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 Many mechanistic and mathematical models have been proposed to describe reverse osmosis 
membranes.  Some of these descriptions rely on relatively simple concepts while others are far more 
complex and require sophisticated solution techniques.  Models that adequately describe the 
performance of RO membranes are very important since these are needed in the design of RO 
processes.  Models that predict separation characteristics also minimize the number of experiments 
that must be performed to describe a particular system.  Excellent reviews of membrane transport 
models and mechanisms include Jonsson (1980), Soltanieh and Gill (1981), Mazid (1984), Pusch 
(1986), Dickson (1988), Rautenbach and Albrecht (1989), and Bhattacharyya and Williams (1992c). 
 Reverse osmosis models can be divided into three types:  irreversible thermodynamics 
models (such as Kedem-Katchalsky and Spiegler-Kedem models); nonporous or homogeneous 
membrane models (such as the solution-diffusion, solution-diffusion-imperfection, and extended 
solution-diffusion models); and pore models (such as the finely-porous, preferential sorption-
capillary flow, and surface force-pore flow models).  Charged RO membranes theories can be used 
to describe nanofiltration membranes, which are often negatively charged; these models (such as 
Donnan exclusion and extended Nernst-Planck models) include electrostatic effects.  The transport 
models focus on the top thin skin of asymmetric membranes or the top thin skin layer of composite 
membranes since these determine fluxes and selectivities of most membranes (Bhattacharyya and 
Williams, 1992c).  Also, most of the membrane models assume equilibrium (or near equilibrium) or 
steady state conditions in the membrane. 
 A fundamental difference exists between the assumptions of the homogeneous and porous 
membrane models.  The homogeneous models assume that the membrane is nonporous; that is, 
transport takes place between the interstitial spaces of the polymer chains or polymer nodules, 
usually by diffusion.  The porous models assume that transport takes place through pores that run the 
length of the membrane barrier layer; as a result, transport can occur by both diffusion and 
convection through the pores.  While both conceptual models have had some success in predicting 
RO separations, the question of whether a RO membrane is truly homogeneous (no pores) or porous 
is still a point of debate.  No technique is currently available to definitively answer this question. 
 Some of the most important RO membrane transport theories and models are reviewed 
below.  Concentration polarization, the effects of RO process variables on membrane performance, 
and water-solute-membrane interactions are also discussed. 
 
Irreversible Thermodynamics Models 
 Some of the earliest RO membrane models were based on the principles of irreversible 
thermodynamics; Soltanieh and Gill (1981) and Baranowski (1991) provide excellent discussions of 
the development and applicability of these models.  Irreversible thermodynamics models assume the 
membrane is not far from equilibrium and so fluxes can be described by phenomenological 
relationships (Jonsson, 1980; Soltanieh and Gill, 1981; Dickson, 1988; van den Berg and Smolders, 
1992).  One of the early models was that derived by Kedem and Katchalsky (Kedem and 
Katchalsky, 1958; Jonsson, 1980; Soltanieh and Gill, 1981; Dickson, 1988; Bhattacharyya and 
Williams, 1992c): 
 
 ) - P( L = J pw πσ∆∆  Eqn. 1 
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of the phenomenological coefficients and )C( avgm  is the logarithmic mean solute concentration in 
the membrane1.  The reflection coefficient represents coupling of solute and solvent flux through the 
membrane.  Pusch (1977) derived an expression for solute rejection as 
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model is that the coefficients in Equations 1, 2, and 3 can be functions of concentration (Jonsson, 
1980; Soltanieh and Gill, 1981; Dickson, 1988). 
 To avoid concentration dependence of the transport parameters, Spiegler and Kedem (1966) 
defined local water (Pw) and solute (Ps) permeabilities and reflection coefficients and then 
represented the fluxes as 
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which can be integrated to (Spiegler and Kedem, 1966; Jonsson, 1980; Dickson, 1988) 
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The Spiegler-Kedem model has found wide use for the description and analysis of RO membrane 
separations. 
 While irreversible thermodynamics can describe RO membrane transport, a major 
disadvantage of these models is the treatment of the membrane as a "black box" (Dickson, 1988); 
that is, these models provide no insight into the transport mechanisms of the membrane.  As a result, 
irreversible thermodynamics models are not very useful for optimizing separations based on 
                     
1 Note here and in the other models discussed it is assumed that the bulk feed solution 
concentration is equal to the membrane wall solution concentration; while this is not always true 
these can usually be related with the appropriate concentration polarization expressions such as 
those discussed later. 
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membrane structure and properties.  These models also do not adequately describe water flux for 
some solute systems; in particular, some dilute organics (with 0 =  = PF ππ ) have substantially lower 
water fluxes than those described by Equation 1. 
 
Diffusion-Based Models 
Solution-Diffusion Model 
 The solution-diffusion (SD) model was proposed by Lonsdale et al. (1965); as its name 
implies, this model is based on diffusion of the solute and solvent through the membrane.  The 
model assumes that (Lonsdale et al., 1965; Soltanieh and Gill, 1981; Bhattacharyya and Williams, 
1992c):  (1) the RO membrane has a homogeneous, nonporous surface layer; (2) both the solute and 
solvent dissolve in this layer and then each diffuses across it; (3) the solute and solvent diffusion is 
uncoupled and due to its own chemical potential gradient across the membrane; (4) these gradients 
are the result of concentration and pressure differences across the membrane.  Differences in the 
solubilities (partition coefficients) and diffusivities of the solute and solvent in the membrane phase 
are extremely important in this model since these strongly influence fluxes through the membrane.  
The derivation of the SD model is given in Lonsdale et al. (1965) and Soltanieh and Gill (1981) and 
is summarized here. 
 A solution-diffusion type membrane is shown schematically in Figure 1.  The water transport 
across the membrane is only by diffusion and so can be expressed by Fick's law as 
 

 dz
dC D - = J wm

wmw  Eqn. 7 

 
where Cwm is the water concentration in the membrane and Dwm is the water diffusivity in the 
membrane.  Assuming the water-membrane solution obeys Henry's law, 
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and substituting Equation 8 in 7 results in 
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The membrane water chemical potential change is given by 
 
 P V + a  TR = wwgw ∆∆∆ lnµ  Eqn. 10 
 
 



A Review of Reverse Osmosis Theory 

Copyright © 2003 EET Corporation and Williams Engineering Services Company, Inc., Page 4 
All Rights Reserved. 

 
Figure 1.  Schematic of a Solution-Diffusion Type Membrane. 

 
 
where V w  is the partial molar volume of water.  Assuming  V w  does not vary significantly with 
pressure, the osmotic pressure is given by 
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which, when substituted in Equation 10, results in 
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Combining Equation 12 with Equation 9 gives an expression for water flux as 
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where A is termed the water permeability coefficient. 
 For the solute flux it is assumed that chemical potential difference due to pressure is 
negligible and so the driving force is almost entirely due to concentration differences. From Fick's 
law, the solute flux is 
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where Cm∆  is the solute concentration difference across the membrane and Dsm is the solute 
diffusion coefficient in the membrane.  The solute membrane concentration is related to the feed and 
permeate concentration by a partition coefficient assumed to be independent of concentration: 
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Substituting in the expression for the partition coefficient, the solute expression becomes 
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 Eqn. 16 

 
where B is referred to as the solute permeability coefficient.  Using the relations for solvent and 
solute flux, solute rejection for the solution-diffusion model can be expressed as 
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Equation 17 shows that as ∞→∆   P , 1  R → .  Comparison of the SD model Equations 13 and 16 
with Equations 1 and 2 of the Kedem-Katchalsky model shows that these are equivalent for a 
membrane with perfect solute rejection ( 1 = σ ). 
 The principle advantage of the SD model is that only two parameters are needed to 
characterize the membrane system.  As a result, it has been widely applied to both inorganic salt and 
organic solute systems.  However, Soltanieh and Gill (1981) indicated that the SD model is limited 
to membranes with low water content; they and Mazid (1984) also have pointed out that for many 
RO membranes and solutes, particularly organics, the SD model does not adequately describe water 
or solute flux.  They discuss possible causes for these deviations as suggested by other researchers, 
including imperfections in the membrane barrier layer, pore flow (convection effects), and solute-
solvent-membrane interactions. 
 
Solution-Diffusion-Imperfection Model 
 The solution-diffusion-imperfection model was an early modification of the solution-
diffusion model to include pore flow in addition to diffusion of solvent and solute through a 
membrane as the mechanisms of transport (Sherwood et al., 1967).  This model recognizes that there 
may be small imperfections or defects (pores) on the surface of membranes through which transport 
can occur. 
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 Total water flux through the membrane is expressed as (Sherwood et al., 1967; Soltanieh and 
Gill, 1981; Bhattacharyya and Williams, 1992c): 
 
 P K + J = P K + ) - P( K = N 2w21w ∆∆∆∆ π  Eqn. 18 
 
where K2 is a coupling coefficient describing pore flow.  The first term in Equation 18 accounts for 
diffusive flux (K1 is equivalent to a water permeability coefficient) while the second term is the pore 
flow contribution to the water flux.  The total solute flux is given by 
 
 P K + J = P K + )C - C( K = N 2s2PF3s ∆∆ . Eqn. 19 
 
The parameter K3 is a solute permeability coefficient while the second term in Equation 19 accounts 
for solute pore flow through the membrane.  Rejection for this model can be expressed as 
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While some researchers have shown that excellent fits of experimental data with the solution-
diffusion-imperfection model are possible, the model has two major disadvantages:  it contains three 
parameters that must be determined by nonlinear regression in order to characterize the membrane 
system; and the parameters describing the system are usually functions of both feed concentration 
and pressure (Soltanieh and Gill, 1981).  Also, some dilute organic systems ( 0 = π∆ ) have 
substantially lower water fluxes than those predicted by Equation 18. 
 
Extended Solution-Diffusion Model 
 Burghoff et al. (1980) recognized that the SD model does not explain the negative solute 
rejections found for some organics and so formulated the extended-solution-diffusion model.  They 
pointed out that the SD model does not take into account possible pressure dependence of the solute 
chemical potential which, while negligible for inorganic salt solutions, can be important for organic 
solutes (Burghoff et al., 1980; Pusch, 1986; Dickson, 1988).  Including the pressure dependent term, 
the chemical potential is given by 
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Using Equation 21, the solute flux can be written as 
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 Eqn. 22 

 
where Lsp represents the parameter responsible for solute transport due to the pressure difference 
across the membrane.  The rejection is given by 
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Comparing Equations 2, 19, and 22 it can be seen that these have the same general form; however, 
these were derived using fundamentally different principles. 
 Burghoff et al. (1980) found that the negative rejections of phenol by a cellulose acetate 
membrane were adequately described by the extended-solution-diffusion model.  However, this 
model has not been widely used for modelling RO membranes.  Also, it still does not address the 
substantial decreases in water flux found for some dilute organic systems. 
 
Pore Models 
Preferential Sorption-Capillary Flow Model 
 An early pore model was the preferential sorption-capillary flow (PSCF) model proposed by 
Sourirajan (1970); this model assumes that the mechanism of separation is determined by both 
surface phenomena and fluid transport through pores in the RO membrane.  In contrast to the SD 
model, the membrane is assumed to be microporous (Sourirajan, 1970; Sourirajan and Matsuura, 
1985).  The model states that the membrane barrier layer has chemical properties such that it has a 
preferential sorption for the solvent or preferential repulsion for the solutes of the feed solution.  As 
a result, a layer of almost pure solvent is preferentially sorbed on the surface and in the pores of the 
membrane.  Solvent transport occurs as solvent from this layer is forced through the membrane 
capillary pores under pressure. 
 The water flux according to this model is given by 
 
 )]}X( - )X([ - P{ A = N PFw ππ∆  Eqn. 24 
 
where A is the pure water permeability constant of the membrane and (X)π  represents the osmotic 
pressure of the feed or permeate side with solute mole fraction X.  The solute flux is expressed as 
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where KD is the distribution coefficient of the solute from the feed into the pore of the membrane and 
Dsp is the diffusivity of the solute in the membrane pore.  Solute rejection is given by 
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It should be noted that although the forms of Equations 13 and 24 and Equations 16 and 25 appear 
virtually identical, the conceptual meaning of the parameters is greatly different.  Sourirajan and 
Matsuura (1985) have utilized these equations to analyze transport for a large number of solutes and 
membranes.  However, as for the SD model, water flux drop caused by some dilute organics as well 
as rejection for some solutes are not described by these equations. 
 
Finely-Porous Model 
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 The finely-porous model was first proposed by Merten (1966) and later in a modified form 
by Jonnson and Boesen (1975).  This model assumes that transport of water takes place by viscous 
flow through uniform membrane pores and that transport of solute occurs by both diffusion and 
convection in these pores.  The derivation is summarized here. 
 For the finely-porous model, a balance of applied and frictional forces acting on solute in a 
membrane pore with length τδ  and radius Rp (see Figure 2) results in (Merten, 1966; Jonsson and 
Boesen, 1975; Soltanieh and Gill, 1981; Sourirajan and Matsuura, 1985): 
 
 )F + F( - = F smsws  Eqn. 27 
 
where Fs is the driving force for solute transport due to its chemical potential gradient, defined as 
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Fsw is the friction force between solute and water, 
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and Fsm is the friction force between solute and the membrane pore, 
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Using Equation 31, Equation 29 can be solved for the solute flux through a single pore as 
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Combining Equations 28 and 30 with Equation 27 and rearranging results in 
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and substituting Equation 33 in 32 and rearranging, 
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with boundary conditions 
 
 CK = (0)C FDpore  Eqn. 37 
 CK = )(C PDpore τδ  Eqn. 38 
 
and assuming b, KD, and Xsw are independent of solute concentration, Equation 34 can be integrated 
to 
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The friction coefficient Xsw can be defined as 
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b is given by 
 

 
D
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The parameter b is defined as the ratio of the frictional force acting on the solute moving in a 
membrane pore to the frictional force experienced by the solute in a free solution.  It can be 
estimated using the Ferry-Faxen equation or a Ferry-Faxen-type equation; these equations were 
developed by considering the friction experienced by a molecule moving through a narrow pore.  
Equation 39 can be rewritten in terms of rejection as 
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The viscous flow water flux through the membrane is determined by balancing the effective pressure 
driving force with the frictional force between the solute and pore wall; the water flux is given by 
(Jonsson and Boesen, 1975) 
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where ε  is the porosity of the membrane and Xsm represents the frictional force between the solute 
and the membrane. 
 Jonsson and Boesen (1975) and Soltanieh and Gill (1981) pointed out that the finely-porous 
model can provide valuable insight into parameters such as pore size, solute-membrane interaction 
(friction parameter), and solute distribution coefficient that affect solute transport.  Dickson (1988) 
indicated that the finely-porous model or modified finely-porous models (which contain different 
solute distribution coefficients on the feed and permeate side of the membrane) have been 
successfully used to predict solute separation.  However, for some solute systems such as dilute 
organics, Equation 43 does not adequately describe decreases in water flux compared to the pure 
water flux unless a correction is made in the pore size; it is usually necessary to reduce the pore size 
in order for the measured and predicted water flux to agree.  This disadvantage limits the finely-
porous models applicability for water flux prediction for these systems. 
 Mehdizadeh (1990) pointed out an inconsistency in the original finely-porous model and 
developed a modified finely-porous model.  The condition in Equation 36 is inconsistent with the 
concept of the finely-porous model in that it ignores the diffusive component of the flux at the pore 
outlet.  The solute flux should be given by 
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From a material balance on solute in the pore at steady state, 
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and so Equation 34 can be rewritten as 
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and integrated with Equations 37 and 38 as boundary conditions, giving the permeate concentration 
as 
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Mehdizadeh solved Equation 47 for the permeate concentration by trial and error; however, 
Williams (1993) points out that this can be avoided with reformulation of the pore boundary 
conditions.  Mehdizadeh compared his model with the original finely-porous model using the same 
parameters and found that the predicted permeate concentration of the modified finely-porous model 
was always higher than that of the original finely-porous model; this was expected since taking into 
account diffusive flux of the solute increases its predicted transport rate through the membrane pore. 
 However, since both finely-porous models rely on measured separation data in order to determine 
some of the transport parameters, it is not clear whether one model gives significantly better 
predictions than the other. 
 
Surface Force-Pore Flow Model 
 The surface force-pore flow (SFPF) model developed by Sourirajan and Matsuura (Matsuura 
and Sourirajan, 1981; Sourirajan and Matsuura, 1985) is a two-dimensional extension of the finely-
porous model.  While the finely-porous model considers only axial solute concentration gradients, 
the SFPF model recognizes that the solute concentration in a RO membrane pore may be a function 
of radial as well as axial position (Dickson, 1988).  The SFPF model assumes (Sourirajan and 
Matsuura, 1985; Dickson, 1988; Bhattacharyya and Williams, 1992c):  (1) water transport through 
the membrane occurs in pores by viscous flow; (2) solute transport takes place by diffusion and 
convection in the membrane pores; (3) transport of both water and solute through the membrane 
pores is determined by interaction forces, friction forces, and chemical potential gradients of the 
water and solute; (4) the pores of the membrane are cylindrical and run the length of the membrane 
barrier layer; (5) a molecular layer of pure water is preferentially sorbed on the pore wall; and (6) a 
potential field controls the solute distribution of the membrane pore. 
 A balance on the forces acting on the water in the membrane pore shown in Figure 2 (with 

1 = τ ) results in the velocity profile of the solution in the pore as (Sourirajan and Matsuura, 1985) 
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with boundary conditions 
 

 0 = |
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=0r  Eqn. 49 

 
 0 = u(R) . Eqn. 50 
 
Assuming the pure water flow rate through the membrane is described by the Poiseuille equation, 
the ratio of the water flux to the pure water flux is given by 
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Similarly, a force balance on the solute in the pore results in (Sourirajan and Matsuura, 1985) 
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Equation 52 is similar in form to Equation 39 of the finely-porous model; however, as pointed out by 
Sourirajan and Matsuura (1985), Equation 39 is valid for the entire pore outlet while Equation 52 
represents the permeate concentration only at r at the pore outlet.  In addition, the boundary 
conditions of the SFPF model assume a Maxwell-Boltzmann distribution of solute: 
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that is, the distribution of solute in the membrane is represented in terms of a radially-dependent 
partition coefficient.  The water velocity is also radially dependent for the SFPF model.  The total 
permeate concentration is determined by averaging Equation 52 over the pore outlet (Sourirajan and 
Matsuura, 1985): 
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Figure 2.  Schematic of a Membrane Pore. 
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The quantity (r)φ  in the water and solute transport equations is given by a coulombic potential 
function 
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r - R

A = (r)
p

~
φ  Eqn. 57 

 
for ionized solutes where A~  is a measure of the electrostatic repulsion force between the ionic solute 
and the membrane; and by a Lennard-Jones potential function 
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for nonionized organic solutes where B~  is a measure of short range van der Waals forces.  The 
parameters Xsw and b(r) are the same as in the finely-porous model; in applications of the SFPF 
model, b is usually not considered a function of radial pore position. 
 The transport equations for the SFPF model, expressed in dimensionless form, have been 
solved using a variety of numerical techniques.  Sourirajan and Matsuura (1985) used liquid 
chromatography techniques in order to determine A~  or B~  for a solute and then used trial and error 
to find the membrane pore radius:  Rp was varied until the predicted and measured permeate 
concentrations were in agreement.  Alternatively, if Rp was specified, then A~  or B~  was varied to 
produce agreement in the predicted and measured permeate concentrations.  Mehdizadeh and 
Dickson (1989, 1990) used a similar solution technique.  Bhattacharyya et al. (1986) and Jevtitch 
(1986), using measured pore radius values and one experimental data point for permeate 
concentration, eliminated the need for trial and error solution of the transport equations by imposing 
Equation 56 (in differential form) as a condition in the solution of Equation 48 and solving the 
resulting system of equations by a collocation method; the values of A~  or B~  were calculated by this 
method.  Both solution techniques indicated that the SFPF model gave excellent predictions of 
solute separation for a wide range of inorganics and organics under varying operating conditions.  
However, for some dilute organics that cause substantial decreases in water flux, Equation 51 does 
not adequately predict the water flux ratio.  The pore radius must be reduced in order to force the 
predicted and measured water flux ratios into agreement for these systems. 
 An important modification of the SFPF model has been formulated to recognize that it is 
more realistic to assume a distribution of membrane pore sizes (Sourirajan and Matsuura, 1985).  
Mehdizadeh and Dickson (1989) and Mehdizadeh (1990) also pointed out some inconsistencies in 
the SFPF model similar to those pointed out for the original finely-porous model; they formulated a 
modified SFPF correcting these conceptual errors.  However, although the inclusion of a pore 
distribution in the SFPF model or the use of Dickson and Mehdizadeh's modified SFPF model is 
conceptually more correct, it is not immediately obvious that these provide better solute separation 
predictions. 
 
Charged Membrane Models 
 Although water transport for charged RO (i.e., nanofiltration) membranes is usually 
adequately described by the above models, charged RO membrane theories must be used to predict 
ionic solute separations.  These models account for electrostatic effects as well as for diffusive 
and/or convective flow in order to describe the solute separation.  Many charged membrane 
transport theories have been proposed; two conceptually-important models for solute transport are 
discussed below. 
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Donnan Equilibrium Models 
 Donnan equilibrium models assume that a dynamic equilibrium is established when a 
charged membrane is placed in a salt solution (Bhattacharyya and Cheng, 1986; Bhattacharyya and 
Williams, 1992c).  The counter-ion of the solution, opposite in charge to the fixed membrane charge 
(typically carboxylic or sulfonic groups), is present in the membrane at a higher concentration than 
that of the co-ion (same charge as the fixed membrane charge) because of electrostatic attraction and 
repulsion effects.  This creates a Donnan potential which prevents the diffusive exchange of the 
counter-ion and co-ion between the solution and membrane phase.  When a pressure driving force is 
applied to force water through the charged membrane, the effect of the Donnan potential is to repel 
the co-ion from the membrane; since electroneutrality must be maintained in the solution phase, the 
counter-ion is also rejected, resulting in ionic solute separation. 
 A Donnan equilibrium model utilized by Bhattacharyya and Cheng (1986) described the 
distribution coefficient between a negatively-charged membrane and the solution phase of a salt 
MnNm which ionizes to Mm+ and Nn- as 
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and then approximated the solute rejection as 
 
 K-1=R . Eqn. 60 
 
The model correctly predicted that the solute rejection was a function of membrane charge capacity 
(C*

m ), ion feed concentration (CFi), and ion charge (m, n).  However, this model does not take into 
account solute diffusive and convective fluxes which may also be important in charged membrane 
separations. 
 
Extended Nernst-Planck Model 
 Lakshminarayanaiah (1965, 1969), Dresner (1972), and Dresner and Johnson (1980) have 
described the use of extended Nernst-Planck equations for the prediction of solute ion fluxes.  The 
general form of the equation is given by 
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The first term in Equation 61 represents the solute flux contribution due to convection, the second 
term accounts for solute flux due to the Donnan potential, and the last two terms describe solute 
transport due to diffusion.  Dresner (1972) has shown that the extended Nernst-Planck model 
correctly predicts the trends expected for ionic solute rejection, including conditions under which a 
negative rejection is obtained. 
 
Other RO Membrane Transport Models 
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 Several other transport models for RO membranes have also been proposed in the literature.  
Soltanieh and Gill (1981) and Sourirajan and Matsuura (1985) discussed the relative free energies of 
membrane-ion interactions and the relation of these to membrane selectivity.  Garcia and Medina 
(1989) reported some success in the use of dimensional analysis to correlate experimental RO 
membrane data.  Mason and Lonsdale (1990) presented the general statistical-mechanical theory of 
membrane transport; they pointed out that most RO membrane transport models (solution-diffusion, 
diffusion-convection, etc.) could be derived from statistical-mechanical theory.  Bitter (1991) also 
developed a general model based on the solution-diffusion mechanism using Maxwell-Stefan 
equations to calculate diffusive transport and Flory-Huggins equations to calculate solubility of 
species in the membrane.  Bitter indicated that the procedure he used should be applicable to almost 
all membrane systems; however, some of the solute, solvent, and membrane properties needed in the 
model are difficult to obtain. 
 Thiel and Lloyd (1990) used the extended Stefan-Maxwell equations to describe total flux 
(solute plus solvent) of aqueous-organic solutions through membranes; their model indicated that 
water flux reduction was in part due to frictional effects caused by the organic.  The model had the 
form 
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where the term WsXP was described as a solute-membrane friction term.  Connell and Dickson 
(1988) had previously used a similar empirically-derived relationship to successfully describe 
reduction in water flux for aqueous-organic systems.  Rautenbach and Gröschl (1990a, 1991) were 
also able to adequately describe fluxes for both water and organic solute by modifying the solution-
diffusion model; they assumed the water and organic content of the membrane was constant.   
 Williams (1989) used an adsorption resistance term to describe flux drop caused by dilute 
organic solutes with a RO membrane; he assumed the organics adsorbed on the membrane and so 
caused more resistance to water flow through it.  The model was given as 
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 Eqn. 63 

 
where Rm is the membrane resistance and RAds is the resistance due to solute adsorption.  
Bhattacharyya and Madadi (1988),  Deshmukh (1989), and Kothari (1991) also used similar 
expressions to describe water fluxes for organic solutes that adsorbed on the RO membranes they 
studied.  Forms of Equation 63 have also been applied extensively to describe ultrafiltration 
membranes (Cheryan, 1986; Kulkarni et al., 1992; Nakatsuka and Michaels, 1992; Bhattacharjee 
and Bhattacharya, 1992a, 1992b). 
 
Concentration Polarization 
 Concentration polarization is the term used to describe the accumulation of rejected solute at 
the surface of a membrane so that the solute concentration at the membrane wall is much higher than 
that of the bulk feed solution.  As water passes through the membrane, the convective flow of solute 
to the membrane surface is much larger than the diffusion of the solute back to the bulk feed 
solution; as a result, the concentration of the solute at the membrane wall increases.  This is shown 



A Review of Reverse Osmosis Theory 

Copyright © 2003 EET Corporation and Williams Engineering Services Company, Inc., Page 17 
All Rights Reserved. 

schematically in Figure 3.  Reviews of concentration polarization are given by Matthiasson and 
Sivik (1980), Gekas and Hallstrom (1987), Rautenbach and Albrecht (1989), and Bhattacharyya and 
Williams (1992c). 
 Possible negative effects of concentration polarization include:  (1) decreases in water flux 
due to increased osmotic pressure at the membrane wall; (2) increases in solute flux through the 
membrane because of increased concentration gradient across the membrane; (3) precipitation of the 
solute if the surface concentration exceeds its solubility limit, leading to scaling or particle fouling of 
the membrane and reduced water flux; (4) changes in membrane separation properties; and (5) 
enhanced fouling by particulate or colloidal materials in the feed which block the membrane surface 
and reduce water flux.  The extent of concentration polarization can be reduced by promoting good 
mixing of the bulk feed solution with the solution near the membrane wall.  Mixing can be enhanced 
through membrane module optimization of turbulence promoters, spacer placement, hollow fiber 
diameter, etc. or by simply increasing axial velocity to promote turbulent flow. 
 Concentration polarization complicates the modeling of membrane systems because it is 
very difficult to experimentally determine the solute wall concentration (Cw); the wall concentration 
is necessary since it and not the bulk feed concentration (CF) is used in most RO transport models.  
For very high feed flow rates, enough mixing near the membrane surface occurs so that the wall 
concentration can be assumed equal to the bulk concentration (that is, the boundary layer thickness 

0 = (z)ζ ).  However, at lower feed flow rates, the difference between the wall and bulk 
concentration can be substantial and so the wall concentration must be calculated. 
 The Navier-Stokes diffusion-convection equation is solved in order to calculate the wall 
concentrations.  For example, for flow over a flat sheet membrane, the concentration profile is given 
by (Bhattacharyya and Williams, 1992c) 
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with boundary conditions 
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Figure 3.  Concentration Polarization Concentration Profile. 
 
 
where the rejection in Equation 68 is calculated using the wall concentration; it can be found for a 
case with no concentration polarization and negligible recovery.  Equations 64, 65, 66, 67, and 68 
along with appropriate velocity expressions U(z,y) and V(z,y) can be solved numerically for the wall 
concentrations (Jevtitch, 1986; Back, 1987; Bhattacharyya et al., 1990).  If the boundary layer 
shown in Figure 3 is assumed to be stagnant and not change along the channel length ( ζζ  = (z) ), 
Equation 64 reduces to 
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which can be integrated to 
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this is the widely-applied film theory developed by Brian (Brian, 1966; Bhattacharyya and Williams, 
1992c).  The film thickness ζ  can be related to the Sherwood number for the membrane system; 
Gekas and Hallstrom (1987) have reviewed correlations for the Sherwood number for various 
membrane geometries. 
 
Description of Operating Variable Effects 
 Factors affecting RO membrane separations include:  feed variables such as solute 
concentration, temperature, pH, and pretreatment requirements; membrane variables such as 
polymer type, module geometry, and module arrangement; and process variables such as feed flow 
rate, operating pressure, operating time, and water recovery (Bhattacharyya et al., 1992).  Selected 
generalized curves illustrating the effects of some of these variables are shown in Figure 4 for 
noninteracting solutes.  Water flux, for example, is shown to increase linearly with applied pressure; 
this behavior is predicted by most of the RO transport models.  Water flux also increases with 
temperature, as would be expected, since the water diffusivity in the membrane increases and the 
water viscosity in the membrane decreases with temperature; the increase in water flux can usually 
be described by an Arrhenius temperature dependence of the water permeability constant or by 
water viscosity changes (Sourirajan and Matsuura, 1985; Dickson, 1988; Mehdizadeh et al., 1989; 
Mehdizadeh and Dickson, 1991).  In addition, water flux is greater at higher feed flow rates (high 
feed velocities over the membrane surface) since this minimizes concentration polarization. 
 Water flux decreases with increasing feed solute concentration since the higher 
concentrations result in larger osmotic pressures (and so a smaller driving force across the 
membrane).  This behavior is also predicted by most of the transport models.  Water flux can also 
gradually decrease over operating time (measured in days or months of operation) because of 
compaction (mechanical compression) or other physical or chemical changes in membrane structure. 
 These changes are usually described with empirical relations (Bhattacharyya et al., 1992). 
 Solute rejection usually increases with pressure (up to an asymptotic value) since water flux 
through the membrane increases while solute flux is essentially unchanged when pressure is 
increased; however, rejection of some organics with strong solute-membrane interactions decreases 
with pressure (Bhattacharyya and Williams, 1992c).  Rejection of solute remains constant or 
decreases with increasing temperature depending on the relative increases of water and solute 
diffusivities in the membrane.  For most simple inorganic systems (such as NaCl, Na2SO4, etc.), feed 
pH does not significantly affect water or solute fluxes.  However, for ionizable organics, rejection is 
a strong function of feed pH:  the organic is usually much more highly rejected when it is ionized 
(Sourirajan and Matsuura, 1985; Bhattacharyya et al., 1987; Dickson, 1988; Bhattacharyya and 
Williams, 1992a). 
 Feed water quality is also important since particulates, colloids, or precipitates present in the 
feed can cause fouling of a membrane by depositing on its surface, resulting in a substantially 
reduced water flux.  Bacteriological growth can also occur in RO membrane modules, forming 
bacterial layers that decrease water flux and, in some cases, degrade the membrane polymer.   
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Figure 4.  Effects of Variables on RO Separations (Adapted from Riley, 1990). 
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Pretreatment methods such as filtration, flocculation, disinfection as well as others are used to 
remove or neutralize potential fouling contaminants in the feed stream.  These methods are 
thoroughly discussed in Bhattacharyya et al. (1992).  It should be pointed out, however, that water 
flux drops caused by some dilute organic solutes cannot be viewed as simple fouling since for these 
it is membrane-solute interactions that cause the flux decreases and not particulate deposition, 
scaling, or two phase formation on the membrane surface. 
 
Water-Solute-RO Membrane Interactions 
 The interactions between water, solutes, and the membrane are the most important factors in 
RO separations.  As a result, even though the interactions can be very difficult to study, these have 
received considerable attention.  For example, Strathmann and Michaels (1977) examined water 
sorption by and water permeability of several different polymer membranes.  They concluded that to 
maximize water permeability through the membrane the polymer should have a high water sorption 
and a small water cluster size in the polymer matrix; that is, the water should be molecularly 
dispersed in the membrane and not hydrogen bonded to each other in clusters in order to enhance its 
diffusivity through the membrane.  Luck (1984, 1987) indicated that water in efficient RO 
membranes has a different structure and forms weaker hydrogen bonds with one another than in 
liquid water due to interactions with the membrane polymer.  He proposed that in these membranes 
the hydration layer is composed of clusters of water molecules too small to dissolve ions and so the 
ions do not partition well into the membrane, resulting in high rejections.  Also, since the hydration 
layer forms weaker hydrogen bonds with each other, the water diffusion activation energies in the 
membrane are lower and so water fluxes higher than in membranes which contain large clusters of 
water molecules that are more strongly hydrogen-bonded to one another.  Differences in water 
structure and bonding in RO membranes have also been discussed by Burghoff and Pusch (1976) 
and Pusch (1990). 
 Solute-membrane interactions have been both measured and calculated.  Sourirajan and 
Matsuura (1985), Jiang et al. (1989), and Gao and Bao (1989) have used liquid chromatography with 
the membrane polymer as the column packing in order to directly measure inorganic and organic 
solute-membrane interfacial parameters such as equilibrium distribution coefficient, Gibbs free 
energy, and surface excess for a large number of different polymers.  Sourirajan and Matsuura 
(1985), Bhattacharyya et al. (1986), and Mehdizadeh and Dickson (1989) have also used the SFPF 
model in order to calculate solute-membrane interaction forces (coulombic or van der Waals).  Jiang 
and Jiayan (1990) characterized interactions of organic solutes with polybenzimmidazole 
membranes using quantum chemistry calculations, liquid chromatography, and IR spectroscopy.  
They determined that hydrogen bonding was the main interaction force between the solutes (benzyl 
alcohol and 1,4-dioxane) and the membrane.  They also concluded that benzyl alcohol rejection was 
substantially lower than that of dioxane because the alcohol had much stronger interactions with the 
membrane; as a result, it could substitute for water in the membrane and so more easily transport 
through.  The dependence of organic rejection on its extent of hydrogen bond formation with the 
membrane has been suggested previously (Kesting and Eberlin, 1966; Duvel and Helfgott, 1975; 
Sourirajan and Matsuura, 1985).  Sourirajan and Matsuura (1985) also indicated that organic 
hydrogen bonding with RO membrane polymers might reduce water flux through the membrane.  
Burghoff et al. (1980) found that sorption of phenol by cellulose acetate membranes decreased the 
water content of the membrane. 
 Cheng et al. (1991) considered the effects of small halocarbons (chloroform, bromoform, and 
carbon tetrachloride) on several RO membranes.  They found that the organics caused a reduction in 
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the membranes' void spaces; this represents a decrease in water content of the membrane, possibly 
caused by substitution of the water in the membrane with organic.  Analysis of partition coefficients 
indicated that the organics were significantly sorbed into the membrane.  Several other studies have 
also shown that some organic solutes (even dilute solutions) such as chloro- and nitrophenols and 
polynuclear aromatic hydrocarbons interact with RO membranes, substantially changing water flux 
characteristics (Bhattacharyya et al., 1987; Bhattacharyya and Madadi, 1988; Bhattacharyya and 
Kothari, 1991; Bhattacharyya and Williams, 1992a).  These studies indicated that adsorption of the 
solute on the membranes was related to the water flux drops observed. 
 Murphy (1991) found that sorption of aqueous nonionized phenol solutions onto cellulose 
acetate could be described by a Langmuir isotherm; he postulated that the phenol formed hydrogen 
bonds with the polymer.  Deshmukh (1989) and Williams et al. (1990) discussed adsorption studies 
of chloro- and nitrophenols on polyamide membranes.  They reported adsorption of nonionized 
solutes on/in membranes placed in aqueous solution could also be described by Langmuir isotherms. 
 The relative quantities of solute adsorbed was in the order 2,4,6-trichlorophenol > 2,4-
dichlorophenol > 2,4-dinitrophenol > 2-chlorophenol.  However, the adsorbate solution pH played 
an important role.  When the solutes were ionized (pH>pKa), membrane adsorption was 
substantially lower, indicating the ionized organic solutes did not interact as strongly with the 
membrane.  Also, the quantities of adsorbed solute (nonionized conditions) decreased when 
membrane adsorption from 30% methanol-water solutions was studied.  It was concluded that the 
methanol-water solution had a higher affinity for the solutes and so these adsorbed less in the 
membrane.  Madadi (1987) had previously noted that water flux drops caused by dilute organics 
such chloro- and nitrophenols were lower when the solutes were in alcohol-water solutions, 
indicating organic-membrane interactions were not as strong when alcohols were present in the feed 
solutions. 
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