Chapter 13: WATER TREATMENT

13.1 WATER TREATMENT AND WATER USE

The treatment of water can be divided into three major categories:

- Purification for domestic use
- Treatment for specialized industrial applications
- Treatment of wastewater to make it acceptable for release or reuse

The type and degree of treatment are strongly dependent upon the source and intended use of the water. Water for domestic use must be thoroughly disinfected to eliminate disease-causing microorganisms, but may contain appreciable levels of dissolved calcium and magnesium (hardness). Water to be used in boilers may contain bacteria but must be quite soft to prevent scale formation. Wastewater being discharged into a large river may require less rigorous treatment than water to be reused in an arid region. As world demand for limited water resources grows, more sophisticated and extensive means will have to be employed to treat water. Most physical and chemical processes used to treat water involve similar phenomena, regardless of their application to the three main categories of water treatment listed above.

13.2 MUNICIPAL WATER TREATMENT

(#2) The modern water treatment plant is often called upon to perform wonders with the water fed to it. The clear, safe, even tasteful water that comes from a faucet may have started as a murky liquid pumped from a polluted river laden with mud and swarming with bacteria. Or, its source may have been well water, much too hard for domestic use and containing high levels of stain-producing dissolved iron and manganese. A schematic diagram of a typical municipal water treatment plant is shown in Figure 13.1. Figure 13.1 illustration, p440

This particular facility treats water containing excessive hardness and a high level of iron. The raw water taken from wells first goes to an aerator. Contact of the water with air removes volatile solutes such as hydrogen sulfide, carbon dioxide and methane. Contact with oxygen also aids iron removal by oxidizing soluble iron(II) to insoluble iron(III). The addition of lime as CaO or Ca(OH)₂ after aeration raises the pH and results in the formation of precipitates containing the hardness ions Ca²⁺ and Mg²⁺. Much of the solid material remains in suspension and requires the addition of coagulants (such as iron(III) and aluminum sulfates, which form gelatinous metal hydroxides) to settle the colloidal particles. Sludge from both the primary and secondary basins is pumped to a sludge lagoon. The water is finally chlorinated, filtered, and pumped to the city water mains.

13.3 TREATMENT OF WATER FOR INDUSTRIAL USE

Major industrial uses are boiler feedwater and cooling water. The kind and degree of treatment of water in these applications depends upon the end use. (#4)As examples, although cooling water may require only minimal treatment, removal of corrosive substances and scale-forming solutes is essential for boiler feedwater, and water used in food processing must be free of pathogens and toxic substances.

The various specific processes employed to treat water for industrial use are discussed in later sections of this chapter. (#3)External treatment, usually applied to the plant's entire water supply, uses processes such as aeration, filtration, and clarification to remove material that might cause problems from water. Such substances include suspended or dissolved solids, hardness, and dissolved gases.

Internal treatment is designed to modify the properties of water for specific applications. Examples of internal treatment include the following:

- Reaction of dissolved oxygen with hydrazine or sulfite
- Addition of chelating agents to react with dissolved Ca²⁺ and prevent formation of calcium deposits
- Addition of precipitants, such as phosphate used for calcium removal
- Disinfection for food processing uses or to prevent bacterial growth in cooling water

13.4 SEWAGE TREATMENT

Typical municipal sewage contains oxygen-demanding materials, sediments, grease, oil, scum, pathogenic bacteria, viruses, salts, algal nutrients, pesticides, refractory organic compounds, heavy metals, and an astonishing variety of flotsam ranging from children's socks to sponges. It is the job of the waste-treatment plant to remove as much of this material as possible. Several characteristics are used to describe sewage. These include turbidity (international turbidity units), suspended solids (ppm), total dissolved solids (ppm), acidity (H⁺ ion concentration or pH), and dissolved oxygen (in ppm O₂). Biochemical oxygen demand is used as a measure of oxygen-demanding substances.

(#5) Current processes for the treatment of wastewater can be divided into three main categories of primary treatment, secondary treatment, and tertiary treatment, each of which is discussed separately.

Primary treatment (#6) of wastewater consists of the removal of insoluble matter such as grit, grease, and scum from water. The first step in primary treatment normally is screening. Screening removes or reduces the size of trash and large solids that get into the sewage system. These solids are collected on screens and scraped off for subsequent disposal. Most screens are cleaned with power rakes. **Comminuting** devices shred and grind solids in the sewage. Particle size can be reduced to the extent that the particles can be returned to the sewage flow. Grit in wastewater consists of such materials as sand and coffee grounds that do not biodegrade well and generally have a high settling velocity. **Grit removal** is practiced to prevent its accumulation in other parts of the treatment system, to reduce clogging of pipes and other parts, and to protect moving parts from abrasion and wear. **Primary sedimentation** removes both settleable and floatable solids. During primary sedimentation there is a tendency for flocculent particles to aggregate for better settling, a process that may be aided by the addition of chemicals. The material that floats in the primary settling basin is known collectively as grease. In addition to fatty substances, the

grease consists of oils, waxes, free fatty acids, and insoluble soaps containing calcium and magnesium. Normally, some of the grease settles with the sludge and some floats to the surface, where it can be removed by a skimming device.

Secondary Waste Treatment by Biological Processes

(#7) The most obvious harmful effect of biodegradable organic matter in wastewater is BOD, consisting of a biochemical oxygen demand for dissolved oxygen by microorganism-mediated degradation of the organic matter. Secondary wastewater treatment is designed to remove BOD. Secondary treatment by biological processes takes many forms but consists basically of the action of microorganisms provided with added oxygen degrading organic material in solution or in suspension until the BOD of the waste has been reduced to acceptable levels.

One of the simplest biological waste treatment processes is the **trickling filter** (Fig. 13.2) in which wastewater is sprayed over rocks or other solid support material covered with microorganisms. The structure of the trickling filter is such that contact of the wastewater with air is allowed and degradation of organic matter occurs by the action of the microorganisms. Figure 13.2 Trickling filter, p443

Trickling filters are an example of fixed-film biological (FFB) or attached growth processes. The greatest advantage of these processes is their low energy consumption. The energy consumption is minimal because it is not necessary to pump air or oxygen into the water, as is the case with the popular activated sludge process described below. The trickling filter has long been a standard means of wastewater treatment, and a number of wastewater treatment plants use trickling filters at present.

(#8, #28) The activated sludge process, Figure 13.3, is probably the most versatile and effective of all wastewater treatment processes. Microorganisms in the aeration tank convert organic material in wastewater to microbial biomass and CO₂. Organic nitrogen is converted to ammonium ion or nitrate. The combination of a high concentration of "hungry" cells in the return sludge and a rich food source in the influent sewage provides optimum conditions for the rapid degradation of organic matter. Illustration: Activated sludge process, p444

The degradation of organic matter that occurs in an activated sludge facility also occurs in streams and other aquatic environments. However, in general, when a degradable waste is put into a stream, it encounters only a relatively small population of microorganisms capable of carrying out the degradation process. Thus, several days may be required for the buildup of a sufficient population of organisms to degrade the waste. In the activated sludge process, continual recycling of active organisms provides the optimum conditions for waste

degradation, and a waste may be degraded within the very few hours that it is present in the aeration tank. The activated sludge process provides two pathways for the removal of BOD. BOD can be removed by (1) oxidation of organic matter to provide energy for the metabolic processes of the microorganisms, and (2) synthesis, incorporation of the organic matter into cell mass. In the first pathway, carbon is removed in the gaseous form as CO₂. The second pathway provides for removal of carbon as a solid in biomass.

(#9) To a certain extent, sewage sludge can be digested in the absence of oxygen by methane-producing anaerobic bacteria to produce methane and carbon dioxide:

 $2\{CH_2O\} \rightarrow CH_4 + CO_2$ (13.4.1) reducing both volatile-matter content and sludge volume by about 60%. Nitrification (the microbially mediated conversion of ammonium nitrogen to nitrate; see Section 6.11) is a significant process that occurs during biological waste treatment. Ammonium ion is normally the first inorganic nitrogen species produced in the biodegradation of nitrogenous organic compounds. It is oxidized, under the appropriate conditions, first to nitrite by *Nitrosomonas* bacteria, then to nitrate by *Nitrobacter*: p445

Equation 13.4.2:

Equation 13.4.3:

These reactions occur in the aeration tank of the activated sludge plant and are favoured in general by long retention times, low organic loadings, large amounts of suspended solids, and high temperatures.

Tertiary Waste Treatment

(#10) Unpleasant as the thought may be, many people drink used water—water that has been discharged from a municipal sewage treatment plant or from some industrial process. This raises serious questions about the presence of pathogenic organisms or toxic substances in such water. Because of high population density and heavy industrial development, the problem is especially acute in Europe, where some municipalities process 50% or more of their water from "used" sources. Obviously, there is a great need to treat wastewater in a manner that makes it amenable to reuse. This requires treatment beyond the secondary processes.

Tertiary waste treatment (sometimes called advanced waste treatment) is a term used to describe a variety of processes performed on the effluent from secondary waste treatment. The contaminants removed by tertiary waste treatment fall into the general categories of (1) suspended solids, (2) dissolved organic compounds, and (3) dissolved inorganic materials, including the important class of algal nutrients. Each of these categories presents its own problems with regard to water quality. Suspended solids are primarily responsible for residual biological oxygen demand in secondary sewage effluent waters. The dissolved organics are the most hazardous from the standpoint of potential toxicity. The major problem with dissolved inorganic materials is that presented by algal nutrients, primarily nitrates and phosphates. In addition, potentially hazardous toxic metals may be found among the dissolved inorganics.

(#11) Physical-Chemical Treatment of Municipal Wastewater

Complete physical-chemical wastewater treatment systems offer both advantages and disadvantages relative to biological treatment systems. The capital costs of physical-chemical facilities can be less than those of biological treatment facilities, and they usually require less land. They are better able to cope with toxic materials and overloads. However, they require careful operator control and consume relatively large amounts of energy. Basically, a physical-chemical treatment process involves:

- Removal of scum and solid objects
- Clarification, generally with addition of a coagulant, and frequently with the addition of other chemicals (such as lime for phosphorus removal)
- Filtration to remove filterable solids
- Activated carbon adsorption
- Disinfection

13.5 INDUSTRIAL WASTEWATER TREATMENT

Before treatment, industrial wastewater should be characterized fully and the biodegradability of wastewater constituents determined. Consideration needs to be given to possible hazards of biotreatment sludges, such as those containing excessive levels of heavy metal ions. Activated carbon and biological treatment can be combined with the use of powdered activated carbon in the activated sludge process. Wastewater can be treated by a variety of chemical processes, including acid/base neutralization, precipitation, and oxidation/reduction. Sometimes these steps must precede biological treatment; for example, acidic or alkaline wastewater must be neutralized for microorganisms to thrive in it. Cyanide in the wastewater can be oxidized with chlorine and organics with ozone, hydrogen peroxide promoted with ultraviolet radiation, or dissolved oxygen at high temperatures and pressures. Heavy metals can be precipitated with base, carbonate, or sulfide.

(#13) Wastewater can be treated by several physical processes. In some cases, simple density separation and sedimentation can be used to remove water-immiscible liquids and solids. Filtration is frequently required, and flotation by gas bubbles generated on particle surfaces may be useful. Wastewater solutes can be concentrated by evaporation, distillation, and membrane processes, including reverse osmosis, hyperfiltration, and ultrafiltration. Organic constituents can be removed by solvent extraction, air stripping, or steam stripping.

13.6 REMOVAL OF SOLIDS

Relatively large solid particles are removed from water by simple **settling** and **filtration**. (#14) The removal of colloidal solids from water usually requires **coagulation**. Salts of aluminum and iron are the coagulants most often used in water treatment. Of these, alum or filter alum is most commonly used. This substance is a hydrated aluminium sulfate, $Al_2(SO_4)_3 \cdot 18H_2O$. When this salt is added to water, the aluminum ion hydrolyzes by reactions that consume alkalinity in the water, such as:

 $Al(H_2O)_6^{3+} + 3HCO_3^{-} \rightarrow Al(OH)_3(s) + 3CO_2 + 6H_2O (13.6.1)$

The gelatinous hydroxide thus formed carries suspended material with it as it settles. An important class of solids that must be removed from wastewater consists of suspended solids in secondary sewage effluent that arise primarily from sludge that was not removed in the settling process. These solids account for a large part of the BOD in the effluent and may

interfere with other aspects of tertiary waste treatment, such as by clogging membranes in reverse osmosis water treatment processes.

13.7 REMOVAL OF CALCIUM AND OTHER METALS

Calcium and magnesium salts, which generally are present in water as bicarbonates or sulfates, cause water hardness. One of the most common manifestations of water hardness is the insoluble "curd" formed by the reaction of soap with calcium or magnesium ions. (#15) Another problem caused by hard water is the formation of mineral deposits. For example, when water containing calcium and bicarbonate ions is heated, insoluble calcium carbonate is formed:

$$Ca^{2+} + 2HCO_3^- \rightarrow CaCO_3(s) + CO_2(g) + H_2O(13.7.1)$$

This product coats the surfaces of hot water systems, clogging pipes and reducing heating efficiency. Dissolved salts such as calcium and magnesium bicarbonates and sulfates can be especially damaging in boiler feedwater. Clearly, the removal of water hardness is essential for many uses of water.

(#16) Several processes are used for softening water. On a large scale, such as in community water-softening operations, the lime-soda process is used. This process involves the treatment of water with lime, Ca(OH)₂, and soda ash, Na₂CO₃. Calcium is precipitated as CaCO₃ and magnesium as Mg(OH)₂. When the calcium is present primarily as "bicarbonate hardness," it can be removed by the addition of Ca(OH)₂ alone:

$$Ca^{2+} + 2HCO^{3-} + Ca(OH)_2 \rightarrow 2CaCO_3(s) + 2H_2O(13.7.2)$$

(#17) When bicarbonate ion is not present at substantial levels, a source of CO₃ ²⁻ must be provided at a high enough pH to prevent conversion of most of the carbonate to bicarbonate. These conditions are obtained by the addition of Na₂CO₃. For example, calcium present as the chloride can be removed from water by the addition of soda ash:

$$Ca^{2+} + 2Cl^{-} + 2Na^{+} + CO_{3}^{2-} \rightarrow CaCO_{3}(s) + 2Cl^{-} + 2Na^{+} (13.7.3)$$

The precipitation of magnesium as the hydroxide requires a higher pH than the precipitation of calcium as the carbonate: $Mg^{2+} + 2OH^{-} \rightarrow Mg(OH)_2(s)$ (13.7.4)

The high pH required can be provided by the basic carbonate ion from soda ash:

$$CO_3^{2-} + H_2O \rightarrow HCO_3^{-} + OH^{-} (13.7.5)$$

Calcium can be removed from water very efficiently by the addition of orthophosphate:

$$5Ca^{2+} + 3PO_4^{3-} + OH^{-} \rightarrow Ca_5OH(PO_4)_3(s) (13.7.11)$$

It should be pointed out that the chemical formation of a slightly soluble product for the removal of undesired solutes such as hardness ions, phosphate, iron, and manganese must be followed by sedimentation in a suitable apparatus. Frequently, coagulants must be added, and filtration employed for complete removal of these sediments.

(#18) Removal of Iron and Manganese

Soluble iron and manganese are found in many groundwaters because of reducing conditions that favour the soluble +2 oxidation state of these metals (see Chapter 4). Iron is the more commonly encountered of the two metals. In groundwater, the level of iron seldom exceeds 10 mg/L, and that of manganese is rarely higher than 2 mg/L. The basic method for removing both of these metals depends upon oxidation to higher insoluble oxidation states. The oxidation is generally accomplished by aeration. The rate of oxidation is pH-dependent in both cases, with a high pH favouring more rapid oxidation. The oxidation of soluble

Mn(II) to insoluble MnO₂ is a complicated process. It appears to be catalyzed by solid MnO₂, which is known to adsorb Mn(II). This adsorbed Mn(II) is slowly oxidized on the MnO₂ surface.

(#18) Heavy metals such as copper, cadmium, mercury, and lead are found in wastewaters from a number of industrial processes. Because of the toxicity of many heavy metals, their concentrations must be reduced to very low levels prior to release of the wastewater. A number of approaches are used in heavy-metals removal. *Lime treatment*, discussed earlier in this section for calcium removal, precipitates heavy metals as insoluble hydroxides, basic salts, or coprecipitated with calcium carbonate or iron(III) hydroxide. This process does not completely remove mercury, cadmium, or lead, so their removal is aided by addition of sulfide (most heavy metals are sulfide-seekers):

$$Cd^{2+} + S^{2-} \rightarrow CdS(s)$$
 (13.7.18)

Heavy chlorination is frequently necessary to break down metal-solubilizing ligands (see Chapter 3). Lime precipitation does not normally permit recovery of metals and is sometimes undesirable from the economic viewpoint.

13.8 REMOVAL OF DISSOLVED ORGANICS

Very low levels of exotic organic compounds in drinking water are suspected of contributing to cancer and other maladies. Water disinfection processes, which by their nature involve chemically rather severe conditions, particularly of oxidation, have a tendency to produce **disinfection by-products**. Some of these are chlorinated organic compounds produced by chlorination of organics in water, especially humic substances. Removal of organics to very low levels prior to chlorination has been found to be effective in preventing trihalomethane formation.

(#19) The standard method for the removal of dissolved organic material is adsorption on activated carbon, a product that is produced from a variety of carbonaceous materials including wood, pulp-mill char, peat, and lignite.3 The carbon is produced by charring the raw material anaerobically below 600°C, followed by an activation step consisting of partial oxidation. Carbon dioxide can be employed as an oxidizing agent at 600-700°C. $CO_2 + C \rightarrow 2CO$ (13.8.1) or the carbon can be oxidized by water at 800-900°C: $H_2O + C \rightarrow H_2 + CO$ (13.8.2) These processes develop porosity, increase the surface area, and leave the C atoms in arrangements that have affinities for organic compounds.

REMOVAL OF DISSOLVED INORGANICS

For complete water recycling to be feasible, inorganic-solute removal is essential. The effluent from secondary waste treatment generally contains 300–400 mg/L more dissolved inorganic material than does the municipal water supply. It is obvious, therefore, that 100% water recycling without removal of inorganics would cause the accumulation of an intolerable level of dissolved material. Even when water is not destined for immediate reuse, the removal of the inorganic nutrients phosphorus and nitrogen is highly desirable to reduce eutrophication downstream. In some cases, the removal of toxic trace metals is needed. One of the most obvious methods for removing inorganics from water is **distillation**.

However, the energy required for distillation is generally quite high, so that distillation is not generally economically feasible. Furthermore, volatile materials such as ammonia and odorous compounds are carried over to a large extent in the distillation process unless special preventive measures are taken.

Electrodialysis consists of applying a direct current across a body of water separated into vertical layers by membranes alternately permeable to cations and anions. Cations migrate toward the cathode and anions toward the anode. Cations and anions both enter one layer of water, and both leave the adjacent layer. Thus, layers of water enriched in salts alternate with those from which salts have been removed. The water in the brine-enriched layers is recirculated to a certain extent to prevent excessive accumulation of brine.

The **ion exchange** method for softening water is described in detail in Section 13.7. The ion exchange process used for removal of inorganics consists of passing the water successively over a solid cation exchanger and a solid anion exchanger, which replace cations and anions by hydrogen ion and hydroxide ion, respectively, so that each equivalent of salt is replaced by a mole of water. The cation exchanger is regenerated with strong acid and the anion exchanger with strong base. Demineralization by ion exchange generally produces water of a very high quality.

(#20) Reverse osmosis is a very useful and well-developed technique for the purification of water. Basically, it consists of forcing pure water through a semipermeable membrane that allows the passage of water but not of other material. This process depends on the preferential sorption of water on the surface of a porous cellulose acetate or polyamide membrane. Pure water from the sorbed layer is forced through pores in the membrane under pressure. If the thickness of the sorbed water layer is d, the pore diameter for optimum separation should be 2d. The optimum pore diameter depends upon the thickness of the sorbed pure water layer and may be several times the diameters of the solute and solvent molecules.

Phosphorus Removal (#21)

Advanced waste treatment normally requires removal of phosphorus to reduce algal growth. Algae may grow at PO4 3- levels as low as 0.05 mg/L. Growth inhibition requires levels well below 0.5 mg/L. Since municipal wastes typically contain approximately 25 mg/L of phosphate (as orthophosphates, polyphosphates, and insoluble phosphates), the efficiency of phosphate removal must be quite high to prevent algal growth.

Chemically, phosphate is most commonly removed by precipitation. Precipitation processes are capable of at least 90–95% phosphorus removal at reasonable cost. Lime, Ca(OH)₂, is the chemical most commonly used for phosphorus removal:

 $5\text{Ca}(\text{OH})_2 + 3\text{HPO}_4 \xrightarrow{2^-} \text{Ca}_5\text{OH}(\text{PO}_4)_3(s) + 3\text{H}_2\text{O} + 6\text{OH}^- (13.9.4)$ Lime has the advantages of low cost and ease of regeneration.

13.10 SLUDGE (#22, #23)

Perhaps the most pressing water treatment problem at this time has to do with sludge collected or produced during water treatment. Finding a safe place to put the sludge or a use

for it has proven troublesome, and the problem is aggravated by the growing numbers of water treatment systems.

Most commonly, sewage sludge is subjected to anaerobic digestion in a digester designed to allow bacterial action to occur in the absence of air. This reduces the mass and volume of sludge and ideally results in the formation of a stabilised humus. Disease agents are also destroyed in the process. Following digestion, sludge is generally conditioned and thickened to concentrate and stabilise it and make it more dewaterable. Relatively inexpensive processes, such as gravity thickening, may be employed to get the moisture content down to about 95%. Ultimately, disposal of the sludge is required. Two of the main alternatives for sludge disposal are land spreading and incineration. Rich in nutrients, waste sewage sludge contains around 5% N, 3% P, and 0.5% K on a dry-weight basis and can be used to fertilize and condition soil A variety of chemical sludges are produced by various water treatment and industrial processes. Among the most abundant of such sludges is alum sludge produced by the hydrolysis of Al(III) salts used in the treatment of water, which creates gelatinous aluminum hydroxide:

$$Al^{3+} + 3OH^{-}(aq) \rightarrow Al(OH)_{3}(s) (13.10.1)$$

Alum sludges normally are 98% or more water and are very difficult to dewater. Both iron(II) and iron(III) compounds are used for the removal of impurities from wastewater by precipitation of Fe(OH)₃. The sludge contains Fe(OH)₃ in the form of soft, fluffy precipitates that are difficult to dewater beyond 10 or 12% solids. The addition of either lime, Ca(OH)₂, or quicklime, CaO, to water is used to raise the pH to about 11.5 and cause the precipitation of CaCO₃, along with metal hydroxides and phosphates. Calcium carbonate is readily recovered from lime sludges and can be recalcined to produce CaO, which can be recycled through the system.

Pathogenic (disease-causing) microorganisms may persist in the sludge left from the treatment of sewage. Many of these organisms present potential health hazards, and there is risk of public exposure when the sludge is applied to soil. Therefore, it is necessary both to be aware of pathogenic microorganisms in municipal wastewater treatment sludge and to find a means of reducing the hazards caused by their presence. The most significant organisms in municipal sewage sludge include (1) indicators of faecal pollution, including faecal and total coliform; (2) pathogenic bacteria, including *Salmonellae* and *Shigellae*; (3) enteric (intestinal) viruses, including enterovirus and poliovirus; and (4) parasites, such as *Entamoeba histolytica* and *Ascaris lumbricoides*.

13.11 WATER DISINFECTION (#25)

Chlorine is the most commonly used disinfectant employed for killing bacteria in water. When chlorine is added to water, it rapidly hydrolyses according to the reaction:

$$Cl_2 + H_2O \rightarrow H^+ + Cl^- + HOCl (13.11.1)$$

which has the following equilibrium constant:

$$K = [H^+][Cl^-][HOCl] = 4.5 \times 10-4 (13.11.2)$$

 $[Cl_2]$

Hypochlorous acid, HOCl, is a weak acid that dissociates according to the reaction, $HOCl \leftarrow \rightarrow H^+ + OCl^- (13.11.3)$

with an ionization constant of 2.7×10^{-8} . From the above it can be calculated that the concentration of elemental Cl₂ is negligible at equilibrium above pH 3 when chlorine is added to water at levels below 1.0 g/L.

Sometimes, hypochlorite salts are substituted for chlorine gas as a disinfectant. Calcium hypochlorite, Ca(OCl)₂, is commonly used. The hypochlorites are safer to handle than gaseous chlorine.

The two chemical species formed by chlorine in water, HOCl and OCl⁻, are known as **free available chlorine**. Free available chlorine is very effective in killing bacteria. In the presence of ammonia, monochloramine, dichloramine, and trichloramine are formed:

 $NH_4 + HOCl \rightarrow NH_2Cl$ (monochloramine) + $H_2O + H^+$ (13.11.4)

 $NH_2Cl + HOCl \rightarrow NHCl_2$ (dichloramine) + H_2O (13.11.5)

 $NHCl_2 + HOCl \rightarrow NCl_3$ (trichloramine) + H_2O (13.11.6)

The chloramines are called **combined available chlorine**. Chlorination practice frequently provides for formation of combined available chlorine which, although a weaker disinfectant than free available chlorine, is more readily retained as a disinfectant throughout the water distribution system. Too much ammonia in water is considered undesirable because it exerts excess demand for chlorine. At sufficiently high Cl:N molar ratios in water containing ammonia, some HOCl and OCl- remain unreacted in solution, and a small quantity of NCl₃ is formed. The ratio at which this occurs is called the **breakpoint**. Chlorination beyond the break- point ensures disinfection. It has the additional advantage of destroying the more common materials that cause odour and taste in water.

Chlorine Dioxide

Chlorine dioxide, ClO₂, is an effective water disinfectant that is of particular interest because, in the absence of impurity Cl₂, it does not produce impurity trihalomethanes in water treatment. In acidic and neutral water, respectively, the two half reactions for ClO₂ acting as an oxidant are the following:

$$ClO_2 + 4H^+ + 5e^- \longleftrightarrow Cl^- + 2H_2O (13.11.8)$$

 $ClO_2 + e^- \longleftrightarrow ClO_2^- (13.11.9)$

Ozone is sometimes used as a disinfectant in place of chlorine, particularly in Europe. Basically, air is filtered, cooled, dried, and pressurized, then subjected to an electrical discharge of approximately 20,000 volts. The ozone produced is then pumped into a contact chamber, where water contacts the ozone for 10–15 minutes. Concern over possible production of toxic organochlorine compounds by water chlorination processes has increased interest in ozonation. Furthermore, ozone is more destructive to viruses than is chlorine. Unfortunately, the solubility of ozone in water is relatively low, which limits its disinfective power.

A major consideration with ozone is the rate at which it decomposes spontaneously in water, according to the overall reaction, $2O_3 \rightarrow 3O_2(g)$ (13.11.11)

Because of the decomposition of ozone in water, some chlorine must be added to maintain disinfectant throughout the water distribution system.

13.12 NATURAL WATER PURIFICATION PROCESSES (#26)

Virtually all of the materials that waste-treatment processes are designed to eliminate can be absorbed by soil or degraded in soil. In fact, most of these materials can serve to add fertility to soil. Wastewater can provide the water that is essential to plant growth. The mineralization of biological wastes in wastewater provides phosphorus, nitrogen and potassium usually provided by fertilizers. Wastewater also contains essential trace elements and vitamins. Stretching the point a bit, the degradation of organic wastes provides the CO₂ essential for photosynthetic production of plant biomass.

Soil may be viewed as a natural filter for wastes. Most organic matter is readily degraded in soil and, in principle, soil constitutes an excellent primary, secondary, and tertiary treatment system for water. Soil has physical, chemical, and biological characteristics that can enable wastewater detoxification, biodegradation, chemical decomposition, and physical and chemical fixation. A number of soil characteristics are important in determining its use for land treatment of wastes. These characteristics include physical form, ability to retain water, aeration, organic content, acid-base characteristics, and oxidation-reduction behaviour. Soil is a natural medium for a number of living organisms that may can an effect upon biodegradation of wastewaters, including those that contain industrial wastes. Of these, the most important are bacteria, including those from the genera Agrobacterium, Arthrobacteri, Bacillus, Flavobacterium, and Pseudomonas. Actinomycetes and fungi are important in decay of vegetable matter and may be involved in biodegradation of wastes. Other unicellular organisms that may be present in or on soil are protozoa and algae. Soil animals, such as earthworms, affect soil parameters such as soil texture. The growth of plants in soil may have an influence on its waste treatment potential in such aspects as uptake of soluble wastes and erosion control.

Industrial Wastewater Treatment by Soil

Wastes that are amenable to land treatment are biodegradable organic substances, particularly those contained in municipal sewage and in wastewater from some industrial operations, such as food processing. However, through acclimation over a long period of time, soil bacterial cultures may develop that are effective in degrading normally recalcitrant compounds that occur in industrial wastewater. Acclimated microorganisms are found particularly at contaminated sites, such as those where soil has been exposed to crude oil for many years. A variety of enzyme activities are exhibited by microorganisms in soil that enable them to degrade synthetic substances. Even sterilized soil may show enzyme activity due to extracellular enzymes secreted by microorganisms in soil. Some of these enzymes are hydrolase enzymes (see Chapter 21), such as those that catalyse the hydrolysis of organophosphate compounds.

13.13 WATER REUSE AND RECYCLING

Water reuse and recycling are becoming much more common as demands for water exceed supply. **Unplanned reuse** occurs as the result of waste effluents entering receiving waters or groundwater and subsequently being taken into a water distribution system. A typical example of unplanned water reuse occurs in London, which withdraws water from the Thames River that may have been through other water systems at least once, and which uses groundwater sources unintentionally recharged with sewage effluents from a number of municipalities. **Planned reuse** utilizes wastewater treatment systems deliberately designed to

bring water up to standards required for subsequent applications. The term **direct reuse** refers to water that has retained its identity from a previous application; reuse of water that has lost its identity is termed **indirect reuse**. The distinction also needs to be made between recycling and reuse. **Recycling** occurs internally before water is ever discharged. An example is condensation of steam in a steam power plant followed by return of the steam to boilers. **Reuse** occurs, for example, when water discharged by one user is taken as a water source by another user.

Reuse of water continues to grow because of two major factors. The first of these is lack of supply of water. The second is that widespread deployment of modern water treatment processes significantly enhances the quality of water available for reuse. These two factors come into play in semi-arid regions in countries with advanced technological bases. For example, Israel, which is dependent upon irrigation for essentially all its agriculture, reuses about $^2/_3$ of the country's sewage effluent for irrigation, whereas the U.S., where water is relatively more available, uses only about 2–3% of its water for this purpose. Since drinking water and water used for food processing require the highest quality of all large applications, intentional reuse for potable water is relatively less desirable, though

Since drinking water and water used for food processing require the highest quality of all large applications, intentional reuse for potable water is relatively less desirable, though widely practiced unintentionally or out of necessity. This leaves three applications with the greatest potential for reuse:

- Irrigation for cropland, golf courses, and other applications requiring water for plant and grass growth. This is the largest potential application for reused water and one that can take advantage of plant nutrients, particularly nitrogen and phosphorus, in water.
- Cooling and process water in industrial applications. For some industrial applications, relatively low-quality water can be used and secondary sewage effluent is a suitable source.
- Groundwater recharge. Groundwater can be recharged with reused water either by direct injection into an aquifer or by applying the water to land, followed by percolation into the aquifer. The latter, especially, takes advantage of biodegradation and chemical sorption processes to further purify the water.

It is inevitable that water recycling and reuse will continue to grow. This trend will increase the demand for water treatment, both qualitatively and quantitatively. In addition, it will require more careful consideration of the original uses of water to minimize water deterioration and enhance its suitability for reuse.