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Abstract 
 

A new class of high molecular weight polyethersulfone ionomers is described in which the 

ionic content can be varied, at will, over a very wide and fully-controllable range. A novel 

type of coating process enables these materials to be deposited from alcohol-type solvents as 

cohesive but very thin (50 – 250 nm) films on porous support-membranes, giving high-flux 

membranes (3.3 – 5.0 L m-2 h-1 bar-1) with very good, though not outstanding salt rejection 

(typically 92 - 96%). A secondary layer, of formaldehyde-cross-linked polyvinyl alcohol, can 

be deposited from aqueous solution on the surface of the ionomer membrane, and this layer 

increases salt rejection to  greater than 99% without serious loss of water permeability. The 

final multi-layer membrane shows excellent chlorine tolerance in reverse-osmosis operation. 

 

Introduction  
 

Pressure-driven membrane filtration is capable of removing essentially all dispersed or 

dissolved contaminants from water and as it involves no phase-change it is in principle (and 

often now in practice) very much more energy-efficient than older methods of water-

purification such as distillation.1 Membrane technologies, especially reverse-osmosis and 

nanofiltration, have in recent years supersed other water-treatment processes for removal of 

dissolved salts, notably in desalination of seawater,2 of brackish water,3 and of municipal 

waters containing unacceptably high salt levels due, for example, to intrusion of seawater into 

coastal aquifers.4 

 

Key parameters in defining the performance of polymeric reverse-osmosis membranes are (i) 

permeate flux per unit membrane area, at a given driving pressure, (ii) salt-rejection (a 

measure of the relative salt concentrations in feed and permeate, the value of which generally 

increases with pressure) and (iii) mechanical resilience and chemical stability under actual 
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operating conditions. Permeate flux is a function not only of the intrinsic permeability of the 

membrane material to water, but also of membrane thickness – the thinner the membrane the 

higher the flux although, in practice, reduction of membrane thickness is limited by the 

requirement for mechnical stability.  

 

A very thin membrane can however be practicable if it is supported on a thicker but more 

porous material. The earliest commercial reverse osmosis membranes (based on the work of 

Loeb and Sourirajan)5 were derived from cellulose acetate and had a dense surface-skin 

grading continously into a more open substructure.6 However, this "asymmetric" design was 

rapidly overtaken by membranes in which the active separating layer and the porous support-

layer were optimised separately, from different materials (the "thin-film composite design", 

Figure 1)7 and the latter approach is adopted in most modern reverse-osmosis membranes. 

The real breakthrough in composite-membrane design came with the discovery by Cadotte, in 

1978,8 that very thin aromatic-polyamide membranes could be created directly on the surface 

of porous polysulfone supports using interfacial polycondensation (the process known to 

most chemists as the "nylon rope trick").9 The resulting membranes have very high water-

permeability (owing in part to their highly convoluted surface-structure which provides a 

much greater surface-area than the geometric area of the membrane would suggest).10 

Moreover, the salt-rejection characteristics of these membranes are excellent, even at very 

low driving pressures, and the mechanical strength and stability of the aromatic polyamide 

enable long membrane-lifetimes to be achieved in operation. As a result (and after a 

regrettably bitter struggle over intellectual property rights)11 the interfacial polyamide 

membrane has come to dominate  modern, commercial reverse-osmosis technology.1,12 

 

 

Figure 1. Schematic of a thin-film composite membrane. Approximate thicknesses of the different 

layers are shown, though these vary significantly between different commercial membranes. 

 

The only significant weakness of the interfacial polyamide membrane is its chemical 

instability in the presence of sanitising agents, especially chlorine,13 which remains (despite 

some drawbacks) by far the most valuable agent for preventing bacteriological contamination 

of potable water. Chlorinated water must therefore be filtered through activated carbon, to 

absorb the chlorine, before it goes to a reverse-osmosis plant using interfacial polyamide 

membranes (and it must then be re-chlorinated before it enters the municipal water system). 
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Moreover, the unprotected membrane-plant is itself susceptible to bacterial fouling, 

periodically requiring it to be chemically cleaned and disinfected to restore optimal 

membrane performance. 

 

Numerous attempts have been made to develop chlorine-tolerant, thin-film composite 

membranes, the most successful of these being based on aromatic polyethersulfones into 

which sulfonic acid subsituents are introduced (either pre- or post-polymerisation) to provide 

a degree of hydrophilicity.14 The resulting ionomers are inherently resistant to chlorine-

induced degradation, at least under conditions of neutral or basic pH, and their fundamental 

characteristics in terms of salt and water permeability suggest that they should be capable of 

yielding excellent reverse osmosis membranes.15 In practice however, thin-film composite 

membranes fabricated using sulfonated aromatic polyethersulfones as the active, separating 

layer have disappointingly failed, so far, to realise the flux and rejection performance implied 

by materials-properties of these ionomers measured on bulk or thick-film samples.14,15  This 

may result from poor control of ionomer-layer thickness during the coating process 

(especially when a simple "paintbrush" technique is used), leading to a layer which is 

simultaneously defective (giving poor rejection) and much thicker than necessary (giving low 

permeate-flux). 

 

In the present paper, we describe chemistry leading to the development of a new family of 

high molecular weight polyethersulfone ionomers, in which the ionic content can be varied, 

at will, over a very wide and fully-controllable range. A novel type of coating process enables 

these materials to be deposited from alcohol-type solvents as cohesive but very thin (< 100 

nm) films on porous support-membranes, giving high-flux membranes with very good, 

though not outstanding salt rejection (typically 92 - 96%). However, we also show that a 

second polymer layer can be successfully deposited from aqueous solution on the surface of 

the ionomer membrane, and that this layer enhances salt rejection to ca. 99% without serious 

loss of water permeability. The final multi-layer membrane shows excellent chlorine 

tolerance in reverse-osmosis operation. Preliminary results from this work have been reported 

in the patent literature.16 
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Results and Discussion 
 

The commercial engineering thermoplastic known as "polyethersulfone" (PES) is synthesised 

by nucleophilic polycondensation of 4,4'-dihydroxydiphenylsulfone (1) with 4,4'-

dichlorodiphenylsulfone (2) at high temperatures (ca. 300 °C) in the presence of potassium 

carbonate (Scheme 1a).17 The resulting homopolymer (3) is essentially hydrophobic, and 

early attempts to increase the hydrophilic character of the polymer by sulfonation showed 

that the electron-withdrawing character of the sulfone linkages strongly inhibits electrophilic 

substitution. The polymer is, for example, inert to sulfonating agents such as 98% sulfuric 

acid at temperatures of up to 50 °C.18 Sulfonation can be achieved using more vigorous 

sulfonating agents such as sulfur trioxide or oleum, but the process is then extremely difficult 

to control and can, moreover, lead to significant degradation of the polymer chain.19 The 

concept of incorporating much more readily sulfonated co-monomers was pioneered by Rose, 

who showed that hydroquinone residues included in the PES structure undergo rapid and 

selective monosulfonation on simply dissolving the copolymer in concentrated sulfuric acid 

at room temperature (Scheme 1b).20 The only difficulty with this system is that the 

hydroquinone dianion is very susceptible to oxidative degradation under high-temperature 

polycondensation conditions, leading to problems of synthetic reproducibility.   

 

 
Scheme 1. (a) Synthesis of the polyethersulfone homopolymer 3. (b) Regiospecific sulfonation of the 

hydroquinone-based copolyethersulfone 4 to give ionomer 5.  

 

In the present work we have explored the use of a much more stable comonomer (6) which 

we find can be readily and reliably incorporated into the PES chain-structure, where it 

provides a specific reaction site for sulfonation (Scheme 2). Moreover, since compound 6 is 

an "AB-type" monomer, it can be included in the PES polycondensation in any proportion 

whatever without affecting the stoichiometry of the reacting groups. The extent of post-

polymerisation sulfonation can be controlled entirely by specification of monomer 

stoichiometry at the polymerisation stage, since we find that sulfonation of copolymer 7 in 

98% sulfuric acid at 25 °C occurs exclusively on the biphenyl unit, ortho to the ether linkage 

(Scheme 2).  

 

 

Scheme 2. Synthesis and sulfonation of copolymer 7, affording the novel ionomer 8. 
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Dropwise addition of the sulfuric acid solution to deionised water affords tough, porous 

beads of ionomer 8 (in the H+ form), from which residual sulfuric acid is readily extracted by 

stirring in hot water. Contrary to claims in the recent literature,21 we find that  post-

polymerisation sulfonation (at least in the present case) is completely regioselective, allows 

any desired level of sulfonation to be achieved (since this is fully specified by the co-

monomer content) and leads to no detectable chain-cleavage, cross-linking, or other form of 

polymer degradation. The inherent viscosity of the ionomer, measured in NMP solution, is 

invariably higher than that of its parent polymer, owing to expansion of the solvodynamic 

radius induced by mutual repulsion of the anionic sulfonate groups appended to the polymer 

chain.22  Typical inherent viscosity values for ionomer 8 (with an ion-exchange capacity of 

0.92 meq g-1) and its parent copolymer 7 were 0.96 and 0.66 dL g-1 respectively. The 

corresponding molecular weight values for the ionomer by GPC were Mw = 53,000 and Mn = 

29,000.  

 

The extent of sulfonation in this copolymer system can be determined readily by 1H NMR 

spectroscopy in DMSO-d6 (Figure 2), as the resonance arising from the proton ortho to the 

position of sulfonation is clearly identifiable as a sharp singlet at  8.13 ppm. Integration of 

this resonance relative to all other resonances in the spectrum enables the degree of 

sulfonation to be calculated, and this is invariably 98 – 100% of the theoretical value. No 

evidence is found for sulfonation at any other position than that shown in Scheme 2.  

 

 

Figure 2. (a) 1H NMR spectrum (dmso-d6) of copolymer 7 (n = 3m) . (b) 1H NMR spectrum (dmso-

d6) of the derived ionomer 8 (n = 3m) highlighting (*) the resonance assigned to the proton ortho to 

sulfonic acid. Integration of this resonance against all other resonances yields a value for the degree of 

sulfonation at this position (and at no other position) of 98%. 

 

 

Ionomers of type 8, with ion exchange capacities in the range 0.70 – 1.25 meq g-1, proved 

readily soluble in 2-methoxyethanol. Non-sulfonated aromatic polyethersulfones are 

esentially unaffected by this solvent, so enabling thin-film composite membranes of ionomer 

8 to be deposited on porous polysulfone supports. A well-established support membrane of 

this type is accessible by gelation in water of a solution in DMF of bisphenol-A polysulfone, 

coated onto a non-woven polyester paper.23 The resulting support-membrane is asymmetric, 

with a thin surface layer having porosity on the nanometre scale, and it can thus retain 

dissolved macromolecules with molecular weights greater than ca. 20,000. Ionomers with 
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molecular weights higher than this are unable to enter the pores of the support-membrane and 

so are retained on the surface, enabling formation of a coherent ionomer film on evaporation 

of the solvent. Indeed, the electrostatic expansion of an ionomer's solvodynamic radius noted 

earlier makes ionomers ideally suited to this type of coating process (Figure 3). The final 

membrane structure is thus dependent on size-controlled positioning of individual 

macromolecules on the support-membrane surface, and such a process was realised in the 

present work using a small-scale bead-coater and in-line drying oven (Figure 4), capable of 

coating 10  30 cm strips of polysulfone support-membrane. 

 

 
Figure 3. Schematic for ionomer coating from solution onto an asymmetric support-membrane. The 

key parameter is the minimum solvodynamic radius of the ionomer, which must be greater than the 

maximum pore radius of the support to prevent the ionomer entering and blocking these pores.   

 

The reverse-osmosis performance of the resulting composite membranes in reverse osmosis 

was found to follow a general trend in which increasing levels of sulfonation (as measured by 

ion-exchange capacity, IEC) led to increasing permeate-flux but decreasing levels of salt-

rejection. The best compromise was achieved with ionomer 8 of IEC 0.92 meq g-1, containing 

one sulfonated aromatic ring to every 8 unsulfonated rings. However, the composition of the 

coating solvent also played a role in determining membrane performance, in that flux 

increased significantly (without loss of salt rejection) when lower alcohols such as methanol 

or ethanol replaced part of the methoxyethanol used originally as solvent. This suggests a 

significant dependence of membrane morphology on coating solvent, although further work 

is needed to establish the detailed molecular mechanisms involved.  

 

 
Figure 4. Bead-coating of ionomer onto an asymmetric polysulfone support-membrane. The polished, 

stainless-steel coating roller rotates against the direction of travel of the membrane to generate a 

"bead" of ionomer solution. A high degree of control over the coating thickness is achievable with this 

system, as thickness increases not only with the concentration of ionomer in the coating solution, but 

also with the counter-rotation-rate of the coating roller and the rate of travel of the membrane.     

 

 

The support-membrane was impregnated with butane-1,4-diol to maintain wettability of the 

internal pore-structure during composite membrane fabrication, but it was also found, 

empirically, that inclusion of a small proportion of sulfuric acid in the coating solution helped 

the final membrane to retain pore-wettability at low pressures. Thus, a composite membrane 
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was fabricated by coating a solution containing 0.7 wt% of ionomer 8 (IEC = 0.92 meq g-1) in 

a solvent comprising 2-methoxyethanol (57%), methanol (38%) sulfuric acid (0.25%) and 

water (4.75%, v/v) onto the surface of a polysulfone support-membrane impregnated with 

butane-1,4-diol, and drying at 80 °C. The resulting composite structure "Membrane A", when 

tested in cross-flow reverse osmosis with a 2000 ppm solution of sodium chloride at 40 bar 

pressure, typically gave a permeate flux of 3.3 L m-2 h-1 bar-1 and showed salt rejection of 

96%. These figures may be compared with recently-reported values of 1.3 L m-2 h-1 bar-1 and 

90% for chlorine-tolerant composite membranes fabricated by brush-coating from a rather 

different type of polysulfone ionomer, in which the sulfonic acid groups are introduced into a 

co-monomer prior to polycondensation.15  Even so, it is recognised that the flux and rejection 

characteristics of the new membrane described here still fall well short of the performance of 

the best commercial polyamide thin-film composite membranes,24 though the latter are of 

course unstable in the presence of even very low levels of chlorine.25  

 

Cross-sections of the composite membranes reported here, imaged by TEM (Figure 5), show 

dense, uniform films of ionomer from 50 to 250 nm in thickness (depending on the coating 

conditions) laminated to the surface of an obviously asymmetric support. The black line in 

each of these images represents an evaporated gold film which enables the surface of the 

membrane to be more easily located during electron microscopy. The boundary between the 

ionomer layer and the support is extremely sharp, confirming the idea that the surface-pores 

of the support membrane are sufficiently small to prevent penetration of ionomer molecules, 

which therefore remain exclusively on the surface to form, after evaporation of the solvent, a 

selective, hydrophilic layer for reverse osmosis (Figure 3).  

  

 

Figure 5. Cross-sections of composite ionomer membranes showing the different coating thicknesses 

achievable by varying the concentration of ionomer in the coating solution. Ionomer coatings are ca. 

250 nm and 60 nm thick in samples (a) and (b) respectively. A thin gold film (black line) was 

evaporated onto the surface of the sample prior to embedding in a light-cured resin and microtoming.   

 

Although a salt-rejection value of 96% at 40 bar operating pressure would enable useful 

levels of desalination to be achieved on low-salinity waters, interfacially-polymerised 

polyamide membranes routinely achieve >99% rejection under similar conditions.12 We 

therefore next sought to enhance the rejection characteristics of our polysulfone ionomer 

membranes, by applying a secondary polymer layer which was intended to improve the 
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rejection of the primary ionomer membrane. Early work by Cadotte had shown that aqueous 

solutions of polyvinyl alcohol (PVA) can be cross-linked by aldehydes on the surface of 

polysulfone support membranes.26 The resulting composite structures showed only very 

limited salt-rejection but high permeate flux, and we reasoned that the formation of a 

secondary membrane of cross-linked PVA, on the surface of the polysulfone ionomer 

membrane, might enhance salt rejection without too drastic a loss of permeability. This idea 

was realised in practice, by depositing a secondary layer of PVA from aqueous solution and 

cross-linking it with formaldehyde. This increased the salt rejection of composite membrane 

A from 96% to 99.5%, (2000 ppm NaCl feed at 40 bar pressure) and the permeate flux 

decreased from 3.3 to 1.2 L m-2 h-1 bar-1 (still a very acceptable value for operation in reverse 

osmosis).12 The very high salt rejection of this multi-layered membrane ("Membrane B") also 

means that low-pressure reverse osmosis becomes practicable, with salt rejection of 93.5% 

and permeate flux of 1.3 L m-2 h-1 bar-1 typically being achieved on a feed of 500 ppm NaCl 

at 4 bar operating pressure.   

 

From previous work,27 it seemed probable that the polysulfone ionomer would show good 

chlorine-tolerance, but it was by no means certain that the cross-linked PVA layer be 

similarly resistant. However, accelerated chlorine-tolerance tests on Membrane B, where the 

membrane was operated in reverse osmosis (500 ppm NaCl at 4 bar) in the presence of 50 

ppm of active chlorine (as sodium hypochlorite) at pH 7.5, showed very good chlorine-

resistance. After 1 month (38,000 ppm-hours: equivalent to 4 years in operation at the more 

realistic chlorine level of 1 ppm), the flux had fallen from 1.3 to 1.1 L m-2 h-1 bar-1 and the 

rejection had decreased only very slightly, from 93.5 to 92.7%. Under the same conditions, 

the rejection of a commercial interfacial polyamide membrane (Filmtec FT-30) fell 

drastically, from 94.4% to only 19.2% confirming the massive superiority of polysulfone-

ionomers over aromatic polyamides in terms of their stability to aqueous chlorine.  

 

The chlorine stability of the cross-linked PVA layer can be accounted for on the basis that the 

oxidatively-sensitive primary alcohol groups in PVA are acetalised by reaction with 

formaldehyde, leading to much more stable ether-type linkages.28 Such reactions can be both 

intra- and inter-molecular (Scheme 3), and the high levels of formaldehyde used in the 

present coating process would ensure that acetalisation of the PVA is essentially quantitative.  

 

Scheme 3.  Acetalisation and cross-linking reactions of poly(vinyl alcohol) with formaldehyde. 
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Experimental 
 

Starting materials: Diphenyl sulfone, 98% sulfuric acid, 4,4'-dihydroxydiphenylsulfone and 

4,4'-dichlorodiphenylsulfone and were obtained from Aldrich and were used as received. 

Potassium  carbonate (Aldrich) was dried  at 110 °C under vacuum before use. Monomer 6  

was synthesised according to the literature (m.p. 272 °C, 87% yield).29 Bisphenol-A 

polysulfone ("Udel-3500") was obtained from Amoco, and "Awa-10" non-woven polyester 

paper from Awa Paper  Ltd (Japan). Polyvinyl alcohol (99+% hydrolysed, 65K nominal MW) 

and aqueous formaldehyde (37%) were obtained from Aldrich. 

 

Instrumentation and testing: Proton NMR spectra were obtained on a Bruker Avance 400 

MHz spectrometer. Resonances were recorded in  (ppm), referenced to residual solvent 

resonances. Mass spectra (EI/CI) were run on a VG Autospec instrument. Inherent viscosities 

were determined for 0.1 wt% solutions of polymers in NMP using a semi-automatic Schott-

Geräte CT-150 viscometer. Thermal characteristics of monomers (Tm) and polymers (Tg-

onset) were analysed by DSC under nitrogen, using a Mettler DSC20 system at a scanning 

rate of 10 °C min-1. Transmission electron microscopy was carried out on a Philips 120KV 

FEG TEM. Membrane samples were sputtered with gold on the active surface, embedded in a 

light-cured resin, and microtomed in cross-section with a diamond knife before TEM 

analysis. Reverse osmosis measurements were carried out on discs 5.6 cm in diameter, cut 

from the coated membrane strips and tested in duplicate using stainless-steel reverse osmosis 

cells with tortuous-path spacers (active membrane area 5.4 cm3). The recirculating feed was 

either 2000 ppm NaCl at 40 bar presssure or 500 ppm NaCl at 4 bar pressure, and the cross-

flow velocity at the membrane surface was 1.0 m s-1. Salt rejection values were calculated 

directly from the conductivities of feed and permeate after an initial 10 cm3 of permeate had 

been collected and discarded. Accelerated chlorine-tolerance studies were carried out using 

an all-polymer membrane test system (cells, pumps, tubing etc.), to avoid the possibility of 

membrane damage by metal-corrosion products. 

 

Synthesis of copolymer 7 (Scheme 2; n = 3m): A mixture of diphenylsulfone (56 g), 4,4'-

dihydroxydiphenylsulfone (4.69 g, 18.75 mmol),  4,4'-dichlorodiphenylsulfone (5.44 g, 18.96 

mmol), monomer 6 (4.31 g, 12.50 mmol) and potassium carbonate (3.52 g, 25.50 mmol) was 

purged with a slow stream of dry nitrogen and heated slowly (over ca. 5 h) with stirring to 

280 °C. After 0.5 h at this temperature the viscous, pale brown reaction mixture was cooled 
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to room temperature and then ground to a fine powder in a ultracentrifugal mill. This powder 

was extracted successively with boiling water (3 x 100 mL) and then with methanol at reflux 

(3 x 200 mL), and dried to afford copolymer 7  (m = 3n) as a cream powder with inherent 

viscosity (NMP) 0.66 dL g-1. Thermal analysis by DSC showed the copolymer to be 

amorphous, with Tg (onset) at 238 °C. The 1H NMR spectrum of this copolymer (in dmso-d6) 

is shown in Figure 2a.  

 

Synthesis of ionomer 8 (Scheme 2; m = 3n): Copolymer 7 (3.00 g) was dissolved in 98% 

sulfuric acid (50 mL) with stirring under dry nitrogen, and the viscous, pale yellow solution 

was allowed to stand at room temperature for 24 h. Dropwise addition of the solution to 

stirring deionised water (350 mL) gave tough white beads of ionomer which were washed 

acid-free by repeated extraction with deionised water and then dried under vacuum at 70 °C, 

affording 3.02 g of  ionomer 8 (m = 3n) with inherent viscosity 0.96 dL g-1. The 1H NMR 

spectrum of this ionomer (in dmso-d6) is given in Figure 2b. 

 

Membrane fabrication:  The asymmetric support-membrane was cast from a 15% w/v 

solution of bisphenol-A polysulfone (Udel-3500) in dimethylformamide, which was coated 

onto Awa-10 non-woven polyester paper and gelled in water at ambient temperature.23 The 

resulting asymmetric membrane was soaked in an aqueous solution of 1,4-butanediol (10% 

w/v) and dried at 60 °C. Strips of this support-membrane (10  30 cm) were coated, using the 

bead-coater shown in Figure 4, with 0.5% – 2.5% w/v solutions of ionomer 8 (m = 3n) in a 

solvent comprising 2-methoxyethanol (57% v/v), methanol (38% w/v), water (4.75% w/v) 

and sulfuric acid (0.25% w/v), and were dried in-line at 80°C. The composite membrane 

formed using a 0.7% ionomer solution was over-coated in a second pass through the bead 

coater using  an aqueous solution of polyvinyl alcohol (1% w/v), formaldehyde (4% w/v) and 

sulfuric acid (0.5%) and the resulting secondary coating was cross-linked and dried at 50 °C.  
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