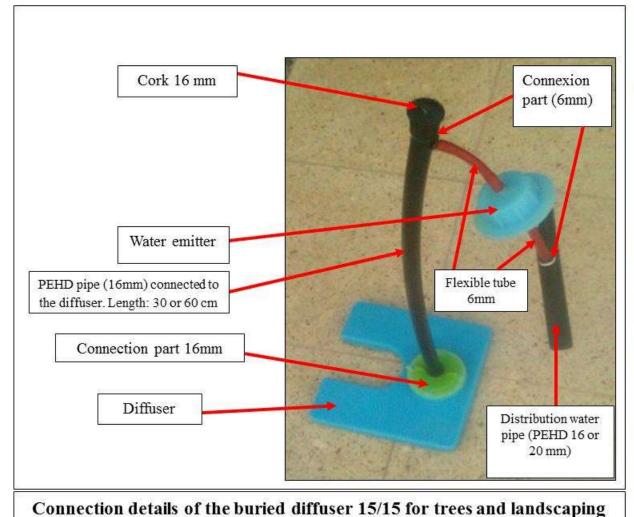



Design

Graywater
System Surface
Mounted Tank –
Pumped
(conceptual)

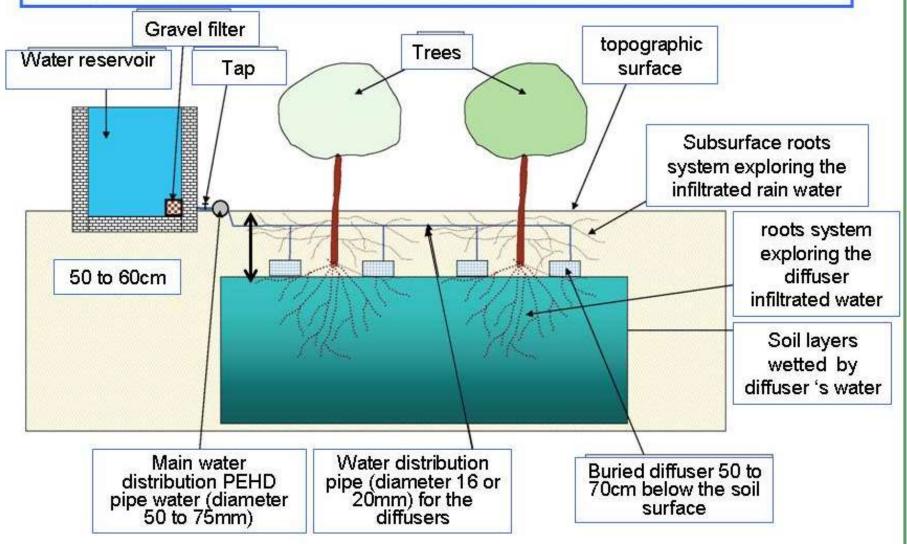
Broad Scope of Non-Potable Reuse Applications

- Use of treated effluent:
 - Irrigation
 - Toilet/urinal flushing
 - Vehicle washing


- Fountains
- Dust control
- Construction

Subsurface Watering

Buried diffusers 30/15 for trees


Installation of the buried diffusers for orange trees in Beni Khalled, Cap Bon North of Tunisia

Young orange tree in a private garden irrigated with buried diffusers

Gravity Irrigation of trees using buried diffusers connected to low pressure (0,2 bar) water distribution network using the water of a reservoir

For drip and subsurface irrigation, the only treatment usually required is filtration to 25µ

What is Drip Irrigation?

Drip Irrigation is a method of delivering water slowly, at low pressure, directly to the root systems of plants.

Sub Surface Drip Irrigation of Turf

Key Attributes

- ✓ Unaffected by wind
- ✓ No losses from evaporation
- ✓ No overspray or misting
- √ 90% efficient
- √ Low pressure
- ✓ Ideal for reclaimed water
- ✓ Encouraged by MWELO

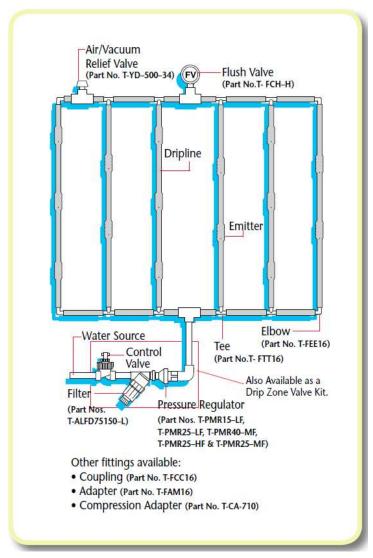
Installation Procedure

- ✓ Prepare grade at -5 inches
- ✓ Provides better control of depth and spacing according to soil texture and emitter flow rate
- ✓ Install inlet and exhaust manifolds. Staple lines in place.
- ✓ Install air relief devices & flush valve (manual/auto)
- ✓ Install/Replace soil
- ✓ Install sod

Golf Course Bunkers

Agricultural Row Crop Applications

Agricultural Permanent Crop Applications

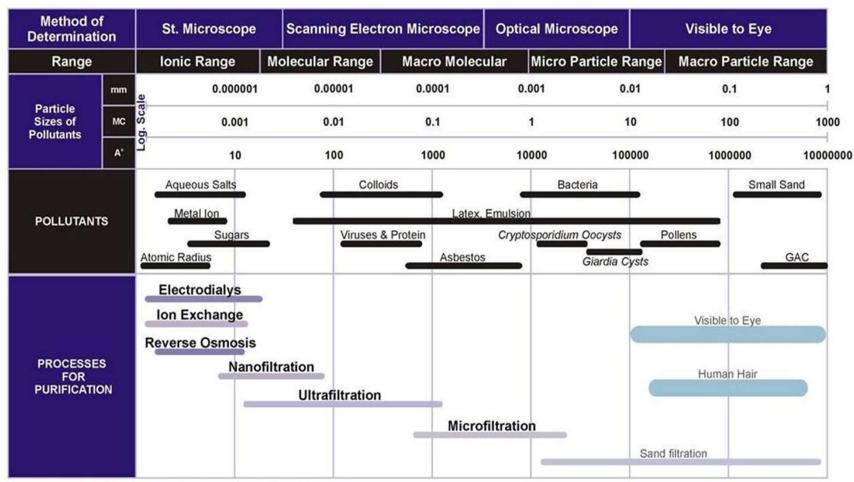


Toro DL2000 and Rootguard

Industrial/ Commercial Discharges

Effluent likely to be unique to a specific manufacturing process

Industrial water reuse growing at > 14% per year in the U.S.



Treatment Technologies

Water Contaminants, Sizes and Treatment Technologies

1 Angstrom(A°) = 10⁻¹⁰Meter(m) = 10⁻⁴Microns(MC) = 10⁻⁷Milimeter(mm)

Courtesy Val S. Frenkel, Ph.D., P.E., D. WRE., Kennedy/Jenks Consultants

Treatment Technologies	Suspended Solids Removal	Dissolved Organic Removal	Dissolved Salts Removal	Microorganism Removal
BIOLOGICAL PROCESSES				
MBR (Membrane Bioreactor)	X	_	_	X
Activated sludge	X	X	_	X
Anaerobic digestion	X	X	_	_
Bio-filters	_	X	_	_
EXTENDED AERATION				
Bio-denitrification	_	L	_	_
Bio-nitrification	X	X	_	_
Pasveer oxidation ditch	X	X	_	X
CHEMICAL PROCESSES				
CHEMICAL OXIDATION				
Catalytic oxidation	X	X	_	X
Chlorination	X	X	_	X
Ozonation	_	L	_	X
Wet air oxidation	X	X	_	X
CHEMICAL PRECIPITATION	_	_	X	_
CHEMICAL REDUCTION	_	_	X	_
Ion exchange	_	_	X	_
Liquid-liquid (solvent)	_	_	X	_
COAGULATION				
Inorganic chemicals	X	X	_	X
Polyelectrolytes	X	X	_	X

L = under certain conditions there will be limited effectiveness

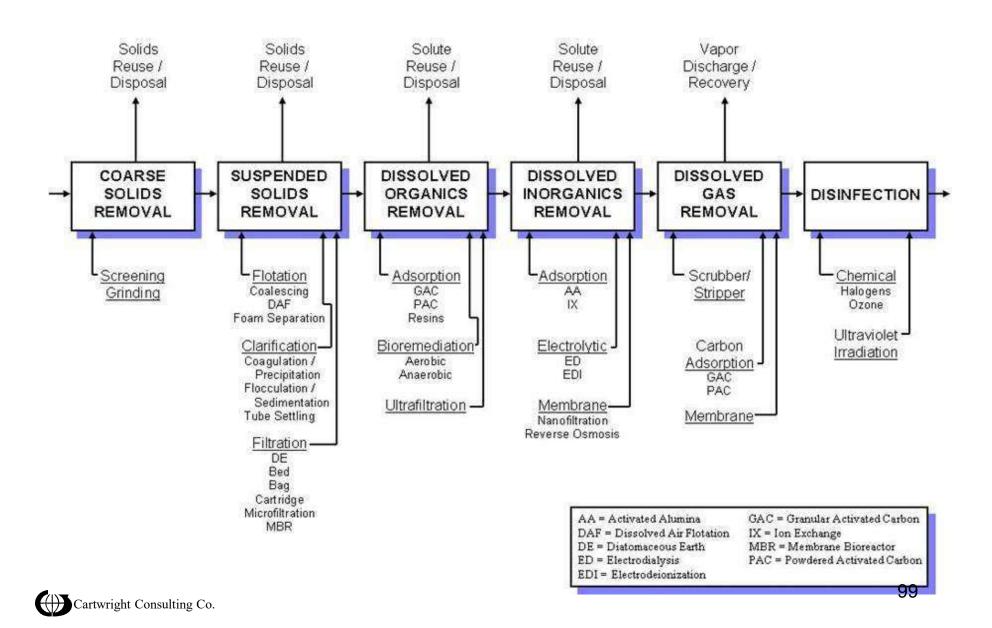
Treatment Technologies

Treatment Technologies	Suspended Solids Removal	Dissolved Organic Removal	Dissolved Salts Removal	Microorganism Removal
ELECTOLYTIC PROCESSES				
Electrodialysis	_	_	X	L
Electrodeionization	_	_	X	_
Electrolysis	_	_	X	_
Ultraviolet irradiation	_	_	_	X
INCINERATION				
Fluidized-bed	X	X	-	X
PHYSICAL PROCESSES				
CARBON ADSORPTION				
Granular activated	X	X	-	_
Powdered	X	X	-	X
SPECIALTY RESINS	_	L	L	_
FILTRATION				
Diatomaceous-earth filtration	X	_		X
Multi-media filtration	X	_		X
Micro-screening	X	_	-	X
Sand filtration	X	_	_	X
Flocculation-sedimentation	X	_	_	X
DAF (Dissolved air flotation)	X	X	_	_
Foam separation	X	_	X	_

Technologies

Treatment

L = under certain conditions there will be limited effectiveness


Treatment Technologies	Suspended Solids Removal	Dissolved Organic Removal	Dissolved Salts Removal	Microorganism Removal
MEMBRANE PROCESSES				
Microfiltration	X	_	_	X
Ultrafiltration	X	X	_	X
Nanofiltation	X	X	L	X
Reverse osmosis	X	X	X	X
Stripping (air or steam)	X	X	_	_
THERMAL PROCESSES				
Distillation	X	X	X	X
Freezing	_	X	X	_

Treatment Technologies

L = under certain conditions there will be limited effectiveness

INDUSTRIAL WASTEWATER TREATMENT

Dissolved Organics Removal

- Activated Carbon
- Special Resins
- Ultrafiltration

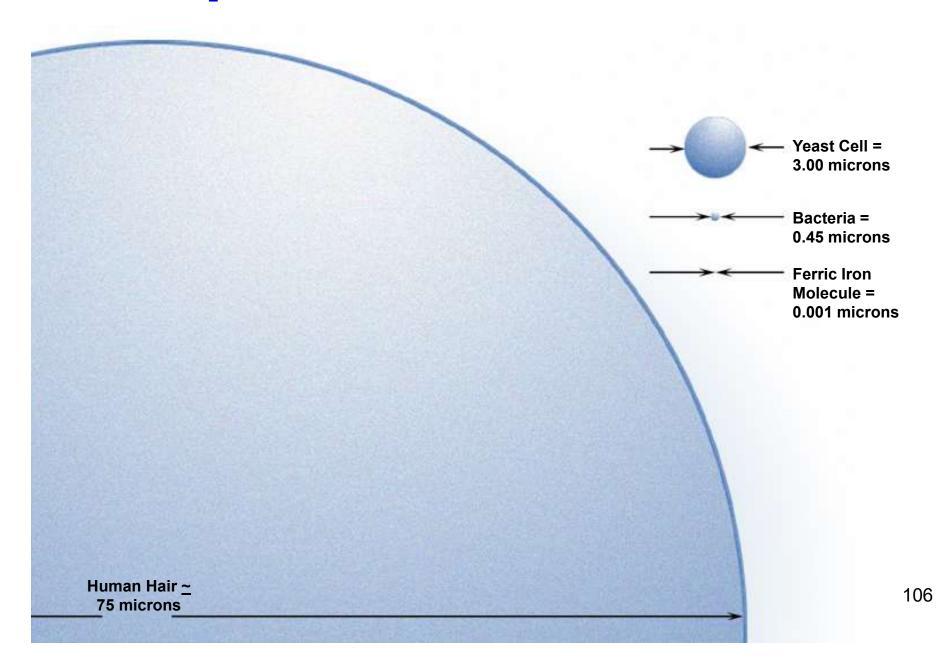
Dissolved Salts Removal

- Reverse Osmosis
- Ion Exchange
- Distillation

It is Impossible to Make Water Completely Free of All Contaminants

There is no contaminated water supply that cannot be reclaimed with the treatment technologies we have on hand.

Filtration Technologies


Particle

Non-Dissolved Solid (Suspended) Greater than 0.1 micron (typically) Non-Volatile

Comparative Size of Particles

Observable Issues

- Scratchy, abrasive feeling water (washing, bathing, etc.)
- 2) Cloudy, muddy appearance

FILTRATION

Removal of Suspended Solids (primarily)

Filtration Mechanisms

Straining (sieving)

Porosity of filter medium

Non-Straining

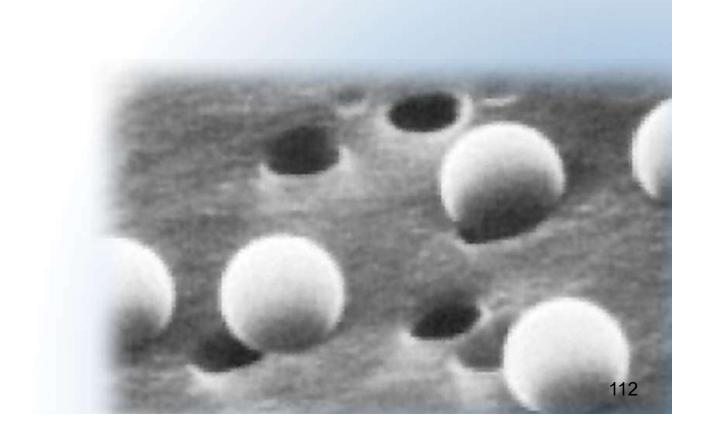
- Sedimentation / Impaction
- Bridging
- Attraction / Attachment
- Brownian Motion
- Stickiness

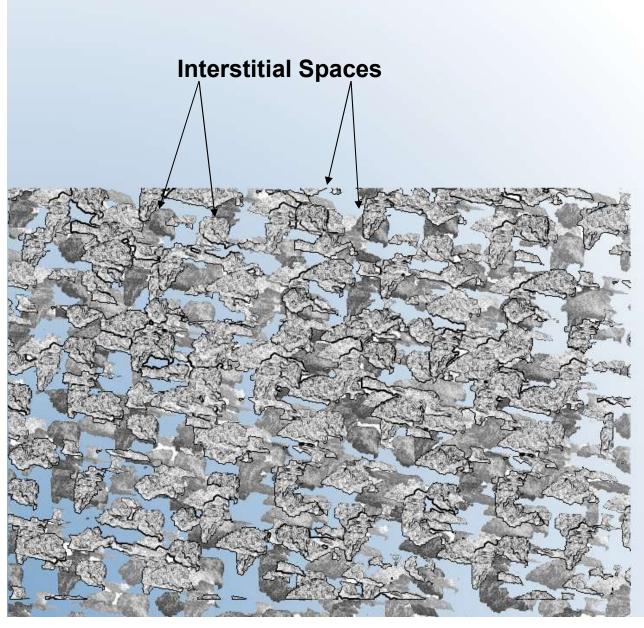
Detachment

Filter Requirements

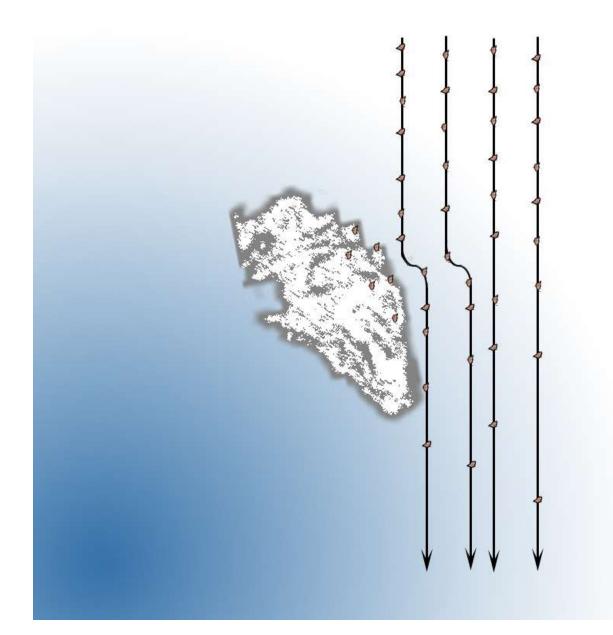
- Efficient particle removal
- Minimal contaminant addition
- Easy installation
- Long-term chemical stability
- Long-term integrity
- High permeability

Suspended Solids Removal

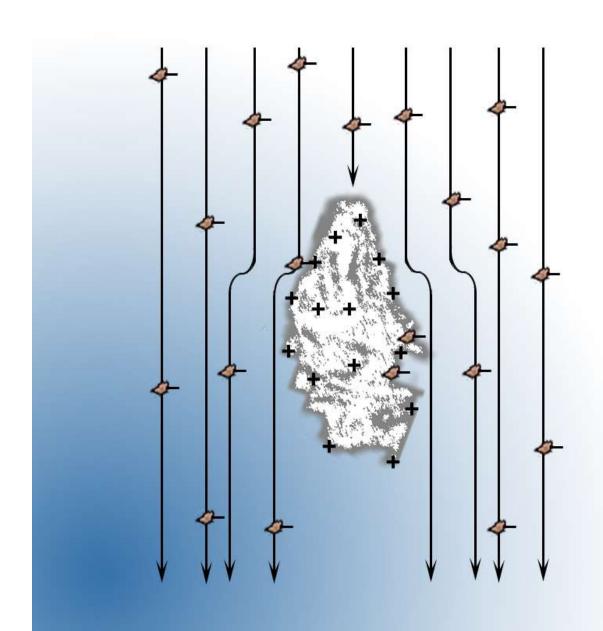

- Media Filters
- Cartridge Filters
- Bag Filters
- Carbon and Ceramic Block Filters
- Microfiltration


Straining

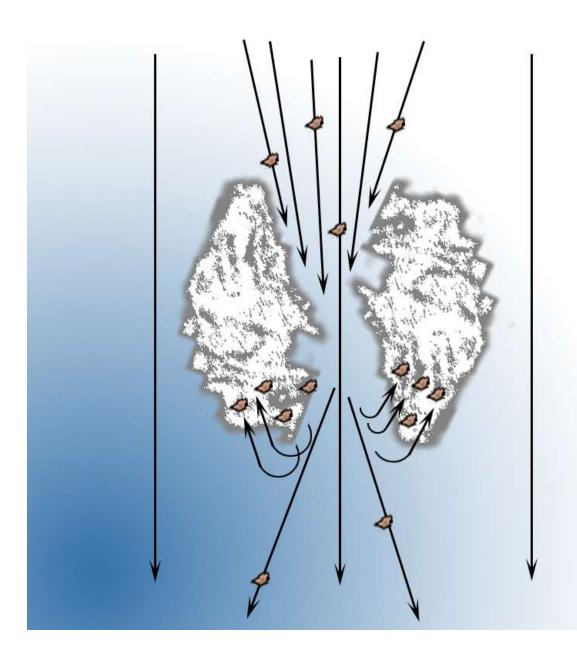
Pore Size Particle Size


Interstitial Space

Space
between media
represents
about 15.47%
of volume

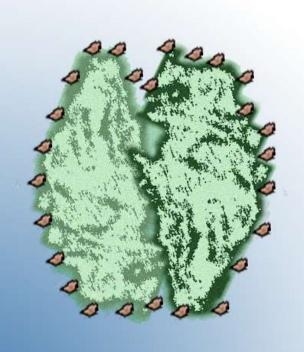

For 40/60 Mesh Filter Media: (40 Mesh = 354 microns) 354 * 15.47% = 54 .76 microns

Sedimentation/Impaction

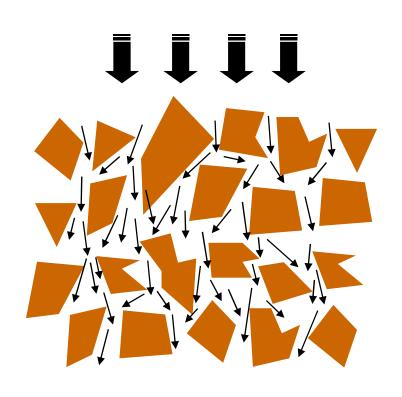

Particles impacting on filter media

Attraction/Attachment

Attraction through opposite charges on media and particles

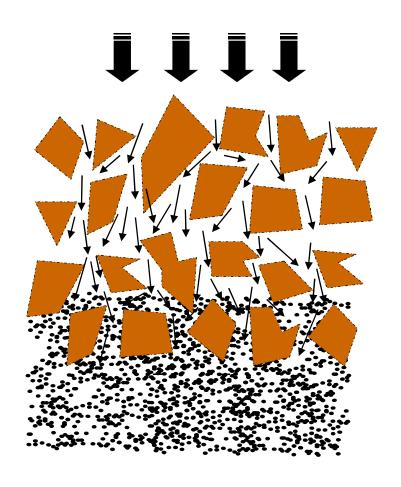

Brownian Motion

Turbulent conditions create random flow patterns.

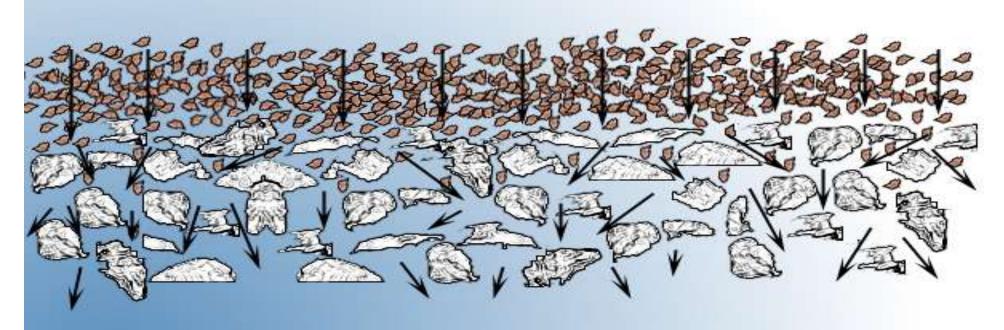

Deposits occur throughout the filter media

Stickiness

Biofilm adds to surface characteristics of most filter media

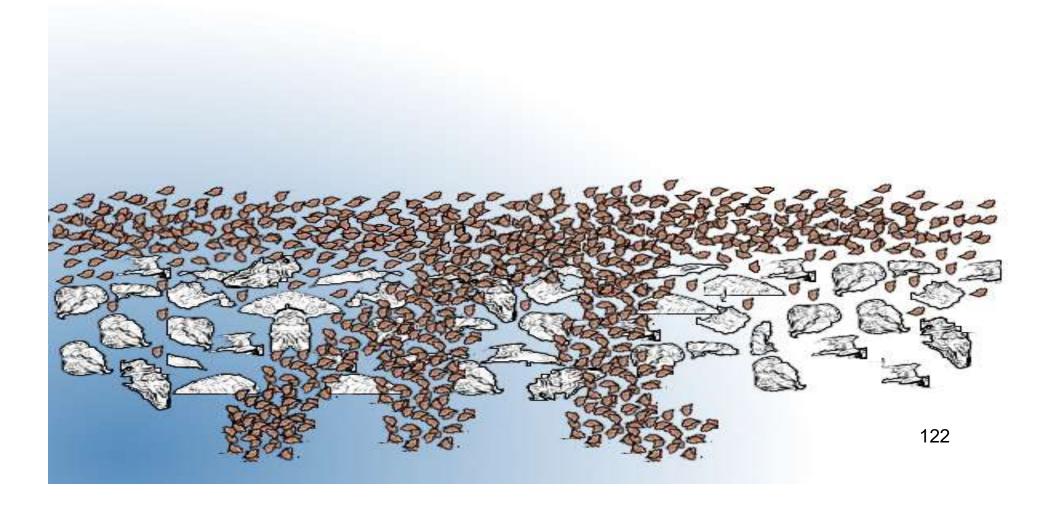

Hydrodynamic Flow Characteristics

Flow velocity will increase as a fluid stream enters the interstitial spaces of a filter medium.

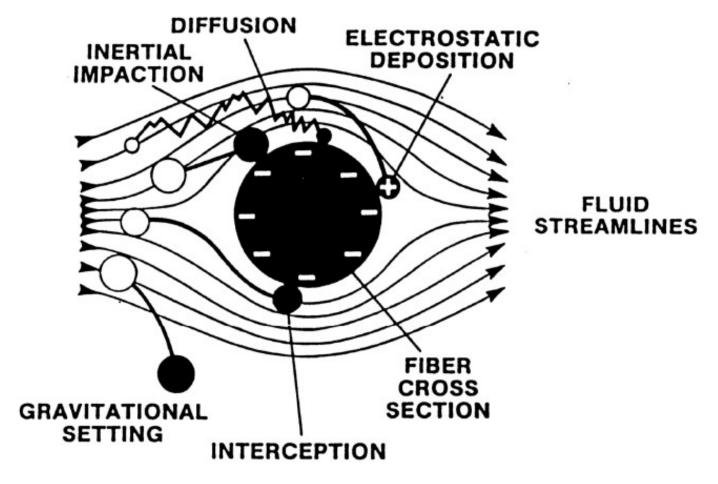

Detachment

If flow velocities increase within interstitial spaces due to bridging or by increasing the flow rate through a filter, hydrodynamic shear forces will begin to dislodge deposited particles.

Filter Cake Formation



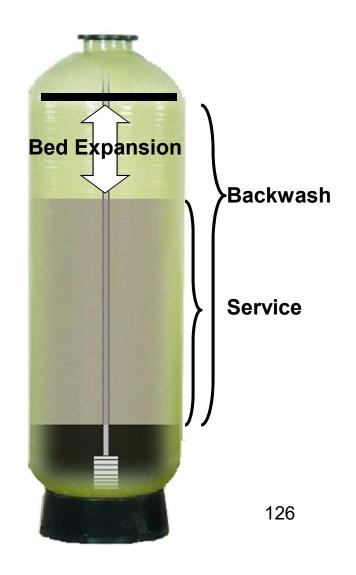
Release


Once a filter cake is formed, it can be disrupted and forced through the filter media with increases or sudden fluctuations in head pressure.

Channeling - Filter Cake Release

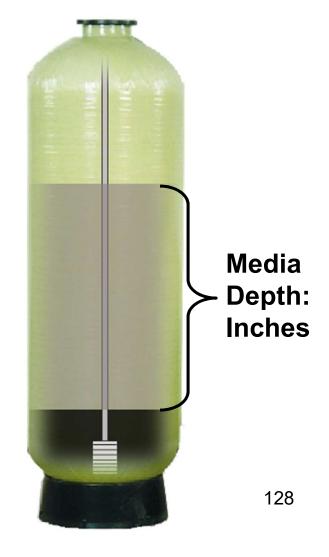
Summary of Particle Capture Mechanisms

Bed Filters



Bed filters primarily utilize depth filtration wherein particles are captured within the body of the media

Tank Surface Area
Media Depth
Service Flow
Backwash Flow
Bed Expansion (Freeboard)
Media Material



(Radius of Tank) 2 x (3.14159)

Tank Surface Area

Media Depth

Service Flow Rate: gpm / ft²

Service Flow

Media Material

Media Surface

- Sand
- Anthracite Coal
- Garnet
- Others

Adsorption

- Activated Carbon
- Activated Alumina

Media Properties

Mesh Size

Particle size

Density

Uniformity Coefficient

Measurement of media sphereosity

1= Perfect Sphere

Surface Area

Effective surface area of media

Sand

45/50 Mesh Size

Service: 4 gpm/ft²

Backwash: 25 gpm/ft²

Uniformity: 1.6

Density: 100 lbs/ft³

Anthracite Coal

20 Mesh Size

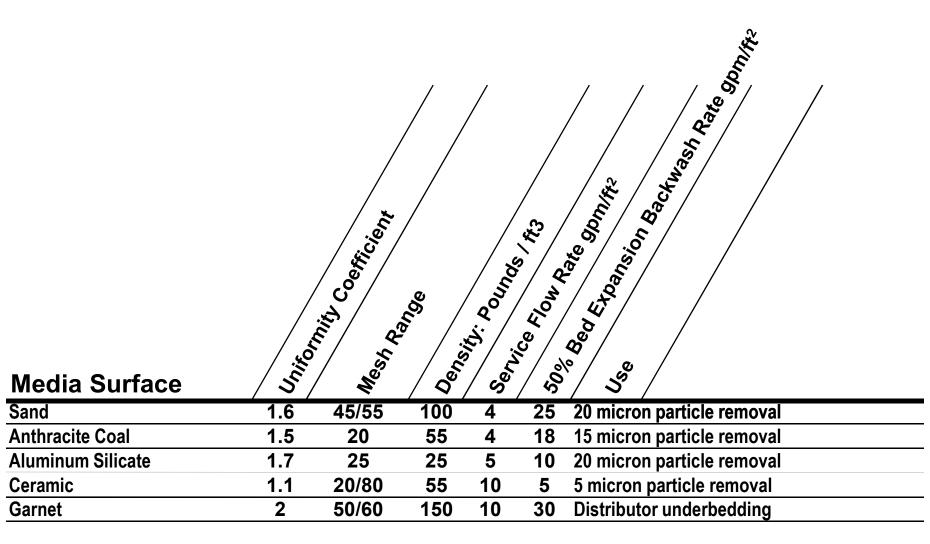
Service: 4 gpm/ft²

Backwash: 18 gpm/ft²

Uniformity: 1.5

Density: 55 lbs/ft³

Garnet


Distributor Support (under bedding)

Backwash: 30 gpm/ft²

Uniformity: 2.0

Density: 150 lbs/ft³

Media Summary

System Types

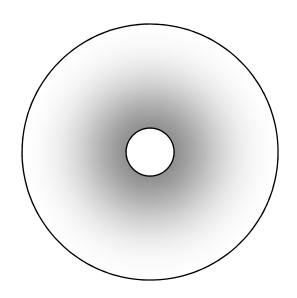
Single Medium Muti-Media


Single Medium System

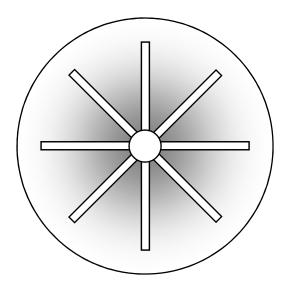
Multi Media System

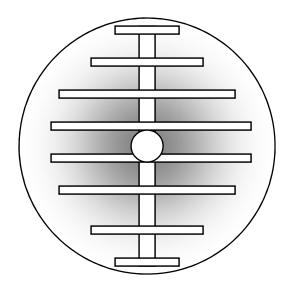
Multi Media System

Tank Construction



Fiberglass Reinforced


Steel, Lined


Distributor Designs

Basket

Hub & Lateral

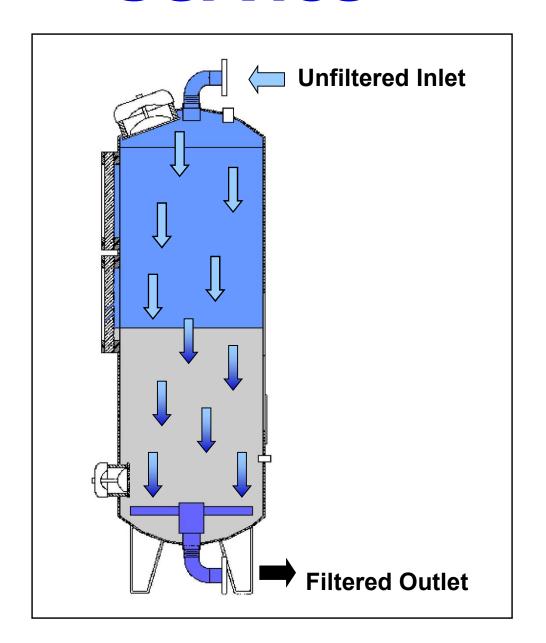
Manifold

Backwash Cycle

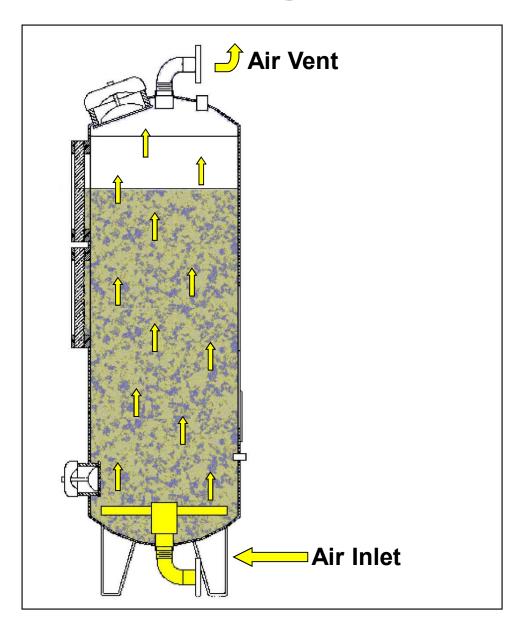
Service

Backwashing

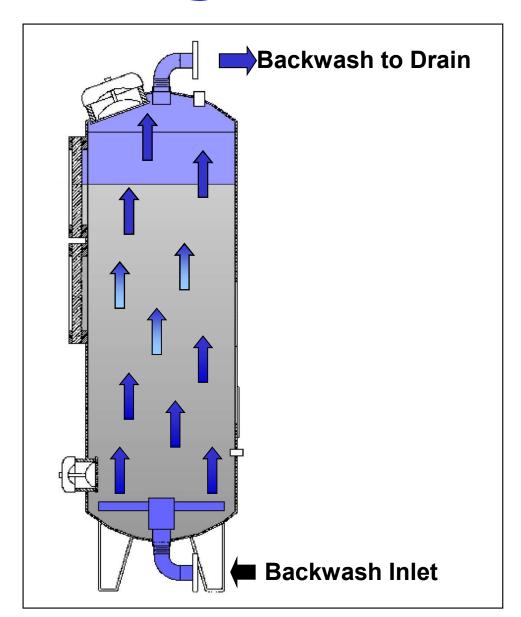
- Air
- Water
- Air + Water


Settling

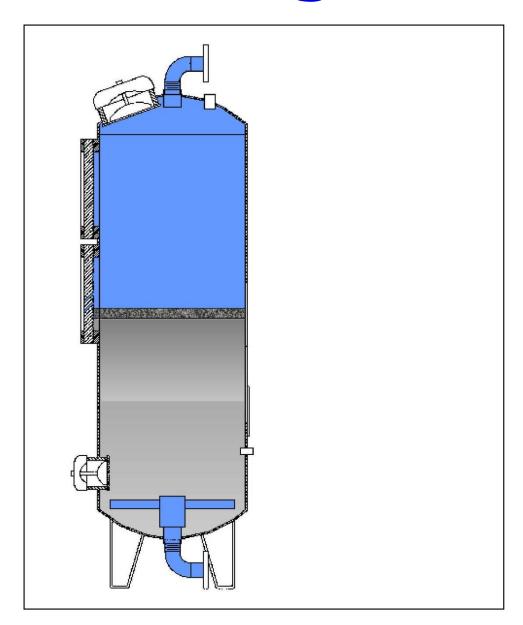
Down Rinse/Filter to Drain



Service



Backwashing with Air



Backwashing with Water

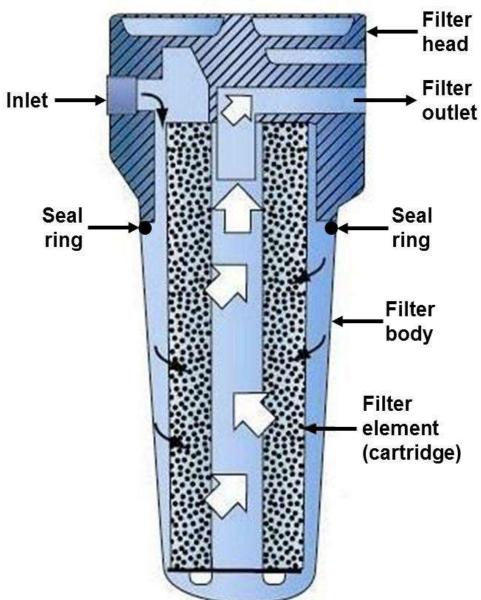
Settling

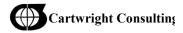
Backwash Controls

Time

Flow

Differential Pressure




Cartridge Filters

Cartridge Filter System

Cartridge Filters

Many choices of pore sizes

Numerous choices of materials

No backwash requirement

Simplicity of operation

Minimal space requirement

Low capital cost

High O&M Costs due to cartridge replacement

Cartridge Filters

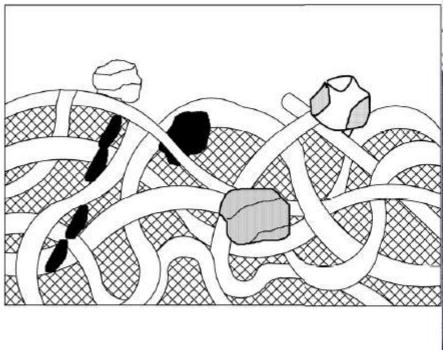
Identifying Materials of Construction

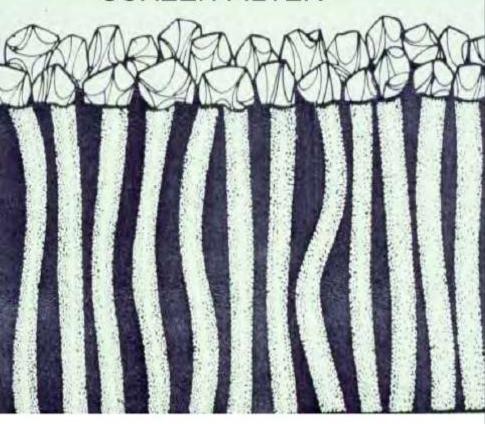
- String Wound
- Cellulose
 - Poor tolerance to pH
 - Lowest Cost
- Microfiberglass
 - Low cost
 - Higher dirt holding capacity
- Polyester
- Polypropylene (PP)
 - Higher Purity
- Carbon Blocks
- Nano Fibers

Surface Filtration

Sieving mechanism to hold back particles

Depth Filtration


Particles captured within the body of the media by sieving and adsorption



Filtration Mechanisms

DEPTH FILTER

From: Millipore catalog

Bag Filter

Bag Filter

Surface-Active Technologies

What are They?

Media that promote the removal of contaminants by either causing a chemical reaction or adsorbing the contaminant on its surface (or both).

Surface-Active Media

Material	Application	Color	Density (lb./ft³)	Service Flow (gpm/ft. ²)	Backwash Flow (gpm/ft.²)
Birm®	Oxidation	Black	35-40	3.5-5.0	10-12
Manganese Greensand [®]	Oxidation	Black			
Greensand Plus®	Oxidation	Black	88	2-12	>12
MTM [®]	Oxidation	Dark Brown	45-50	2-5	8-10
Pyrolox [®]	Oxidation	Black	120	4-6	25-30
Calcite	pH Adjustment	White	90	3-6	8-12
Corosex®	pH Adjustment	White	75	5-6	10-12
Activated Carbon (coconut shell)	Chlorine Removal	Black	28	5	10-12

Oxidizing Media

Changes the solubility by modifying the valence of:

- Iron (Fe²⁺ \longrightarrow Fe³⁺)
- Manganese (Mn²⁺ \longrightarrow Mn^{3+/4+})
- Hydrogen Sulfide (S²⁻ → S°)

Oxidizing Media

In addition to oxidizing the contaminants, the media also filter out the insoluble solids

Birm

- MnO₂ coated aluminum silicate (pumicite)
- Dissolved oxygen >15% iron content
- pH >6.8
- Free Cl₂ < 0.5 mg/L
- Iron and manganese removal only (no H₂S)
- No polyphosphate or oil present

Greensand Plus®

- MnO₂ coated silica sand
- Removes Fe, Mn and H₂S
- pH >6.2
- Cl₂ or KMnO₄ should be continuously added
- No polyphosphate or oil present

MTM®

- MnO₂ coated granular media
- Removes Fe, Mn and H₂S
- pH >6.2
- Cl₂ or KMnO₄ should be continuously added
- Lower backwash rate than Greensand Plus[®]

Pyrolox®

- Natural ore for removal of Fe, Mn and H₂S
- pH >6.5
- Cl₂ or KMnO₄ can be used
- No H₂O₂ can be used

pH Adjustment Media

CALCITE -

Naturally occurring CaCO₃ media. Used to raise pH of acidic waters and to increase "potability."

COROSEX® -

MgO to raise pH of acidic waters. More effective than calcite, but may increase pH too much.

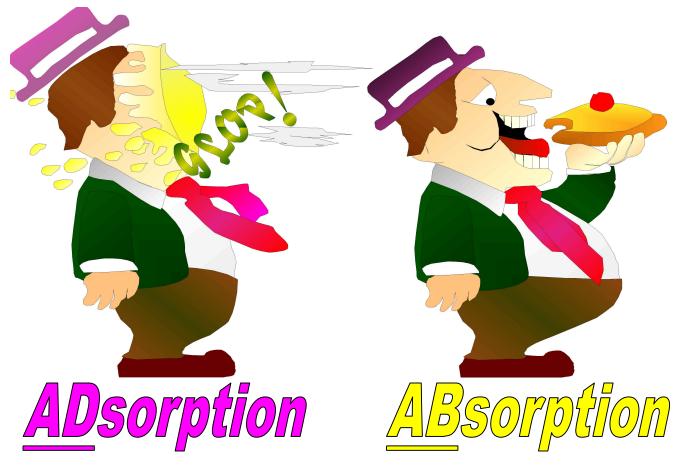
Calcite

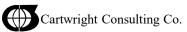
- pH Correction
- Weaker then Magnesium Oxide
- Sacrificial Media
- Increases pH, Alkalinity and Hardness
- Oxidizes about 1/3 of Iron

Monitoring Requirements

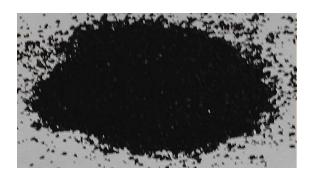
- Pressure drop Typically 10 psi indicates the need for backwashing
- Utilize pre and post-filter pressure gauges or differential pressure gauge
- Can also measure for specific contaminant

Activated Carbon



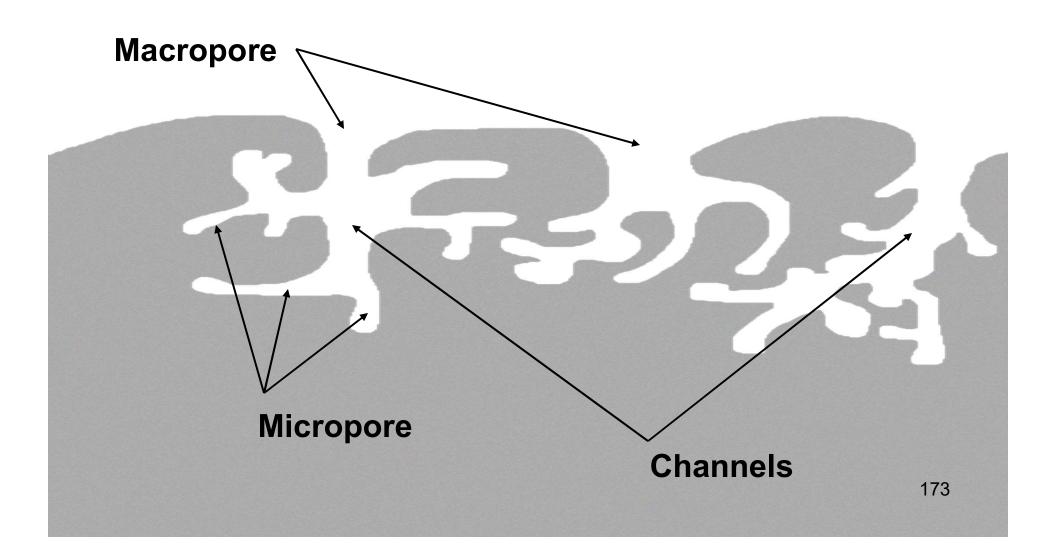

How Does Activated Carbon Work?

- ADsorption NOT ABsorption
 - ADsorption refers to the process in which a layer of molecules is attracted to the SURFACE of another substance. In ADsorption, the substance (ADsorbate) being adsorbed forms on the surface of the host (ADsorbent)
 - ABsorption refers to the assimilation or "taking up" one substance by another without specific reference to a surface. In ABsorption, the material goes INTO the bulk of the material.

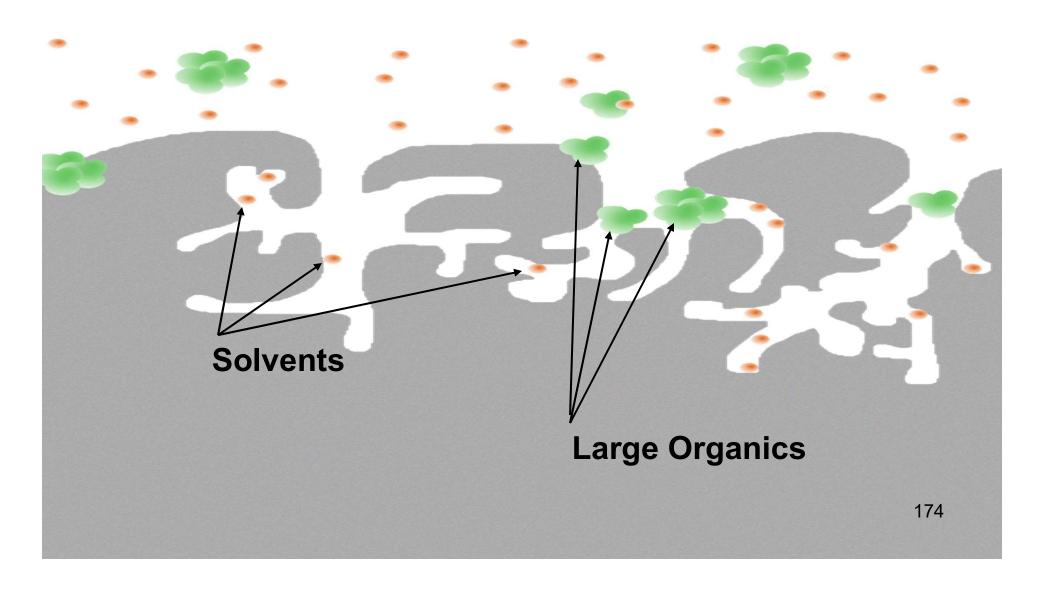


How Activated Carbon Works

Activated Carbon



- Absorption a substance penetrating into the carbon
- Adsorption a substance adhering to the surface of the carbon



Activated Carbon Structure

Activated Carbon Structure

Carbon Types

Bituminous
Lignite
Wood
Coconut Shell

Raw Material Determines Characteristics

- Bituminous coal
 - Good overall mix of adsorption and transport pore structure
 - Good hardness/abrasion resistance
- Coconut
 - Tend to have more adsorption and less transport pore structure
 - Good hardness/abrasion resistance
- Wood/Lignite
 - Tend to have more transport structure
 - Lower hardness/abrasion resistance

ACTIVATED CARBON FOR CHLORINE REMOVAL

Chlorine removal by oxidation/reduction

$$Cl_2 \longrightarrow 2Cl^{-1}$$

Dechlorination

- Coconut and Coal based products well suited
- Dechlorination consumes activated carbon
 - Dechlorination oxidizes the carbon
 - HOCl + C* \Longrightarrow CO* + H+ Cl-
- Minimum contact time of 2.0 minutes for larger mesh, but carbon blocks have less than 1 minute EBCT for typical residential use
- GAC may require backwashing periodically
 - Coal/coconut GAC can be backwashed as required to maintain equipment flow and operating requirements
 - Carbon blocks will require disposal due to eventual pressure drop build up

ACTIVATED (CATALYTIC) **CARBON FOR** CHLORAMINE REMOVAL

Catalytic Carbon

- The removal mechanism for monochloramine is a two step reaction:
 - (1) $NH_2CI + H_2O + C^* \rightarrow NH_3 + H^+ + CI^- + CO^*$
 - (2) $NH_2CI + CO^* \rightarrow N_2 + 2H^+ + CI^- + H_2O + C^*$ where C^* = surface carbon and CO^* = surface carbon oxides
- General performance guidelines:
 - Bituminous based carbon > coconut based carbon
 - Bituminous based carbon > lignite based carbon
 - Small mesh > large mesh

Monitoring

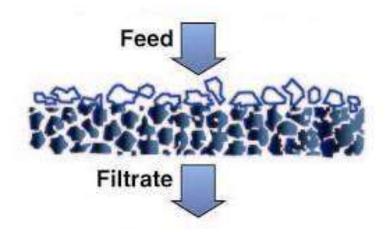
Monitoring Requirements

- Measure chlorine concentration in effluent
- ORP measurement also effective
- Pressure drop for backwashing

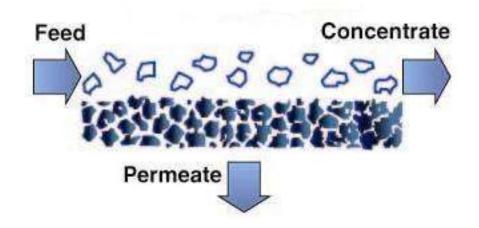
Membrane Technologies

Membrane Technologies

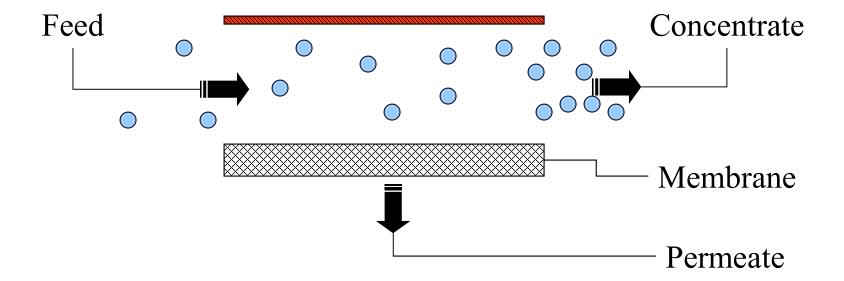
- Microfiltration (MF)
- Ultrafiltration (UF)
- Nanofiltration (NF)
- Reverse Osmosis (RO)


Membrane Technologies Advantages

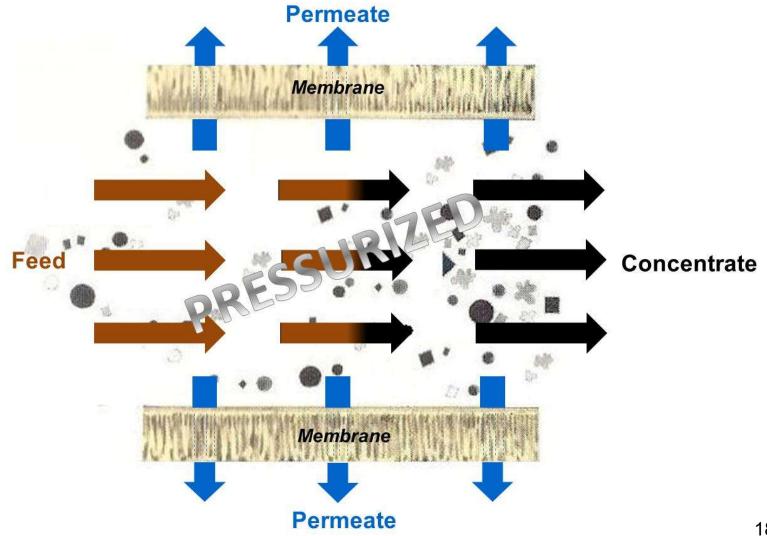
- ► Continuous process, resulting in automatic and uninterrupted operation
- ► Low energy utilization involving neither phase nor temperature changes
- ► Modular design no significant size limitations
- ► Minimal moving parts with low maintenance requirements
- ► No effect on form or chemistry of contaminants
- ➤ Discrete membrane barrier to ensure physical separation of contaminants
- ► No chemical addition requirements to effect separation



Conventional vs. Crossflow

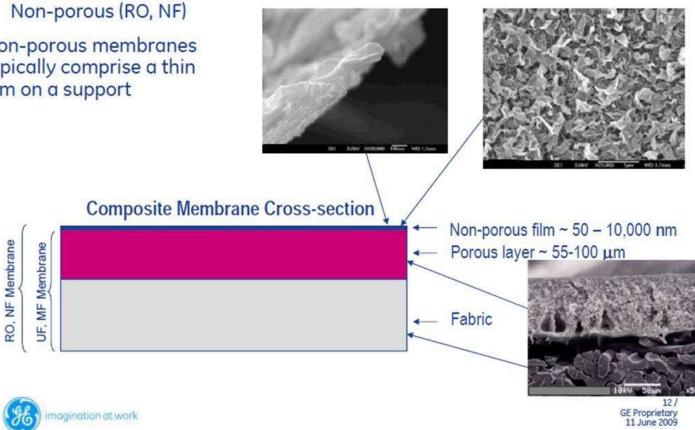

Conventional Filtration

Crossflow Filtration



Crossflow Filtration

Membrane Process

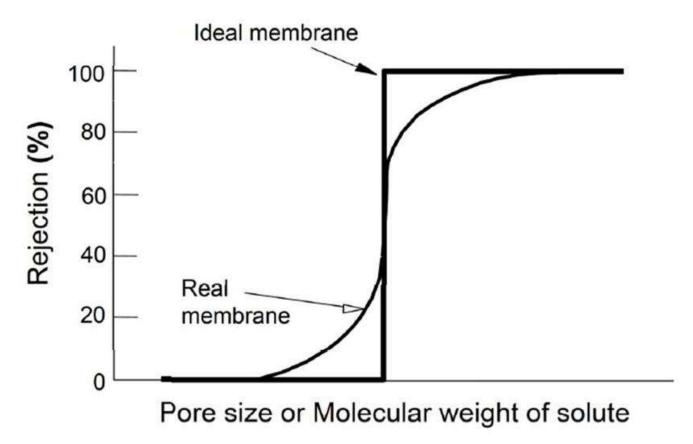


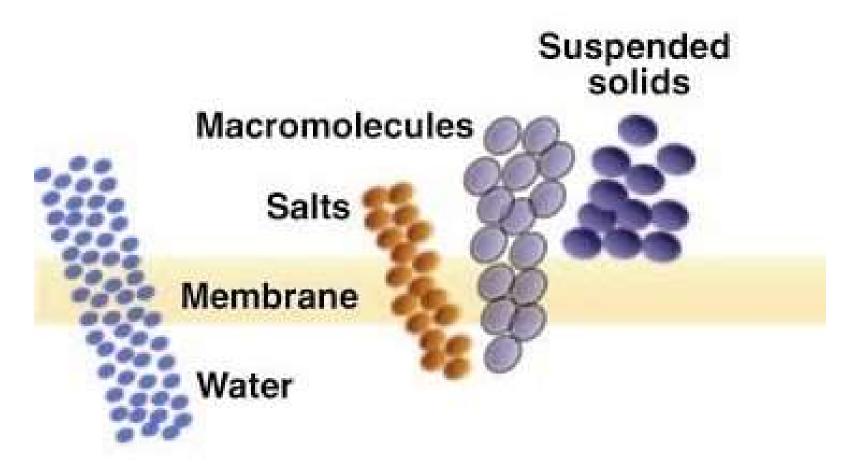
What is a Membrane?

Two classes of membranes:

- Porous (UF, MF)

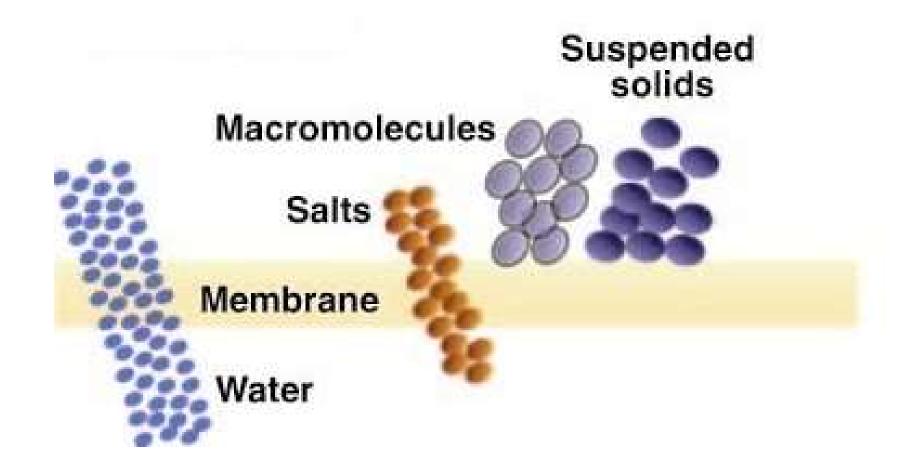
Non-porous membranes typically comprise a thin film on a support




Limitations of Membranes

Cannot get sharp separations

Microfiltration

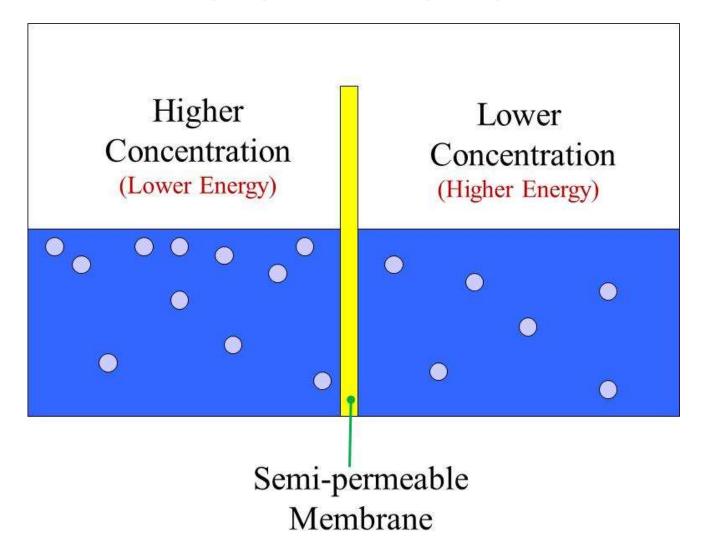

Microfiltration (MF)

- Particle (suspended solids) removal only.
- Pore sizes in the submicron range (<1.0µ).
- Removal mechanism is sieving.

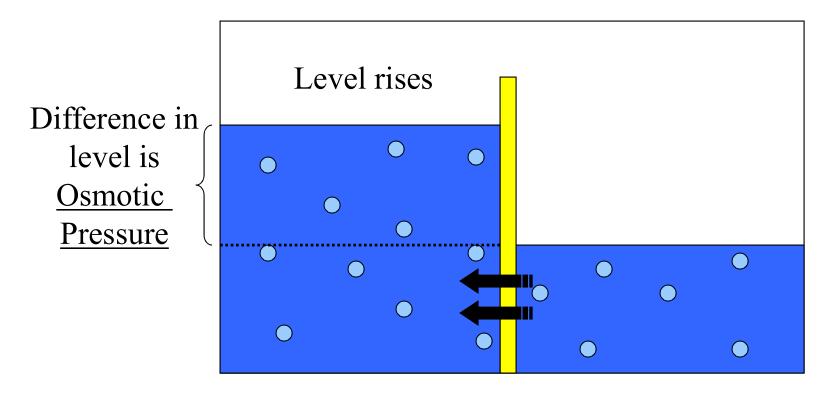
Ultrafiltration

Ultrafiltration (UF)

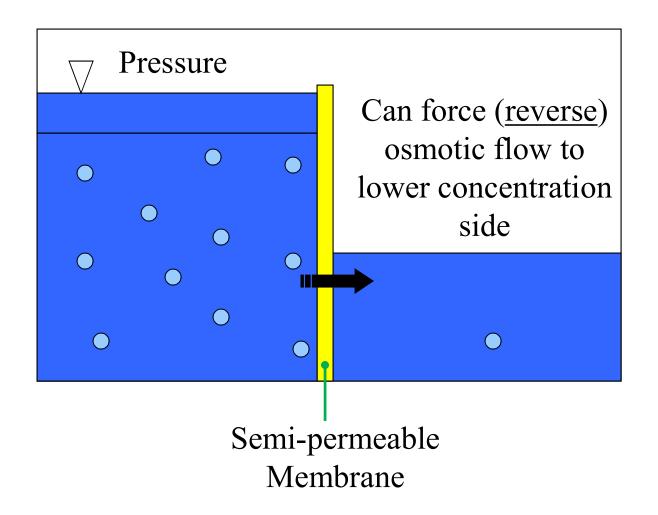
- Dissolved organic (macromolecule) removal.
- Pore sizes in the submicron range, and generally smaller than MF.
- Removal mechanism is sieving.



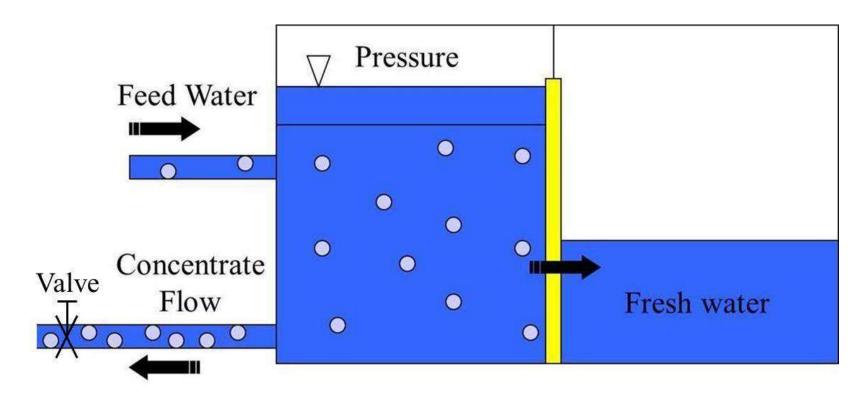
MF and UF Membranes operate based on "sieving" - What is to big to pass through the pores is held back ("rejected")



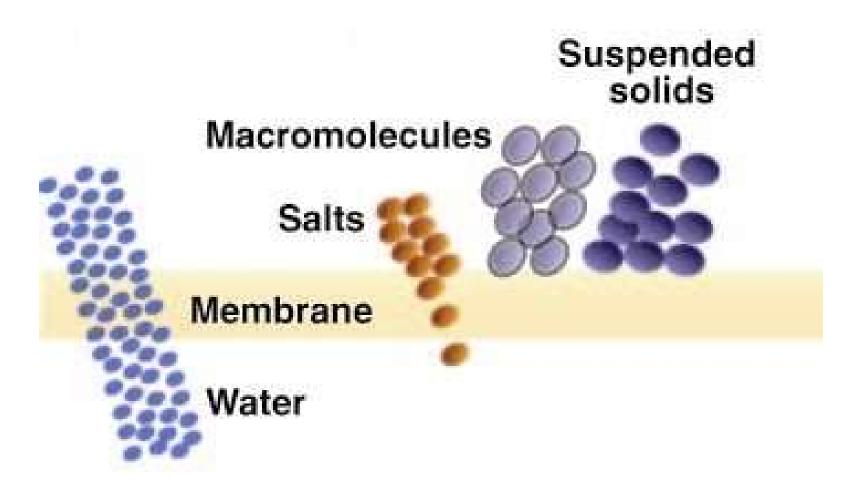
Osmosis


Osmosis

Water Flow



Reverse Osmosis


Reverse Osmosis Applied

Semi-permeable Membrane

Nanofiltration

Nanofiltration (NF)

"Loose RO" Rejects salts as with RO

- But -

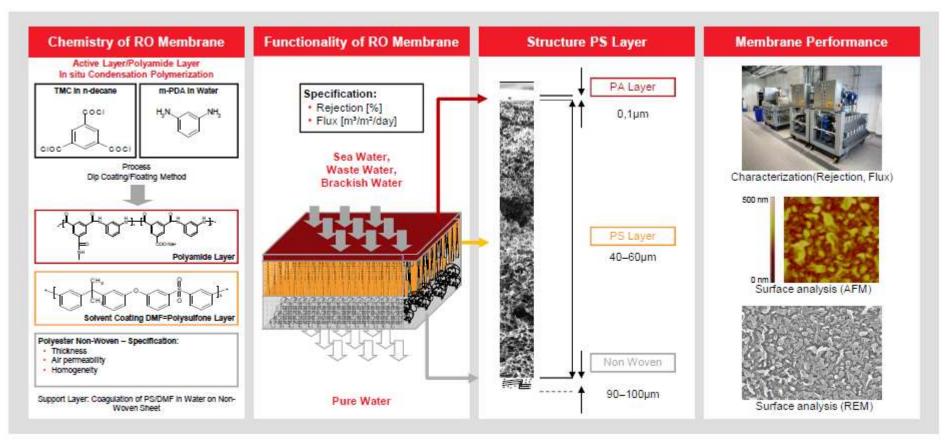
Rejects multivalent salts to a much higher degree than monovalent salts

Reverse Osmosis

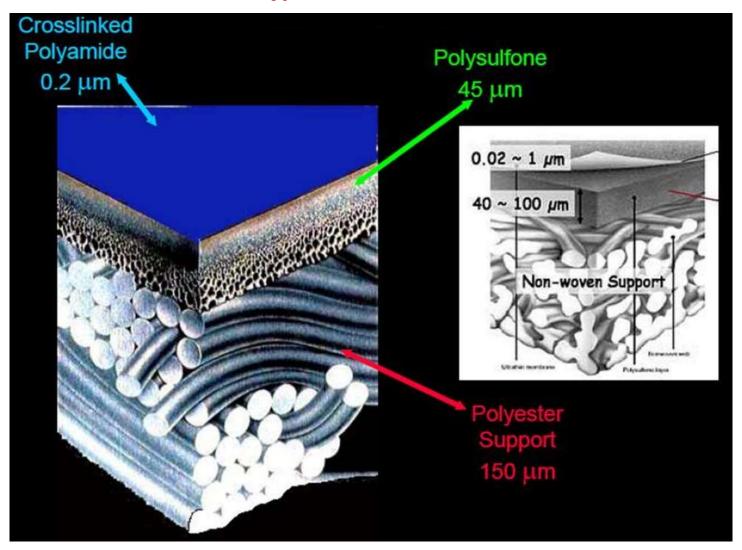
Cartwright Consulting Co.

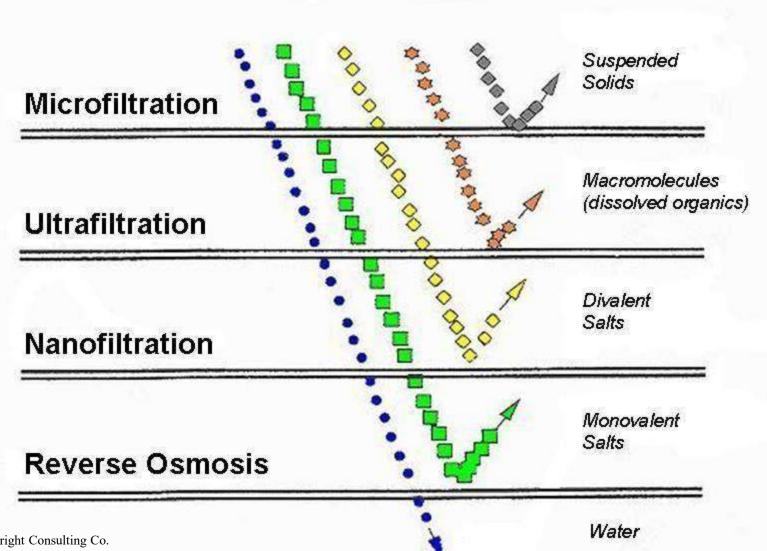
RO Removes dissolved organic contaminants by a process of SIZE EXCLUSION:

- What's too big to go through the membrane is held back.
- Function of both the size and shape of the organic molecule.



Dissolved organics with a molecular weight greater than ~100 Daltons are rejected by RO


Reverse Osmosis – Membrane Chemistry and Functionality



Membrane - Cross Section

Typical RO Membrane

Membrane Technologies

Membrane Technologies Compared

Feature	Microfiltration	Ultrafiltration	Nanofiltration	Reverse Osmosis
Materials of Construction	Ceramics, Sintered metals, Polypropylene, Polysulfone, Polyethersulfone, Polyvinylidene fluoride, Polytetrafluoroethyliene	Ceramics, Sintered metals, Polypropylene, Polysulfone, Polyethersulfone, Polyvinylidene fluoride	Thin film composites, Cellulosics	Thin film composites, Cellulosics
Pore Size Range (micrometers)	0.1 - 1.0	0.001 - 0.1	0.0001 - 0.001	<0.0001
Molecular Weight Cutoff Range (Daltons)	>100,000	1,000 - 100,000	300 - 1,000	50 - 300
Operating Pressure Range	<30	20 - 100	50 - 300	225 - 1,000
Suspended Solids Removal	Yes	Yes	Yes	Yes
Dissolved Organics Removal	None	Yes	Yes	Yes
Dissolved Inorganics Removal	None	None	20-95%	95-99+% 209

^{*} Under certain conditions, bacteria may grow through the membrane.


Membrane Technologies Compared

Feature	Microfiltration	Ultrafiltration	Nanofiltration	Reverse Osmosis
Materials of Construction	Ceramics, Sintered metals, Polypropylene, Polysulfone, Polyethersulfone, Polyvinylidene fluoride, Polytetrafluoroethyliene	Ceramics, Sintered metals, Polypropylene, Polysulfone, Polyethersulfone, Polyvinylidene fluoride	Thin film composites, Cellulosics	Thin film composites, Cellulosics
Microorganism Removal	Protozoan cysts, algae, bacteria*	Protozoan cysts, algae, bacteria*, viruses	All*	All*
Osmotic Pressure Effects	None	Slight	Moderate	High
Concentration Capabilities	High	High	Moderate	Moderate
Permeate Purity (overall)	Low	Moderate	Moderate-high	High
Energy Usage	Low	Low	Low-moderate	Moderate
Membrane Stability	High	High	Moderate	Moderate 210

^{*} Under certain conditions, bacteria may grow through the membrane.

Membrane Materials

Over 150 materials are available

POLYMERIC

INORGANIC

Cellulose acetate

Polyamide

Poly(ether)sulfone

Polyvinylidene fluoride

Regenerated cellulose

Polyacrylonitrile

PTFE

Polypropylene

Polycarbonate

Alumina

Zirconia

Titania

Stainless steel

Carbon composite

Silicon carbide

Nickel

Cellulose Acetate

First RO Polymer

- Moderate salts rejection (95-98%)
- Poor thermal stability (compaction)
- Poor bacterial resistance
- Limited pH stability (<8)
- Relatively resistant to oxidizing agents

Thin Film Composite

Vast majority of RO membranes are Thin Film Composite:

- High Rejection
- Excellent Thermal Stability
- Bacteria Resistant
- pH Stable

HOWEVER — They are chemically attacked by oxidizing agents:

- Chlorine compounds
- Hydrogen peroxide
- Potassium permanganate
- Others

Membrane Comparisons

Parameter	Cellulosic	Thin Film Composite	
Bacteria	Some bacteria will attack	Very bacteria resistant	
pH Range	4.0-8.0	2.0-11.0	
Chlorine Tolerance	Excellent resistance	Poor resistance, 200-1000 ppm hrs.	
% Rejection	92%-95%	95%-99%	
Nitrate Rejection	0%-65%	40%-90%	
Temperature Limit	87°F (31°C)	112°F (45°C)	

Microfiltration & Ultrafiltration

Materials of	Device Configuration			
Construction	Hollow Fiber	Tubular	Plate & Frame	Spiral Wound
<u>Polymeric</u>				
PS	X	X	X	X
PES	X	X	X	X
PAN	X	X	X	X
PE	_	X	_	1
PP	X	X	X	1
PVC	_	X	_	1
PVDF	X	X	_	1
PTFE	X	_	X	
PVP	X	X	_	
CA	X	_	_	1
Non-Polymeric				
Coated 316LSS	_	X	_	None
a- Alumina	_	X	X	None
Titanium Dioxide	_	X	_	None
Silicon Dioxide	_	X	_	None

PS = Polysulfone PVDF = Polyvinylidene Fluoride

PES = Polyethersulfone PTFE = Polytetrafluoroethylene

PE = Polyethylene CA = Cellulose Acetate

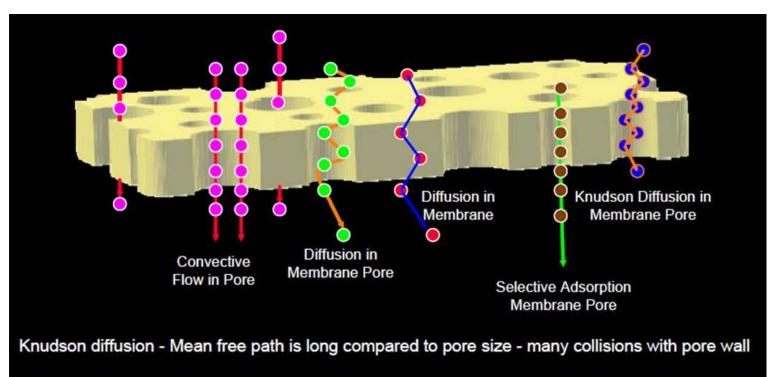
PP = Polypropylene PVP = Polyvinylpyrrolidone

PAN = Polyacrylonitrile TF = Thin Film Composite

Nanofiltration & Reverse Osmosis

Materials of	Device Configuration			
Construction	Hollow Fiber	Tubular	Plate & Frame	Spiral Wound
<u>Polymeric</u>				
PS*	_	X	X	X
PES*	_	X	X	X
CA	_	X	X	X
TF	_	X	X	X
Non-Polymeric				
None	_	_	_	<u>—</u>

^{*} Base polymer below TF polymer


PS = Polysulfone

CA = Cellulose Acetate

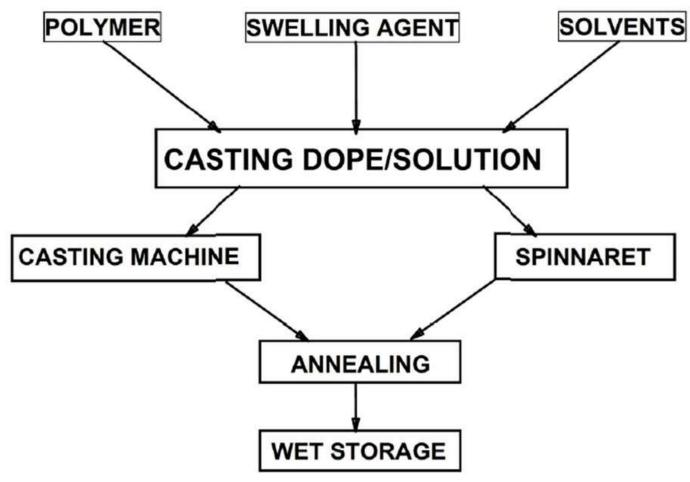
PES = Polyethersulfone

 $TF = Thin \ Film \ Composite$

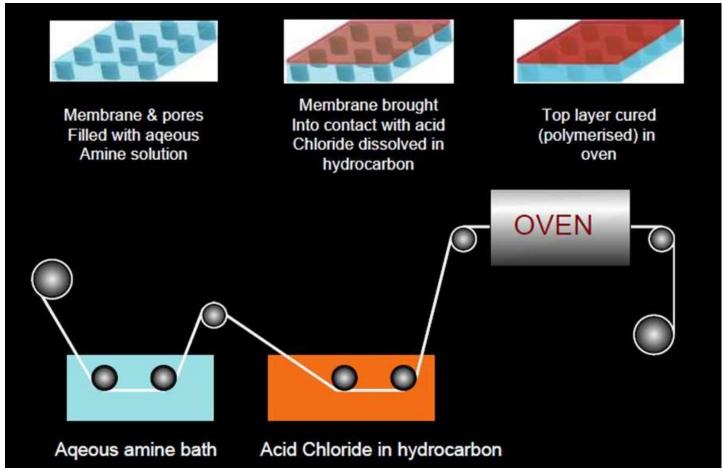
Modes of Transport in Membranes

Diffusion/Molecular diffusion - Mean free path is short compared to pore size or membrane extent - Few or no collisions with pore wall

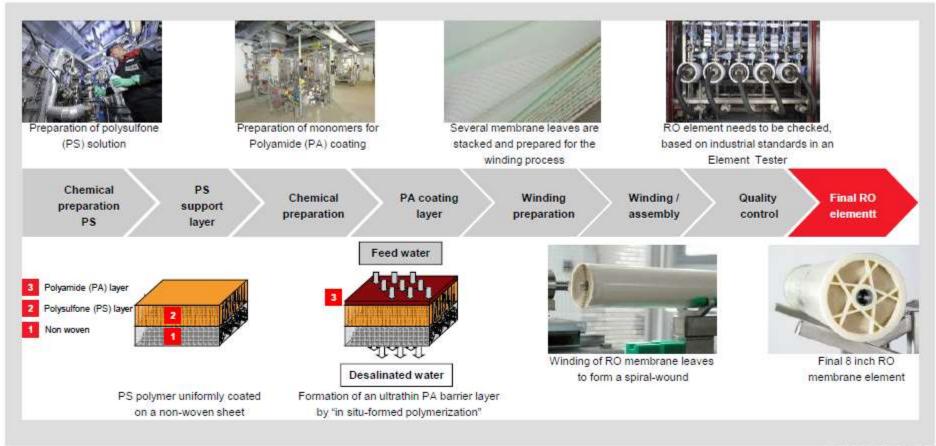
Selective adsorption- diffusion in which molecule adsobs to pore wall and hops from one adsorbtion site to another on its way through the pore.



Membrane Manufacturing

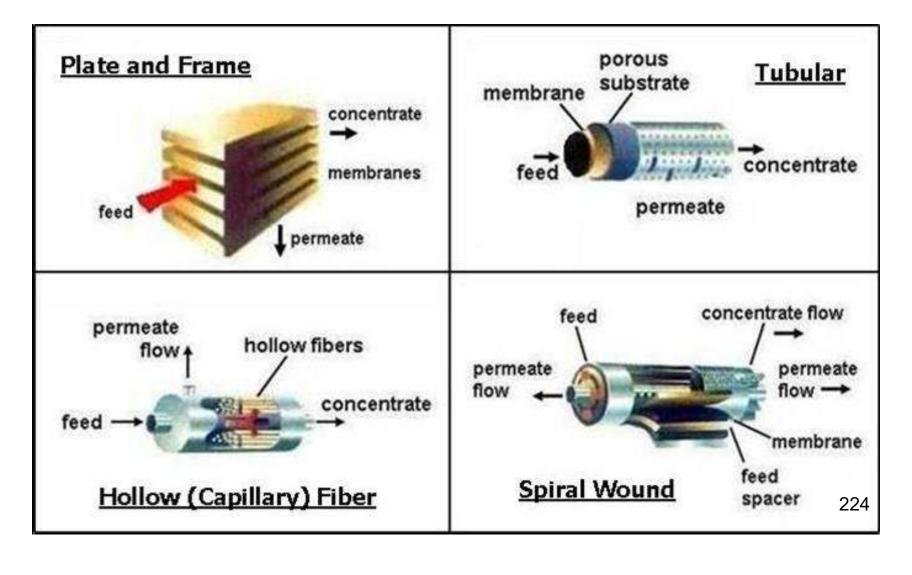


Manufacture of Polymeric Membranes



Casting a Thin Film Composite Membrane

State-of-the-art production process ensures premium quality reverse osmosis membranes


Membrane Element Devices

- Plate & Frame
- Tubular
- Hollow (Capillary) Fiber
- Spiral Wound

Membrane Element Devices

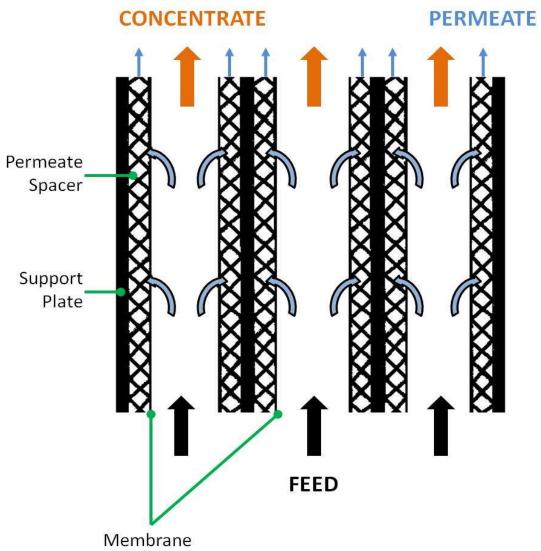


Plate & & Frame

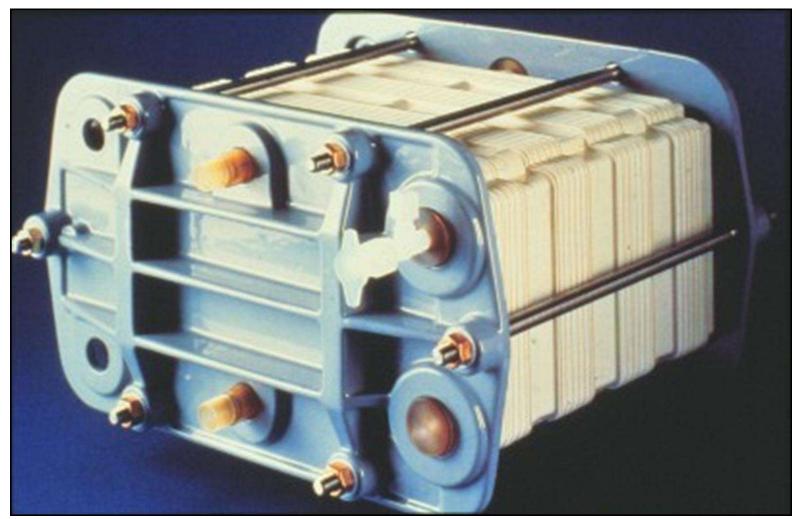
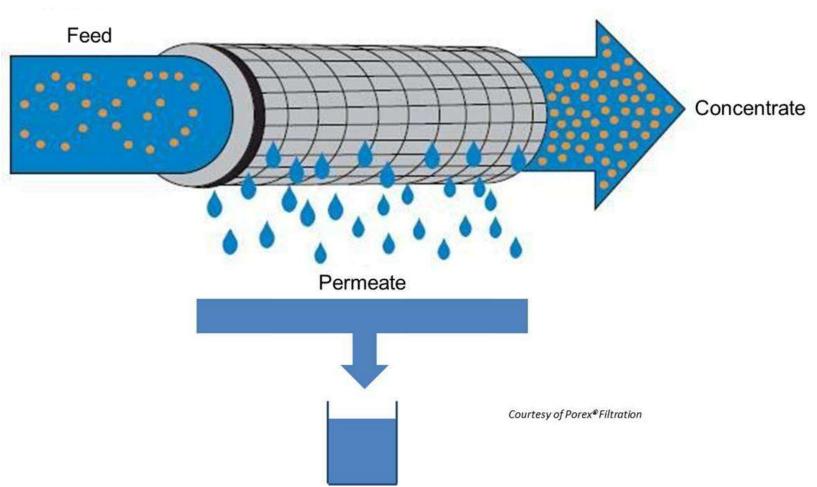
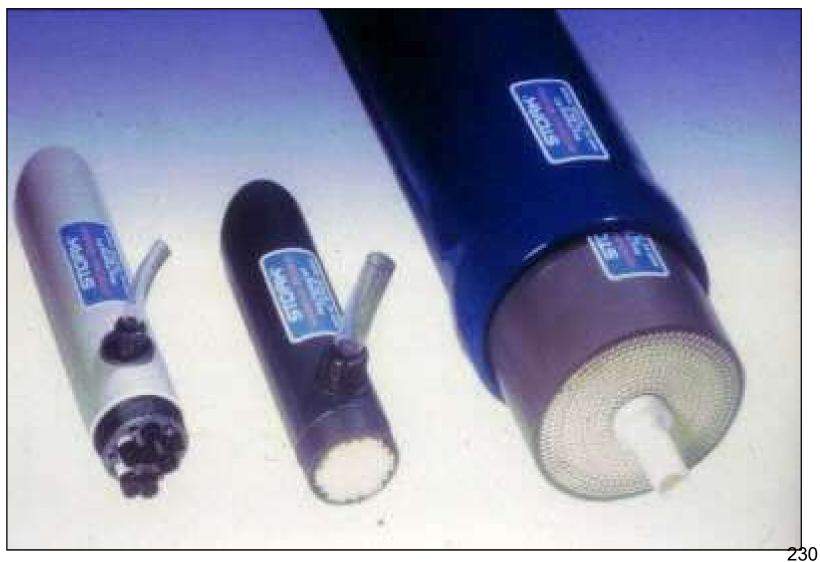
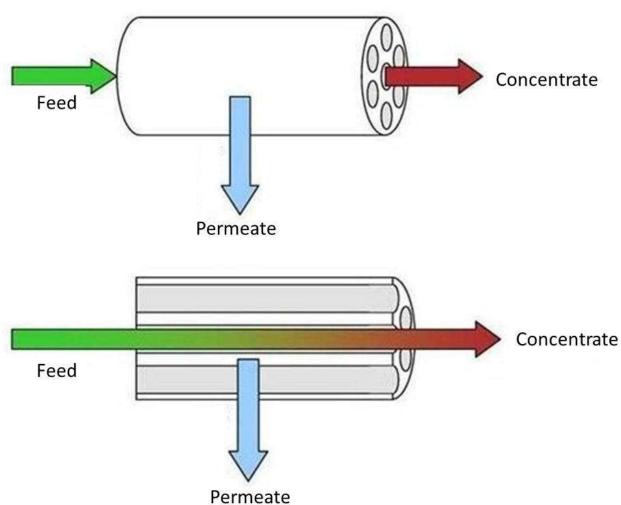
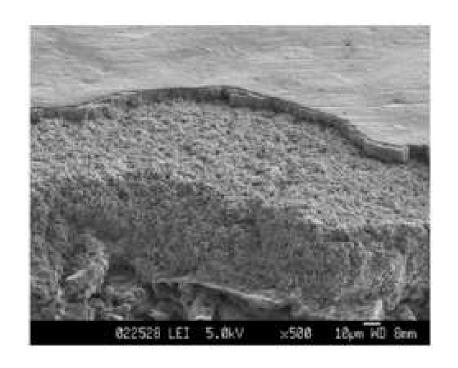


Plate & Frame

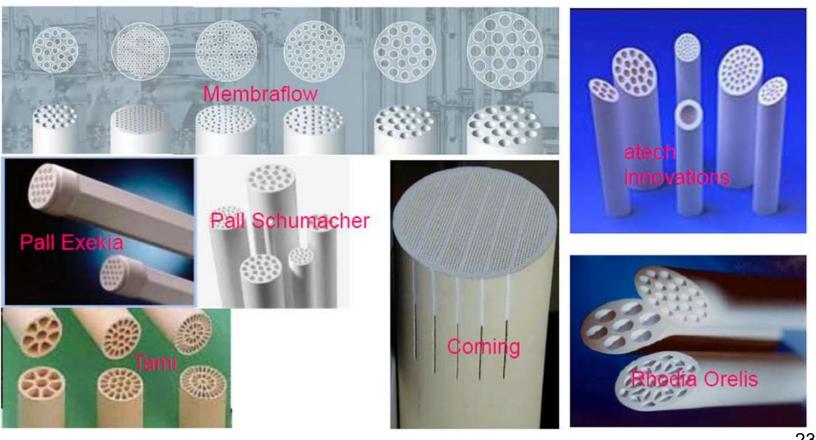

Plate & Frame



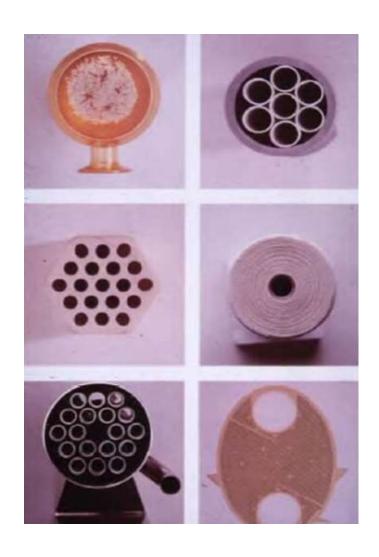




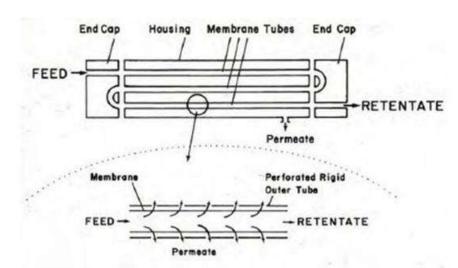
Ceramic Membrane


Ceramic membranes: tubular, multi-channel

- Composite membrane consisting of
 - a) porous support from pure α-Al₂O₃
 - b) porous membrane layer from α-Al₂O₃, TiO₂ or ZrO₂



Multi-Channel Ceramic Elements


Membrane Elements

- Plate & Frame
- Tubular
- Hollow Fiber
- Spiral Wound

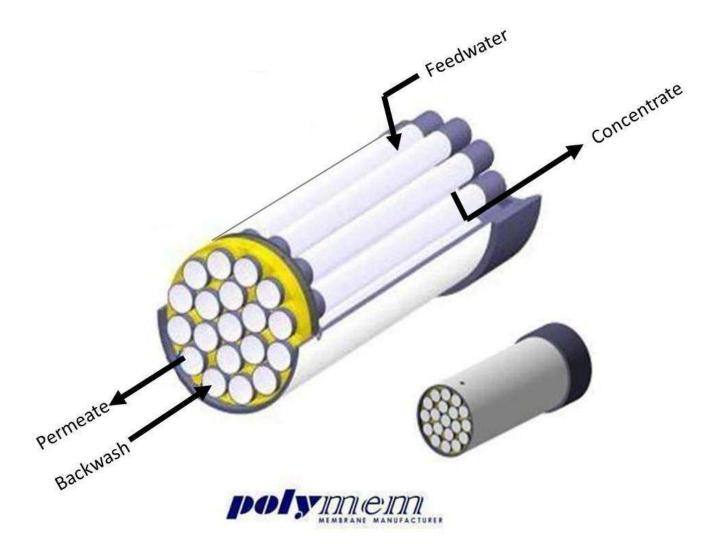
Membrane Elements

Multi-Channel Ceramic Elements

Multi-Channel Ceramic Elements

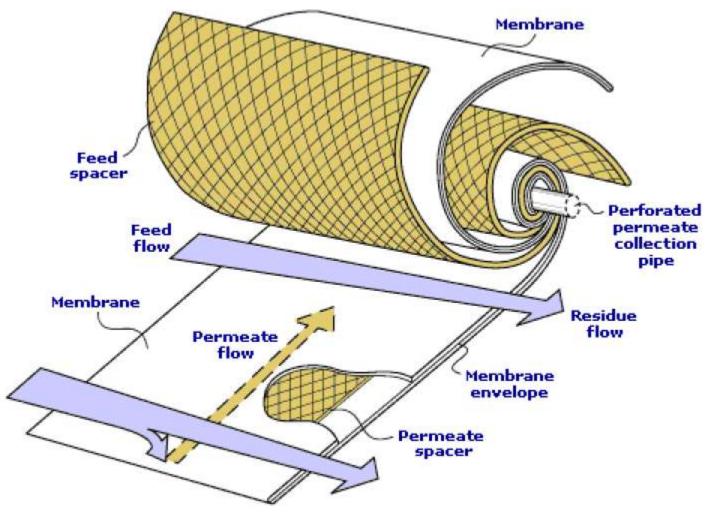
Graver Scepter

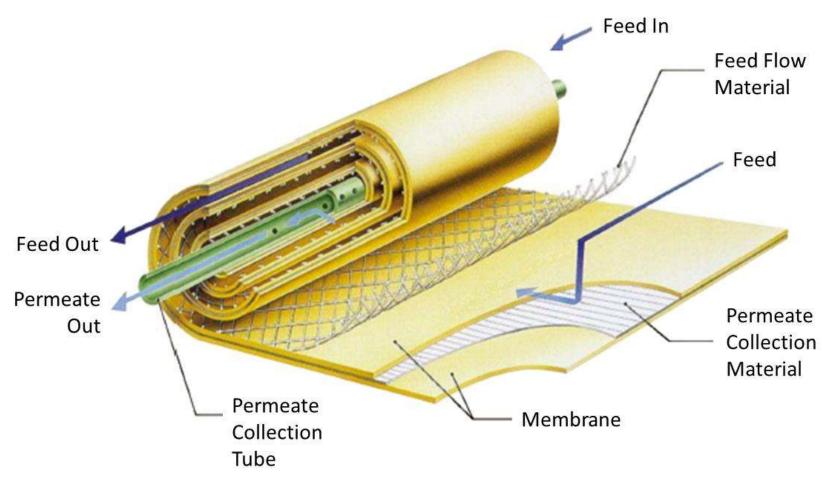
Hollow (Capillary) Fiber

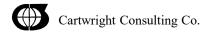

Hollow Fiber Membranes

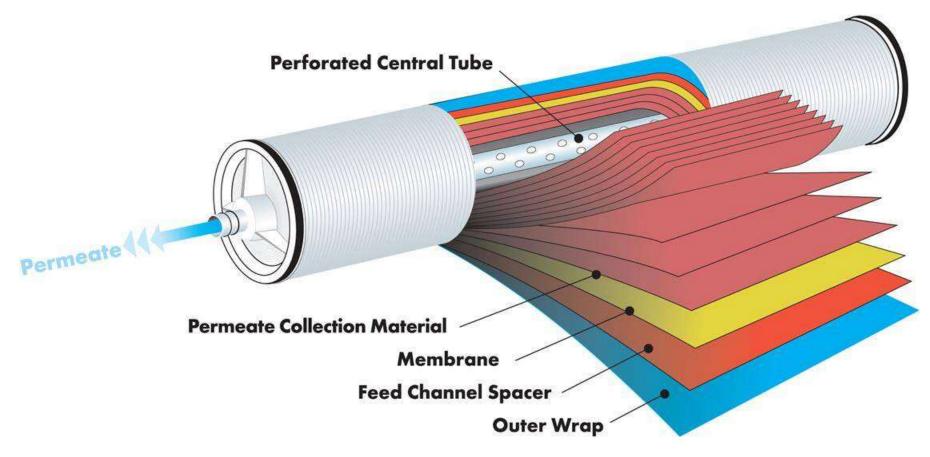
Hollow fiber membranes are manufactured from the unsupported polymer – spinneret process.

Hollow (Capillary) Fiber

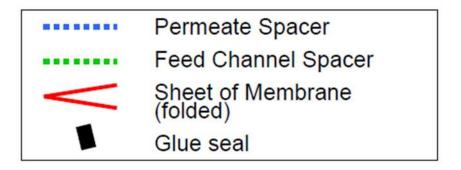

Hollow (Capillary) Fiber

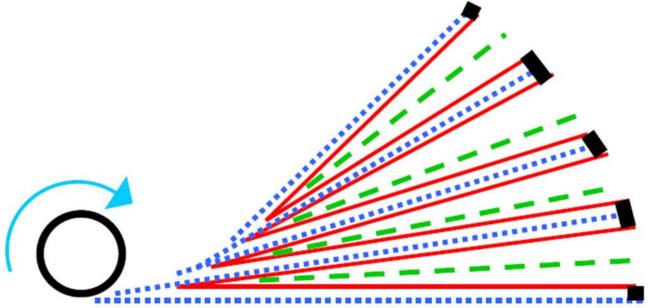




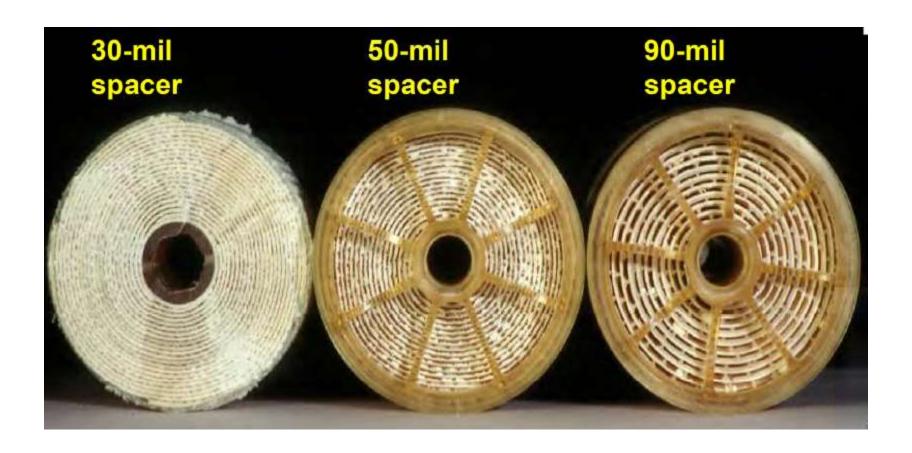



Courtesy of AmFor, Inc.

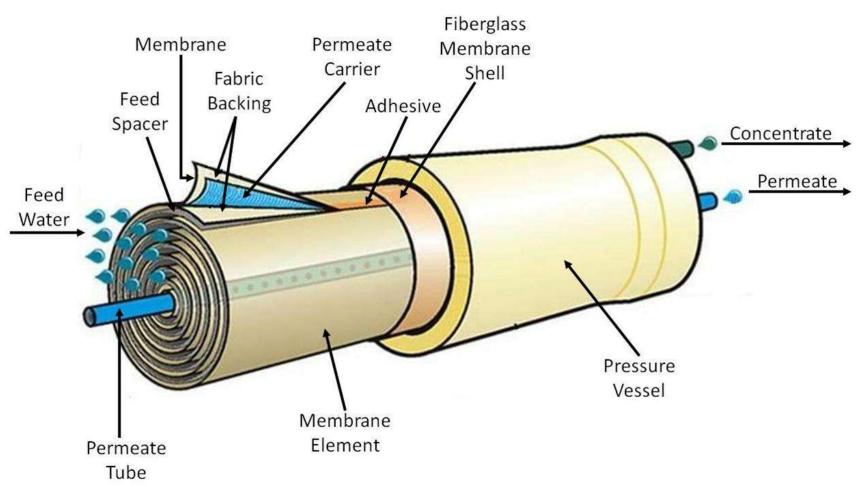


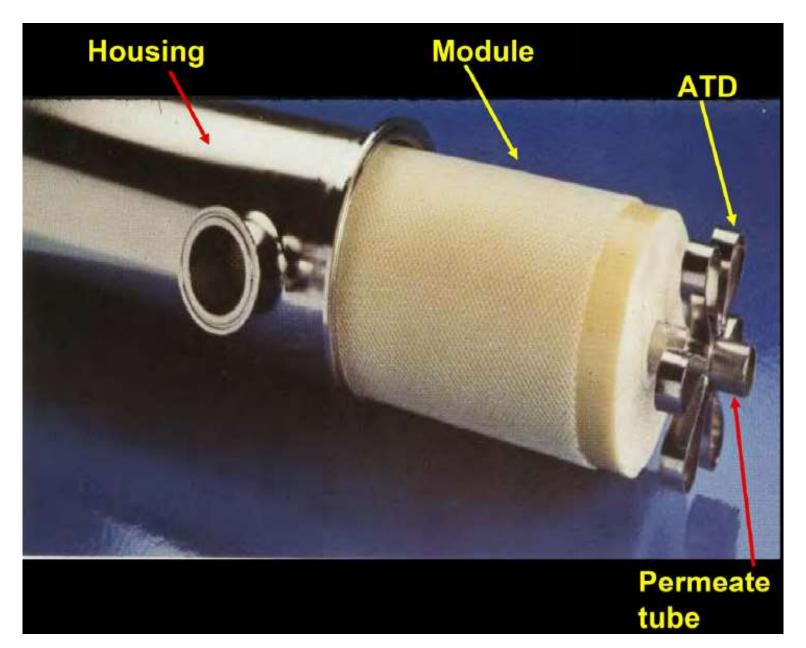

Courtesy of TriSep Corporation

Spiral Wound Element Construction

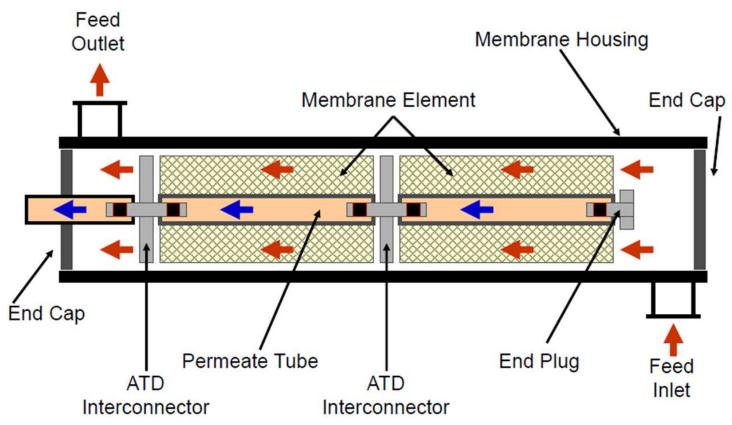


Spiral Element Sizes


 $(2"\emptyset, 4"\emptyset, 8"\emptyset, 16"\emptyset)$



Spacer Thicknesses



Two Element, Spiral Membrane/Housing

Membrane Element Configuration Comparison

Element Configuration	Packing Density *	Fouling Resistance **
Plate & Frame	Low	High
Hollow (Capillary) Fiber	High	High
Tubular	Low	Very High
Spiral Wound	Medium	Low

^{*} Membrane area per unit volume

^{**} Tolerance to suspended solids

Factors to Consider in Membrane Element Selection

- Size of suspended particles
 - Free channel height >10X largest particle
- Propensity for concentration polarization
 - High Close spacing modules
 - Low High turbulence modules
- Physical properties of feed
 - Viscosity
 - TSS
- Cleaning and sanitation

System Design

Calculations

Temperature pressure (TMP1,
$$P_T$$
) = $\frac{P_i + P_o}{2}$ - P_p

Pi = inlet pressure

P = outlet pressure

Pressure drop (ΔP) = $P_i - P_o$

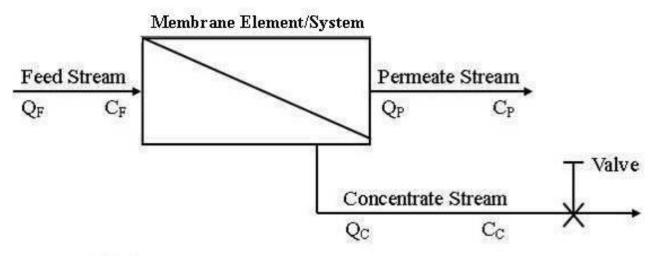
(Cross-flow) Velocity =
$$\frac{\text{(Cross) flow rate}}{\text{Cross-sectional area}} = f(\Delta P)$$

Energy consumption = Flow rate $x \Delta P$

Flue (J) =
$$\frac{\text{Volume of permeate}}{\text{Membrane area x Time}} = \frac{\text{Liters}}{\text{m}^2. \text{ h}} = \text{LMH}$$

1 GFD (gallons/sq.ft./day) = 1.7 LMH

Rejection $\mathbb{R} = 1 - C_p/C_c$


Cp = permeate concentration

Cc = concentrate pressure

Rejection = 100% when Cp = 0

Membrane System Schematic

OF - Feed Flow Rate

CF - Solute Concentration in Feed

Op - Permeate Flow Rate

CP - Solute Concentration in Permeate

Qc - Concentrate Flow Rate

C_C - Solute Concentration in Concentrate

Recovery =
$$\frac{Q_P}{Q_F}$$
 x 100

(Expressed as Percent)

TDS = Total Dissolved Solids: Usually considered the total of the ionic contaminants (salts) in solution.

Terminology

Feed = Influent
Concentrate = Brine = Reject
Permeate = Product = Dilute = Filtrate
Bank = Array

Definition of Flux

Flux = Total Permeate Rate ÷ Total Membrane Area Specific Flux = Flux ÷ NDP (net driving pressure)

Rejection

Solute removal from the feed water

Percent Rejection

% Rejection: The degree of removal of solute by the membrane process.

For RO:

Rejection (%) = Feed Conductivity - Permeate Conductivity x 100

- RO always rejects a percentage of salts.
- Therefore, permeate quality a function of feedwater quality.

If feedwater TDS 1, Permeate TDS 1

Ion exchange technologies do not work this way; resins are more absolute.

Recovery

Definition of Recovery

Recovery: The percentage of feedwater that passes through the membrane as product water (i.e. how efficiently water is converted into product water).

Recovery (%) =
$$\frac{\text{Permeate Rate}}{\text{Feed Rate}}$$
 x 100

Part of system design

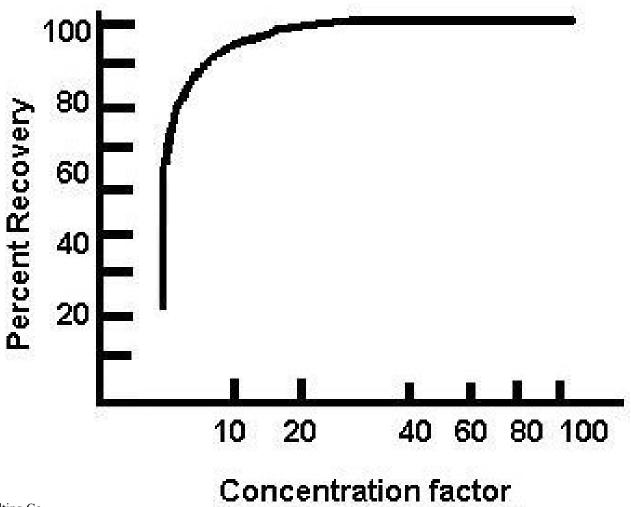
Effect of Recovery on Concentration

$$C_c \approx \frac{C_F}{1 - \text{Recovery}} = XC_F$$

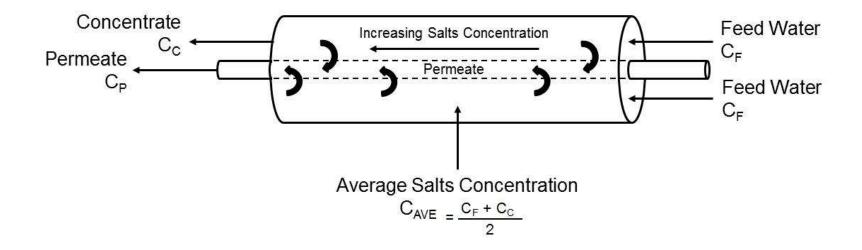
$$\frac{1}{1 - \text{Recovery}} = \frac{1}{1 - \text{Recovery}} = Concentration Factor}$$

Percent Recovery	Concentration Factor		
33%	1.5		
50%	2		
67%	2 3		
75%	4		
80%	5		
90%	10		
95%	20		
97.5%	40		
98%	50		
99%	100		

Definition of Concentration Factor


The degree to which contaminants in the concentrate stream are concentrated.

1 1 - Recovery



Effect of Recovery on Concentration Factor

Typical RO Spiral Membrane Element

High Recovery Advantages

- Lower flow rate (smaller diameter piping, etc.)
- Smaller high pressure pump

High Recovery Hazards

Precipitation – Fouling

For RO/NF – High π

For RO/NF – As Recovery

Permeate TDS 1

Discharge Issues

Water Temperature

Feedwater temperature will affect RO permeate rate:

As temperature Ψ , Permeate rate

Colder water has a higher viscosity than warm water, so more pressure is required to force it through the membrane.

Temperature Correction Factors (Typical)

Temper	ature (t)	T _{cor}	Temper	ature (t)	T _{cor}	Temperature (t)		T _{cor}
°C	°F		°C	°F		°C	°F	
1	33.8	0.460	19	66.2	0.830	37	98.6	1.403
2	35.6	0.482	20	68.0	0.861	38	100.4	1.440
3	37.4	0.499	21	69.8	0.888	39	102.0	1.479
4	39.2	0.510	22	71.6	0.915	40	104.0	1.520
5	41.0	0.534	23	73.4	0.943	41	105.8	1.56
6	42.8	0.552	24	75.2	0.971	42	107.6	1.603
7	44.6	0.571	25	77.0	1.000	43	109.4	1.645
8	46.4	0.590	26	78.8	1.030	44	111.2	1.686
9	48.2	0.609	27	80.6	1.060	45	113.0	1.730
10	50.0	0.630	28	82.4	1.091	46	114.8	1.776
11	51.8	0.651	29	84.2	1.122	47	116.6	1.821
12	53.6	0.672	30	86.0	1.155	48	118.4	1.869
13	55.4	0.693	31	87.8	1.188	49	120.2	1.916
14	57.2	0.716	32	89.6	1.221	50	122.0	1.965
15	59.0	0.739	33	91.4	1.256			
16	60.8	0.760	34	93.2	1.292			
17	62.6	0.786	35	95.0	1.328			
18	64.4	0.810	36	96.8	1.364			

Summary (so far)

- RO permeate quality function of feedwater quality.
- RO design must compensate for feedwater temperature.
- Removal of organics (non-ionic species) down to a molecular weight of ~100 Daltons

Osmotic Pressure

Osmotic Pressure (π)

The pressure, due to the effect of TDS in the feedwater, that must be overcome in order to generate product water flow.

 π is a function of the specific salt, as well as its concentration.

Osmotic Pressure

$$\pi = 1.19 (T + 273) \Sigma M_i$$

Where:

 π = Osmotic Pressure (psi)

T = Water Temperature (°C)

M_i = Molar Concentration of individual ions (gmol/L)

Typical Osmotic Pressure at 25°C

				Osmotic Pressure		
Compound	Conc. (mg/L)	Conc. (mol/L)	(psi)	(bar)		
NaC1	35,000	0.6	398	27.1		
NaC1	1,000	0.0171	11.4	0.78		
NaHCO ₃	1,000	0.0119	12.8	0.87		
Na ₂ SO ₄	1,000	0.00705	6	0.41		
MgSO ₄	1,000	0.00831	3.6	0.24		
MgCl ₂	1,000	0.0105	9.7	0.66		
$CaCl_2$	1,000	0.009	8.3	0.56		
Sucrose	1,000	0.00292	1.05	0.07		
Dextrose	1,000	0.00555	2.0	0.14 281		

Solute Concentration as a Function of Osmotic Pressure

Osmotic Pressure Simplified Calculations

For monovalent salts: assume 1 psi of osmotic pressure per 100 mg/L of TDS.

For multivalent salts: assume ½ psi of osmotic pressure per 100 mg/L of TDS.

Flow Rate

Reynolds Numbers

Reynolds Number

Flow Characterization

<2300 2300-4000 >4000

Laminar Transitional Chaotic

Turbulent Flow

Reynolds Number

```
Re = \frac{QD_H}{vA}
```

Where: Q = Volumetric Flow Rate (m³/sec)

 D_H = Pipe Inside Diameter (m)

v = Kinematic Viscosity (m²/sec)

A = Pipe Cross-sectional area (m²)

Turbulent Flow (Chaotic Fluid Flow) Reynolds Number >4,000

Laminar Flow (Smooth Fluid Flow)
Reynolds Number <2,300

Transition Flow Reynolds Number >2,300 & <4,000

To Ensure Turbulent Flow in a Pipe, Water Velocity must be Above 3 m/sec (~10 ft/sec)

RO pump pressure directly affects permeate rate.

Applied Pressure

$$NDP = P_{op} - \pi - P_{bp}$$

Where: NDP = Net Driving Pressure

 P_{op} = Applied Pressure

 π = Osmotic Pressure

 P_{bp} = Back Pressure

As pump pressure \uparrow , Permeate rate \uparrow

Membrane manufacturers specify the maximum recommended pump pressure. If the pressure is too high, the membrane will foul more quickly.

If the pressure is too low, the salts rejection will suffer. Most manufacturers recommend a minimum feed pressure of 30 psi (2 bar).

More System Design

System Design Criteria

- Feedwater Quality
- Permeate Quality Requirements
- Membrane Technology (MF, UF, NF, RO)
- Membrane Polymer
- Membrane Element Configuration
- Pretreatment Requirements

Feedwater Quality

General Parameters

- Total Solids Content
- Suspended (TSS)
- Dissolved Organic (TOC, MBAS, COD, BOD)
- Dissolved Inorganics (TDS)

Feedwater Quality (cont.)

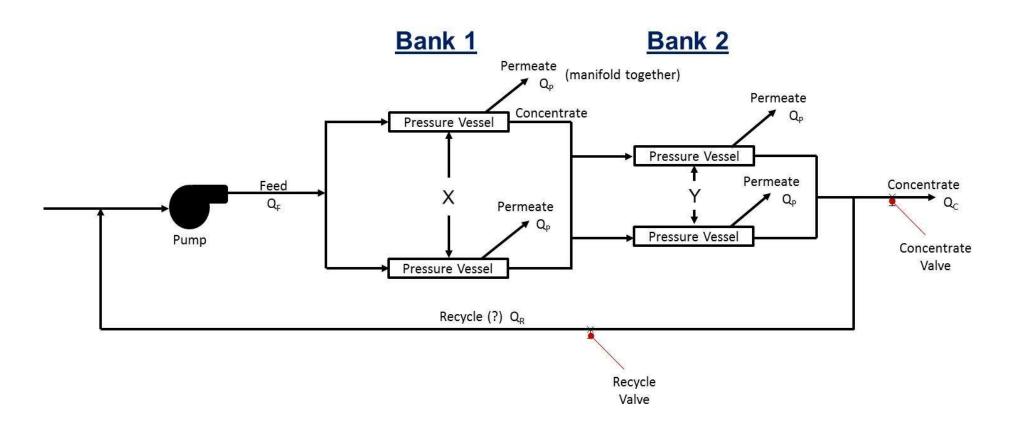
Chemicals of Concern

- Oxidizing Chemicals
- Organic Solvents
- Saturated Solutes

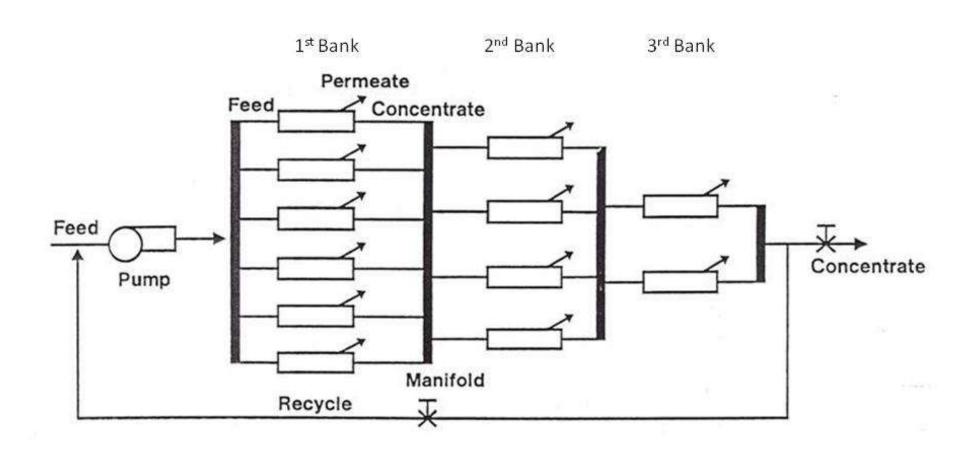
Feedwater Quality (cont.)

Other Factors

- pH
- Operating Temperature
- Osmotic Pressure as a Function of System Recovery
- Variation in Chemistry as a Function of Time


System Design Factors

- Optimum Membrane Element Configuration
- Total Membrane Area
- Specific Membrane Polymer
- Optimum Pressure
- Maximum System Recovery
- Flow Conditions (turbulent, etc.)
- Membrane Element Array
- Pretreatment Requirements

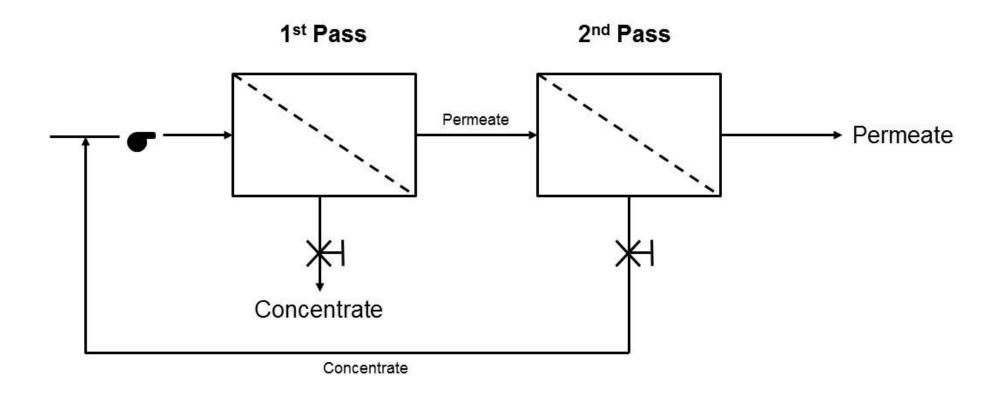


Membrane Element Array

Membrane Element Array

System Design Criteria

Each membrane housing (pressure vessel) may contain as many as 7 spiral elements


Two-Pass RO

For applications requiring permeate <10 ppm TDS (e.g. pharmaceutical, cosmetic, etc.), two-pass RO is often employed

Two-Pass RO

For most industrial applications, the highest ionic purity of water possible is 18,000,000 Ω -cm resistance (18 M Ω -cm).

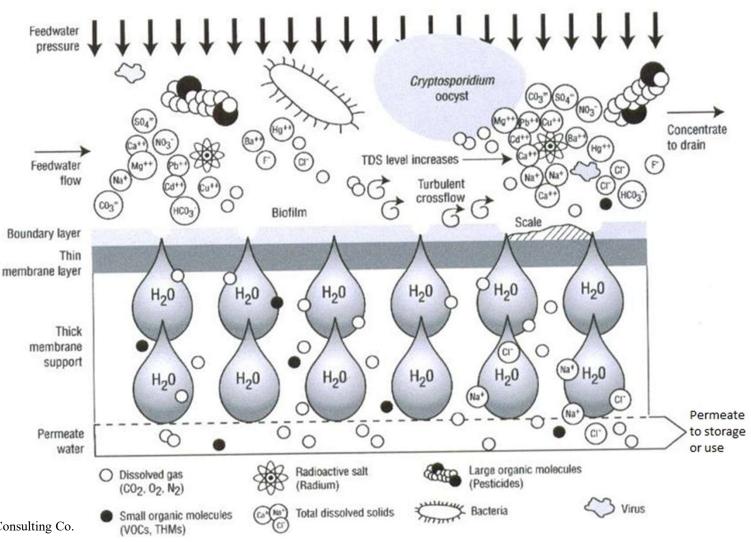
Approximately 0.03 ppm TDS

On a practical basis, RO only CANNOT produce 18 $M\Omega$ -cm quality water.

Looking at the numbers:

Assuming a membrane with 99.5% salts rejection treats water with a TDS of 500 ppm; permeate quality = 2.5 ppm (approximately 200,000 Ω -cm)

To produce 18 MΩ-cm quality water, the best approach is RO followed by either mixed bed IX or EDI



Membrane Fouling

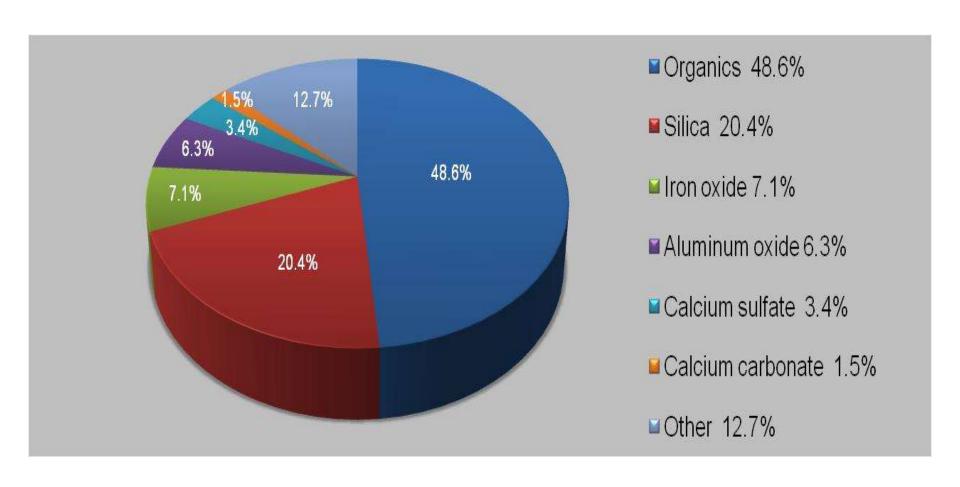
RO Membrane Process

Fouling -The bane of all membrane systems

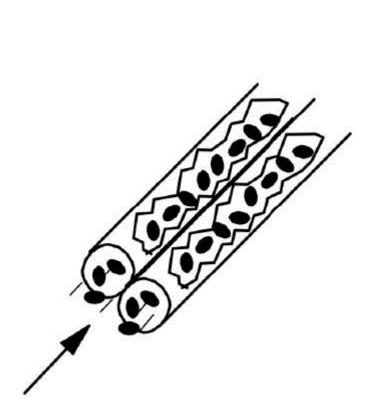
MEMBRANE **FOULING** CANNOT BE PREVENTED but it can be MINIMIZED

Fouling

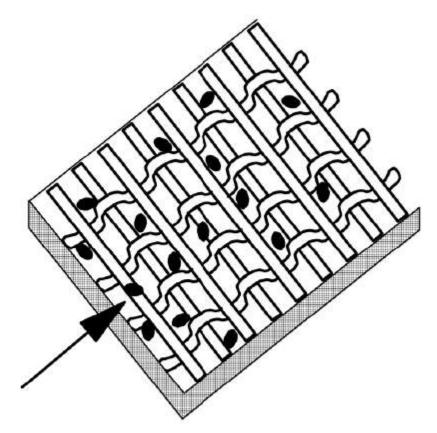
- Plugging Particulate materials (suspended solids)
- Scaling Precipitated materials
- Organic Fouling Coating and plugging by organics
- Microorganisms Bacterial biofilm



Fouling Summary


Foulant	Primary Mechanism	Examples
Suspended Solids (plugging)	Filtration	Dirt, clay, silt, dust, hydrous metal oxides, e.g. $Fe(OH)_3$
Inorganic Salts (scaling)	Concentration effects, Adsorption	CaCO ₃ , MgCO ₃ , BaSO ₄ , CaSO ₄ , SiO ₂ , and other salts
Organics (plugging)	Adsorption, Film Formation	Oils, grease, surfactants, coagulants, antiscalants, humic and fulvic acids
Microorganisms (Biofouling)	Adhesion, Adsorption, Biofilm Formation	Bacteria

Typical Fouling Constituents on Membrane Surface

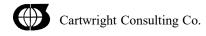


Suspended Solids

Tubular and hollow fiber modules

Flat sheet and spiral modules with spacers

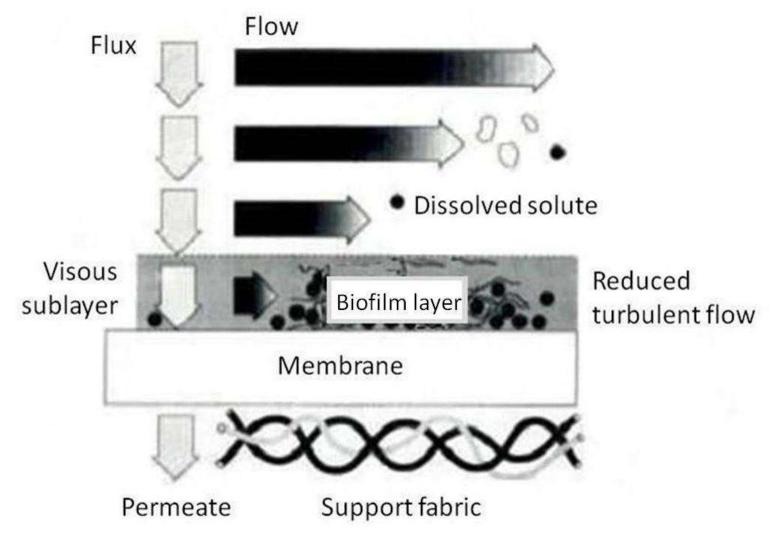
Fouling


OILS

<u>Free oil</u> – Water insoluble, immiscible, forms impermeable film on membrane surfaces.

Emulsified – Discrete droplets from: Chemical addition and Mechanical agitation, can be removed by MF

Dissolved – Water soluble organics can be removed by UF.


Oily Wastes

- Free Oils No!
- Emulsified Oils MF
- Dissolved Oils UF

Biofilm Formation on a Membrane

Concentration Polarization

Concentration polarization is defined by the following equation:

$$C_m/C = B = e^{K(Fp/Fb)}$$

Where: $C_m = Concentration$ at the membrane surface

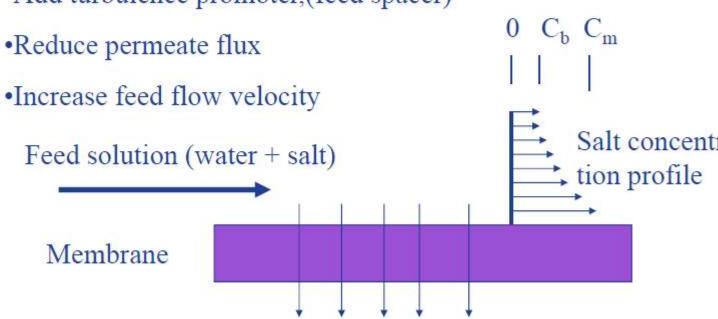
C = Average bulk concentration

B = Concentration polarization

K = A proportionality constant

 $F_p = Product flow$

 $F_b = Average brine flow$



Concentration Polarization

To Reduce Polarization Modulus, C_m/C_b

Add turbulence promoter, (feed spacer)

Permeate

Fouling Mitigation

- Pretreatment
- System Design
- Membrane Polymer
- Membrane Device Configuration
- Chemical Addition
- System Operation

Membrane Element Cleaning Capability

Element Configuration	Available MembraneTechnology				Backwashable?
	MF	UF	NF	RO	
Plate & Frame	Yes	Yes	Yes	Yes	No (except for inorganic membrane)
Tubular	Yes	Yes	Yes	Yes	Yes
Hollow Fiber	Yes	Yes	Yes	No	Yes
Spiral Wound	Yes	Yes	Yes	Yes	No (NF, RO) Yes (MF, UF)

Pretreatment Technologies

Foulant	Recommended Pretreatment
Suspended solids	Filtration Granular media Cartridge Bag MF Coagulation followed by filtration
Inorganic salts (scaling)	pH adjustment Softening Antiscalant addition
Organics	Filtration UF Adsorption Activated carbon Organo clays Special resins Coagulation followed by filtration Oil/water separation Skimmers Dissolved air flotation
Microorganisms	Disinfection Chemical addition Ozonation Ultraviolet irradiation Filtration

Membrane Polymers Properties

Surface roughness Polyolefin Fluorinated

Thin film composite
Charge

Monitoring

To accurately measure permeate flux over time, factor in the effects of temperature and pressure.

Resulting data are known as **NORMALIZED** flux rates.

Normalized Flux

 Usually use membrane element design data from manufacturer (permeate rate at a specific pressure and temperature)

For brackish water elements design data are:

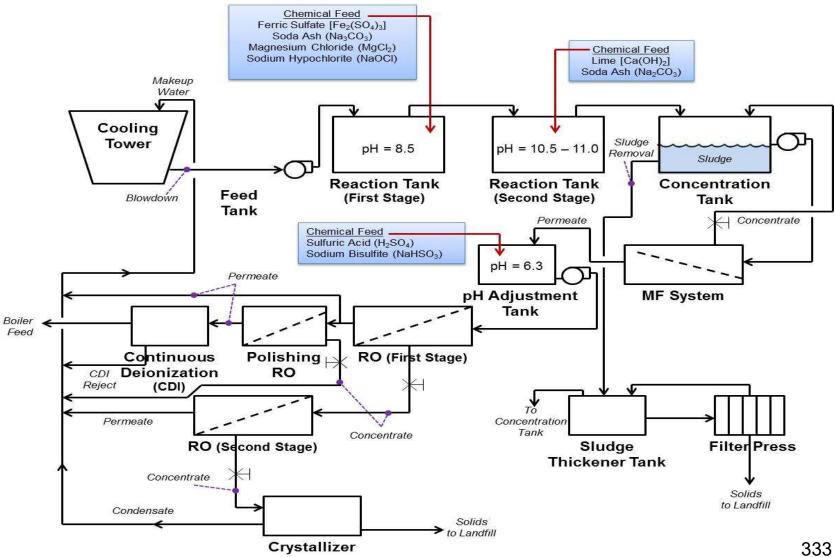
Pressure = 225 psi (15.5 bar)

Temperature = $77^{\circ}F$ (25°C)

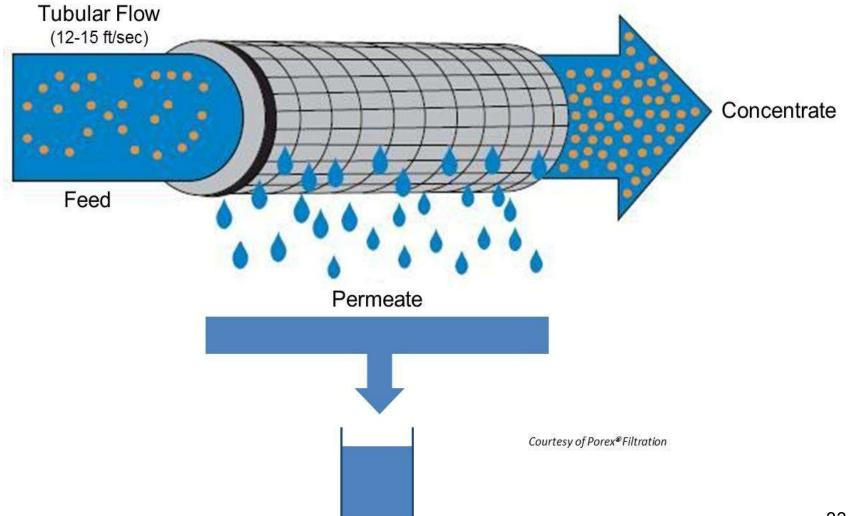
 Pressure conversion – direct ratio of element design pressure to actual operating pressure

 Temperature conversion based on temperature correct factor (TCF) from element manufacturer

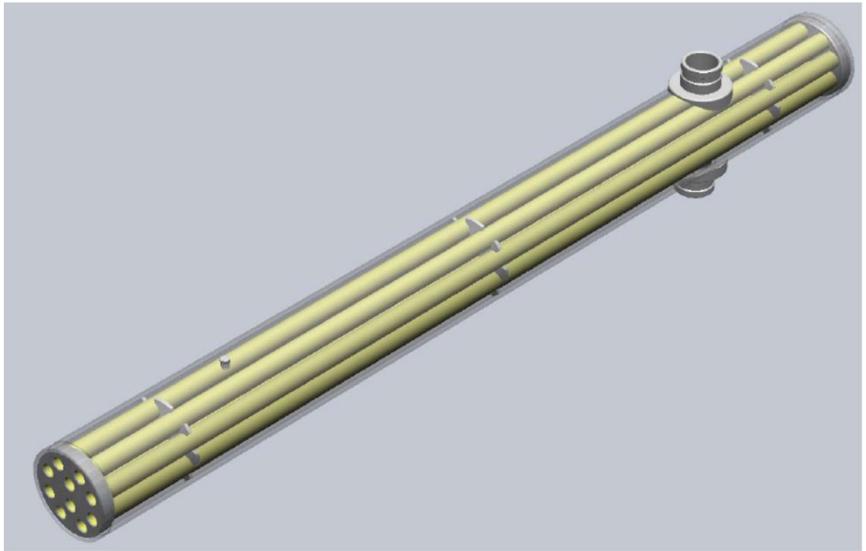
Case Histories

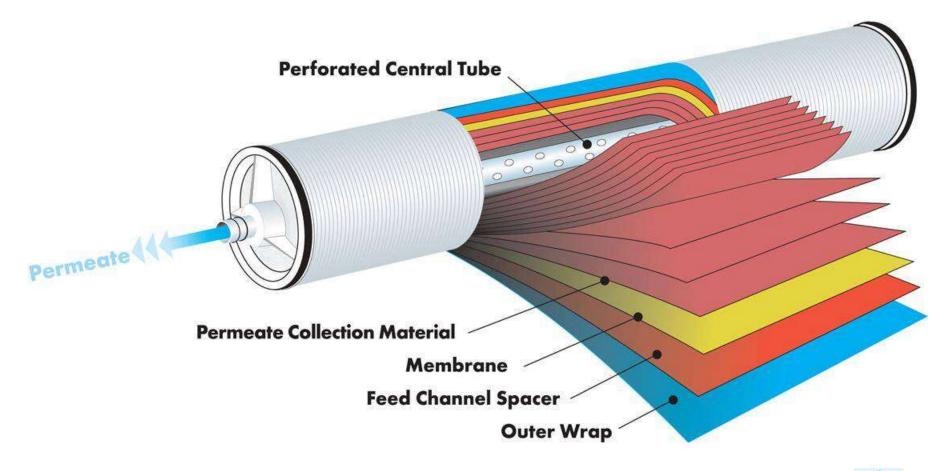


Zero Liquid Discharge of Cooling Tower Blowdown

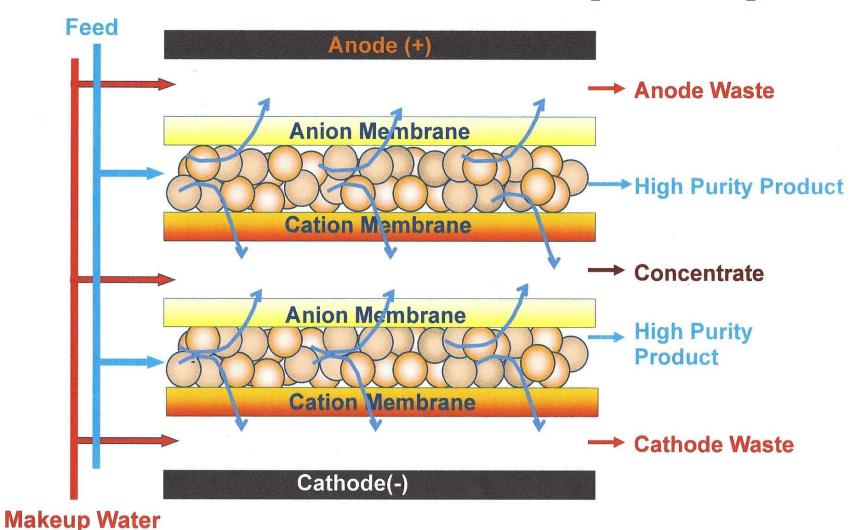


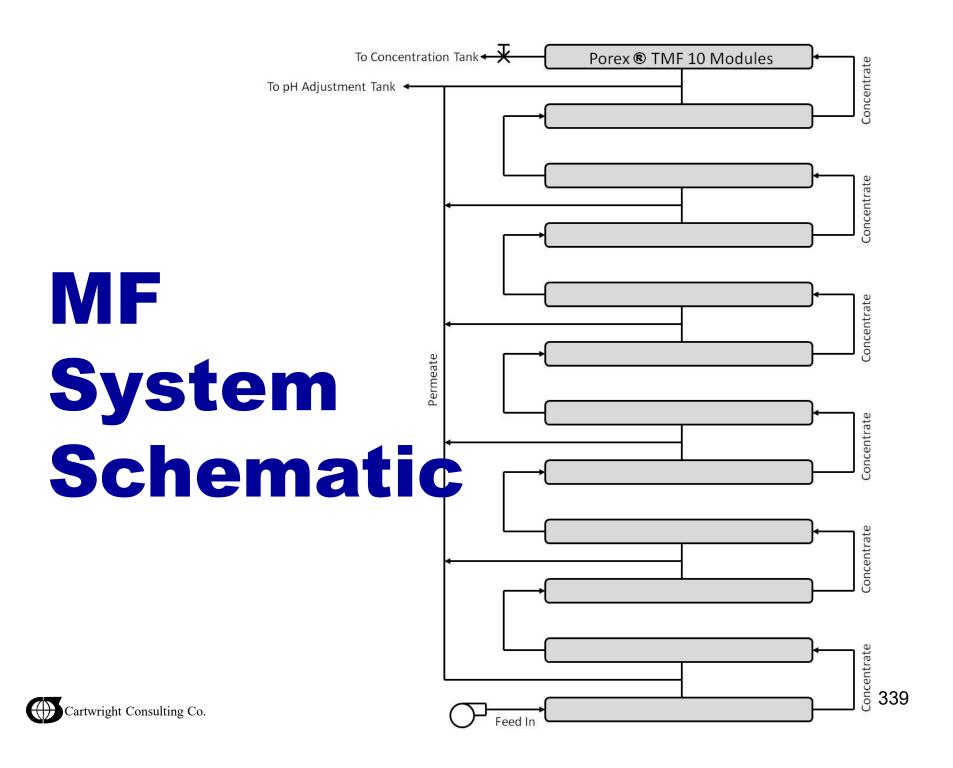
Cooling Tower Blowdown Treatment System




Tubular MF

Tubular MF


Spiral Wound Membrane Element


Continuous Deionization (CDI)

Porex® Module Specifications

Modules				
Housing Diameter	6" Schedule 40			
Permeate Port (Qty 2)	2.875"∅ x 1.89" L pipe stub			
Concentrate Ports	6"∅ pipe Anvil Gruvlok groove			
Mounting Required	Horizontal; 2 point			
Module Length	72"			
Tubes				
Number of Tubes	10			
Nominal ID	1"			
Nominal OD	1.34"			
Total Active Surface Area	15.2 ft ²			
Internal Liquid Volume				
Permeate Volume	4.33 gallons			
Concentrate Volume	2.45 gallons			
Total Volume	6.78 gallons			
Materials of Construction				
Potting	Solvent Cement			
Internal Supports	Polypropylene			
Gasket Material	None			
Preservative (Shipping)	Propylene Glycol			
Membrane	PVDF			

MF System Performance

Parameter	MF Feedwater	MF Permeate
рН	8.0	10.7
Total Hardness	2122 mg/L	127 mg/L
Total Alkalinity	58 mg/L	197 mg/L
Turbidity	4.63	0.03 NTU
Silica	99 mg/L	6 mg/L

RO Membrane Systems Flows and Recoveries

	First Stage RO	Polishing RO	Second Stage RO
Feed Rate (gpm)	350	110	150
Permeate Rate (gpm)	255	82	100
System Recovery (%)	73%	75%	67%

Fouling

Membrane Element Backwashing/Backpulsing

Element Configuration	Backwashable?
Tubular MF	Yes
Spiral Wound RO	No

To Minimize MF Fouling

- High Velocity (12-15 ft/sec)
- Chlorine Addition
- Backpulsing

Cleaning

MF Acid Cleaning

- 15 minutes 3-5% HCI Recirculation
- 45 minutes Soak
- 45 minutes Recirculation with Rinse Water

MF Caustic Cleaning

NaOH + Bleach (12-15% NaOCI) pH 12-13

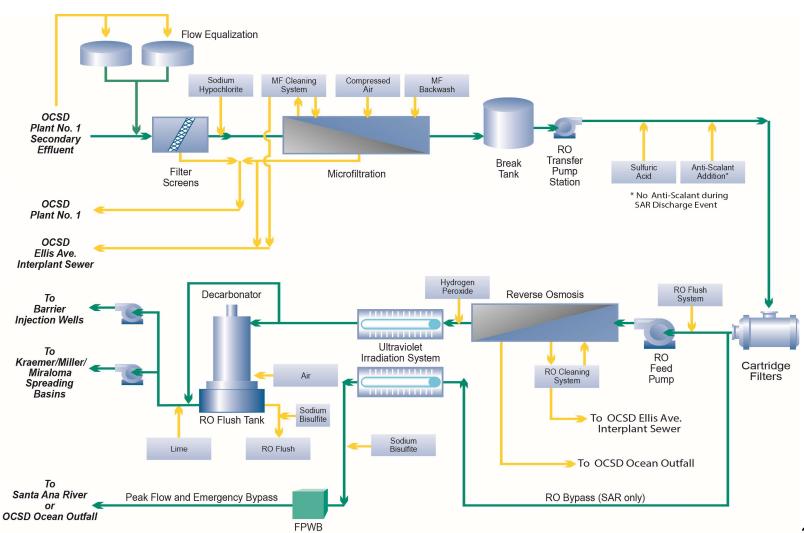
- 30 minutes Recirculation
- 150 minutes Soak
- 30 minutes Recirculation with Rinse Water

RO Cleaning

<6 months

Conclusions

- ✓ MF Protects Spiral RO Membranes: Low Cleaning Frequency High System Recovery
- ✓ MF Facilitates Zero Liquid Discharge
- ✓ MF Eliminates Traditional Clarification



Orange County Ground Water Replenishment System

Orange County Ground Water Replenishment System

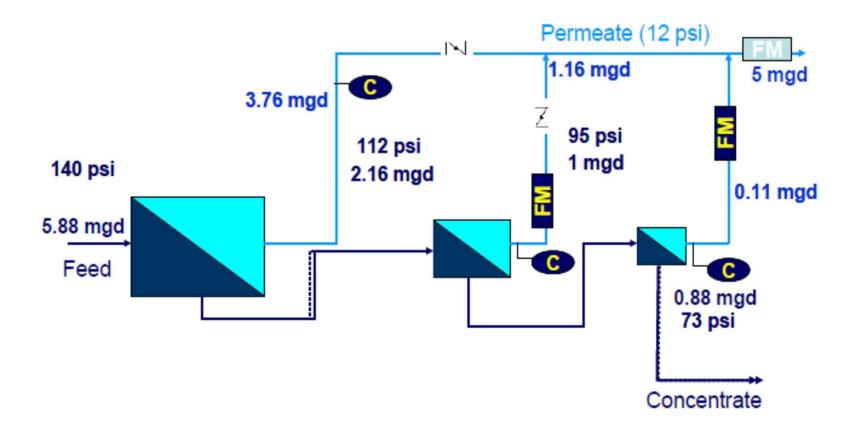
Microfiltration System

- ► 144 MGD Evoqua CS Microfiltration System
- Tiny, straw like hollow fiber polypropylene membrane
- Removes bacteria, protozoa, and suspended solids
- ▶ 0.2 micron pore size
- Backwash every 22min, CIP every 21 days (no maintenance washes)

Reverse Osmosis System

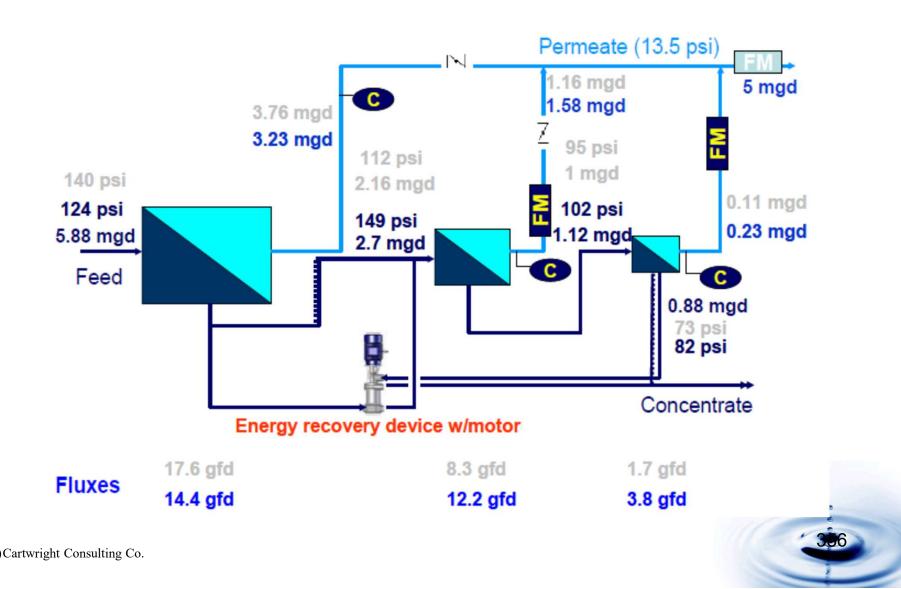
- ▶ 100 MGD Reverse Osmosis System
- ▶ 3 stage: 78-48-24 array
- 21, 5 mgd units, 12 gfd flux
- Hydranautics ESPA-2, CSM FLR and Dow XFRLE Membranes
- Recovery Rate: 85%
- Removes dissolved minerals, viruses, and organic compounds (incl. CECs)
- Pressure range:150 220 psi

Advanced Oxidation Disinfection



- 100 MGD Trojan UVPhox System
- Low Pressure High Output lamp system
- Destroys trace organics
- Uses Hydrogen 3 mg/L Peroxide to create an Advanced Oxidation Process
- 13, 8.75 mgd trains (1 acts as standby)
- 6 reactors per train housed in 3 vessels
- 432 lamps per train (5616 total lamps)

Schematic of Existing RO Units without ERD



Fluxes 17.6 gfd 8.3 gfd 1.2 gfd

Schematic of New RO Units with ERD

Project Funding and Timing

G W R S

GROUNDWATER REPLENISHMENT SYSTEM

- Capital Cost: approximately \$481 million
 - Split equally between OCWD and OCSD
- Expandable to 130,000 afy (438,500 m³/day)
- Operational since January 2008

Food Processing Wastewater Recovery & Reuse

Background

Bakery Wastewater → 15,000 gpd

BOD \longrightarrow 50,000 mg/L

TSS \longrightarrow 5,000 mg/L

POTW Limits: 250 mg/L BOD

250 mg/L TSS

Hauling/Treatment Charges →\$50,000/month

Conceptual Design

Prescreening — large suspended solids

Microfiltration — almost all suspended solids

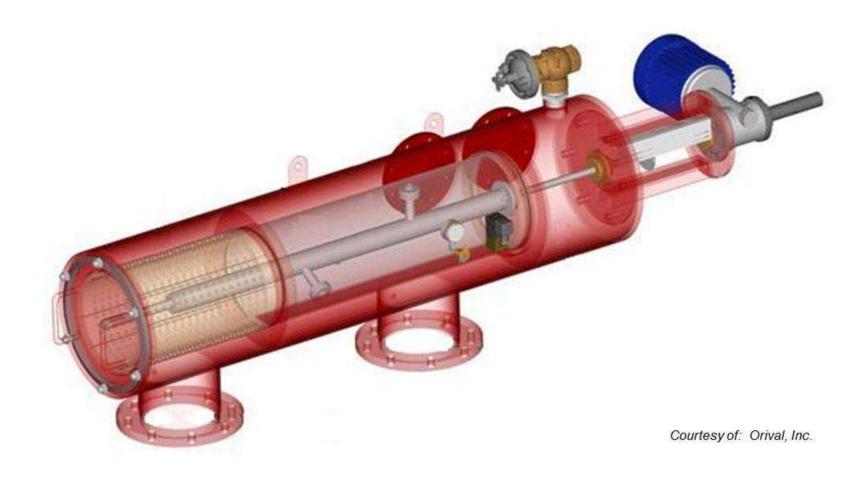
Reverse osmosis — polish for discharge or reuse

Evaporation — concentrate disposal

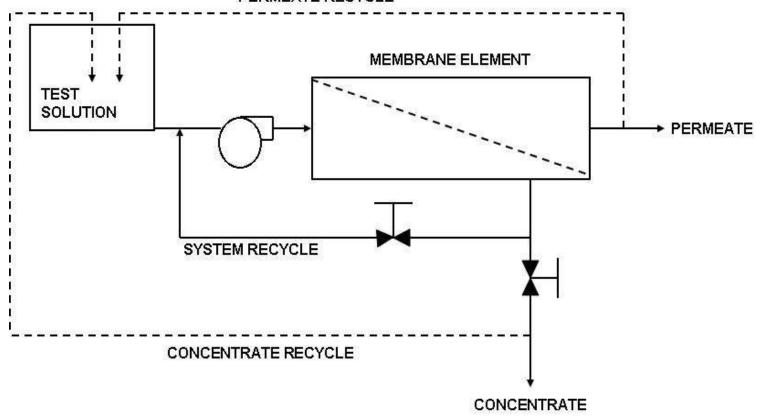
Prescreen Testing

Vibrating screen vs. automatic backwashing filter

100µ automatic backwashing continuous filter selected

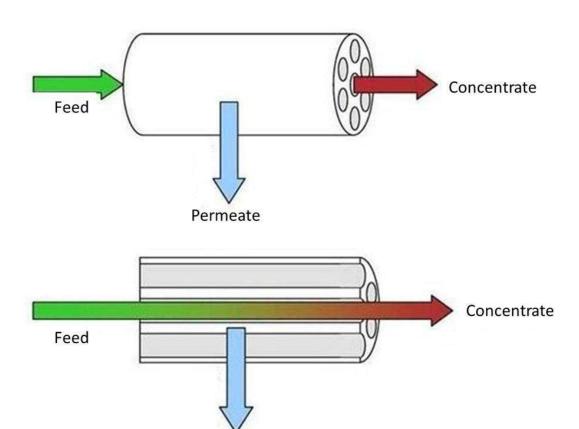

Prescreen Testing

Collected filtrate Observed settled solids


Continuous Filter

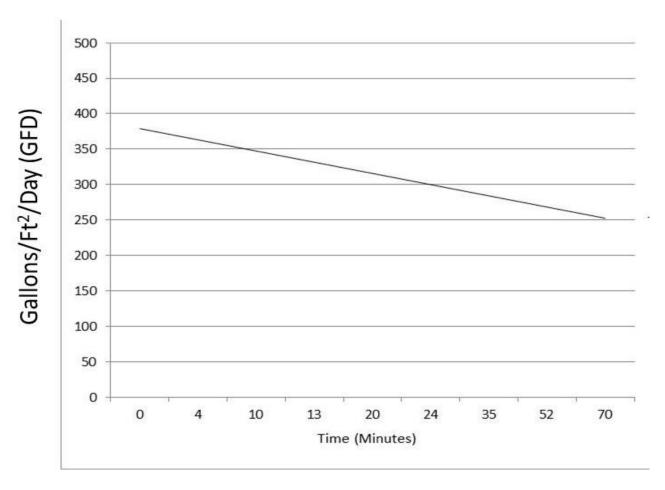
Microfiltration Testing

PERMEATE RECYCLE


Ceramic MF Membrane

Silicon Carbide 0.05µ Pore Size

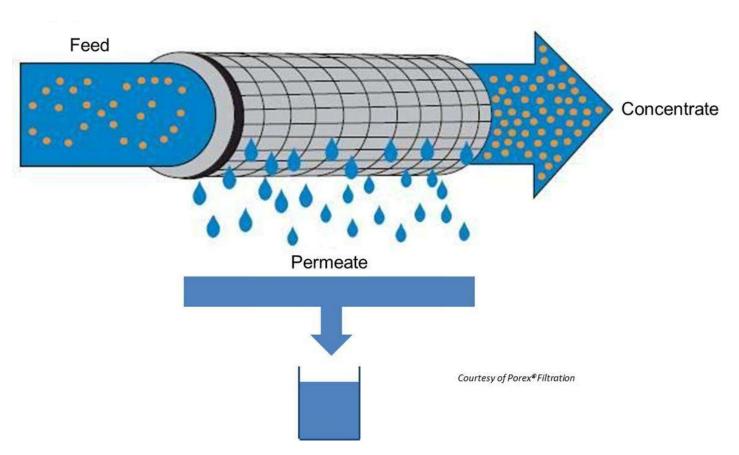
Ceramic MF Membrane



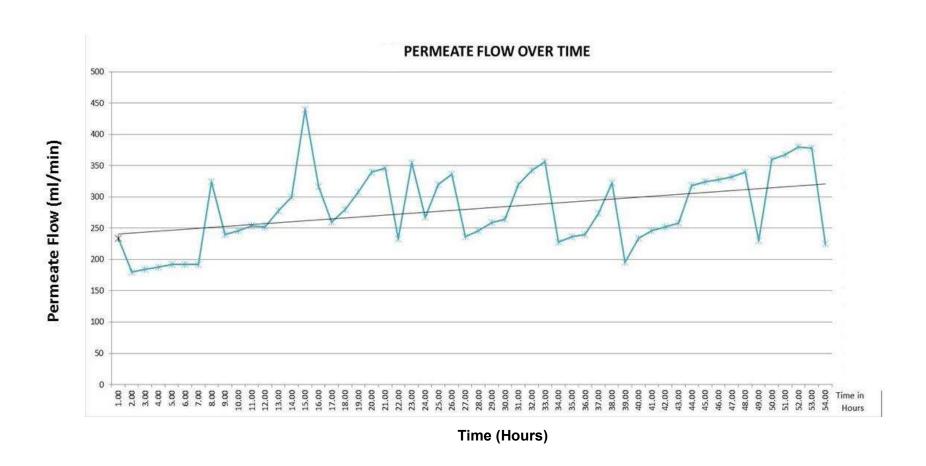
Permeate

Permeate Rate

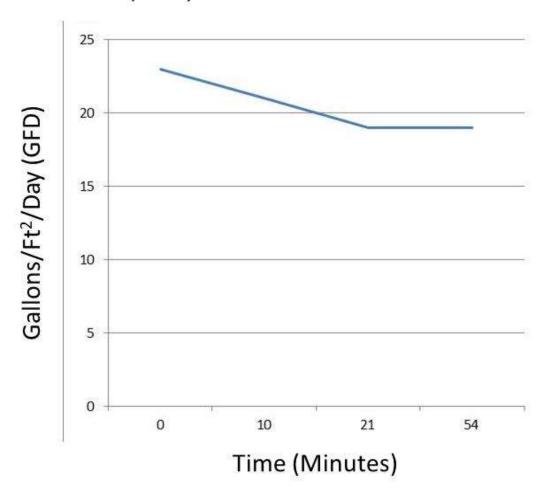
0.05μ Ceramic Membrane on Filtered Effluent


Polymeric MF Membrane

PVDF Material 0.05µ Pore Size



Polymeric MF Tubular Membrane

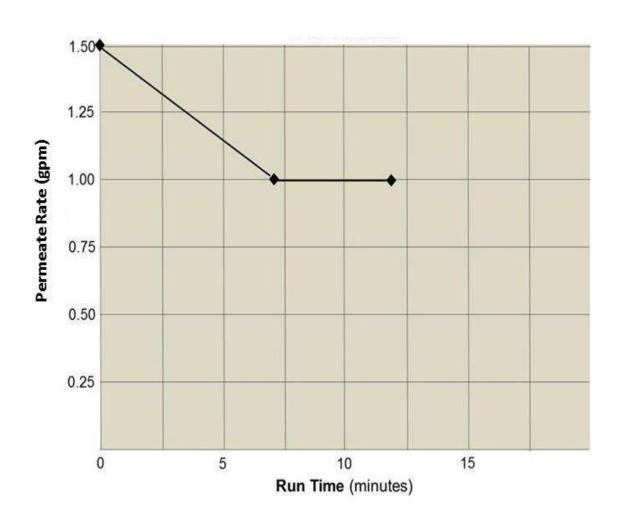

Permeate Flow

Flux Rate

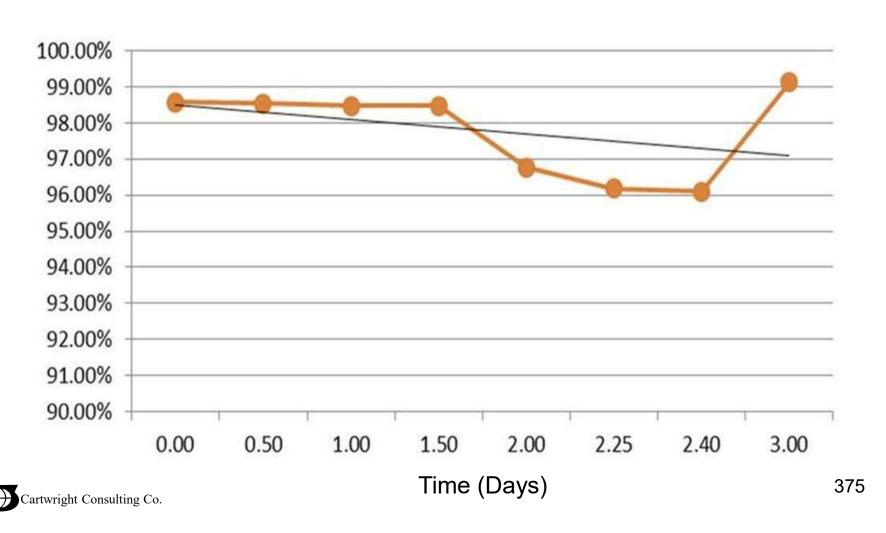
0.05μ Polymeric Membrane on Filtered Effluent

Applications Testing Results

- Continuous Automatic Backwashing Filter
- Polymeric MF Tubular Membrane



Polish with RO Standard Thin Film Membrane

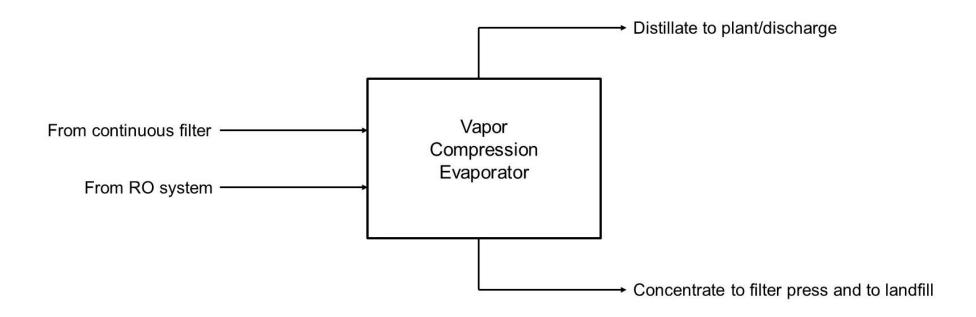


RO Treatment of MF Permeate

Percent Rejection – RO Unit

Concentrate Treatment

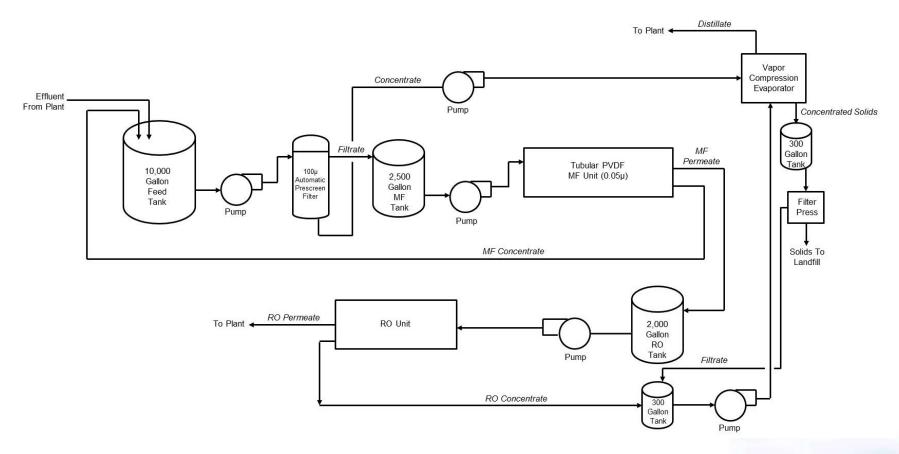
Prescreen filter solids to Vapor Compression Evaporator


MF concentrate back to feed tank

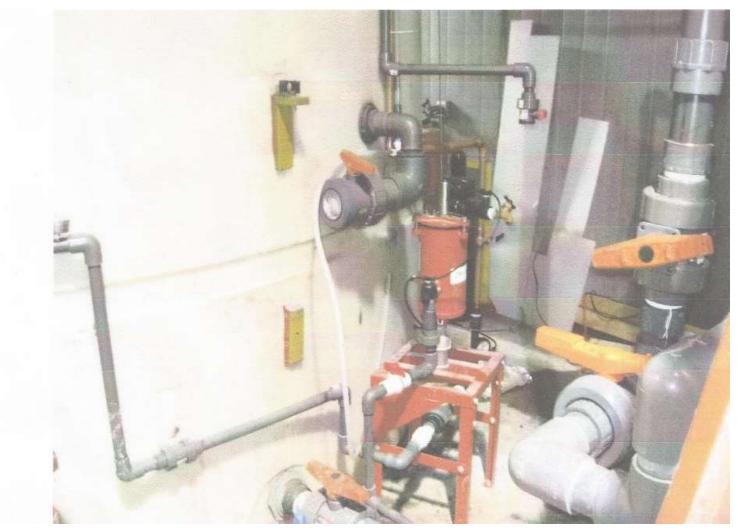
RO concentrate to Vapor Compression Evaporator

Vapor Compression Evaporator

Results


	Plant Effluent	MF Permeate	RO Permeate	Distillate
TDS (mg/L)	2100	2100	240	40
TSS (mg/L)	450	110	ND	ND
BOD (mg/L)	3000	1500	100	ND

ND = Non Detectable



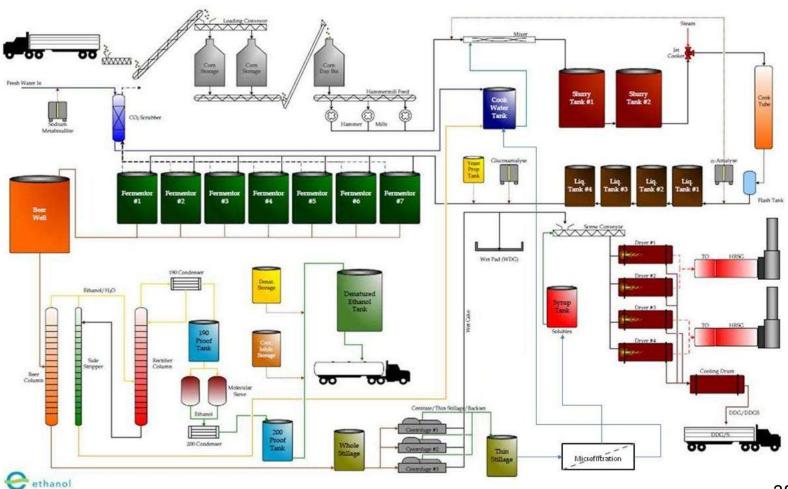
Total Treatment System

Prescreen Filter

MF Unit

Overview of System

RO Unit



Ethanol Plant Thin Stillage Treatment

Total Treatment System

Contact Information

Peter S. Cartwright, PE

pscartwright@msn.com

www.cartwright-consulting.com

1/952-854-4911

