Water amd wastewater treatemt Hydraulics

Hydraulics

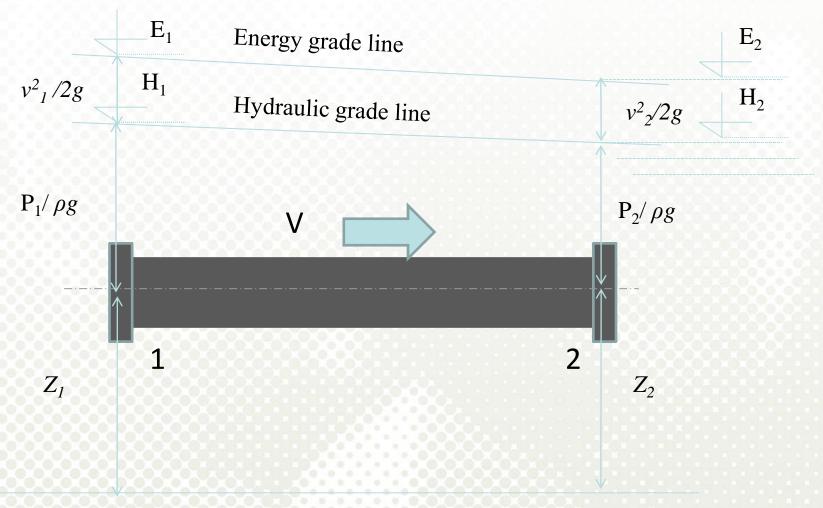
- Objective
 - Analysis of pipe flow system
 - Head losses in pipes
 - Flow measurements
 - Small diameter gravity and vaccum sewers
 - Introduction to tutorial questions

Pipe flow analysis

The Bernoulli's Equation

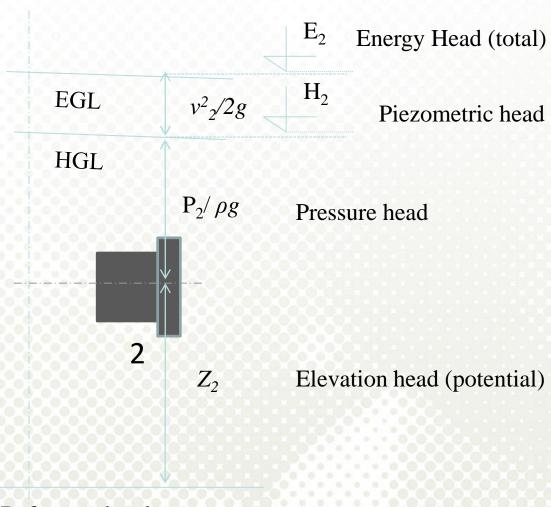
$$E_1 = E_2 \pm \Delta E$$

$$P_1/\rho g + v_1^2/2g + Z_1 = P_2/\rho g + v_2^2/2g + Z_2 \pm \Delta E$$

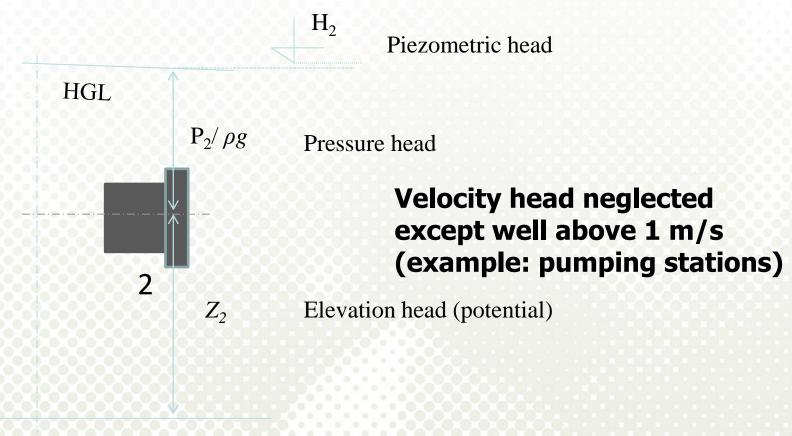


Bernoulli's equation

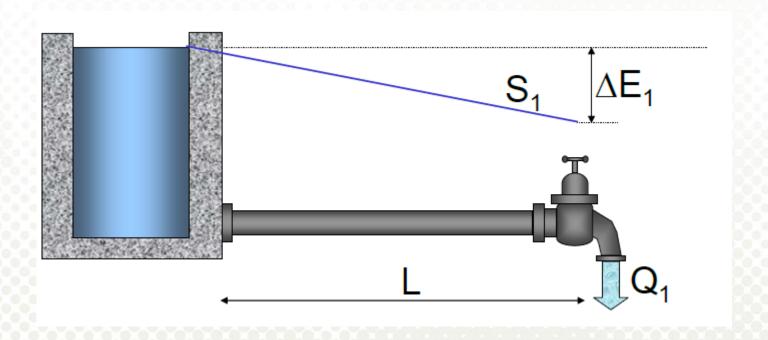
- BE is used in analysis of pipe flow
- It states that total energy remains constant along a stream line (That is total head is constant)
- It uses certain assumptions
 - Flow is steady
 - Fluid is incompressible
 - Valid at two points along a single streamline
- The hydraulic grade and the energy line are graphical presentations of the Bernoulli's equation (BE)



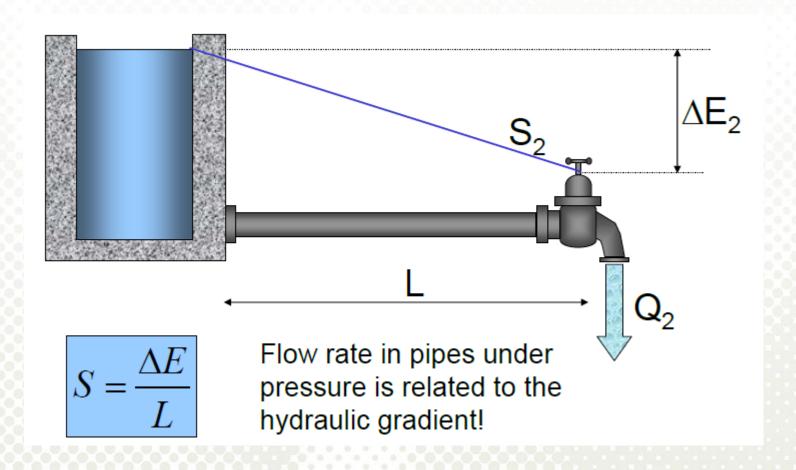
Energy and hydrulic grade line



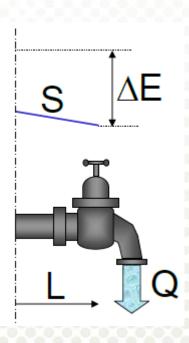
Energies, Head


Energies, Heads

Hydraulic gradient


Slope of the hydraulic grade line

Hydraulic gradient


Slope of the hydraulic grade line

Hydraulic losses

Friction, minor

ΔE results from a friction between the water and the pipe wall, and /or a turbulence developed by obstructions of the flow

$$\Delta E = h_f \, + h_m = \, \, R_f \, \, Q^{n \, (f)} \, \, + R_m \, Q^{n \, (m)} \, \,$$

 $h_{f,m}$ = Friction, Minor loss (respectively) R_f , m = Pipe resistance Q = Flow

 $n_{f, m} = exponents$

Friction Losses

Darcy- Weisbach

$$h_f = R_f Q^{n_f} = \frac{8\lambda L}{\prod^2 g D^5} Q^2 = \frac{\lambda L}{12.1 D^5} Q^2$$

- $-\lambda$ = Friction factor (-)
- L = Pipe length (m)
- D = Pipe diameter (m)
- $Q = Pipe flow (m^3/s)$
- Or propotional to the kinetic energy

$$h_f = \lambda \frac{L}{D} \frac{V^2}{2g}$$

Friction factor

Friction factor, λ is the most important parameter in the Darcy-weisbach equation

 Is the complex function of the Reynolds number and relative roughness

Reynolds Number

$$R_e = \frac{VD}{V}$$

V = Flow velocity (m/s)

D = Pipe diameter (m)

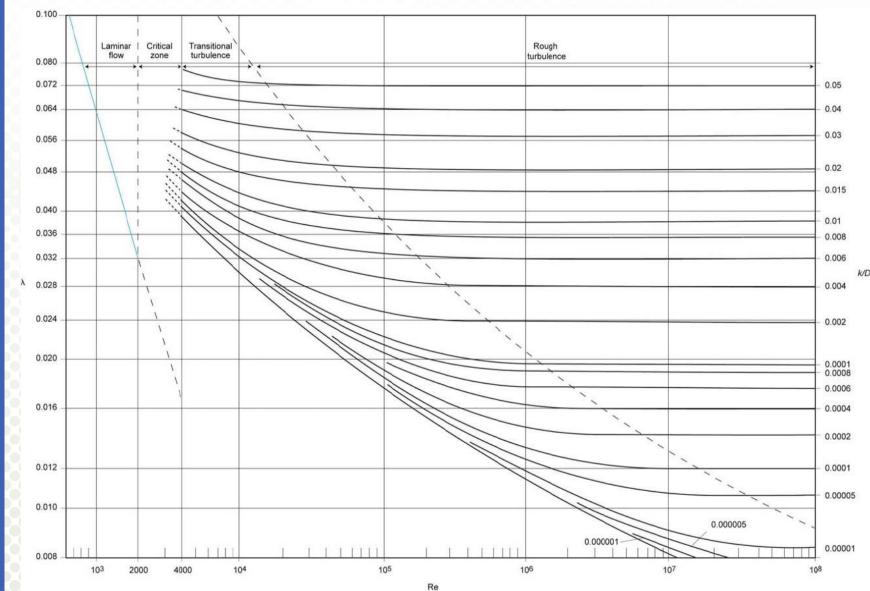
 ν = Kinematic viscosity (m²/s)

$$v = \frac{497 \times 10^{-6}}{(T + 42.5)^{1.5}}$$

Temperature, T(0 C)

Flow regime

- Laminar flow R_e falls under 2000
- Transitional zone R_e falls between 2000 and 4000
- Turbulent flow R_e above 4000
- For Laminar flow
- $\lambda = 64/R_e$



Choice for rough pipes

- There are empirical formula and diagrams to determine friction factor (f) depending on the pipe roughness and Reynolds Number
 - Moody diagram
 - Colebrook-white equations etc.

The Moody diagram

Absolute rougness

Pipe material	k (mm)
Asbestos cement Galvanised/Coated cast iron Uncoated cast iron Ductile iron Uncoated steel Coated steel Concrete Plastic, PVC, PE Glass fibre Brass, cooper, lead	0.015 - 0.03 0.03 - 0.15 0.15 - 0.6 0.03 - 0.06 0.015 - 0.06 0.03 - 0.15 0.06 - 1.5 0.02 - 0.05 0.06 0.003
Source: Wessex Water, 1993	

Friction losses

Hazen –Williams

$$h_f = R_f Q^{n_f} = \frac{10.68L}{C^{1.852} D^{4.87}} Q^{1.852}$$

Or

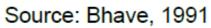
$$V = 0.85 \times C \times R^{0.63} \times S^{0.54}$$

L = Pipe length (m)

C = Hazen-Williams factor

D = Pipe diameter (m)

Q = Pipe flow (m³/s)


R = Hydrualic Radius (flow area/wetted perimeter)

S = Slope of energy grade line = h_f /L

Hazen-Williams Factors

Pipe material / D (mm)	75	150	300	600	1200
Uncoated cast iron	121	125	130	132	134
Coated cast iron	129	133	138	140	141
Uncoated steel	142	145	147	150	150
Coated steel	137	142	145	148	148
Galvanised iron	129	133	-	-	-
Uncoated asbestos cement	142	145	147	150	-
Coated asbestos cement	147	149	150	152	-
Concrete, min. values	69	79	84	90	95
Concrete, max. values	129	133	138	140	141
Prestressed concrete	-	-	147	150	150
PVC, brass, cooper, lead	147	149	150	152	153
Wavy PVC	142	145	147	150	150
Bitumen/cement lined	147	149	150	152	153

Friction losses

Manning

$$h_f = R_f Q^{n_f} = \frac{10.29n^2 L}{D^{16/3}} Q^2$$

or

$$V = \frac{1}{n} \times R^{2/3} \times S^{1/2}$$

L = Pipe length (m)

 $n = mannings factor (m^{-1/3} s)$

D = Pipe diameter (m)

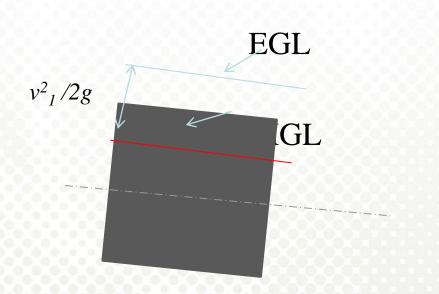
 $Q = Pipe flow (m^3/s)$

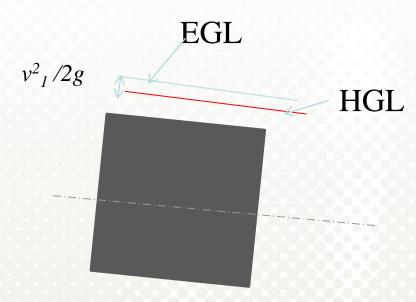
R = Hydrualic Radius (flow area/wetted perimeter)

S = Slope of energy grade line = h_f /L

Manning factor

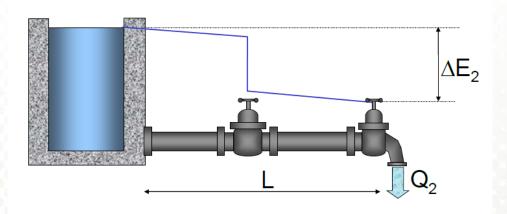
Pipe material	N (m ^{-1/3} s)
PVC, brass, lead, copper, glass fibre Prestressed concrete Concrete Welded steel Coated cast iron Uncoated cast iron Galvanised iron	0.008 - 0.011 0.009 - 0.012 0.010 - 0.017 0.012 - 0.013 0.012 - 0.014 0.013 - 0.015 0.015 - 0.017
Source: Bhave, 1991	




The best formula?

- Darcy-weisbach the most accurate
- Hazen-williams- (straight forward and simpler (friction coefficient not function of diameter or velocity), suitable for smooth pipes not attacked by corrosion)
- Mannings- straight forward, suitable for rough pipes, commonly applied for open channel flows

Difference between pressure flow and open channel flow



Open channel flow (in large gravity sewer)

Pressure flow

Minor losses

Given by $h_f = k V^2 / 2g$ K determined experimentally for various fittings

Values of K for various fittings:

Valve (fully open)
$$\longrightarrow$$
 2
Tee \longrightarrow 0.2 - 2.0
Bend \longrightarrow 1.2

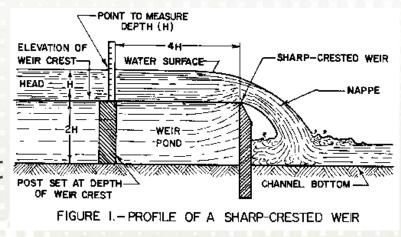
Flow measurements in pipes

Orifice plates

Upstream pressure tap P_1 P_2 $\Delta P = P_1 - P_2$ Downstream pressure sensor P_1 P_2 Downstream pressure sensor P_1 P_2 $\Delta P = P_1 - P_2$ Orifice Plate

$$Q = CA_2 \left(2\frac{P_2 - P_1}{\rho}\right)^{0.5}$$

Where C = discharge coefficient

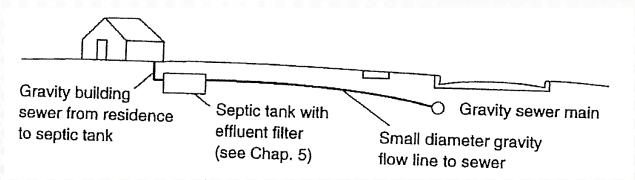


Flow measurements in open channel flow

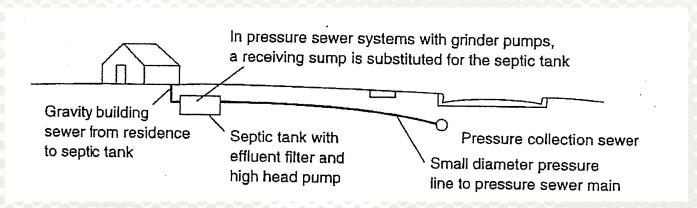
Sharp crested weir

$$Q = \frac{2}{3} C_d L (2g)^{0.5} H^{1.5}$$

- L = Length of weir, m
- C_d = discharge coefficient

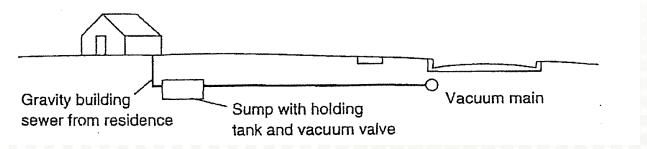

Small diameter sewer collection system

- Transport sewage to treatment or disposal point
- Size and length of sewer depends upon the type of sewerage system (centralised or decentralised)
- Need sufficient velocity to transport sewage



Small diameter sewer network

Septic tank effluent gravity (STEG)


 Septic tank effluent pump (STEP) and pressure sewer with grinder pumps

Small diameter sewer network

Vacuum sewer

Friction losses

Hazen –Williams formula based on actual flow area- so inside pipe diameter is used.

Hazen -Williams

$$h_f = R_f Q^{n_f} = \frac{10.68L}{C^{1.852} D^{4.87}} Q^{1.852}$$

Or

$$V = 0.85 \times C \times R^{0.63} \times S^{0.54}$$

L = Pipe length (m)

C = Hazen-Williams factor

D = Pipe diameter (m)

Q = Pipe flow (m³/s)

R = Hydrualic Radius (flow area/wetted perimeter)

S = Slope of energy grade line = h_f /L

Design and layout of collection system

- Information required
 - -Topography of the area
 - -Depth of soil
 - -Depth of water table
 - -Depth of freezing zone
 - -Amount (daily minimum, average and peak flow rates)
 - -Population growth rate

Excersise-Sewer collection system

- Prepare a profile
- Select a pipe size
- Calculate the velocity
- Calculate the pipe cross sectional area and determine the actual capacity
- Check for the surcharged condition

Friction Losses

Hazen -Williams

$$h_f = R_f Q^{n_f} = \frac{10.68L}{C^{1.852} D^{4.87}} Q^{1.852}$$

Or

$$V = 0.85 \times C \times R^{0.63} \times S^{0.54}$$

L = Pipe length (m)

C = Hazen-Williams factor

D = Pipe diameter (m)

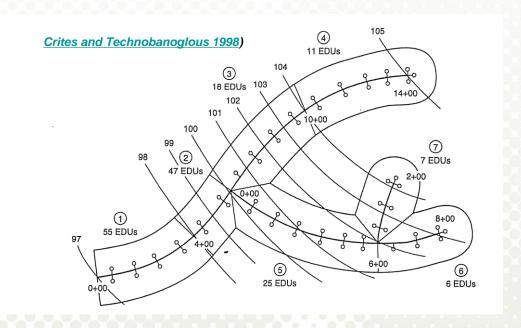
 $Q = Pipe flow (m^3/s)$

R = Hydrualic Radius (flow area/wetted perimeter)

S = Slope of energy grade line = h_f /L

Pipe selection

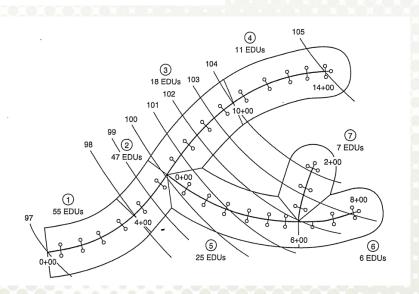
TABLE 6-4
Nominal pipe sizes with outside and inside diameters for PVC pipe


Nominal pipe	Outside	Inside diameter, in				
size, in	diameter, in	Schedule 40	Schedule 80	Class 200		
1/2	0.840	0.622	0.546			
1 2 3 4	1.050	0.824	0.742	0.930		
1	1.315	1.049	0.957	1.189		
1 ½	1.900	1.610	1.500	1.720		
2	2.375	2.067	1.939	2.149		
$2\frac{1}{2}$	2.875	2.469	2.323	2.601		
3	3.500	3.068	2.900	3.166		
4	4.500	4.026	3.826	4.072		
6	6.625	6.065	5.761	5.993		
8	8.625	7.981	7.625	7.805		
10	10.750	10.020	9.564	9.728		
12	12.750	11.938	11.376	11.538		

Crites and Technobanoglous 1998)

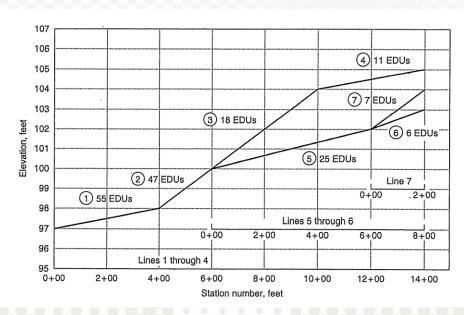
EXAMPLE 6-1. LAYOUT AND DESIGN OF STEG SEWER COLLECTION MAIN. Design a STEG sewer collection main to serve a small development of 55 EDUs (equivalent dwelling units), as shown in the plan view given below. Septic tank effluent will flow by gravity through the small-diameter gravity collection system. Assume the following conditions apply:

- 1. Design peak flowrate = (0.5 gal/EDU·min)(number of EDUs)
- 2. Pipeline material = Class 200 PVC pipe (see Tables 6-4 and 6-5)
- 3. Hazen-Williams coefficient = 150
- 4. Minimum nominal pipe size = 2 in

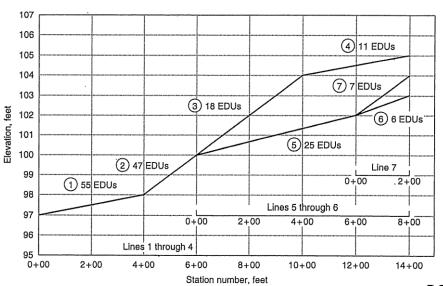


Design of STEP sewer


Design of STEP for a small community as shown in plan view below.

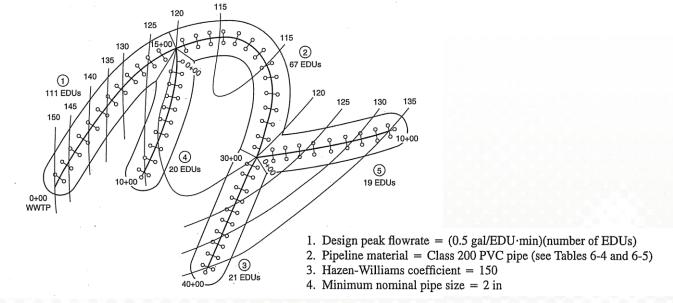

The informations given are:

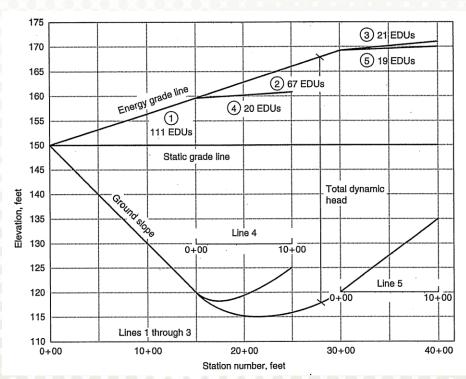
- 1. Design peak flowrate = (0.5 gal/EDU·min)(number of EDUs)
- 2. Pipeline material = Class 200 PVC pipe (see Tables 6-4 and 6-5)
- 3. Hazen-Williams coefficient = 150
- 4. Minimum nominal pipe size = 2 in



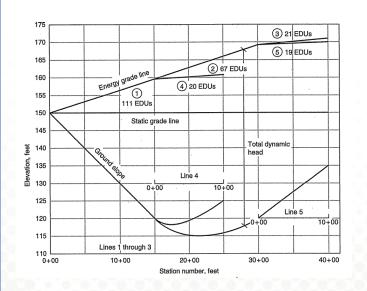
1.31English unit !!!!!!!

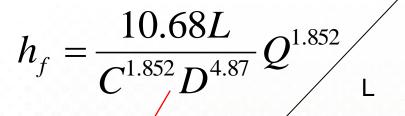
Hydraulic computations for a STEG sewer collection system


 $V = 0.85 \times C \times R^{0.63} \times S^{0.54}$


Design Upstream Downstream Pipe Cumulative flow, Upstream elevation, Downstream Length, elevation, number **EDUs** gal/min station station ft ft (1) (2)(3) (4) (5) (6) (7) (8) 55 27.5 4+00 0+0098 400 2 3 47 23.5 6+00 4+00 200 100 98 18 9.0 10+00 6+00 100 400 104 11 5.5 14+00 10+00400 105 104 12.5 12+00 6+00 600 102 100 6 6 3.0 8+00 6+00 200 103 102 7 3.5 2+00 0+00200 104 102

R = D/4


THE MERCHANIC										
Pipe number (1)	Elevation drop, ft (9)	Slope, ft/ft (10)	Nominal diameter, in (11)	Inside diameter, in (12)	Velocity, ft/s (13)	Cross- sectional area, in ² (14)	Pipe capacity, gal/min (15)	Ratio of design flow to pipe capacity (16)		
1	1.0	0.0025	3.0	3.166	1.40	7.87	34.4	0.80		
2	2.0	0.0100	2.0	2.149	2.32	3.63	26.3	0.89		
3	4.0	0.0100	2.0	2.149	2.32	3.63	26.3	0.34		
4	1.0	0.0025	2.0	2,149	1.10	3.63	12.4	0.44		
5	2.0	0.0033	2.0	2.149	1.28	3.63	14.5	0.86		
6	1.0	0.0050	2.0	2.149	1.60	3.63	18.1	0.17		
7	2.0	0.0100	2.0	2.149	2.32	3.63	26.3	0.13		



Slope should be 0.5 to 1.5 %

If too low -pipe is oversized

Hydraulic computations for a STEP pressure collection system

Pipe number (1)	Cumulative EDUs (2)	Design flow, gal/min (3)	Upstream station (4)	Downstream station (5)	Length, ft (6)	Nominal diameter, in (7)
1	111	55.5	15+00	0+00	1500	3.0
2	67	33.5	30+00	15+00	1500	2.5
3	21	10.5	40+00	30+00	1000	2.0
4	20	10.0	10+/00	0+00	1000	2.0
5	19	9.5	10+00	0+00	1000	2.0

Pipe number (1)	Inside diameter, in (8)	Slope of EGL, % (9)	Cross- sectional area, in ² (10)	Velocity, ft/s (11)	Headloss, ft (12)
1	3.166	0.61	7.87	2.26	9.1
2	2.601	0.62	5.31	2.02	9.4
3	2.149	0.18	3.63	0.93	1.8
4	2.149	0.17	3.63	0.88	1.7
5	2.149	0.15	3.63	0.84	1.5

Design flow/CA of pipe

EGL/100 *L

Plot EGL – begin from D/S

References

Water supply and Sewerage – Terence J McGhee Chapter 3 (Page 24 – 61) (IHNALibrary catlog No. 628.1 MCG)

Crites, R. and G. Technobanoglous (1998). <u>Small and</u> <u>decentralized wastewater management systems, McGraw-Hill.</u> (Chapter 6)

Advanced Water Distribution Modelling and Management by Haestad and et al. (Chapter 2.3, 2.4, 2.5, 2.6) (IHNALibrary catlog No. 628.1)

THANK YOU

