

INTRODUCTION

- Sedimentation, coagulation and filtration → suspended solids
- Chemical precipitation: The removal of dissolved objectionable substances from water by the addition of some chemicals to convert them into insoluble substances
- Softening is the removal of hardness from water.
- Measurements of hardness are given in terms of the calcium carbonate equivalent.

DEGREE OF HARDNESS

Mg/L as CaCO ₃	Degree of hardness
0-75	Soft
75-150	Moderately hard
150-300	Hard
> 300	Very hard

- Water softening is needed when hardness is above 150-200 mg/L;
- Hardness 50-80 is acceptable in treated water.

Types of Hardness

Carbonate hardness compounds (temporary hardness)	Non-carbonate hardness compounds (permanent hardness)
Calcium carbonate (CaCO ₃)	Calcium sulfate (CaSO ₄)
Magnesium carbonate (MgCO ₃)	Magnesium sulfate (MgSO ₄)
Calcium bicarbonate (Ca(HCO ₃) ₂)	Calcium chloride (CaCl ₂)
Magnesium bicarbonate (Mg(HCO ₃) ₂)	Magnesium chloride (MgCl ₂)
Calcium hydroxide (Ca(OH) ₂)	
Magnesium hydroxide (Mg(OH) ₂)	

TOTAL HARDNESS

- Total Hardness (TH) = [Ca²⁺] + [Mg²⁺]as mg/L of CaCO₃
- Total Hardness (as CaCO₃) = (eq/L of cation charge) x
 (50g CaCO₃/Charge eq) x 1000mg/g
- TH = CH +NCH

SOFTENING METHODS

- Boiling
 - Boiling reduces only calcium carbonate hardness but not noncarbonate hardness.
 - $Ca(HCO_3)_2$ \longrightarrow $CaCO_3 + H_2O + CO_2$
- Lime treatment
- Lime-soda process
- Ion-exchange method

SOFTENING CHEMISTRY

- $Ca_2^+ + CO_3^{2-} \rightleftharpoons CaCO_3$ (s) \rightarrow pH must be raised to 10.3
- Mg₂⁺ + 2OH⁻ = Mg(OH)₂ (s) → pH must be raised to 11
- We have to provide CO₃²⁺ if no HCO₃⁻ is present.
- We increase conc. Of CO₃²-/OH⁻ by addition of chemicals, and derive the reactions to the right.
- $HCO_3^- + OH^- = CO_3^{2-} + H_2^0$
- Source of OH⁻→CaO + H₂O === Ca(OH)₂ + heat
- When carbonate ions must be provided we used soda ash (Na₂CO₃)

LIME TREATMENT

- Addition of lime to hardwater converts soluble bicarbonate into insoluble CaCO_{3.}
- If CO₂ is present in water, some amount of lime is required to neutralize it.
- CO_2 : $CO_2 + Ca(OH)_2 \leftrightarrow CaCO_3 \downarrow + H_2O$
- Calcium carbonate hardness:

$$Ca(HCO_3)_2 + Ca(OH)_2 \leftrightarrow 2 CaCO_3 \downarrow + 2 H_2O$$

Magnesium carbonate hardness:

$$Mg(HCO_3)_2 + Ca(OH)_2 \leftrightarrow CaCO_3 \downarrow + MgCO_3 + 2 H_2O$$

Excess lime treatment:

$$MgCO_3 + Ca(OH)_2 \leftrightarrow Mg(OH)_2 \downarrow + CaCO_3 \downarrow$$

Noncarbonate hardness:

$$MgSO_4 + Ca(OH)_2 \leftrightarrow Mg(OH)_2 \downarrow + CaSO_4$$

 $MgCl_2 + Ca(OH)_2 \leftrightarrow Mg(OH)_2 \downarrow + CaCl_2$

PROCESS LIMITATIONS

- Lime-soda softening cannot produce a water completely free of hardness because of
 - the solubility of CaCO₃ and Mg(OH)₂
 - The physical limitation of mixing and contact
 - The lack of sufficient time for reactions to go completion.
- Thus,
 - Min Ca hardness = 30 mg/l as CaCO₃
 - Min Mg Hardness = 10 mg/l as CaCO₃
 - Our goal is from 75 to 120 mg/L as CaCO₃
 - Add min. excess lime of 20 mg/L as CaCO₃
 - Max Mg = 40 mg/L as CaCO₃

PROCESS LIMITATIONS

- Excess lime needed for Mg to be removed
 - < 20 mg/L excess lime = 20 mg/L as CaCO3
 - From 20 to 40 mg/L = equal to Mg to be removed
 - >40 = 40 mg/L as CaCO3

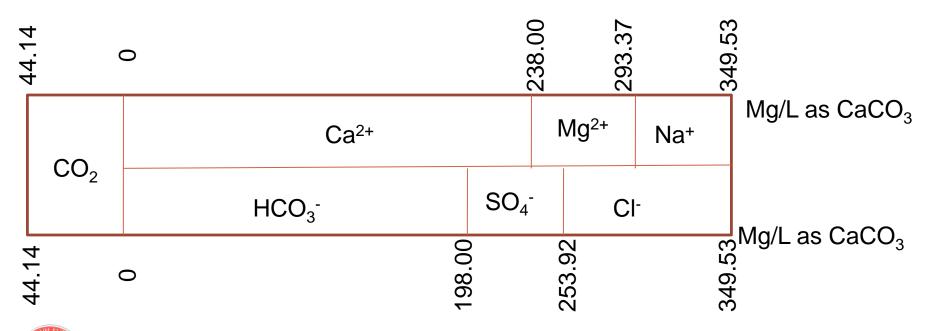
Chemical addition	Reason
Lime = CO ₂	Destroy H ₂ CO ₃
Lime = HCO ₃ -	Raise pH; convert HCO ₃ - to CO ₃ 2-
Lime = Mg^{2+} to be removed	Raise pH; precipitate Mg(OH) ₂
Lime = required excess	Derive reaction
Soda = noncarbonate hardness to be removed	Provide CO ₃ ²⁻

EXAMPLE

• From the water analysis presented below, determine the amount of line and soda (in mg/L as CaCO₃) necessary to soften the water to 80.00 mg/L hardness as CaCO₃.

Water composition (mg/L)			
Ca ²⁺ : 95.20	CO ₂ : 19.36	HCO ₃ -: 241.46	
Mg ²⁺ : 13.44		SO ₄ ²⁻ : 53.77	
Na+: 25.76		Cl ⁻ : 67.81	

SOLUTION


First convert the elements and compounds to CaCO₃ equivalents.

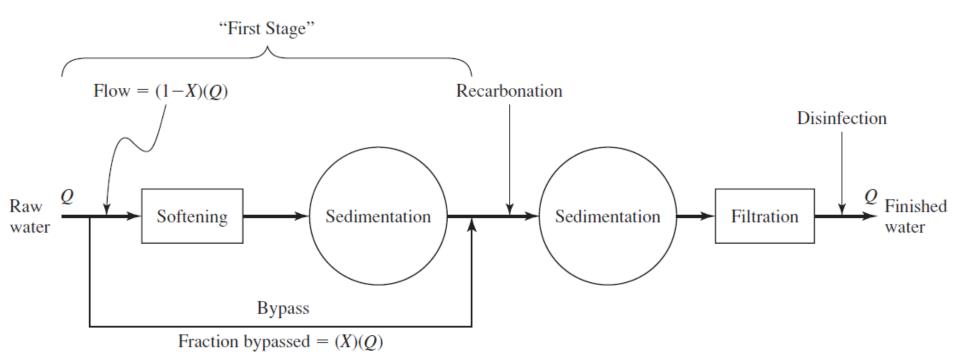
lon	mg/L as ion	EW CaCO ₃ /EW ion	mg/L as CaCO₃
Ca ²⁺ :	95.20	2.50	238.00
Mg ²⁺ :	13.44	4.12	55.37
Na+:	25.76	2.18	56.16
HCO ₃ -:	241.46	0.820	198.00
SO ₄ ²⁻ :	53.77	1.04	55.92
Cl-:	67.81	1.41	95.61
CO ₂ :	19.36	2.28	44.14

SOLUTION...

Draw a bar chart

SOLUTION...

- From the bar chart we notice that
- Total hardness (TH) = 293.37 mg/L
- The carbonate hardness (CH) = 198.00 mg/L
- The noncarbonate hardness (NCH) = TH CH
- NCH = 293.37 198.00 = 95.37 mg/L


SOLUTION...

Chemical addition	Dose (mg/L as CaCO3)
Lime = CO ₂	44.14
$Lime = HCO_3^-$	198.00
Lime = $Mg^{2+} - 40 = 55.37 - 40$	15.37
Lime = excess	20
Total lime required	277.51

- NCH needed to be removed
 - NCH_{left} = Final hardness (80.00 mg/L) CH_{left} due limitations (40.00 mg/L):
 - $NCH_f = 80.00 40.00 \text{ mg/L}$
 - Thus, 40.00 mg/L may be left
- $NCH_{removed} = NCH_{initial} NCH_{left}$
 - $NCH_R = 95.37 40.00 = 55.37 \text{ mg/L}$
 - Thus, soda to be added is 55.37 mg/L as CaCO3

SPLIT TREATMENT

OTHER TREATMENT METHODS

- Ion exchange
- Fluoridation
- Iron & Manganese removal
- Activated Carbon Adsorption
- Air striping
- Dissolved air floatation
- Aeration
- Reverse osmosis and Nanofiltration
- Membrane filtration

