Chemical, biological and physical reaction in
engineered systems usually take place In
"reactors”. Reactors represent some sort of
containment that physically define the processes.
It Is Important to know the mixing level and
residence time in reactors since both affect the
degree of process reaction that occurs while the
fluid (usually water) and its components pass
through the reactor.



Reactor Classification:

Mixing levels give rise to three categories of
reactors:

.completely mixed flow (CMF)

plug flow (PF)

flow with dispersion (FD).



The first two are 1dealized extremes not

attainable In practice, but serve as convenient
mathematical models.

All real reactors fall under the category of
FD.



Fluid Transport
Depending on the level of mixing, fluid transport
of contaminants (pollutants) can be by:
 Advection
*Molecular Diffusion

*Turbulent Diffusion

*Shear Flow Dispersion



ADVECTION
Advection I1s movement of the contaminant with the

fluid (concurrently).

Consider a conservative material, in the absence of
any diffusive mechanisms, moving in one direction,

say the x-direction. T
activity means that the

ne absence of any diffusive

nollutant remains associated

with the same water “packet” with which 1t was

Initially associated.






If we do a mass balance on an elemental volume:
Mass flow 1n — mass flow out = time rate of
accumulation in the elemental volume.

Let Q = flow rate = u(Az)(Ay).

Where u = fluid flow rate (m/sec).



Then:
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In the limit, the size of the elemental volume
can be set infinitely small so that:
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In three dimensions:
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MOLECULAR DIFFUSION

In the absence of bulk fluid motion we can still get net
mass transport via diffusive phenomena. First look at
molecular diffusion .




In typical treatment processes molecular diffusion
IS overwhelmed by turbulence (another type of
diffusive transport property). But at interfaces
(water- air and water-solid) molecular diffusion
can become important. In addition, we can use
the same mathematical model as we use to
describe molecular diffusion for general diffusion

Processes.




Molecular diffusion is a phenomenon caused by
Kinetic energy of molecules and by concentration
gradients. Molecules undergo random motion which
IS caused by Internal energy of the molecules. Each
molecule possesses at least three types of energy:.

1) translational (only significant one in the diffusion
process)

2) rotational

3) vibrational




As long as there are no concentration gradients
motion is random and there is no internal flux in
the system. Collisions of particles ( molecules)
will occur randomly resulting in random changes
In particle motion and position.



Mathematical Model (Fick's Law)

Consider the situation where a concentration
gradient exists (by some set of initial
conditions). Molecular collisions will now be
less frequent in the direction of lower molecular
concentration. Therefore, there will be a net
movement (flux) of molecules from high to low
concentration regions as shown in the figure
below.






Groups of molecules move at velocity of w,, (in the
Z direction). Define | as the average distance
molecules (or particles) travel before they collide
with other particles. This is called the mean free
path. Of course, the mean free path and the average
velocity are function of the concentration of
molecules. But for dilute solutions we can assume
that they are constant at a constant temperature. The
net mass flux into the shaded region is given by (on
a unit area basis):
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J ( flux) has typical units of mass/m?-sec
C usually has units of mass/volume.



If the distance and concentration are small enough:
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(second order terms in Taylor expansion are
approximately zero if the distance and the
concentration gradient are small). So that:
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The product w, | = D (coefficient of
molecular diffusivity). D has typical units of
cm?/ sec. D is a function of temperature,
solvent and molecule type and size.

In three dimensions (assuming uniform D):
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Now look at transport with just molecular
diffusion, 1.e., assume no advection. Again a
mass balance can be performed on an elemental
volume for a conservative material. Again
assume that diffusion occurs in only the x-
direction (both positive and negative).










Again using In — out = mass rate of
accumulation in the elemental volume gives:
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mathematically:
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This results in Fick’s Second law In 1
dimension and 3 dimensions, respectively:
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Advection plus Diffusion:
Both advection and diffusion are usually active
simultaneously and they are linear processes,
therefore, their governing equations are additive
yielding what’s known as the advective diffusion

equation.
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Additionally there are two other diffusive type
transport mechanisms active in most environmental
engineering processes.

Turbulent Diffusion and Shear Flow Dispersion.



TURBULENT DIFFUSION

Basically turbulent diffusion is due to random
fluctuation in advective velocity. A typical one
dimensional velocity history at a single point in a
turbulent velocity field might look like the figure

below.
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It’s very difficult to mathematically describe
Instantaneous velocity since it has a random

component. Instantaneous velocity (u) has two
components:

U = avg. velocity
u' = perturbation velocity

U = Instantaneous velocity
u=u+u’



The effect of these velocity perturbations is
Increased mixing in the form of increased diffusion.
We can model this increased diffusion as follows:
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On the average there Is no Increase In the net
advective velocity due to turbulent flucuations so we
model the effect in the diffusional term.
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Where “e” = turbulent diffusion coefficient.



SHEAR FLOW DISPERSION
If a velocity profile exists and if there is molecular

or turbulent diffusion we get shear flow dispersion.
Shear flow dispersion occurs even under laminar
flow conditions. (laminar flow means no turbulence
— flow streamlines are parallel). Shear flow
dispersion is a result of the interaction of turbulent
and molecular diffusion and shear velocity.



A typical velocity profile (in the x-direction) Is shown
below. The differential velocity at each depth,
coupled with molecular diffusion and/or turbulent
diffusion and a concentration profile (of the material
being mixed) transverse to this velocity results In
shear flow dispersion (mixing in the direction of flow).







Once again this type of diffusion is included in the
diffusive term of the advective diffusion equation. So
the resulting advective-diffusion equation finally looks

like:
2
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Where E, is the longitudinal dispersion coefficient
(1.e., dispersion in the direction of flow).



All types of diffusion and dispersion are often
combined Into an overall diffusion coefficient call D,
because It is difficult to separate the individual
contributions of each.

Where D, =D + e +E, In many reactors longitudinal
dispersion dominates so D Is approximated by E, .



Determination of Reactor Characteristics
Mass transfer in reactors results from aadvection
(bulk fluid transport) and arffusion (mostly
aispersion) Mixing level is quantified by the
diffusion (dispersion) coefficient, D, [cm?/sec, or
similar units]).

The relative importance of advective transport vs.
dispersion is characterized by a dimensionless
parameter called the Peclet Number (Pe), defined

as.
L-U
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Where:

L = characteristic length (usually reactor
length) [L];

U = advective velocity [L/T];

D, = dispersion coefficient [L%/T].



As discussed previously, mixing levels give
rise to three categories of reactors.

*Plug-flow (PF) represents no axial dispersion,
Pe = 00

«Complete-mix flow (CMF) with infinite dispersion,
Pe =0.

 Flow with dispersion (FD), 0 < Pe <00




One of the easiest methods to determine reactor
mixing characteristics Is to input a spike or
Instantaneous slug of conservative material att =0
and then monitor the reactor effluent response.

Start with the most realistic type of reactor - flow
with dispersion (FD).



Analysis of this problem can begin by spiking
the reactor with a mass M of conservative
material at t = 0. First assume that there iIs no
advection and that the only mixing mode Is
molecular diffusion in the x-direction. 1-D
solution to the advective-diffusion equation
with no advection and D,=D. Is given by:
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Note that this 1-D solution implies that there is
uniform concentration "distribution" in the y-z
plane (cross-sectional area A) and diffusional
transport in the x ( axial) direction only. In other
words the initial mass M of conservative material
IS distributed uniformly over cross-sectional area
(A) so that the "concentration™ Is actually mass/
area. This implies that there Is zero thickness to
the input. Physically this is impossible but it Is
mathematically convenient and the approximation
does not impact the solution greatly.



The boundary conditions used to find the above
solution assumes that the diffusion coefficient at
the exit and entrance to the reactor are the same
as In the reactor. This Is called an "open" reactor.
This 1s equivalent to letting the reactor be defined
as a section of a long reactor as shown here:

“Open reactor”™

Reactor



A "closed" reactor Is one where the reactor has a
diffusion or dispersion coefficient different than
those of the entrance or exit. Typically exit and
entrance diffusion/dispersion are much less than
the diffusion/dispersion in the reactor. This
system Is shown schematically as:

“Closed’ reactor




There are no analytical solutions for a “closed”
system. Numerical solutions are available for a
variety of 1nitial conditions. For our analysis we’ll
work with open system analysis and correct when
necessary for closed system conditions. So let’s
continue with an open system analysis by adding
advection to the process, I.e., let flow pass
continuously through the reactor.




If we have advection we will most likely get shear
dispersion and turbulent diffusion in addition to
molecular diffusion. (i.e., use D, instead of D).

Also we can transform distance (x) by moving with
the avg. fluid flow by defining x’ = x — ut to get:
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In a flowing system this Is equivalent to injecting
the conservative material in an infinitely thin
plane att =0 and x = 0 ( at the entrance of the
reactor) so that the "concentration" at this point
IS M/A. By transforming distance (x) as we did
above we are effectively riding with the initial
spike of material so that we are only observing
diffusion.



Note that X' Is the re/at/ve distance-- in the X
dimension-- from the position of peak
concentration; the peak will always be located at
X =Ut. Negative values of x' thus represent
positions upstream from the peak and positive
values represent positions downstream from the
peak.



I time (t) Is fixed It turns out that the form of
this equation for C(x’) 1s exactly the form of the
normal frequency distribution (Gaussian) curve
which has the general form:
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If the C(x") function is normalized by (A- M)t we
can write:

1 ( x'2 )




C'.. = normalized, x'-dependent concentration

= C.(A-M)™ (i.e., the mass of constituent per
unit reactor length per mass of constituent initially
pulse-discharged) [L1].

2 _ L
O,. =variance in x' ( 1.e., a measure of the

Gausslan profile's spread in the X dimension-
symmetrically on either side of the peak - at a
fixed time) [L2].



By anaolgy to the C(x’,t) expression:

Oy = \/ZDdt

In other words If we measure the spread (standard
deviation) of the response curve (of a spike input)
we should be able to compute the dispersion
coefficient for the reactor.



There are several ways to measure the response of
a reactor to a spike input. The first Is a synoptic

measurement and the second is single point
sampling.




Synoptic measurements.  These measurements
are taken from the perspective of “snapshots™ of
concentration vs. position (each snapshot at a
different time), the pulse moves in the direction of
advective flow (u), as a symmetrical Gaussian
function, spreading ever wider with each
successive snapshot. If we were to measure the
variance with respect to X" in any fixed-time
snapshot, we could estimate the applicable
dispersion coefficient, D, via:

Oy = \/ZDdt




Such measurements taken at fixed times are
called synoptic. In practice, they are difficult
to make. They require coordination, as well as
access to multiple sampling locations. The
latter requirement is particularly difficult in
many reactors.



Single-point sampling. A more convenient option
IS to monitor the concentration vs. time at a fixed
position along the x axis of the reactor — usually
at the effluent end. Then x is no longer a variable
and C(x,t) becomes C(t) only. In general,
however, the resulting C vs. t data will not be
symmetrical about the peak concentration value.



If dispersion is significant, our curve (which
appears Gaussian If examined vs. X" at any
constant time) will have “spread and slumped”
significantly in the time it takes to pass the
monitoring point. This makes the leading edge of
the concentration profile appear steeper, sharper
than the trailing edge.



For example look at the single point sampling
results for two different diffusion coefficients.
First, a relatively low diffusion coefficient

(high Pe):
Pe = 1000
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Then for a relatively high diffusion
coefficient (low Pe):
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If the dispersion coefficient Is relatively small,
the symmetry of the response curve Is not upset
at the sampling point. However, if we have high
dispersion the curve "spread" changes
dramatically during the sampling period and we
get a skewed response curve. The variance In
the data may still be defined as follows — In this
case, it is o2, the variance in time from the mean
hydraulic retention time, t .




dt  [°t-Cat 2

9 ISO C-(t—f)
L 00
& Ca

_ [f7t-Cdt
;0
§ cat

Jo Cdt



For discrete data points:
> t2 CiAY
2 i 72
Ot = t
2. CjAt;
|

> 1i-CiAf;




Detention Time Determination for Real Reactors:

Given the possible skewness of the C vs. t profile
for single point sampling, the mean predicted
retention time, t, will, in general, be greater thanthe
time at which the peak concentration passes the
monitoring point, 8 = V/Q (i.e., reactor volume
divided by flowrate, or reactor length divided by
advective velocity).



t is predicted by :
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Integration of this expression is difficult but a
numerical technigue can be used to show the
effect of Pe on the ratio of t to 6.
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The reason for ratio values greater than unity is the
nature of an open system. An open system will
allow material to diffuse upstream from the reactor
Inlet boundary. This effectively increases the
material residence time within the prescribed
boundaries of the reactor.

To estimate the reactor residence time using time
of peak tracer concentration at the effluent
sampling site only works with low dispersion for
open or closed systems. As dispersion increases an
adjustment must be made.



For open systems the magnitude of this
adjustment can be determined by differentiating
the C(t) expression with respect to t and setting
the result equal to zero to find the time of
maximum concentration, t.,.. The result of this
IS:
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As Pe becomes large (low dispersion) the time
to peak approaches 6. The plot below
demonstrates this.
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~or closed systems there is still a shift in observed
neak concentration time relative to 0 as dispersion
Increases. However, since there Is no analytical
solution to the closed system problem we can't easily
differentiate the response curve. Qualitatively the shift
IS greater than the open system shift. For example, for
Pe = 5 the open system shift is 0.82 (the peak Is
observed at 0.82 of 0) while the closed system shift
(calculated numerically) Is 0.65 (the peak Is observed
at 0.65 of 0). For Pe = 40 the shifts are closer; 0.92 for
the closed system and 0.975 for the open system.




Note that for synoptic sampling there Is no skewness
to the C(t) curve and hence no corrections are needed.
Since real reactors lie somewhere between "open" and
"closed" estimation of true residence time can be
difficult. The best estimation of true residence time
comes from analysis of tracer data using.
> 1 -CiAtj
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This equation will give good estimates of "effective"
residence time for both open and closed systems.
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Estimation of D, using variance of C(t)

In synoptic monitoring, c,.% can be used to
estimate D, In a rather direct manner, as earlier
presented. In analogous fashion, o, can be used,
from single-point monitoring, to estimate D;
however, response curve skewness makes the
symmetrical normal distribution curve
Inappropriate and a new relationship between the
variance and the dispersion coefficient (or Pe) has
to be determined. Boundary conditions (where and
how the dye Is injected and sampled) affect the
dispersion (or at least the determination of It).



To determine o> (variance for a single point

sampling) use:
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Again the integration of C(t) Is difficult and
requires a Gamma function to solve. The result

of these computations Is a relationship between
Pe and ;2 given by:

Gt2=92- |




For a closed system the C(t) response curve and
the calculations are done numerically to give:

Gtz _ 92 . 2 2 (1 e_Pe)
Pe pg?

Note that the units of o, are time.



The estimation of true 6 1s sometimes
problematic because estimating the effective
volume is difficult because of possible short-
circuiting. One method to detect short-circuiting
IS to check that:

o0

[ C(t)dt=M

0
l.e., you should be able to account for all the
mass added as a spike. If measured mass in the
effluent is less than M added there Is probably
some short-circuiting.



Most real reactors are of the arbitrary flow (i.e.,
FD), and the above analysis is appropriate. In
some cases a reactor will approach the extremes In
Pe where Pe approaches zero (CMF) or Infinity
(PF). In both these cases, analysis of the reactors
IS much easier than for a FD reactor. So, when
possible, we try to approximate reactors by the
CMF or PF type.



Plug Flow and Complete Mix Reactors

Using the advective diffusion equation to model
and characterize transport in these reactors (which
recall are only limiting cases) Is difficult because
D, Is either infinite or zero. Rather than try to
solve the advection-diffusion equation for a
variety of boundary conditions a more convenient
(and easier) method Is to perform mass balances
about the reactor.



For the CMF reactor:

Perform a mass balance on a conservative
substance:
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This differential equation can be solved for a
variety of system inputs. For example, consider
an impulse (spike input) loading. A mass M Is

t

discharged instantly into the reactor at t = 0 so that

ne initial concentration in the reactor is C, = M/V.

The solution to the differential equation with C = C,

at t = 0 as initial conditions Is:

C=Cp exp(—éj






Since:

T = OIOt-C(t)dt/OFC(t)dt
0 0

where:

C(t) = Cp exp (—éj
We can easily show that:
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l.e., the measured hydraulic residence time should
equal the theoretical detention time.

t =



Another common initial condition, a step input,
can be defined where:

C.,.=0 fort<O

C,,=C, for t=0

The solution to the governing differential equation
for the CMF for this step input Is given by:

C=Cp (1—exp(—g)j






Plug Flow Reactors:

Plug Flow regimes are impossible to attain in
practice because mass transport must be by
advection alone. (There can be no differential
displacement of material relative to the average
advective velocity). This type of flow Is often
referred to as “piston-type flow”. In practice some
mixing will always occur because molecular
diffusion, turbulent diffusion and fluid shear
always exist in flowing systems. For the case of a
plug-flow reactor, the advective diffusion equation
reduces to:




oc__oC
ot OX

The velocity, u, serves to relate the directional
concentration gradient into a temporal
concentration gradient. In other words, a
conservative substance moves with the advective
flow of the fluid. The solution to the differential
equation for a pulse input and for a step input are
shown graphically in the following figure.
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Pulse input

Step input



Reactor Transport and Reactions.
Most of the situations that we encounter in process

engineering involve reactions (biological, chemical
or physical). In many cases the reaction rate IS
either first order or can be linearized as a first order

reaction.
This means:
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If the reaction term is linear it can be added to the
advection-diffusion equation by the principle of
superposition. The result Is:
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where R Is a first order decay reaction.



Application to reactors

First consider the PDF reactor. The governing
eguation Is again the advective-diffusion
equation:
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The steady-state (dC/dt =0) solution of this
equation for a steady input of C = C, for t > 0 for
reactor of length L is given by the Werner -
Wilhelm equation:
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a:\/1‘|‘4‘ K-t-d (t = L/u = 0 for the the effluent
end of the reactor.)
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CMF Reactors:
As before the advective diffusion equation Is not

very useful for CMF or PF reactors. For the
case of CMF reactor the mass balance approach
can be used. If we apply a first order reaction in a
CMF reactor the governing equation (derived
from a mass balance) Is:
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he solution to this differential equation for the
Initial condition that C = C, ., at t =0 in the tank
and C = C, for the continuous inflow concentration
(which 1s maintained for t >0) Is given by:
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Most of our process design and analysis is for
steady-state where there Is no net accumulation
(or depletion) of mass in the reactor. In other

words:

dC 5
dt
Therefore at steady-state:

Q(Co—C)-V-k-C=0



Or.
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or.

C 1

Co ~ 1+k-0

(this result can also be attained by allowing t—o
In the non-steady-state equation shown above).



PF Reactor:
Since dispersion is zero in a plug flow reactor we
can write:

oC oC
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The steady-state governing equation ( £-o) Is given by:
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or:

uodC
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For a continuous flow input with concentration
C,,=C, and C =0 in the reactor for t<0

(although this doesn’t matter at steady-state)
and for reactor lengthLandC=C_, atx=1L

we can write:
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Integration yields:
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In a similar manner C at any other point along
the reactor axis can be found by:
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Note that this solution also works for a pulse input
discharged at x =0, t=0 at C = C, because the pulse
Input Is just a snapshot of a segment of the continuous
Input solution.

Note for a pulse input inflow Is always continuous, but
the concentration of material in the inflow Is not. The
Input pulse moves with the flow of at velocity u.
Location of the pulse at any time is thus found by x =
(u)(t). Atthat time and location C, is given by the
above equation. At all other values for x In the reactor
C=0.



