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PREFACE 

 

This thesis presents the results from the work done for my Ph.D study at BioScience 

and Technology, BioCentrum-DTU, the Technical University of Denmark during the 

period from February 1, 2003 to April 30, 2006 with Professor Birgitte Kiær Ahring 

as supervisor.  

 

The thesis is organized in two parts. Part one includes the literature survey of the 

sewage sludge problems, the theoretical background of anaerobic digestion, the 

methods for pre-treatment, and the lab work results of the studies on the effects and 

mechanisms of thermophilic anaerobic pre-treatment, comparison of the two-phase 

process with the single-phase process, and the considerations of the start-up, operation 

as well as the economic assessment of the two-phase process. Part two contains five 

papers submitted to international journals and one oral presentation at an international 

conference. The papers and the presentation are: 

 
Paper I: Lu, J. and Ahring, B.K. (2006) Thermophilic anaerobic pre-treatment for hydrolysis 

and hygienization of sewage sludge. Manuscript submitted to Journal of 
Environmental Engineering. 

  
Paper II: Lu, J. and Ahring, B.K. (2006) Comparison of the two-phase anaerobic digestion 

(73oC/55oC) with the single-phase anaerobic digestion (55oC) in treating sewage 
sludge. Manuscript submitted to Water Science and Technology. 

  
Paper III: Lu, J. and Ahring, B.K. (2006) Biological and thermal effects of thermophilic 

anaerobic pre-treatment on the hydrolysis of organic solids in sewage sludge. 
Manuscript submitted to Water Research. 

  
Paper IV: Skiadas, I.V, Gavala, H.N., Lu, J. and Ahring, B.K. (2005) Thermal pre-treatment of 

primary sludge and secondary sludge at 70oC prior to anaerobic digestion. Waste 
Science and Technology, Vol. 52, No. 1-2, pp. 161-166. 

  
Paper V: Lu, J., Gavala, H.N., Skiadas, I.V., Mladenovska, Z. and Ahring, B.K. (2007) Effect 

of hyper-thermophilic pre-treatment on thermophilic anaerobic digestion of primary 
sludge. Accepted by Journal of Environmental Management (Ref. No.: JEMA-D-07-
00024). 

  

Conference 

Presentation: 

Lu, J. and Ahring, B.K. (2005) Effects of temperature and hydraulic retention time on 
thermophilic anaerobic pre-treatment of sewage sludge. In: Conference Proceedings 
of 4th International Symposium on Anaerobic Digestion of Solid Waste. Copenhagen, 
2005. Vol. 1, Section 3a, pp. 159-164. 
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SUMMARY 

 

The purpose of my Ph.D study is to develop an innovative and cost-efficient method 

for optimal biogas production and reuse of sewage sludge. Topics including 

thermophilic anaerobic pre-treatment, enhancement of hydrolysis of organic 

particulates, pathogen reduction effect, and efficiency and stability of two-phase 

anaerobic digestion are therefore focused on. 

 

After the optimal temperature and retention time for the pre-treatment had been 

determined by manipulating continuous stirred tank reactors running at temperatures 

in the range of 55-80oC for the retention times in the range of 0.5-3.0 days (Paper I), a 

two-phase anaerobic process with a pre-treatment phase under optimal conditions 

before the methane phase was tested in terms of reactor organic reduction efficiency, 

pathogen reduction effect and process stability by using a single-phase process as 

control (Paper II). To further investigate the pre-treatment mechanisms, a study on 

distinguishing different effect mechanisms was carried out (Paper III). In addition, in 

order to identify the microbial activities, energy balance for the two-phase reactor 

system, two sets of two-phase process (70oC/55oC) were studied, in which primary 

and waste activate sludge was used as substrate, respectively (Paper IV and Paper V). 

 

It was identified that pre-treatment under thermophilic anaerobic conditions, with the 

optimal combination of temperature and retention time of 73oC and 2 days, 

simultaneous enhancement of hydrolysis of the organic particulates in the sludge, high 

degree of acidification of the hydrolysis products and achievement of satisfactory 

pathogen reduction effect were obtained. The enhanced hydrolysis and acidification 

were contributed by thermal and biological effects as the major mechanisms for both 

primary sludge and waste activated sludge. For waste activated sludge, an additional 

mechanism, microbial cell lysis, was also involved.  

 

Thermophilic anaerobic pre-treatment running at the identified optimal condition, i.e., 

at the temperature of 73oC for a retention time of 2 days, was employed as the acid-

phase of the two-phase anaerobic digestion system. By running the two-phase CSTR 

process (73oC/55oC) with a parallel single-phase CSTR process (55oC) as control, it 
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was verified that the two-phase process could keep not only the satisfactory pathogen 

reduction effect that the single-phase process could not achieve, but also possessed 

superiorities over the single-phase process such as increased efficiency in converting 

waste organic material into biogas and enhanced process stability due to the effect of 

pre-treatment. Microbial activities of the two-phase process were higher than those of 

the single-phase process.  

 

It was concluded from this study that thermophilic anaerobic pre-treatment can be 

used to optimize anaerobic digestion process for sewage sludge treatment. The 

optimized two-phase process is high-rate, efficient and cost-effective, and possesses 

the capability to eliminate the pathogens. The significance of implementing the 

optimized two-phase anaerobic digestion process lies in the following aspects: 

 

1. The environmental problem caused by sewage sludge, which is a global one and 

getting more and more severe, can be solved in a sustainable way; 

2. The energy saved in the organic material of the sewage sludge can be extracted in 

the form of biogas, which is CO2 neutral and renewable, and can be used to 

produce electricity and heat; 

3. The thorough elimination of pathogens makes it possible to recycle the plant 

nutrients and inert organic material in the digested effluent back to the farmland as 

fertilizer and soil conditioner without any fear of spreading of epidemic disease; 

4. The heat needed to keep the process temperature can be obtained by burning the 

biogas produced by the process itself, so there is no dependency on the external 

energy supply.   

  

 
 
 
 
 
 
 
 
 
 
 
 
 

 - 8 -
 
 



 

 
 
1. INTRODUCTION 

 

The development of wastewater treatment technology together with the 

implementation of stringent environmental legislation has successfully protected the 

aquatic system from pollution in many of the countries of the world. However, 

sewage sludge, as the by-product of the wastewater treatment plant, is also generated 

at the same time. Unlike the other kinds of waste, the generation of which can be 

reduced by clean-production technology, sewage sludge is not evitable and its 

generation will, on the contrary, increase along with the increase of wastewater 

discharge and treatment rate (Wang, 1997). Sewage sludge is now becoming a 

worldwide environmental problem because of its increasing production and its high 

contents of organic waste and pathogens, as well as xenobiotics and heavy metals. If 

not being treated or disposed properly, this dangerous waste may cause the 

environment and human as well as animal health exposed to tremendous threat 

(Ahring, 2003).   

  

Anaerobic digestion is a biological process that can degrade waste organic material by 

the concerted action of a wide range of microorganisms in the absence of oxygen. The 

process consists of a complex series of reactions that convert a wide array of 

polymeric substances such as carbohydrates, proteins, and lipids, having carbon atoms 

at various oxidation and/or reduction states, to one-carbon molecules in its most 

oxidized state (CO2) and its most reduced state (CH4). In a variety of anaerobic 

environments, such as the intestinal tract of animals, marine and fresh waster 

sediment, paddy fields, sewage sludge, water logged soils, and in the region of 

volcanic hot springs and deep-sea hydrothermal vents, naturally exists this process 

(Westermann, 1996; Madigan, et al., 2003).  

 

Anaerobic digestion has been manipulated by man for many years to treat sewage 

sludge (Hamzawi, et al., 1998). Before anaerobic digestion, the organic material in the 

sludge also automatically decay due to the biological activities of the extensive 

existence of microorganisms in the sludge, producing offensive, odorous and reduced 

end products such as fatty acids, mercaptans and amines. After anaerobic digestion, 
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the digestate consists of an odor free residue with appearance similar to peat. Methane 

produced by the anaerobic digestion process is a clean, CO2 neutral and renewable 

energy that can be used to produce heat and electricity. Further more, anaerobic 

digestion seems to be the only cost-effective method that makes it possible for sewage 

sludge to use farmland as a safe and permanent outlet destination with positive effect, 

i.e., the digestate, which has retained plant nutrients such as N and P, can be recycled 

as fertilizer and soil conditioner back to the farmland and thus keeps these natural 

nutrients recycled within a closed loop ecosystem, and remain or improve the soil 

structure of the farmland. The unique features of anaerobic digestion have made it 

superior to any other methods such as landfill, incineration, aerobic treatment and etc., 

which have ever been and are still being used for the treatment and disposal of sewage 

sludge in some parts of the world. 

 

However, the advantages of anaerobic digestion in the treatment of sewage have not 

been brought into full play. This process is still far from optimization. When 

conducted at mesophilic temperatures, the process retention time normally has to be 

set as long as 30 days. When conducted at thermophilic temperatures, although the 

retention time can be reduced to 15 days, special care for operation has to be taken for 

the stability of the process. No matter under which temperature conditions, only 

around 50% to 60% of the organic material can be degraded, leaving a large potential 

to increase the biogas production. Besides, even though it is has been widely believed 

that anaerobic digestion process is of the capability of reducing the pathogens 

(Bendixen, 1999; Nielsen & Petersen, 2000), the properties of the digested effluent is 

still hardly meeting the stringent requirement by legislations in relation to land 

application of sewage sludge in agriculture (Vesilind, 2000).   

 

In recent years, due to the directive of minimization of landfill and calling for reuse 

and recycle of the waste by the new waste management policies (EU, 2000), and the 

eagerness for extraction energy from waste including sewage sludge to ease up the 

dependence on energy from fossil fuels (Chynoweth, et al., 2001), tremendous 

research has been carried to optimize the anaerobic digestion process. Better 

understanding of the basic mechanisms occurring in the anaerobic process, conducting 

the process at thermophilic temperatures, application of different kinds of methods for 
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pre-treatment, development in process monitoring and control, and phase separation 

have contributed to the improvement of anaerobic digestion process from different 

aspects. However, simultaneous achievement of both biogas increase and digestate 

pasteurization has never been obtained by using a cost-effective and single effort.  

 

This study is to optimize the anaerobic digestion process using thermophilic anaerobic 

pre-treatment. It is hoped that the pre-treatment could enhance the hydrolysis of the 

organic particulates in the sludge so as to increase the efficiency of the organic 

material conversion to methane, and at the same time, pathogens in the digested 

sludge can be totally eliminated during this pre-treatment step so as to the digested 

effluent can meet the requirement on reuse of the digested sludge in agriculture.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 - 11 -
 
 



 

 
 
2. ISSUES ON SEWAGE SLDUGE 

2.1 Generation and composition 

Sewage sludge is an unwanted and inevitable by-product from wastewater treatment 

plants, the purpose of which is to clarify wastewater. Sewage sludge is generated by 

sedimentation both before and after the bio-treatment process, named as primary 

sludge and waste activated sludge (or secondary sludge), respectively. In some 

wastewater treatment plants, tertiary sludge may be produced as well due to the 

tertiary or polishing treatment of the biologically treated wastewater. However, the 

quantity of this kind sludge is relatively small and the organic fraction in the solids is 

slight, so this fraction is often ignored.  

 

Primary sludge is of a non-homogeneous nature because of some rather coarse 

constituents in it. After thickening in the primary settling tank, the solids content is 

about 5-10%, of which about 70% consists of organic matter. Wastewater normally 

contains thousands of different organics, so the composition of primary sludge is very 

complex. Secondary sludge consists of waste activated sludge from the aeration tanks 

or humus from the trickling filters, both of which are composed of microorganisms 

and other life forms, which are withdrawn or flushed out of the system. In addition, 

small proportions of adsorbed suspended solids and colloids derived from the 

wastewater are included. By normal thickening and/or dewatering technologies, the 

solids concentration in secondary sludge is about 1-6%, in which the organic fraction 

is also around 70%. In general, primary sludge and secondary sludge account for 60-

80% and 20-40% of the total sewage sludge based on the volatile solids (VS) 

contents, respectively, and the percentage depends not only on the technique of the 

wastewater treatment process, but also depends on the sources of the wastewater. 

(Mudrack & Kunst, 1986; Henze, et al., 2000).  

 

The production of sewage sludge is huge and has been a worldwide problem. In 2000, 

the sewage sludge production in Denmark and in the EU member states was about 

160,000 and 8,500,000 tons of dry weight, respectively (Magoarou, 2000; Jensen and 

Jepsen, 2005). To the global perspective, especially in the developing courtiers, along 

with the increase in population, development in urbanization and the implementation 
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of the stringent legislation and regulation related to wastewater and sewage sludge, 

there will be more and more wastewater to be treated and thus more and more sewage 

sludge to be generated and treated (Hamer, et al., 1985). 

 

2.2 Environmental impact 

Wastewater treated in the wastewater treatment plant consists of domestic sewage, 

industrial effluents and storm-water runoff from roads and other paved areas, and 

therefore, sewage sludge contains not only waste organic material, but also pathogenic 

microorganisms, as well as trace amount of pollutants such as xenobiotics and heavy 

metals. Sewage sludge is a good substrate for bacteria and therefore putrefies very 

rapidly (Mudrack & Knust, 1986), causing offensive emission, growth of flies or 

pathogens, as well as contamination of soil and aquatic system. The pathogens that are 

concentrated into the sewage sludge include viruses, bacteria, protozoans and larger 

parasites such as human roundworms, tapeworms and liver flukes. These pathogens 

are capable of independent existence. They will multiply under suitable conditions. 

Under conditions unsuitable for growth, they are not necessarily lethal. Some of them 

may further evolve their structures such as cysts or spores as a means of survival in 

adverse conditions. Without proper treatment, they may spread diseases. Heavy 

metals such as cadmium, mercury, zinc, etc., are toxic. They may enter the sewage 

sludge via industrial discharges, and also in some cases from galvanized water pipes. 

Xenobiotics such as PCBs, herbicides, insecticides and etc, are chemical substances 

that are foreign to the biological system and may accumulate in human body through 

food chain. So, if sewage sludge is not properly treated or disposed, it can make the 

environment and the health of human and animals exposed to a tremendous threat 

(Hänel, 1988; Mudrack & Kunst, 1986; Carrington, 2001; Ahring, 2003). 

 

2.3 Treatment and disposal methods 

Many methods have been developed and used in the treatment and/or disposal of 

sewage sludge, but the operation of the treatment or disposal is usually expensive 

and/or easy to contaminate the environment. For most of the wastewater treatment 

plants, the treatment and disposal of sewage sludge accounts for 50% or more of the 

total capital and operation cost (Benefield & Randall, 1985). So the processing and 

disposal of sewage sludge are increasingly being the topics of environmental, 
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financial and technological concerns (Woodard & Wukasch, 1994). The following are 

the methods that can be referred to from literatures up to today: 

 

o Spreading on wild land 

o Discarding into the ocean 

o Direct application on farmland 

o Landfill 

o Incineration 

o Aerobic composting 

o Anaerobic digestion 

o Injection into old oil wells 

 

Among these methods, spreading on wild land, discarding into the ocean and direct 

application on farmland are the most primitive disposal methods. Due to the obvious 

contamination to the environment, these methods have been in practice forbidden in 

many of the countries and regions. Landfill only postpones the problem since the 

leakages can contaminate the ground water and are subjected to advanced treatment in 

most European countries involving high purification cost. Further more, expenditure 

for development of landfill areas is getting higher due to the decrease of space in 

highly populated countries. So, disposal of sewage sludge by landfill is to be phased 

out, even though 35-40% of the sludge in Europe is still deposited in landfill today 

(Ødegaard et al., 2002). Incineration seems to be a good method because, after 

dewatering and burning, there is almost nothing left compared to the original huge 

sludge volume. However, it costs energy for dewatering and normally needs input of 

external fuel. Also, the disposal of ash and the treatment of exhaust gas are expensive 

(Ahring, 2003). Aerobic composting cannot recover the energy of the biomass in the 

sludge, and may cause odor problem. Injection into old oil wells is not applicable for 

countries and regions where there exists no oil field.  

 

So, it has been generally accepted that, among all the treatment and disposal methods 

that have been used up to now, anaerobic digestion is universal and sustainable. This 

is because anaerobic digestion can stabilize the organic materials, reduce the number 

of pathogens (Bendixen, 1999; Nielsen and Petersen, 2000), degrade xenobiotics 

(Hartmann and Ahring, 2003), recover CO2 neutral energy in the form of CH4, as well 
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as make it possible to recycle the plant nutrients in it back to the farmland. And 

therefore, anaerobic digestion complies with today’s sludge management policies, i.e., 

to reduce the waste stream to landfill and to recycle the organic material and the plant 

nutrients back to the agricultural soil (EU, 2000; Ahring, 2003). So, anaerobic 

digestion of sewage sludge is worth of further studying. 
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3. PRINCIPLES IN ANAEROBIC DIGESTION OF SEWAGE SLUDGE 

 

3.1 The 4-step anaerobic digestion model 

Anaerobic digestion is a multiple bio-process, of which four main steps can be 

identified (Ghost 1975; Kasper and Wuhrmann, 1978; Gujer and Zehndr, 1982; 

Madigan, et al., 2003), namely hydrolysis, acidogenisis, acetogenisis and 

methanogenisis, involving six major distinct processes (Figure 3-1).  
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Figure 3-1. Proposed reaction scheme for the anaerobic digestion of 
sewage sludge. Adapted from Gujer and Zehnder (1983). Percentages 
indicate substrate flow in the form of COD or CH4 equivalents. Only 
the net flow of substrates through external pools is indicated. Numbers 
in the circles identify different process.  

 

 

 

 

 

 

 

 

 

 

 

 

3.1.1 Hydrolysis 

In this step, complex organic polymers are hydrolyzed into smaller unites such as 

sugars, long-chain fatty acids and amino acids. This is carried out by different groups 

of obligate or facultative fermentative bacteria through excreting extracellular 

enzymes (Kaseng et al., 1992). The proteolytic bacteria produce proteases that 

catalyze the hydrolysis of proteins into amino acids (Figure 3-1, 1A); the cellolytic 

and xylanolytic bacteria produce cellulases and/or xylanases that degrade cellulose 

and xylan (both are carbohydrates) to glucose and xylose, respectively (Figure 3-1, 

1B); and the liplytic bacteria produce lipases that degrade lipids to glycerol and long 

chain fatty acids (Figure 3-1, 1C). 
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3.1.2 Acidogenesis 

The dissolved sugars, long-chain fatty acids and amino acids produced by hydrolysis 

are used in this step either by fermentative bacteria (Figure 3-1, 2) or by anaerobic 

oxidizers (Figure 3-1, 3) (Gujer and Zehnder, 1983), forming acetate and other short-

chain fatty acids, alcohols, hydrogen and carbon dioxide. Acidogenesis is a robust and 

often the fastest step in the whole anaerobic digestion process. When protons are used 

as electron acceptor with concurrent hydrogen production, the oxidation of substrate 

by fermentative bacteria provides the largest amount of energy. In a well-operated 

anaerobic reactor, about 70-80% of the hydrolysis products will be transformed 

directly to methanogenic substrates i.e., hydrogen, carbon dioxide and acetate, with 

the remaining 20-30% transformed into other intermediate products, such as volatile 

fatty acids (VFAs) and alcohols (Gujer and Zehndr, 1983; Schink, 1997; Ahring 

2003).  

 

However, when the produced hydrogen cannot be consumed simultaneously by the 

hydrogen-utilizing methanogens, the increasing concentration of hydrogen is 

inhibitory to the hydrogen production. In this case, the fermentative bacteria will 

switch metabolism so that they can still obtain some energy, and then about 50-70% 

of the hydrolysis products will be transformed into the intermediate products (Bryant, 

1979; Klass, 1984; Ahring, 2003).  

The intermediate products produced in acidogenesis step cannot be utilized by the 

methanogens, and must be further degraded in the acetogenesis step by acetogens.  

3.1.3 Acetogenesis 

Since the intermediate products must be further oxidized to acetate, H2 and CO2 

before they are used by methanogens, the acetogenesis step is crucial for the 

successful production of biogas (Figure 3-1, 4). In contrast to the fermentative 

bacteria, the acetogens are obligately symbiotic bacteria (McInemey, et al., 1980; 

Boone & Bryant, 1980; Westermann, 1996). Under standard conditions, these 

oxidation processes are endothermic, i.e., energy demanding and cannot grow when 

the H2 partial pressure is high. As shown in Figure 3-2, only when H2 partial pressure 

is lower than a certain level, the oxidation of propionate and butyrate can be possible. 

Also in contrast to the fermentative bacteria, acetogens cannot switch their metabolic 
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pathway but reduce of H+ to H2. Therefore, the proceeding of acetogenesis is relying 

on the presence of hydrogen-utilizing methanogens to remove H2.  

 

 

Table 3-2. Free energy change of acetogenesis and methanogenesis
from H2 as a function of the

2HP . Data derived from Archer (1983). 

Calcualtion based on standard values for free energies at pH 7, 25oC, 34 
mM −

3HCO , 1mM VFAs and 
4CHP 0.7 atm. 
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3.1.4 Methanogenesis 

The final step of the anaerobic digestion is called methanogenesis that mineralizes the 

fermentative products to methane. This step is carried out by two main groups of 

methanogens: the aceticlastic methanogens, which degrade acetate, belonging to the 

genera Methanosarcina and Methanosaera (Figure 3-1, 5), and the hydrogen-utilizing 

methanogens (Figure 3-1, 6), of which an array of genera exist. Methanogens belong 

to Archae, a unique group of microorganisms, phylogenetically different from the 

main group of prokaryotic microorganisms (Madigan, et al., 2003). It is estimated 

that, under stabilized conditions, about 70% of methane is produced by the acetate-

utilizing methanogens and 30% by the hydrogen consuming methanogens (Smith et 

al., 1980; Klass, 1984).  

 

Methanogenesis is regarded as the motive force of the whole anaerobic degradation. 

In contrast to some of the acetogens, methanogenesis is an energy producing process 

under standard conditions (Figure 3-2). Only if the presence of the hydrogen-utilizing 

methanogens keeping the partial pressure low, can the acetogens perform a catabolic 

oxidation which would not be energy yielding if the hydrogen-consuming bacteria had 
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not been present (Archer et al., 1986; Kaspar and Wuhrmann, 1978; Bryant, 1979). 

This biological phenomenon is called ‘interspecies hydrogen transfer’.  As it can be 

seen from data shown in Table 3-1, due to the consumption of H2 and acetate by the 

methanogens, the oxidation of propionate and butyrate is exothermic and possible 

under standard conditions. 

 

  
 

Reaction oGΔ (kJ/reaction) 

Table 3-1. Gibbs free energy change by syntrophic conversion 

  
Acetogenesis  
(1) 

2
 

33223 33 HHHCOCOOCHOHCOOCHCH +++→+ +−−− + 116.4 
(2)  

2332223 222 HHHCOCOOCHOHCOOCHCHCH +++→+ +−−− + 88.2 
  
Methanogenesis  
(3)  OHCHHHCOH 2432 34 +→++ +− - 175.5 
(4)  −− +→+ 3423 HCOCHOHCOOCH - 31.0 
  
Syntrophic conversion  
(5) 

44
7

4
1

34
5

24
7

23 CHHHCOOHCOOCHCH ++→+ +−−  - 46.2 

(6) 
42

3
2
1

32
5

22
5

223 CHHHCOOHCOOCHCHCH ++→+ +−−  - 61.6 

 Values for Gibbs free energy ( oGΔ ) are given under standard conditions, 
i.e., 1M, 1atm, pH=7.0, T=25oC. Values of acetogenesis and 
methanogenesis are adapted from Westermann (1996). 

 
 
 

Also, it has to be noticed that, from Figure 3-2 and Equation 3 in Table 3-1, when H2 

partial pressure is lowed, the energy yield of H2-utilizing methanogens will be 

reduced. This implies that there is a certain narrow H2 partial pressure range where 

oxidation of fatty acids with H2 as a product, and methanogenesis with H2 as a 

substrate is possible (Dolfing, 1988; Westermann, 1996).  

Although the main products of the anaerobic process are carbon dioxide and methane, 

minor quantities of nitrogen, hydrogen, ammonia and hydrogen sulfide (usually less 

than 1% of the total gas volume) are also generated (McInerney et al., 1980). The 

mixture of the gaseous products is termed as biogas.  

 

3.2 Factors affecting anaerobic digestion process 

As mentioned above, anaerobic digestion is a very complicated process depending 

upon the synergy interactions between the various groups of microorganisms 

involved. A fine balance between these microbial communities is necessary for 
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successful digestion giving the largest conversion rate of organic material to methane. 

When anaerobic process is used for the digestion of sewage sludge, it might be 

affected by the specific characteristics of the sewage sludge to be treated, 

environmental factors such as temperature, pH, presence of inhibitory or toxic 

substances, etc., and operational factors such as hydraulic and solid retention time, 

mixing and feeding strategies and so on. 

 

3.2.1 Specific characteristics of sewage sludge 

The specific characteristics of sewage sludge include the type of sludge (primary 

sludge, secondary sludge or the mixture of these two types of sludge), composition of 

the complex polymeric organics (percentage of carbohydrates, proteins and lipids), 

solid concentration and size distribution. Normally, variations in composition and in 

size distribution of primary sludge are bigger than that of secondary sludge.  When 

sewage sludge with different specific characteristics is used as feedstock, the reactor 

performance may change, especially when CSTR type reactor is used (Chyi & Dague, 

1994; Ferreiro & Soto, 2003; Palmowski and Muller, 2003). The degradation rate of 

secondary sludge is only one-half of that of primary sludge (Ghosh, 1995). Also, for 

the secondary sludge, the degradation rate is affected by the sludge age. For example, 

by using the same anaerobic digestion process, the degradation rate is only 14% for 

the feed with a sludge age of 30 days, and 31% for the feed with a sludge age of 5 

days (Gossett, J. & Belsere, 1982). When anaerobic digestion is studied at lab scale, 

especially when small volume of reactor is used, the specific characteristics of the 

sludge to be used should be identified. Meanwhile, as the organics in the sludge may 

decay even at 4oC, proper methods to store the sludge should be used so that the 

variations of reactor performance caused by the influent fluctuation can be avoided 

(paper I and II).  

 

3.2.2 Temperature 

Temperature is one of the most important environmental parameters for anaerobic 

digestion. Biologically speaking, temperature determines if a certain kind of 

microorganism can survive or grow in the reactor and if they are living there with 

their highest activities. Practically speaking, higher temperature means high 
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consumption of energy. So, the choice of temperature and control of the level in 

question are of crucial significance for anaerobic digestion. At different temperature 

ranges, the microbial consortia are different. Anaerobic digestion can be carried out 

by anaerobic psychrophiles, mesophiles, thermophiles and extreme thermophiles, the 

optimum working temperature ranges of which are 20-25oC, 30-37oC, 50-55oC and 

above 65oC, respectively [Madigan et al. 2000]. A constant temperature is very 

important for a microbial consortium because once it has adapted to a certain 

temperature, it can tolerant a very small changes in temperature. Especially an 

increase of the temperature just above the optimum can soon lead to a drastic decrease 

of the growth rate of the microbes. Figure 3-3 shows the relations between 

temperature and growth rate for different bacteria consortia.  

 

 

Figure 3-3. Relationship between bacterial growth rate and temperature 
[Madigan et al. 2003] 
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When anaerobic digestion is carried out at thermophilic temperatures, many 

advantages such as higher conversion rate, better pathogen reduction effect, and 

shorter retention time are observed than when it is carried out at mesophilic 

temperature. But it is normally performed at temperatures close to the upper limit of 

some of the organisms involved in the process. This is why the process is especially 

sensitive to temperature fluctuations (Ahring, et al., 2001). Normally, the 

temperatures are kept below 55-60oC, which corresponds to the upper temperature 

limit of the thermophilic strains of Methanosarcina (Zinder et al. 1984; Sorensen 

1996). 
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3.2.3 pH 

Each group of microorganisms has their optimum pH range. Apart from the influence 

on the growth of microorganisms, pH can affect other factors such as dissociation of 

compounds (ammonia, sulfide, organic acids, and etc.) of great importance for the 

whole process of anaerobic digestion. pH in anaerobic digesters is mainly controlled 

by the bicarbonate buffer system (Rozzi, 1991; Pretoius, 1994). Therefore, pH in 

biogas plants depends on the partial pressure of CO2 and the concentration of alkaline 

and acid components in the liquid phase. Experimental results from many studies 

shows that when temperature and retention time have been determined, the pH in a 

process fed with identical sludge will be stabilized at a certain value that benefits the 

dominant microorganisms (Eastman & Ferguson, 1981; Miron, et al., 2000). In 

wastewater treatment plant, the pH value in the anaerobic digestion reactor is 

normally in the range of 7.0-7.5, which is beneficial to the growth of methanogens. 

 

3.2.4 Macro- and micronutrients 

Macronutrients are the elements that the cellular material of the anaerobic 

microorganisms comprises, including hydrogen, nitrogen, oxygen, carbon, sulfur, 

phosphorus, potassium, calcium, magnesium and iron. Normally, anaerobic 

microorganisms require these elements presented with a concentration around 10-4M. 

In addition to the micronutrients, a number of other elements, such as Ni and Co must 

be present in small amount, i.e. below10-4M. This is because that these elements are 

important for the growth of anaerobic organisms. For example, Ni is necessary for 

activating factor F430, which is a co-factor involved in methanogenesis. But it can be 

inhibitory for fermentative as well as methanogens if it is present in high 

concentration. For anaerobic treatment of mixed waste, such as sewage sludge, it is 

often assumed that the necessary nutrients are available and in non-limiting amounts. 

However, at treatment of single waste or wastewater fraction, the degradation can be 

limited by the availability of nutrients. There are examples that supplementation of Ni 

and Co stimulates anaerobic process (Speece, 1983; Frostell, 1985). 

 

3.2.5 Inhibition  

3.2.5.1 Inhibition by ammonia 
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Ammonia (NH3/NH4) can be toxic to anaerobic digestion and the active component 

responsible for ammonia inhibition is the unionized form of ammonia, i.e. free NH3.  

The free NH3 concentration can be calculated by the following equilibrium equation: 

 

[ ]3NH  
)/] [H(1

] NH-[t 3

Ak++
=  (Eq. 3-1) 

 

where [ ], [t- ] and [3NH 3NH +H ], are the free ammonia, total ammonia and proton 

concentration, respectively, and kA is the dissociation constant, which increases with 

temperature. So, ammonia inhibition is higher under high temperatures and high pH 

values. Among the microorganisms involved in the anaerobic process, methanogens 

are especially sensitive to ammonia inhibition. Thus, when an anaerobic process is 

inhibited by ammonia, the concentration of VFAs will increase and this will lead to a 

decrease of pH. The decrease of pH will partly counteract the effect of ammonia due 

to a decrease in the free ammonia concentration. This phenomenon is called “inhibited 

steady state”. 

 

3.2.5.2 Inhibition by nitrogen oxides  

It is reported that hydrogen-utilizing methanogens can be inhibited by nitrogen 

oxides, such as nitrate, nitrite and nitric oxide; both are present in natural marine 

sediments and in man-made environments with whole-cell of Methanobacterium 

thermoautotrophicum and Methanobacterium formicicum suspensions. And 

experimental results suggested that the inhibitory effect was not due to redox change 

or substrate competition, but due to the inhibition of the activity of some component 

of the methanogenic enzyme complex itself (Balderston & Payne, 1976). Hydrogen-

utilizing methanogenesis is one of the major pathways in anaerobic digestion process, 

especially when anaerobic digestion is conducted at thermophilic temperatures, and 

acetate-utilizing methanogenesis is inhibited by elevated temperature, acetate 

oxidation followed by hydrogen-utilizing methanogenesis is the only way to convert 

acetate (Ahring, 2003). So, sewage sludge from a wastewater treatment plant without 

denitrification process may bring the danger of posing inhibition to the anaerobic 
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sludge treatment process when wastewater contains high concentration of these nitric 

compounds.  

 

3.2.5.3 Inhibition by shock loading of substrates 

A sudden increased load of proteins will result in formation of ammonia, so substrate 

may cause inhibition as well. Besides proteins, a sudden addition of lipids to the 

reactor can cause inhibition of the anaerobic process, since the hydrolytic, acidogenic 

and methanogenic bacteria can be inhibited by accumulation of long chain fatty acids 

produced during hydrolysis of lipids. Generally, it takes long period for the reactor to 

adapt to the overload of this kind of substrates. Another case of substrate inhibition is 

the shock overload of easily degradable substrates, which can be quickly hydrolyzed 

and fermented by the acidogens resulting in a sudden decrease in pH of the reactor 

and finally inhibit the methanogens.   

 

3.2.6 Toxicity 

Besides ammonia and nitrate/nitrite, heavy metals, such as Zn, Cu and Cd can be toxic 

to acidogenic bacteria [Ahring & Westermann, 1983; Zinder et al. 1984]. However, 

many of these elements and compounds can be tolerated in relatively high 

concentration due to absorption in inert material contained in the reactor. 

 

3.2.7 Retention time 

For the CSTR reactors, which are the most prevailingly used types of reactors, 

hydraulic and solid retention time is the same. Retention time is an important 

operational parameter that is easy to operate and control. Tremendous efforts has bee 

been put into the research of the effect of retention time on anaerobic digestion 

(Bouzas, et al., 2002; Elefsiniotis & Oldham, 1994 a, b; Perot, et al., 1988; Zhang & 

Noike, 1994). Biologically, only those whose doubling time are shorter than the 

retention time can be kept in the reactor, so retention time is one of the best parameter 

to be manipulated for separating and enriching different groups of the microbes 

involved in the anaerobic process. Also, retention time determines the time that 
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substrates can be attacked by the enzymes in the reactor. In practice, longer HRT 

means bigger working volume of reactor and higher investment and operation costs. 

3.2.8 Agitation strategy 

It is normally believed that agitation is necessary to help the diffusion of substrate and 

increase their contacts with the microbes, especially when raw sludge is intermittently 

fed into the reactor. Agitation strategy can affect anaerobic digestion of sewage sludge 

and optimum agitation strategy should be found (Perot, et al., 1988). However, 

Banister & Pretorius (1998) found that, when using primary sludge for VFA 

production, vigorous mixing was not helpful. Also, a study carried out by Stroot, et al. 

(2001) using mixture wastes of organic fraction of municipal solid waste, primary 

sludge and secondary sludge show that continuous mixing was not necessary for good 

performance of the anaerobic process and was inhibitory at higher loading rates. In 

addition, it was also found that mixing levels might be used as an operational tool to 

stabilize unstable anaerobic reactor.  

 

3.2.9 Feeding strategy 

Practically, anaerobic reactors treating sewage sludge in wastewater treatment plants 

are fed semi-continuously instead of continuously. For example, in Lundtofte 

Wastewater Treatment Plant, the frequency of feeding of raw sludge to the reactor is 

once per hour. Feeding frequency determines the ratio of food to microbe (F/M) when 

the retention time and the working volume have been fixed. Normally, the ratio can be 

satisfied so that there is no negative effect on the stability and on the performance of 

the anaerobic reactors. However, when hygienic property of the digestate is 

considered, the minimum guaranteed retention time (MGRT) of the sludge in the 

reactor should be taken into consideration (Farrell, et al., 1988).  Then, the F/M ratio 

and MGRT should be compromised by the adjustment of feeding frequency.   

 

3.3 Optimization of anaerobic digestion for sewage sludge treatment 

Even though anaerobic digestion is a good biological process and has a long history 

and a worldwide application in treating sewage sludge, this biotechnology is still far 

from being optimized. The organic material in sewage sludge is in the form of 
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particulates, and this makes hydrolysis of these particulates the obstacle of the whole 

anaerobic digestion (Ghosh, 1975; Eastman & Fergusson, 1981; Li & Noike, 1992). 

Meanwhile, some of the microbial groups involved are slowly growing and sensitive 

to changes in operating conditions and to variations of influent sludge composition 

and concentration, which are caused by the inhomogeneity of the nature of the sludge. 

These usually causes instability of the reactor performance (Huysman et al., 1983; 

Gijzen et al., 1988; Rozzi and DiPinto, 1994), leading to the decrease in biogas 

production. Consequently, only around 50% of organic material in sewage is degraded 

and converted to biogas by conventional anaerobic digestion process. Figure 3-4 

shows an example from our lab experiment. 

 

 

 

CH4

  r3=98% 

 
Organic 
particulates 

   r1=55% 

d-COD t-VFAs 

 r2=90% 

40.85% 3.72% 0.93% 54.49% 

 

 

 

 

 Figure 3-4. Schematic diagram of the conversion rate in each 
step and the final COD distribution of mixed sewage sludge after 
anaerobic digestion in a single-phase reactor (55oC, 15 days).  

 

 

 

As it can be seen in Figure 3-4 (data adapted from our lab experiment), when the raw 

sludge, a mixture of primary sludge and secondary sludge with a solid concentration 

of 34.6g/l, was digested in the conventional single-phase thermophilic anaerobic 

reactor running at 55oC for a retention time of 15 days, the remaining solid 

concentration in the effluent was 20.5g/l. No accumulation of d-COD or VFA was 

found. The conversion rate of organic material from the form of particulates to 

hydrolysis products, measured as dissolved COD is only about half of the rate from 

hydrolysis products to acidogenisis products, measured as VFA, or the rate from 

acidogenisis products to methanogenisis products, measured as CH4. So, there exists a 

large potential to optimize the process for exploitation of energy from sewage sludge. 

The interest in increasing the conversion of the organic material is further linked to 

 - 26 -
 
 



 

 
the reduction in the final amount of solid, which has to be disposed after the treatment 

(Ahring, 2003).  

 

The other aspect to optimize the anaerobic digestion process is to make it possible to 

recycle the digestate, the effluent from anaerobic digestion process, back to the 

farmland. The digestate consists of an odor free residue with appearance similar to 

peat. The plant nutrients such as N, P and etc. are retained in the digestate after 

anaerobic digestion. Although the application of the digestate to farmland is the best 

final disposal option and also encouraged by the EU directives (EU, 2000), 

commitment to the relevant criteria can seldom be held by the conventional anaerobic 

digestion process. Besides xenobiotics and heavy metals, the concentrations of which 

in sewage sludge can be reduced by control at source (Jensen & Jepsen, 2005), 

pathogens are normally the most critical parameter limited by the criteria and the 

agriculture sector concerns very much about the risk of spreading disease. Studies 

have shown that anaerobic digestion can kill pathogens, especially when it is 

conducted at thermophilic temperatures (Bendixen 1999; Nielsen and Pertersen, 

2000). It will be significant if it is possible for sewage sludge to use farmland as a safe 

and permanent outlet destination with only positive effect, i.e., the digestate can be 

recycled as fertilizer and soil conditioner back to the farmland so as to keep these 

natural nutrients within a closed loop system, and remain or improve the soil structure 

of the farmland.  

 

So, efforts must be made to enhance the hydrolysis and improve the process stability 

for biogas production and to eliminate the pathogens.  
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4. THERMOPHILIC ANAEROBIC PRE-TREATMENT  

 

4.1 Summary of the pre-treatment methods  

 

The pre-treatment methods that are most frequently cited in literature are summarized 

in Table 4-1.  

 

Table 4-1 Methods of pre-treatment for anaerobic digestion of sewage sludge 
Method Sludge Improvements Reference 

Stirred ball-mill  
(22Wh/l) WAS 23% hydrolysis, 14% increase in VS 

removal Müller, 2004 

Jetting-smashing  
(50bar, 5 times) WAS 15% increase in VS removal Choi et al., 1997 

Ultrasound 
(40Hz, 375W/l, 1h) WAS 20% in VS removal Kim et al., 2003 

Mechanical  

Electron beam (0.5-1.0 
kGy) WAS 

30-52%  increase in hydrolysis and app. 
90% in VFA, RT can be reduced from 20 
days to 10 days when digestion in CSTR 

Shin and Kang, 
2003 

NaOH (40 meq/l, 24 h) WAS 36.3% hydrolysis of total COD Chiu et al., 1997 
Chemical 

Ozone (0.05g/g TS) WAS 37% hydrolysis, 28% increase in VS 
removal Goel et al., 2003 

Low temperature 
(60-100oC, 30-60 min) WAS 30-50% increase in biogas production Hiraoka et al, 1984 

Thermal 
High temperature  
(60-100oC, 30-60 min) WAS 60% increase in VS removal, and 100% 

increase in biogas production Li and Noike, 1992 

Ultrasound + NaOH 
 (40meq/l, 375W, 24 h) WAS 89% hydrolysis Chiu et al., 1997 Combined 

(Mech.+ 
chem., ther.+ 
chem.) 
  

175oC+NaOH 
(30meq/l, 121oC, 1h) WAS 55% hydrolysis, 58% increase in CH4 

production Haug et al., 1978 

Freezing and thawing WAS 7% increase in CH4 production Wang et al, 1999 

Thermophilic aerobic  
(70oC, 5 h) 

Autoclaved 
WAS 

30% VS removal, 150% increase in biogas 
production 

Hasegawa et al., 
2000 

Micro-aeration 
 (37 oC, 4d) PS 60% increase in hydrolysis Johansen and 

Bakke, 2005 
Anaerobic  
(25oC, 3d) PS 13% increase in hydrolysis, 50% increase 

in VFA Miron et al., 2000 

Anaerobic  
(37oC, 3d) PS 17% increase in hydrolysis, 64% increase 

in VFA 
Eastman and 
Ferguson, 1981 

Biological  

Anaerobic  
(49.8oC, 3.1d) WAS 20% increase in hydrolysis, 80% increase 

in VFA Ghosh et al., 1995 

 
 
 
Different methods have different mechanisms. Theoretically, mechanical 

disintegration provides energy necessary for the disruption of organic particulates or 

microbial cells by pressure, transactional or rotational energy, creating tensions on the 

surface of the particles or cells. Stirred ball mill disintegrates particles by crushing. 

High-pressure homogeniser disintegrates particles by cavitation effects due to sudden 

pressure release. Ultrasonic homogeniser leads to sludge disintegration by vibration. 

Mechanical jet technique has the similar principle as dissolved air flotation, by which 
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sludge stream is pressurized to 5-50 bars, the pressure is subsequently released across 

a nozzle and the sludge stream impinges on a splash plate. Electron beam uses 

electrical pulses to induce shock waves in solid and liquid media. When the power 

supply is switched on, the voltage across the electrodes is about several 10 kV. 

Eventually, it comes to a ´breakthrough´ between the electrodes and thus breaks the 

organic materials. The disintegration of the organic particles will increase the surface 

area of the particles for the accessibility of the enzymes in the reactor. The disruption 

of cells will release the intercellular content that is more soluble.  

 

Because the essence of hydrolysis is the decomposition of organic polymers involving 

the splitting of bond and the addition of the hydrogen cation and the hydroxide anion 

of water, addition of acids or alkalis can increase the concentration of these ions and 

thus increase the hydrolysis reaction rate. The aim of ozone pre-treatment is a partial 

oxidation and a hydrolysis of the organic matter. A complete oxidation is avoided and 

in stead larger molecules are cracked into smaller ones and hardly degradable 

compounds are transferred into more easily degradable ones.  

 

Thermal pre-treatment is normally used to treatment waste activated sludge in the 

temperature range from 60-180oC. In this temperature range, the cell walls can be 

destroyed and this makes the proteins accessible for biological degradation. Because 

mechanical, chemical and thermal methods belong to different mechanisms, so these 

methods can be combined and different effects from each method can be obtained 

simultaneously.  

 

By freezing and thawing activated sludge, the size of the floc structure will 

irreversibly reduced and the sludge will be more compact. This method is not 

commonly used, although it might be of potential application in the cold weather 

regions.  

 

In biological pre-treatment, the rate of hydrolysis is a function of the source of 

hydrolytic enzymes, and thus the activity and population of the microbial population 
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in the reactor. Studies on the direct addition of enzymes, either by addition of 

complex enzymes or by addition of a mixture of carbohydrolases, peptidases and 

lipases, confirmed the enhancement of hydrolysis.  

 

As it can be seen from Table 4-1, all of the pre-treatment methods have positive effect 

on the enhancement of hydrolysis and thus can improve the anaerobic digestion 

process. But we have to notice that due to the difference in energy input, dosage of 

chemical reagent, treatment time and the type of sludge with different solid 

concentrations used in different studies, the effects on hydrolysis enhancement, 

volatile solid removal and biogas production are not comparable in terms of treatment 

cost versus treatment efficiency. In general, mechanical, chemical, thermal and 

freezing and thawing methods need short treatment time, from minutes to hours. 

Compared with these pre-treatment methods, biological treatment methods need 

longer treatment time, from hours to days. 

 

Normally, it is regarded that the input of energy for mechanical pre-treatment is lower 

than for thermal pre-treatment, but it needs investment of mechanical installations and 

costs for maintenance operation. Thermal pre-treatment uses heat energy, which is 

cheap and normally can be obtained from the burning of biogas on the treatment site. 

Since thermal pre-treatment at higher temperatures normally produces inhibitory 

substances to the anaerobic digestion process, temperatures lower than 100oC is 

normally used to pre-treat waste activated sludge. Chemical methods by addition of 

alkali and acids might be expensive and have to introduce foreign ions to the digestion 

system. Among the chemical methods, addition of ozone is the best, because it does 

not introduce foreign ions and only consume electricity for generating ozone. A 

significant advantage of biological anaerobic methods is the relatively higher 

production of volatile fatty acids than the other pre-treatment methods.  

 

4.2. Rationale for conducting pre-treatment under thermophilic anaerobic 

conditions 

4.2.1 Exploitation of the anaerobic thermophiles for hydrolysis and acidogenesis  

Thermophilic anaerobic bacteria widely exist in natural and man-made environments, 

such as hot spring and food processing industry (Kristjansson and Stetter, 1992), and 
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can be sassily enriched. For some thermophilic anaerobic bacteria, they can not only 

hydrolyze the large spectrum of organic polymers such as cellulose, hemicellulose, 

proteins, pectin, and etc., but also carry out the fermentation of starch, pullulan, 

glucose and xylan to acids and etc. (Wiegel, 1992). These thermophiles have growth 

temperatures range from 20oC to 90oC, and most of them have the optimal 

temperature in the range from 60 oC to 78 oC. Table 4-2 lists some of the anaerobic 

thermophiles. Because their optimum temperature is far away from the normal 

temperature range, application of these microbes for waste treatment is seldom 

considered.  Their roles in hydrolysis and further acidogenesis of waster organic 

material have not been brought into full play. If the hydrolysis and acidogenesis 

activities can be high enough, the pre-treatment step can be incorporated into the two-

phase anaerobic digestion system severing as the acid-phase.  

 

 
Table 4-2. Example thermophilic anaerobes 
Organism Substrate Tmin (oC) Topt (oC) Tmax (oC) pH  

Dictyoglomus turgidus Cellulose 50 72 80 5.2-9.0 

Thermoanaerobacter cellulololyticus Cellulose 37 75 80 5.4-8.9 

Caldocellum saccharolyticum Cellulose ---- 68 75 5.0-7.3 

C. thermocellum Xylan ---- 60 68 5.7 

Clostridium fervidus Xylan 37 68 78 5.5-9.0 

C. thermosulfurogenes Starch ---- 60 75 6.0 

Dictyoglomus turgidus Pectin 50 72 86 5.2-9.0 

D. thermophilum Pectin ---- 78 80 7.0 

Clostridium thermolacticu Pectin  45 60 70 6.4-7.8 

Thermobacteroides proteolyticus Protein 35 63 75 5.0-8.5 

T. leptospartum Protein ---- 60 71 7.5 

Clostridium thermolacticum Glucose 50 65 75 7.2 

C. fervidus pentose ---- 68 80 7.3 

Data adopted from Kristjansson & Stetter (1992) and Wiegel (1992). 

 
 

4.2.2 Simultaneous achievement of thermal pre-treatment effects 

Because thermal pre-treatment and biological pre-treatment belong to different 

mechanisms, in the temperature range of 60 oC to 78 oC, the thermal effects on 

hydrolysis improvement can be obtained simultaneously, as it has been reported that 

when waste activated sludge is thermally pre-treated at 60oC to 80oC, both of the 

organic matter destruction rate and methane generation rate can be increased 
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(Hiraoka, et al, 1984; Wang, et al, 1997). Meanwhile, acidogenesis consumes the 

products of hydrolysis, so acidogenesis may improve hydrolysis, and vise versa.  

 

4.2.3 Simultaneous achievement of pasteurization 

In particular, it is expected that, when pre-treatment is conducted at thermophilic 

temperatures, pasteurization of the digestate will be obtained simultaneously. 

Pasteurization means the process, treatment, or combination thereof, that can reduce 

the most resistant microorganism(s) of public health significant to a level that is not 

likely to present a public health risk under normal conditions of distribution and 

storage (USA National Advisory Committee on Microbiological Criteria for Foods). 

Normally, it needs 7 mins at 70oC, 30 mins at 65oC, 2 hours at 60oC, 15 hours at 55 oC 

and 3 days at 50 oC (Strauch, 1991 and 1998). Studies using simple media under 

defined condition have shown that most of the pathogenic bacteria can be inactivated 

at temperatures in excess of 70oC over a relatively short period of time or lower 

temperatures over longer time periods (Carrington, 2001). It was expected that 

satisfactory pathogen reduction effect in the complex media, sewage sludge, could 

also be obtained, because pathogen inactivation is in principle due to heat and the 

holding time.   

 

4.2.4 Easy for operation 

This pre-treatment process can be easy for operation. Since the process temperature is 

lower than 100oC, it is not necessary to make the pre-treatment reactor as a pressure 

vessel. The odor problem can be eliminated since there is no need for aeration, and 

thus it can be conducted in a closed system. If the sludge has been pasteurized by this 

pre-treatment step, it will be convenient for the next digestion step because of no fear 

of pathogenic contamination.  

 

4.2.5 Internal-supplied energy for heating 

This pre-treatment process can be economically feasible. In many wastewater 

treatment plants, for example, the Lundtofte Wastewater treatment plant in Denmark, 

the heat from CHP (combined heat and power) unit burning the biogas produced from 

the sewage sludge treatment process is surplus after supplying to the local heating 

system. Heat needed for elevating the sludge to thermophilic temperature can be, at 

least partially, provided by the heat from the excess heat. Especially when heat 

 - 32 -
 
 



 

 
exchanger is installed, large percent of the heat can be recovered (Zupancic and Ros, 

2003), so this pre-treatment method is not highly dependent on external energy or 

chemical, as the other pre-treatment methods have to demand. 

 

4.3 Determination of optimal temperature and retention time 

4.3.1 Rationale for determination of optimal temperature and retention time 

Temperature and retention time are important environmental and operation 

parameters. In the studies regarding two-phase anaerobic digestion of different wastes 

including manure, agricultural waste and sludge, different temperature and retention 

time combinations, such as 68oC/3days, 60-70oC/4.3days, 60oC/3hours, 55oC/4hours, 

have been used for the pre-treatment or acid phase operation (Nielsen, et al., 2003; 

Scherer, et al., 2000; Roberts, et al., 1999). However, the main purposes of the pre-

treatment used in these studies were to increase organic waste degradation and thus to 

generate more biogas. The optimization of temperature and retention time has never 

been considered, or considered without taking pasteurization into consideration.  

 

As we have discussed previously, temperature and retention time are directly related 

to the microbiology, determination of reactor size and operational cost of the 

anaerobic process, so optimum combination of temperature and retention time should 

be found, i.e., under the condition of which, values of temperature and retention time 

are kept as low as possible whereas relatively high rates of hydrolysis, acidogenesis 

and satisfied pasteurization are obtained at the same time.  

 

4.3.2 Matrix of temperature and retention time combinations 

Temperature and retention time are dynamically related to each other with respect to 

the effects of hydrolysis, acidogenesis and pasteurization. For example, when a strain 

of a certain kind of fermentative bacteria are not growing at their optimum 

temperature, by extending the fermentation time, the same amount of fermentative 

products can also be obtained as when they are growing at the optimum temperature 

for a relatively shorter period of fermentation time. It is the same for pasteurization. 

The outcome of 2 hours at 60 oC is the same as 15 hours at 55 oC (Carrington, 2001). 

So, there exists a matrix of temperature and retention time combinations that regulates 

the effects of thermophilic anaerobic pre-treatment. The following matrix of 

combinations was carried out in our study: 
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 (Equation 4-1) 

 
 
 
 
 
Where t1, t2, t3, t4, t5, t6 equals to 55oC, 60 oC, 65 oC, 70 oC, 75 oC and 80 oC, 

respectively, and r1, r2, r3, r4, r5, r6 equals to 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 days, 

respectively. The selected temperature and retention time spans are considered to 

include most of the optimum growth temperatures and the doubling times of the 

thermophilic bacteria.  

 

4.3.3Experiments  

In the experiments carried out by Hiraoka, et al. (1984) and Wang, et al. (1997) for 

studying the effect of thermal pre-treatment, biological effects on the hydrolysis were 

ignored, so there was no need of inoculation. The inoculum used in our experiments 

was taken from a continuously stirred tank reactor running at 55 oC for a RT of 15 

days, with feeding of sewage sludge as substrate for more than one year. It was 

assumed that thermophilic bacteria that could be enriched and active in participating 

the hydrolysis and acidogenesis of the organics in the sludge were included in the 

inoculum or could be obtained from the influent sludge.  

 

After significant biological activities were observed in all of the simplified reactors, 

the cultivated inoculum were transferred into the corresponding reactors which were 

installed with gas and liquid sampling, agitation, and the influent feeding, effluent 

wasting, biogas counting apparatuses, which were automatically controlled by 

computer system installed with software called Lab-view. The reactors running at 

respective temperatures were started with RT of 3.0 days, and then step-wisely shifted 

to 2.5, 2.0, 1.5, 1.0 and 0.5 days, respectively. For each of the retention times, the 

operation period lasted for at least 3 times of the retention time to make sure that the 
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steady stage of the reactor at the retention in question was reached. At the steady stage 

of each of the retention times, reactor performance was monitored in terms of pH, 

hydrolysis production measured as soluable COD, acidogenesis production measured 

as VFA, and methanogenesis production for which CH4 and H2 production were 

measured.  

 

To evaluate pathogen reduction effect (PRE) of each of the reactor runs, attention was 

paid to the temperature and minimum guaranteed retention time (MGRT), to both of 

which PRE is only related in this circumstance. MGRT is determined by feeding 

interval, and therefore, feeding frequency is of great importance for the PRE of a 

reactor running at a certain temperature (Huyard, et al., 2000). Theoretically, for 

better PRE, the feeding frequency should be kept as low as possible. However, in 

practice, the ratio of food to microorganism (F/M) should be taken into consideration 

as well. When RT is fixed, reduction of feeding frequency will lead to the increase of 

F/M value, resulting in the breakdown of the biological system in the reactor. On the 

other hand, feeding frequency is also related to the frequency of switch-on and 

switch-off of the influent feeding and effluent wasting pumps and the size of influent 

and effluent storage tanks. In this study, PRE was examined when feeding frequency 

was set at once per hour for all RTs tested.  

 

4.3.4 The optimal combination of temperature and retention time 

As we have discussed, the purpose of conducting pre-treatment under thermophilic 

anaerobic conditions was to obtain both enhanced hydrolysis and satisfactory 

pathogen reduction so that sewage sludge can be better stabilized, more biogas 

produced and the digested sludge recycled to the farmland without fear of epidemic 

diseases. And therefore, the choice of temperature and RT should guarantee the total 

elimination of pathogens and high concentration of s-COD. In addition, since the 

present of VFA in the influent can increase the microbial activity and the thus 

improve the performance of the next step AD reactor (Zhang and Noike, 1991; 

Skiadas et al., 2005; Lu and Ahring, 2006), higher VFA concentration in the pre-

treated sludge is preferred. Besides, since methanogenesis consumes VFA, it should 

be avoided. So, the hierarchy adopted here in determining the suitable temperature 

and RT for thermophilic anaerobic pre-treatment follows the order of a thorough 
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elimination of pathogens, a higher s-COD concentration, a higher VFA concentration 

and finally a low s-COD loss to the gas phase. 

 

Since experimental results show that the highest values for s-COD concentration, 

VFA concentration and pathogen reduction effect and lowest value for s-COD loss 

were not obtained at the same temperature and RT combination, only a range of the 

most suitable temperature and RT for thermophilic anaerobic pre-treatment was 

actually able to be determined from this study. We found that for pathogen reduction, 

only when temperature is higher than 70oC and RT longer than 2 day, or then 

temperature higher than 75oC and RT longer than 0.5 days, can the indicator organism 

be totally eliminated. Relatively higher d-COD concentration (not lower than 85% of 

the highest value) can be obtained at temperatures of 65oC, 70oC 75oC and 80oC when 

RT in the range of 2.5, 1.5, 1.0 and 0.5 to 3.0 days, respectively.  Relatively high VFA 

concentration (not lower than 85% of the highest value) can be obtained in the 

temperature range of 60oC, 65oC and 70oC when RT was set in the range of 2.5, 2.5 

and 2.0 to 3.0 days, respectively. To limit biogas production (lower than 10% of the 

total s-COD produced), at 55oC, 60oC and 65oC, RT should be shorter than 0.5, 2.0 

and 2.5 day, respectively. Figure 4-1 shows the compromised boundary for choosing 

temperature and RT to conduct a satisfactory pre-treatment. By using linear equation 

it can be calculated that, if temperature and RT is chosen within the boundary, s-COD 

concentration will be in the range of 12.1 to 14.1g/l, corresponding that 29.0% to 

33.8% of the solids can be hydrolyzed in terms of COD, and 47.1% to 70.2% of the 

hydrolysis products are in the form of VFA.  

 

 

Figure 4-1 The optimal temperature and RT boundary for 
thermophilic anaerobic treatment 
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In practice, the choice should keep temperature and RT values as low as possible so as 

to reduce the operation cost and to reduce the reactor volume, for example, setting 

temperature at 73oC and RT for 2.0 days, so that operation energy (heat) and reactor 

volume can be kept as low and small as possible.  

 

4.4 Differentiation of the effects on the hydrolysis the organic particulates 

To investigate further the mechanisms involved in the hydrolysis of organic 

particulates in primary and waste activated sludge thermophilic anaerobic pre-

treatment, a study on distinguishing different effect mechanisms was carried out (see 

Paper III).  

 

4.4.1 The different characteristics of primary sludge and waste activated sludge  

The sewage sludge used in the study thermophilic anaerobic pre-treatment was the 

mixture of primary sludge and waste activated sludge accounting for about 71% and 

29% of the total VS, respectively. Normally, these two types of sludge in wastewater 

treatment plant are anaerobically treated together. For the wastewater treatment plants 

where only primary sludge is treated at mesophilic temperatures, and waste activated 

sludge is not anaerobically treated, with the prevailing shift of operation at 

thermophilic temperatures, enough space will be provided for the treatment of 

secondary sludge (Nielsen & Petersen, 2000). Although primary sludge and waste 

activated sludge are digested together in practice and also in this study the mixture of 

these two types of sludge was used, it has to be kept in mind that the main contents in 

these two types of sludge are very different. The particulate constituents in primary 

sludge are food scraps, excrement, paper and cellulose (nappy liners, etc.) that 

normally present in raw sewage. Waste activated sludge is mainly composed of 

microorganisms and other life forms with small proportions of adsorbed suspended 

solids and colloids derived form the sewage (Mudrack & Knust, 1986). So, in the 

study of the mechanisms of thermophilic anaerobic pre-treatment involved in 

hydrolysis and acidogenesis, these two types of sludge were separated. As it can be 

seen from Table 4-3, the characteristics of the primary sludge and waste activated 

sludge, especially the chemical composition in terms of proteins, lipids and 

carbohydrates are quite different. 

 

4.4.2 Experiments 
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Two series of continuous experiments were carried out. In Series I, three completely 

stirred tank reactors running at 60, 70 and 80oC, respectively, were fed with primary 

sludge as feedstock. In Series II, another three completely stirred tank reactors 

running also at 60, 70 and 80oC, respectively, were fed with waste activated sludge as 

feedstock. The RT for all of the six reactors was set at 2.0 days. When reactors 

approached their steady stages, three representative samples were taken at reasonable 

intervals and used for analysis of pH, VFA, d-COD, VSS, lipids, proteins. Content of 

carbohydrates was obtained by subtracting lipids and proteins from VSS. Biogas 

production for each reactor runs was counted, and the content of methane and 

hydrogen in the biogas was also monitored. 

 

Table 4-3 Characteristics of the primary sludge and waste activated sludge 
Type of sludge Parameter Units Primary sludge Waste activated sludge 

Components in solid form  
  

            TSS g/l 24.54± 0.22a 17.06 0.70 ±
            VSS g/l 17.39± 0.17 9.61± 0.35 
            Lipidsb g/l 3.85± 0.27 0.44± 0.10 
            Proteinsb g/l 3.15± 0.06 5.27± 0.12 
            Carbohydratesc g/l 10.39± 0.21 1.46± 0.14 
            COD g/l 27.91± 1.25 14.09 0.86 ±
    

Components in soluble form   
            COD g/l 1.02± 0.03 0.64± 0.04 
            VFA g/l 0.55± 0.01 0.23± 0.01 
 
 
 
 
 

a. Values are average of three measurements with standard deviation; b. Measurements carried out after
samples were centrifuged and the solid fraction was washed twice and re-suspended to the original 
volume; c. Value obtained by calculation according to the assumption that VSS is composed of lipids,
proteins and carbohydrates; d. The sum of acetate, propionate, n-butyrate and n-valerate. 

 
 
The inoculum used for the batch experiment was taken from the above-mentioned 

reactors during their steady stages. The initial substrate concentration (So) and the 

initial biomass (Xo) concentration have a significant effect on the biological reaction 

rate (Moreno, et al., 1999). The higher the So/Xo ratio is, the higher the reaction rate 

will be, and vice versa (German, 2002). In this study, the initial ratio of substrate to 

microbial biomass, i.e., So/Xo was set at 3:1. This is because the ratios higher or lower 

than this resulted in either unobvious biological effect or the biological evolution was 

too fast to follow. To differentiate the biological effect and the thermal effect, 

interferences from the microbial activities in the raw sludge and the biomass in the 

inocula sludge had to be eliminated. This was done by using 3 groups of controls, i.e., 
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the inocula, the raw sludge and the raw sludge treated by NaN3 that inhibited the 

microbial activities in the raw sludge (Slanetz & Bartley, 1957). To avoid drawbacks 

that batch experiments usually encountered such as adherence of organic solid on the 

vial wall, impossibility of organic solids to be sampled together with the liquid by 

syringe with small-sized needles, and etc., the ‘multiple flask’ method (Sanders, 2002) 

was followed in this study. The sampled vials were quenched in a –20oC freezer and 

analyzed in the end of the experiment. 

 

4.4.3 Differentiation of the biological and thermal effects  

As shown in Figure 4-1, experiment results confirmed that both biological and 

thermal effects contribute to the hydrolysis of organic particulates. For waste 

activated sludge, the additional mechanism, thermal lysis of microbial cell, was also 

proved. 

 

For the hydrolysis of different types of organic compounds, i.e. lipids, proteins and 

carbohydrates, their dependency on thermal effect and biological effect were 

different. The hydrolysis of lipids and proteins was more dependent on biological 

activity than the hydrolysis of carbohydrates, while the hydrolysis of carbohydrates 

was more dependent on thermal effect than lipids and proteins. For both of primary 

sludge and waste activated sludge, at 60oC and 70oC, i.e., at the temperatures of which 

microbial activity was high, larger percent of lipids and proteins were hydrolyzed than 

at 80oC. For primary sludge, at 80oC, the biological effect is negligible, and high 

percent of carbohydrates are hydrolyzed by thermal effect. For waste activated sludge, 

at 80oC, thermal lysis of microbial cell was the dominant mechanism resulting in the 

high degradation rate of proteins released from the microbial cells.   

 
In differentiating the contributions to hydrolysis from biological effect and thermal 

effect, batch experiment for a period of 72 hours shown that, for the pre-treatment of 

primary sludge, an increase of 49.5% and 48.32% of hydrolysis product could be 

obtained due to biological activity at 60oC and 70oC, respectively. At 60oC, 33.1% of 

the hydrolysate was caused by biological activity and the rest, 69.9%, was caused by 

thermal effect. At 70oC, 32.6% was caused by biological activity, and 67.4% is caused 

by thermal effect. 
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Figure 4-1. Thermal and biological effects on the 
hydrolysis of primary sludge and waste activated 
sludge. (a. A modified figure from Mosier et al., 
(2005); b. A modified figure from Madigan et al., 
(2003)).

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For the pre-treatment of waste activated sludge, an increase of 50.7% and 46.0% of 

hydrolysis product could be obtained due to biological activity at 60oC and 70oC, 

respectively. At 60oC, 33.6% of the hydrolysate was caused by biological acivity and 

the rest, 66.4%, was caused by thermal effect. At 70oC, 31.5% was caused by 

biological acivity, and 68.5% was caused by thermal effect. 

 

 At 80oC, for the pre-treatment of both primary sludge and waste activated sludge, 

almost all of the hydrolysis is caused by thermal effect. Biological effect is negligible. 

The week biological effect might be due to the failure in enriching the microbes that 

can growth at this high temperature or might be the microbes were enriched, but with 

low activity at this high temperature. This temperature was recommended as the upper 

limit for thermophilic anaerobic pre-treatment for sewage sludge. 
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5. TOW-PHASE ANAEROBIC DIGESTION  

5.1 Theoretical background of two-phase AD process 

Conventionally, AD is conducted in a single-phase reactor that must be operated at 

conditions conducive to the growth of all the microorganisms involved in the whole 

process if the waste organic material should be stabilized. However, the physiology, 

nutrient needs, growth kinetics and sensitivity to environmental conditions of 

hydrolytic-fermentative bacteria and methanogens are different, so it is not possible to 

select a single set of reactor operating conditions that can maximize the growth of 

both groups of the microorganisms (Demirel & Yenigün, 2002). For example, 

acidogenic bacteria are limited to a pH interval from approximately 5.2-6.5 and a 

minimum doubling time of 2.0 days, while methanogens often have an optimum pH 

of 7.5-8.5 and a minimum doubling time longer than 3.6 days (Solera, et al, 2002). So, 

conditions that are favorable to the growth of the hydrolytic-fermentative bacteria 

such as short hydraulic retention time, acidic pH and increased temperature, are 

inhibitory to the methanogens. Consequently, single-phase reactors are usually 

operated at relatively long HRTs, neutral or slightly basic pH and temperatures just 

below the optimal temperature (methanogenic activities will be drastically dropped 

when temperature is higher the optimum (Ahring, 2003; Madigan, et al., 2003)). But 

even by doing so, single-phase AD process is still subjected to instability due to 

changes of temperatures and inadvertent organic, hydraulic or toxic overloads caused 

by short-term variations in waste flows or characteristics (Henry, et al., 1987). Studies 

carried out on the stability of biogas plants in Denmark also showed that cases with 

high fluctuation of VFA level could usually be linked to specific events such as 

temperature instability or abrupt changes in substrate composition. (Angelidaki, et al., 

2005). 

 

To optimize AD process, two-phase system, in which the whole AD process is 

artificially separated into acid-phase and methane-phase, has been studied since 1970s 

(Pohland & Ghosh, 1971). The most obvious advantage of the two-phase process is 

the possible selection and enrichment for hydrolytic-fermentative bacteria and 

methanogens in each reactor by independent control of the reactor operating 

conditions. Thus, the acid phase can be optimized for hydrolytic-fermentative bacteria 

and the methane phase for methanogens. And therefore, higher microbial population 
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levels (Zhang & Noike, 1990) and increased activities (Skiadas, et al., 2005) can be 

achieved. 

 

In this study, the thermophilic anaerobic pre-treatment was engrafted into the two-

phase AD process. The pre-treatment reactor was run at 73oC for a RT of 2 days so 

that the compromised enhancements on hydrolysis, acidogenesis and pathogen 

reduction effect could be kept, as has been discussed in the last chapter.  For the 

methane reactor, the operation temperature was set at thermophilic mode because it 

has been testified that thermophilic AD has many advantages over the mesophilic AD 

(Ahring, 1994, 2003, Ahring et al., 2002). The optimum temperature for the 

aceticlastic methanogens is around 60oC, above which the activity of the methanogens 

will drastically drop. So, for security reason, the temperature for thermophilic AD in 

practice is usually set at 55oC, just below the optimum temperature (Ahring, 2003). 

Due to the enhanced stabilization rate at thermophilic temperatures, RT for 

thermophilic AD is normally set at 15 days, which is half of what the mesophilic AD 

needed (Hamer, et al., 1985;Nielsen & Petersen, 2000). 

 

In order to investigate the advantages of the two-phase process over the single-phase 

process, a single-phase process under the conditions of 55oC and RT equal to the total 

RT of the two-phase process was run in parallel with the two-phase process. 

 

5.2 Comparison of the two-phase process with the single-phase process 

5.2.1 Operation at normal RT  

Comparable performance of the two methane reactors, before one of them used in the-

two phase process was connected to the acid-phase reactor, was obtained by using the 

same start-up strategy described by Ahring (2003) and by exchanging the biomass 

between these two methane reactors. After the pre-treatment reactor had been 

strategically connected with the second-phase methane reactor, the superiority of the 

two-phase process over the single-phase process was displayed. As it had been 

expected, the two-phase process could exert the satisfactory pathogen reduction 

effect, while 350 of Faecal Streptococci, the microorganism indicator used in this 

study, was monitored in one milliliter of the effluent of the single-phase process. The 

VS reduction rate and CH4 production rate of the two-phase process was 4.48% and 
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11.66% higher than those of the single-phase process, respectively. The reactor 

performance of the single-phase process and the two-phase process is shown in 

Table5-1. 

Table 5-1. Comparison of the operation and performance of the single- and two-phase 
process  
System 

Single-phase 
Two-phase 

Reactor R1 R2-1 R2-2 
Temperature (oC) 55 73 55 
RT (day) 15 2 15 
pH  7.66a (0.07b, 15c) 5.68 (0.06, 15) 7.69 (0.06, 15) 
VFA (mg-COD/l) 664 (121, 15) 7972 (174, 15) 214 (52.8, 15) 
FS ( ) mlCFU / 350 (28, 5) 0 0 
CH4 in biogas (%) 61.6 (2.1, 10) 3.3 (0.6, 15) 63.1 (1.8, 15) 
Methane production (ml/d) 2333 (205, 15) 68 (15, 15) 2540 (146, 15) 
VS removal rate (%) 60.49 (2.4, 5) Not measured 64.97 (2.5, 5) 
a. Mean value; b. Standard deviation; c. Number of measurements. 
 
5.2.2 Operation at reduced RT  

As illustrated in Table 5-1 and in Figure 5-1, the VFA concentration in the effluent of 

the two-phase process was much lower than that of the single-phase process. The 

former was only 32% of the latter, indicating that the two-phase process could convert 

VFA to a more complete level. When observing the methane production during one 

circle of feeding to the methane reactors, it was found that the methane production 

rate in the beginning period was much faster than in the latter period for the two-phase 

process in comparison with the single-phase process.  
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Figure 5-1. Comparison of the VFA concentration and the variation 
in CH4 production between the two-phase process (a) and the 
single-phase process (b).   



 

 
 

 

Figure 5-3. Methane potential from the raw 
sludge, the effluent of the two-phase system 
before and after NaOH-thermal treatment. 
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As it can be seen in Figure 5-2, it only took about 3.2 hours for the two-phase process 

to produce the same amount of CH4 as what the single-phase process produced in 6 

hours. From these phenomena, it can be deduced that the acetogenic and the 

methanogenic activities in the methane reactor of the two-phase process were higher 

than those in reactor of the single-phase process, and the enhanced activities in the 

two-phase process had been far from being brought into full play. Also, it was 

demonstrated that the methane potential of the effluent of two-phase process was very 

low. Around 66.42% of the total COD in the influent sludge had been removed by the 

two-phase process for a total RT of 17 days. Batch experiment showed that it was 

difficult to further increase the removal rate, even by alkali-thermal treatment, as it is 

shown in Figure 5-3. So, effort was exerted to test the possibility to reduce the RT of 

the methane reactor of the two-phase process to 13 days, 11 days, 9 days, 7 days and 5 

days with the RT of the pre-treatment reactor being constant at 2 days. For 

comparison reasons, the RT of the reactor in the single-phase process was 

correspondingly set at 15 days, 13 days, 11 days, 9 days and 7 days, respectively. 

 

 As it is shown in Figure 5-4, when running at each of the above-mentioned 

corresponding RTs, the VS reduction rate of the two-phase process was always higher 

than that of the single-phase process. Even when the two-phase process was run at the 

total RT of 9 days, i.e., 2 days for the pre-treatment reactor and 7 days for the of 

methane reactor, its VS degradation rate was still as high as 60.61%. This result is still 
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comparable to that of the single-phase process when running at RT of 15 days, which 

is 60.54%. 
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5.2.3 Perturbation tests  

From Figure 5-1, it can be noticed that the variation of biogas production and VFA 

concentration of the two-phase process was smaller than that of the single-phase 

process, indicating that the two-phase process was more stable than the single-phase 

process. To test the process stability, sodium nitrate was added in the influent sludge 

to a concentration of 0.1 M to inhibit the methanogens (Balderston & Payne, 1976) 

when both of the single-phase process and the two-phase process were run for RT of 9 

days (for the two-phase process, RT for R2-1 and R2-2 was set at 2 days and 7 days, 

respectively). It can be seen from Figure 5-5a that the dosage of NaNO3 caused severe 

instability to the single-phase reactor. This was indicated by the sudden drop of CH4 

production and increase of VFA accumulation. This instability lasted for about 20 

days. Stability the two-phase process also suffered negative effect.  

 

Reduced production of VFA in R2-1 and slight VFA accumulation and CH4 drop in 

R2-2 were also noticed. However, this slight instability in the two-phase lasted only 

for about 5 days. In the single-phase process, methanogens were directly exposed to 

the toxic substance added, so they were immediately inhibited. 
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Figure 5-5. Performance comparison of the single-
phase process and the two-phase process after 
perturbation by toxic substance (a) and by easily
degradable substrate (b). 
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The consequence of the inhibition might cause the accumulation of VFA and drop of 

pH, so the condition for methanogens might become even worse. This is why the 

instability lasted for a longer period. In the two-phase process, however, the toxic 

substance first contacted with the biomass in the pre-treatment reactor. The acidogens 

are known to be robust and in the pre-treatment reactor de-nitrification reaction might 

be carried out as shown in Equation 5-1. 

energyNOHCONOOHC +++→+ −
22236126 2564  (Eq. 5-1) 

 

So, the inhibition of nitrate was eased off before it would have affected the 

methanogens in the methane reactor. Due to the high methanogenic activity in the 

methane reactor, the accumulated VFA was quickly turned over. So, no further 

damage to the process stability was caused. 

 

In the AD system, a precious balance between the hydrolyzing-fermenting bacteria 

and the methanogens are needed (Ahring, 2003). A sudden inadvertent overloading of 
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easily degradable substrate may cause a sudden increase of VFA and results in the 

break down of the stable stage of the AD process (Westermann, 2003). In this study, 

when glucose was added to double the organic loading rate of these two processes, 

different results were found, as shown in Figure 5b. For the single-phase process, CH4 

production increased in the beginning and then decreased. This can be explained by 

the fact that accumulation of VFA led to the drop of pH and then caused inhibition on 

the methanogens. On the contrary, the two-phase process could turn over almost all of 

the added glucose producing more CH4. No severe disturbance was observed. This 

again illustrated the enhanced methanogenic activity due to phase separation.  

 

5.3 Summary of two-phase anaerobic digestion process 

From this study, it can be concluded that two-phase process is superior to the 

conventional single-phase process.  

 

The effluent from two-phase process is hygienically satisfied and could be used as 

fertilizer and soil conditioner in the farmland without any fear of spreading diseases, 

while the effluent from the single-phase process has to undergo special sanitation 

treatment before application on farmland or has to go into other final disposal streams 

such as landfill, incineration, and etc that might be costly.  

 

The two-phase process is a high rate process. If RT is set for the same period, more 

VS can be degraded and more biogas can be produced by the two-phase process than 

the single-phase process. To achieve the comparable methane production rate and VS 

reduction rate, the two-phase process needed shorter RT than the single-phase system. 

When RT of the two-phase process was set for 9 days, of which 2 days was used for 

the pre-treatment reactor and 7 days for the methane reactor, the VS reduction rate 

was as high as 60.61%, which was still comparable to that of the single-phase process 

when RT was set at 15 days. 

 

Process stability can be greatly enhanced by phase separation. Perturbation test using 

pulse dosage of sodium nitrate and glucose demonstrated that two-phase process 

could buffer the shock overload of inhibitory substance and easily degradable 

substrate, while the single-phase was broken down by the fluctuations coming from 

the influent.     
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Even though the two-phase process may cost more energy and capital in construction 

and operation of whole AD system, considering the smaller volume of reactor needed 

due to the reduction of RT, the valuable application of its effluent on farmland and the 

elimination of the cost on effluent disposal, the two-phase process is still attractive. 
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6. CONCLUSIONS 

 

In this study, it was confirmed that enhancement of hydrolysis of the organic 

particulates in the sludge, high degree of acidification of the hydrolysis products and 

achievement of satisfactory pathogen reduction effect were obtained by pre-treatment 

under thermophilic anaerobic conditions simultaneously.  

 

Thermophilic anaerobic pre-treatment running at the identified optimal condition, i.e., 

at the temperature of 73oC for a retention time of 2 days, was employed as the acid-

phase of the two-phase anaerobic digestion system. By running a two-phase CSTR 

process (73oC/55oC) with a parallel single-phase CSTR process (55oC) as control, it 

was verified that the two-phase process could keep not only the satisfactory pathogen 

reduction effect that the single-phase process couldn’t achieve, but also possessed 

superiorities over the single-phase process such as increased efficiency in converting 

waste organic material into biogas and enhanced process stability due to the effect of 

pre-treatment. Microbial activities of the two-phase process were higher than those of 

the single-phase process. To help the implementation of the two-phase process in to 

practical application for sewage sludge treatment, it was suggested that proper start-up 

and operation strategies should be used.   

 

It was concluded from this study that thermophilic anaerobic pre-treatment can be 

used to optimize anaerobic digestion process for sewage treatment. The optimized 

two-phase process is high-rate, efficient and cost-effective, and possesses the 

capability to eliminate the pathogens. The significance of implementing the optimized 

two-phase process lies in the following aspects: 

 

5. The environmental problem caused by sewage sludge, which is a global one and 

getting more and more severe, can be solved in a sustainable way; 

6. The energy saved in the organic material of the sewage sludge can be extracted in 

the form of biogas, which is CO2 neutral and renewable, and can be used to 

produce electricity and heat; 
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7. The thorough elimination of pathogens makes it possible to recycle the plant 

nutrients and inert organic material in the digested effluent back to the farmland as 

fertilizer and soil conditioner without fear of spreading of epidemic disease; 

8. The heat needed to keep the process temperature can be obtained by burning the 

biogas produced by the process itself, so there is no dependency on the external 

energy supply.   

 

For future studies, it is suggested that identification of the composition of the 

microbes in both the pre-treatment reactor and the methane reactor should be focused. 

Besides temperature, RT and feeding frequency, other factors such as organic solid 

concentration, reactor agitation and start-up strategy should be further studied as well.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 50
 
 



 

 
REFERENCE 

Ahring, B.K. and Westermann, P. (1983). Toxicity of heavy mentals to thermophilic 

anaerobic digestion. Eur. J. Appl. Microbiol. Biotechnol., Vol. 17, pp. 365-370. 

 

Ahring, B.K. (1994). Status on science and application of thermophilic anaerobic 

digestion. Wat. Sci. Tech. Vol. 30. No. 12. pp.241-249. 

 

Ahring, B.K., Ibrahim, A.A., Mladenovska, Z. (2001). Effect of temperature increase 

from 55 to 65 oC on performance and microbial population dynamics of an anaerobic 

reactor treating cattle manure. Wat. Res. Vol. 35, No. 10. pp. 2446-2452. 

 

Ahring, B.K., Mladenovska, Z, Iranpour, R. and Westermann (2002). State of the art 

and future perspectives of thermphilic anaerobic digestion. Wat. Sci. Tech. Vol.45, 

No. 10, pp. 293-298. 

 

Ahring, B. K. (2003). Perspectives for anaerobic digestion. In: Advances in 

Biochemical Engineering/Biotechnology, T. Scheper (ed.), vol 81, Springer-Verlag, 

Berlin Heidelberg. 

 

Angelidaki, I., Boe, K. and Ellegaard, L. (2005). Effect of operating conditions and 

reactor configuration on efficiency of full-scale biogas plants. Wat. Sci and Tech., Vol 

52, No. 1-2, pp 189-194. 

 

Archer, D. B., Hilton, M. G., Adams, P. and Wiecko, H. (1986). Hydrogen as a 

process control index in a pilot scale anaerobic digester. Biotechnol. lett., 8, 197-202. 

 

Balderston, W.L. and Payne, W.J. (1976). Inhibition of methanogenesis in salt marsh 

sediments and whole-cell suspensions of methanogenic bacteria by nitrogen oxides. 

Appl. environ. microbiol. Vol. 32, 2, 264-269. 

 

Banister, S.S. and Pretorius, W.A. (1998). Optimisation of primary sludge acidogenic 

fermentation for biological nutrient removal. Water SA 24(1), 35-41.  

 

 51
 
 



 

 
Bendixen, H. J. (1999). Hygienic safety—results of scientific investigations in 

Denmark. In: IEA bioenergy workshop—Hygienic and environmental aspects of 

anaerobic digestion: Legislation and experiences in Europe. Band II: 27—40. 

International Energy Agency Task Group 24 ‘Energy from Biological Conversion of 

Organic Waste’. 

 

Benefield, L.D. and Randall, C.W. (1985). Biological Process Design for Wastewater 

Treatment. Ibis Publishing, Virginia. 

 

Bouzas, A., Gabaldon, C., Marzal, J., Penya-Roja, M., and Seco, A. (2002). 

Fermentation of municipal primary sludge: Effect of SRT and Solids P.concentration 

on volatile fatty acid production. Environ. Technol., 23, 863-875.  

Bryant, M. P. (1979). Microbial methane production-theoretical aspects. J. anim. sci., 

48, 193-201. 
 
Carrington, E. G. (2001). Evaluation of sludge treatments for pathogen reduction—

final report. Luxembourg: Office for Official Publications of the European 

Communities. 

 
Chyi, Y.T. and Dague, R.R. (1994) Effects of particulate size in anaerobic 

acidogenesis using cellulose as a sole carbon source. Water environ. res., volume 66, 

Number (5) 670-678. 
 
Chynoweth, D.P., Owens, J.M. and Legrand, R. (2001), Renewable methane from 

anaerobic digestion of biomass. Renew. Energy. 22, 1-8. 2001. 

 

Demirel, D. and Yenigün, O. (2002). Two-phase anaerobic digestion process: a 

review. J. chem. technol. biotechnol., 77: 743-755. 

 

Dolfing, J. (1988). Acetogenesis. In Biology of Anaerobic Microorganisms, Zehnder, 

A.J.B. (ed). Wiley Interscience, New York, pp. 417-468. 

 

 52
 
 



 

 
Eastman, J. A. and Ferguson, J. F. (1981). Solubility of particulate organic carbon 

during the acid phase ofanaerobic digestion. J. - Water Pollut. Control Fed., 53, 352-

366. 
 

Elefsiniotis, P. and Oldham, W.K. (1994 a).  Effect of HRT on acidogenic digestion 

of primary sludge. J. environ. eng., 120(3), 645-660.  

Elefsiniotis, P. and Oldham, W.K. (1994 b).  Anaerobic acidogenesis of primary 
sludge: The role of solids retention time. Biotechnol. bioeng. 44, 7-13.  
 

EU. (1995). Review of Planning and Environmental Issues Relating to Centralised 

Anaerobic Digestion Facilities, ETSU B/M4/00487/09/REP. 

 

EU. (2000). Working Document on Sludge 3rd Draft, ENV.E.3/LM, Brussles.  

 

Farrell, J.B., Erlap A.E., Rickabaugh, J, David, F., Hayes, S. (1988). Influence of 

feeding procedure on microbial reductions and performance of anaerobic digestion. 

Journal WPCF, 60 (5), 635-642. 

 

Ferreiro, N. and Soto, M. (2003). Anaerobic hydrolysis of primary sludge: influence 

of sludge concentration and temperature. Wat. Sci. and Tech. Vol 47 No 12 pp 239-

246. 

 

Frostell, B. (1985). Process control in anaerobic wastewater treatment. Wat. Sci. and 

Tech., 17, 173-189. 

 

German, B. (2002). Some factors that influence the biodegradability test results. In 

proceedings of Workshop on harmonization of anaerobic biodegradation, activity and 

inhibition assays, Lighart, J. and Mieman H. (ed). 

 

Ghosh, S., Conrad, J. R. and Klass, D. L. (1975). Anaerobic acidogenesis of 

wastewater sludge. J. Water Pollut. Control Fed., 47, 30-45. 
 

 53
 
 



 

 
Ghosh, S., Buoy, K., Dressel, L., Miller, T., Wilcox, G. and Loos, D. (1995). Pilot-

and full-scall two-phase anaerobic digestion of municipal sludge. Water environ. res., 

Vol. 67, 2, 206-214. 
 

Ghosh, S. (1997). Anaerobic digestion for renewable energy and environmental 

restoration. 1(3) p. 9-16. In: Proceedings of the 8th International Conference on 

Anaerobic Digestion, Sendai International Center, Sendai, Japan, May 25-59. 

 

Gibbs, R.A., Hu, C.J., Ho, G.E., Phillips, P.A. and Unkovich, I. (1995). Pathogen die-

off in stored wastewater sludge. Wat. Sci. Tech., Vol. 31, 5-6, 91-95. 

 

Gijzen, H. J., Schonmakers, T. J. M., Caerteking, C. G. M. and Vogels, G. D. (1988). 

Anaerobic degradation of paper mill sludge in a two-phase digester containing rumen 

microorganisms and colonized polyurethane foam. Biotechnol. lett., 10, 61-66. 

 

Gossett, J.M. and Belser, R.L. (1982). Anaerobic digestion of waste activated sludge. 

J. Environ. Eng., 108,  (EE6), 1101-1120. 

 

Gujer, W. and Zehnder, A.J.B. (1983). Conversion process in anaerobic digestion. 

Wat. Sci. Tech., Vol. 15, 127-167. 

 

EU. (2000). Working Document on Sludge 3rd Draft.  ENV.E.3/LM, Brussels. 
 

Hamzawi, N., Kennedy, K.J. and McLean, D.D. (1998). Anaerobic digestion of co-

mingled municipal solid waste and sewage sludge. Wat. Sci. Tech., Vol. 38, No. 2, 

127-132. 

 

Hartmann, H. and Ahring, B.K. (2003). Phthalic acid esters found in municipal 

organic waste: enhanced anaerobic degradation under hyper-thermophilic conditions. 

Wat. Sci. and Tech.  Vol 48 No 4 pp 175–183. 

 

Hamer, G., Bryers, J.D. and Beerger, J. (1985). Thermophilic anaerobic digestion for 

sewage sludge stabilization. Acta. Biotechnol, 5, 225-234. 

 54
 
 



 

 
 

Hasegawa, S., Shiota, N., Katsura, K. Akashi, A. (2000) Solubilization of organic 

sludge by thermophilic aerobic bacteria as pre-treatment for anaerobic digestion. Wat. 

Sci. and Tech. 41 (3), 163-169. 

 

Henry, M. P., Sajjad, A. and Ghosh, S. (1987) The effects of environmental factors on 

acid-phase digestion of sewage sludge. Proceeding of the 42nd Purdue Industrial 

Waste Conference, West Lafayett Indiana, 727-737. 

 

Henze, M., Harremoes, P., LaCour Jansen J. and Arvin E. (2000). Wastetwater 

Treatment: Biological and Chemical Processes. Third Edition. Springer-Verlag Berlin 

Heidelberg, New York. 

 

Huyard, A., Ferran, B. and Audic, J-M. The two-phase anaerobic digestion process: 

sludge stabilization and pathogens reduction. Wat. Sci. and Tech. Vol. 42, No., 9, pp 

411-47. 

 

Huysman, P., Van Meenen, P., Van Assche, P. and Verstraete, W. (1983). Factors 

affecting the colonization of non porous and porous packing material in model upflow 

methane reactors. Biotechnol. lett., 5, 643-648. 

 

Hänel, K. (1988). Biological treatment of sewage by the activated sludge process. 

Chichester,  Horwood.   

 
Jensen, J and Jepsen, S. E. (2005). The production, use and quality of sewage sludge 
in Denmark. Waste manag., 25, 239-247. 
 

Johansen, J.E. and Bakke, R. (2005). Enhancing hydrolysis with microaeration. In: 4th 

International Symposium on Anaerobic Digestion of Solid Waste, Arhing & 

Hartmann (ed), Vol.1, pp165-171. 
 
Kaseng, K., Ibrahim, K., Paneerselvam, S.V. and Hassan, R.S. (1992). Extracellular 

enzymes and acidogen profiles of a laboratory-scale two-phase anaerobic digestion 

system. Process biochem., 27, 43-47. 
 

 55
 
 



 

 
Kaspar, H. F. and Wuhrmann, K. (1978). Kinetic parameters and relative turnovers of 

some important catabolic reactions in digesting sludge. Appl. environ. microbiol., 36, 

1-7. 

 

Kim, J., Part, Chulhwan, Kim, T.H., Lee, M., Kim, S, Kim S.W. and Lee, J. (2003). 

Effects of various pre-treatment for enhanced anaerobic digestion with waste 

activated sludge. Journal of Bioscience and Bioengineering, Vol. 95, No.2, 271-275. 

 

Klass, D.L. (1984). Methane from Anaerobic Fermentation. Science, 223, 1021-1028. 

 
Kristjansson, J.K and Stetter, K.O. (1992). Thermophilic bacteria. In: Thermophilic 

Bacteria, J.K.Kristjansson (ed).CRC Press, Inc.  1-18. 
 
Lu, J. and Ahring, B.K. (2006). Comparison of the two-phase (73oC/55oC) with 

single-phase (55oC) anaerobic process in treating sewage sludge. PhD Thesis, 

BioCentrum-DTU, The Technical University of Denmark. 
 
Madigan, T.M., Martinko, J.M. and Parker J. (2003). Brock Biology of 

Microorganisms (10th ed). Pearson Education, Inc., Upper Saddle River, New Jersey. 
 
Magoarou, P. (2002). Urban wastewater in Europe what about the sludge? 

In:Langenkamp H. & Marmo L (Edts): Workshop Problem around sludge: 

Poceedings 8 p., Eur 19657 EN. 

 

McInemey, M.J., Bryant, M.P. and Stafford, D.A. (1980). Metabolic stages and 

energetics of microbial anaerobic digestion. In: Anaerobic digestion, Stafford, D.A., 

Wheatley, B.I. and Hudges, D.E.(ed), Applied Science Ltd, London, pp 91-98. 

 

Moreno, G., Cruz, A. and Buitron, G. (1999). Influence of So/Xo ratio and medium 

composition on anaerobic biodegradability test. Proceedings of the 52nd Purdue 

Industrial Waste Conference, Chap. 14, Ann Arbor Press, Michigan, 125-133. 

 

Mudrack, K. and Kunst, S. (1986). Biology of sewage Treatment and Water Pollution 

Control. Ellis Horwood Limited, England.  

 

 56
 
 



 

 
Nielsen, B. and Petersen, G. (2000). Thermophilic anaerobic digestion and 

pasteurization-Practical experience from Danish wastewater treatment plants. Wat. 

Sci. Tec. Vol. 42, 65-72.  

 

Palmowski, L.M. and Muller, J.A. (2003). Anaerobic degradation of organic 

materials-significance of the substrate surface area. Wat. Sci. and Tech. Vol. 47 No. 

12 pp. 231-238. 

 

Perot C., Sergent M., Richard P., Phan Tan Luu R. and Millot N. (1988). The effects 

of pH, temperature and agitation speed on sludge anaerobic hydrolysis-acidification. 

Environ. technol. lett., Vol. 9, pp. 741-752. 
 

Pretorius, W. A. (1994). pH-controlled feed on demand for high-rate anaerobic 

systems. Wat. Sci. and Tech. 30, 1-8. 

 

Rozzi, A. and DiPinto, A. C. (1994). Start-up and automation of anaerobic digesters 

with automatic bicarbonate control. Bioresour. technol., 48, 215-219. 

 

Schink, B. (1997). Energetics of syntrophic cooperation in methanogenic degradation. 

Microbiol. mol. biol. rev., 61, 262-280. 

 

Shin, K.S., Kang, H. (2003). Electron beam pre-treatment of sewage sludge before 

anaerobic digestion. Appl Biochem Biotechnol. 109, (1-3), 227-239. 

 

Skiadas, I.V., Gavala, H.N., Lu, J. and Ahring, B.K. (2005) Thermal pre-treatment of 

primary and secondary sludge at 70oC prior to anaerobic digestion. Water Science and 

Technology 52 (1-2), 161-166. 
 

Slanets, L.W., and Bartley, C.H. (1957). Numbers of enterococci in water, sewage, 

and faeces determined by the membrane filter technique with an improved medium – 

J. Bact., 74; 591-595. 

 

Smith, M. R., Zinder, S. H. and Mah, R. A. (1980). Microbial methanogenesis from 

acetate. Process biochem., 15, 34-39. 

 57
 
 



 

 
 

Speece, R. E. (1983). Anaerobic biotechnology for industrial wastewater treatment. 

Environ. sci. technol., Vol. 17, No. 9, pp. 416a-427a. 

 

Solera, R., Romero, L.I. and Sales, D. (2002). The evolution of biomass in a two-

phase anaerobic treatment process during start-up. Chem. Biochem. Eng. Q. 16 (1) 

25-29. 

 

Vavilin, V. A., Rytov, S. V. and Lokshina, L. Y. (1996). A description of hydrolysis 

kinetics in anaerobic degradation of particulate organic matter. Bioresour. technol., 

56, 229-237. 

 

Vesilind, P.A. (2000). Sludge disposal: ethics and expediency. Wat. Sci. and Tech., 

Vol. 42, No. 9, pp. 1-5. 

 

Wang, M.J. (1997). Land application of sewage sludge in China. The Science of the 

Total Environment. 197, 149-160. 

 

Westermann, P. (1996). Temperature regulation of anaerobic degradation of organic 

matter. World j. microbiol. biotechnol., 12, 497-503. 

 

Wiegel, J. (1992). The obligately anaerobic thermophilic bacteria. In: Thermophilic 

Bacteria, J.K.Kristjansson (ed).CRC Press, Inc.  106-184. 

 

Woodard, S.E. and Wukasch, R.F. (1994). Hydrolysis/thickening/filtration process for 

the treatment of waste activated sludge. Wat. Sci. Tech.,Vol. 30, No. 3, pp. 29-38. 

 

Zhang, T. and Noike, T. (1991). Comparison of one-phase and two-phase anaerobic 

digestion processes in characteristics of substrate degradation and bacterial population 

levels. Water Science and Technology 23, 1157-1166. 
 
Zhang, T. and Noike, T. (1994). Influence of retention time on reactor performance 

and bacterial trophic population in anaerobic digestion processes. Wat.Res. 28[1], 27-

36.  

 58
 
 



 

 
Ødegaard, H., Paulsrud, B. and Karlsson I. (2002). Wastewater sludge as a resource: 

sludge disposal strategies and corresponding treatment technologies aimed at 

sustainable handling of wastewater sludge. Wat. Sci. and Tech. Vol. 46 No 10 pp 

295–303. 

 

 

 

 
 
 
 

 59
 
 


	Jingquan Lu
	Contents
	Contents................................................................................................................1
	Title page..............................................................................................................4
	Preface................................................................................................................5
	Acknowledgement..............................................................................................6
	Summary (English).......................................................................................................7
	Papers:
	Student: 
	Jingquan Lu
	Supervisor: 
	Birgitte Kiær Ahring
	2. ISSUES ON SEWAGE SLDUGE
	2.1 Generation and composition

	2.3 Treatment and disposal methods
	Mechanical 
	Single-phase

	Two-phase
	6. CONCLUSIONS
	For future studies, it is suggested that identification of the composition of the microbes in both the pre-treatment reactor and the methane reactor should be focused. Besides temperature, RT and feeding frequency, other factors such as organic solid concentration, reactor agitation and start-up strategy should be further studied as well. 

