Wastewater Treatment

By Samuel Lam

What is wastewater treatment

- Usually refer to sewage treatment, or domestic wastewater treatment
- process of removing contaminants from wastewater, both runoff and domestic

Goals

- To produce waste stream (effluent)
- To produce solid waste (sludge)
- To discharge or reuse them back into the environment

Where does wastewater come from?

- Residences (kitchen, bathroom)
- Commercial institution
- Industrial institution (usually require specialized treatment process)

How can it be treated?

 collected and transported via a network of pipes and pump stations to a municipal treatment plant

3 stages of water treatment

Primary

solids are separated

Secondary

- dissolved biological matter is converted into a solid mass by using water-borne bacteria
- 95% of the suspended molecules should be removed

Tertiary

 biological solids are neutralized then disposed, and treated water may be disinfected chemically or physically

Types of treatment

- Mechanical treatment
 - Influx (Influent)
 - Removal of large objects
 - Removal of sand and grit
 - Primary Sedimentation
- Biological treatment
 - Trickling bed filter
 - Activated sludge
- Chemical treatment
 - Disinfection

Preliminary treatment

- Remove large objects
- Ex: sticks, rags, toilet paper, tampons
- Raked screen
- Clog equipment in sewage treatment plant

Treatment stages - Primary treatment

- typical materials that are removed during primary treatment include
 - fats, oils, and greases (aka FOG)
 - sand, gravels and rocks (aka grit)
 - larger settleable solids including human waste, and
 - floating materials

Methods used in primary treatment

- Sand catcher
 - Remove sand and grit
 - Control wastewater velocity
 - Sand grit and stone settle
 - Keep suspended organic matter in water
 - Damage equipments in the remaining treatment stage
 - Landfill

Primary Sedimentation Tank

- Remove grease, oil
- Fecal solid settle,
 floating material rise to
 the surface
- Produce a
 homologous liquid for
 later biological
 treatment
- Fecal sludge are pumped to sludge treatment plant

Treatment stages - Secondary treatment

- Degrade biological content (dissolved organic matter) of the sewage
 - Ex: human waste, food waste, soaps, detergent
- Added bacteria and protozoa into sewage
- 3 different approaches
 - Fixed film system
 - Suspended film system
 - Lagoon system

Three approaches

- Fixed Film Systems
 - grow microorganisms on substrates such as rocks, sand or plastic
 - wastewater is spread over the substrate
 - Ex: Trickling filters, rotating biological contactors

Trickling filters bed

- Spread wastewater over microorganism
- made of coke (carbonised coal), limestone chips or specially fabricated plastic media
- Optimize their thickness by insect or worm grazing

Suspended Film Systems

- stir and suspend microorganisms in wastewater
- settled out as a sludge
- pumped back into the incoming wastewater
- Ex: Activated sludge, extended aeration

Activated sludge

- mixed community of microorganisms
- Both aerobic and anaerobic bacteria may exist
- Biological floc is formed

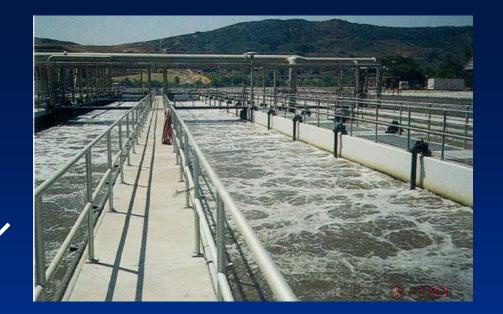
5 physical components of activated sludge process

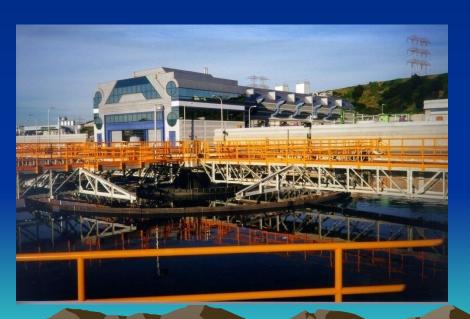
- aeration tank
 - oxygen is introduced into the system



aeration source

- ensure that adequate oxygen is fed into the tank
- provided pure oxygen or compressed air




- secondary clarifiers
 - activated-sludge solids separate from the surrounding wastewater

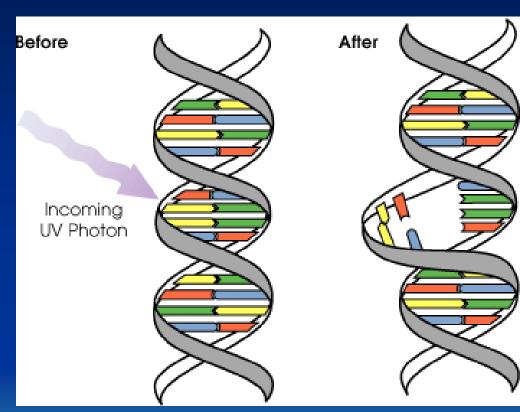
- Activated sludge outflow line
 - Pump activated sludge back to the aeration tank
- Effluent outflow line
 - discharged effluent into bay or tertiary treatment plant

Lagoon Systems

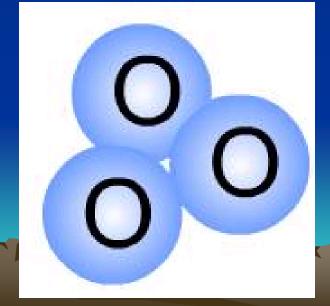
- hold the waste-water for several months
- natural degradation of sewage
- Usually reeds are preferred

Treatment stages – Tertiary treatment

- remove disease-causing organisms from wastewater
- 3 different disinfection process
 - Chlorination
 - UV light radiation
 - Ozonation


Chlorination

- Most common
- Advantages: low cost & effective
- Disadvantages: chlorine residue could be harmful to environment


UV light radiation

- Damage the genetic structure of bacteria, viruses and other pathogens.
- Advantages: no chemicals are used
- water taste more natural
- Disadvantages: high maintenance of the UVlamp

Ozonation

- Oxidized most pathogenic microorganisms
- Advantages: safer than chlorination fewer disinfection by-product
- Disadvantage: high cost

What can effluent use for?

- discharged into a stream, river, bay, lagoon or wetland
- used for the irrigation of a golf course, green way or park
- If it's sufficiently clean, it can be used for groundwater recharge

Advanced Treatment

- Nitrogen removal
 - Ammonia (NH₃) → nitrite (NO₂⁻)→ nitrate (NO₃⁻)
- Phosphorous removal
 - Precipitation with iron or aluminums salt
- Lead to eutrophication
- May cause algae bloom

Sludge treatment

- Primary sludge usually have strong odors
- Secondary sludge have high concentration of microorganism
- Goals of treatments are:
 - Reduce odors
 - Remove water reduce volume
 - Decompose organic matter

- Untreated sludge are about 97 percent water
- Settling can reduce about 92 to 96 percent of water
- dried sludge is called a sludge cake

3 different sludge treatments

- Aerobic digestion
- Anaerobic digestion
- composting

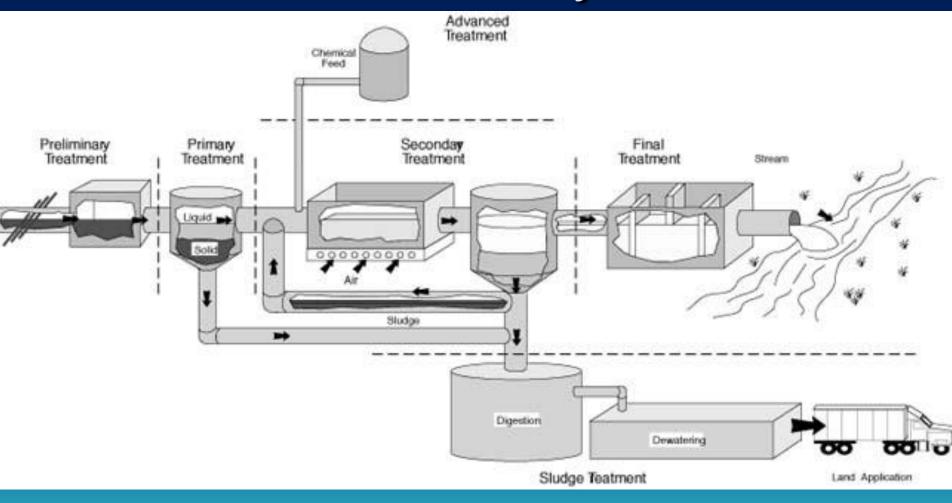
Aerobic digestion

- Bacterial process
- Need oxygen
- Consume organic matter
- Convert into carbon dioxide (CO₂)

Anaerobic digestion

- Bacterial process
- Do not require oxygen
- Consume organic matter
- Produce biogas, which can be used in generators for electricity

Composting


- aerobic process
- requires the correct mix of carbon, nitrogen, oxygen and water with sludge
- Generate large amount of heat

Sludge disposal

- Superheat sludge and convert into small granules that are rich in nitrogen
 - Sell it to local farmer as fertilizer
- Spread sludge cake on the field
- Save landfill space

Summary

Questions

