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The progress of heavy-water reactor development can be traced along 

two lines, the development of heavy water and then the development of 

nuclear reactors„ 

A knowledge of the existence of heavy water dates back to 1932, 

when Urey and his co-workers (27) discovered deuterium by fractional 

distillation of liquid hydrogen. At first deuterium (heavy hydrogen) 

and 0^O (heavy water) were scientific curiosities and were used by 

researchers as tracers in biochemistry and in the study of the properties 

of the isotopes. This interest created a demand for small quantities 

of this material, which was then produced commercially as a by-product 

in the electrolytic production of hydrogen and oxygen. 

In 1940, interest in heavy water for nuclear reactors caused research 

and development work to be started on the large scale production of heavy 

water. As a result of this work, several plants for the production of 

heavy water by distillation were built. Because these plants were ex­

pensive to operate and because the main emphasis in reactor development 

then was with graphite reactors, these distillation plants were shut down 

at the end of the war. 

In 1949, renewed interest in heavy water caused the Atomic Energy 

Commission to start research on alternate methods of heavy-water production. 

This work led to a gas-liquid exchange process for the separation of 

deuterium from ordinary hydrogen. 

The basic element of the gas-liquid exchange process is a pair of 

contacting towers (4). One tower operates at a temperature of 30° to 40°C. 
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W&tsr passes dc".~.;ard through first the cold tower and then downward 

through the hot tower and is contacted with HgS (hydrogen sulfide) gas. 

This gas-liquid exchange process gives a better separation than does dis­

tillation, and for low concentrations of deuterium it is more economical. 

In 1950, the AEC ordered the construction of new facilities for the 

production of heavy water. These new facilities used gas-liquid exchange 

process for enriching the DgO content from 0.015 mol per cent in natural 

water to 10 to 15 mol per cent. This water was further enriched in a 

distillation system until the 0^0 concentration was 93 to 96 mol per 

cent. Final enrichment was obtained by electrolysis. Two of these new 

facilities were built primarily to provide heavy water for the plutonium 

production reactors built and operated for the AEC by the duPont Company 

at Savannah River, South Carolina. One was at Savannah River and the 

other at Dana, Indiana. The Savannah River Plant is still in opera­

tion. The Dana Plant, which was built by remodeling one of the World 

War II plants, was shut down because it was less efficient. 

From the earliest days of nuclear reactor development it was 

realized that there were advantages in the use of heavy water as a neutron 

moderator (38). The deuterium of heavy water is second only to hydrogen 

in its ability to moderate neutrons, and its capture cross section is 

considerably less. Although it was the superior moderator it was 

available in only limited amounts and for this reason the main emphasis 

of early reactor development was placed on graphite reactors. 

A few experimental reactors were built using heavy water as a 

moderator. The first of these, CP-3, was built at the Argonne Laboratory 

and went critical on May 15, 1944 (36). Other experimental reactors built 
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the French ZOE (19). All of these reactors used natural uranium fuel 

and further demonstrated the use of heavy water as a moderatorc 

When the additional plutonium production reactors were built in the 

early 1950®s, they were reactors which used heavy water as a moderator. 

The use of heavy-water reactors for the production of electrical 

power has received considerable attention. The advantage of heavy-water 

moderated power reactors is the fact that they can be used with natural 

or slightly enriched uranium fuel. In the United States several companies 

are working on the development of heavy-water moderated power reactors. 

The only heavy-water moderated power reactor in the United States is the 

Carolina Virginia Tube Reactor (7) located at Parr Shoals, South Carolina. 

This reactor, designed by Westinghouse's Atomic Power Division for the 

Carolina Virginia Nuclear Power Associates, uses fuel enriched in 

uranium-235 to 1.5% and 2.0% and produces 17 electrical megawatts (8). 

An extensive study of heavy water moderated and cooled power re­

actors has been conducted by duPont (2). This work has been directed 

toward finding the optimized concept from a wide range of heavy-water 

moderated natural uranium fueled reactor designs. Others doing work in 

the United States on heavy-water power reactors are Atomics International 

and Nuclear Development Corporation. 

In Canada there are two heavy-water reactors for power production. 

These are the NPD-2 and the CANDU (2). 

Although heavy water reactors do offer the advantage of the use of 

natural uranium fuel, their development in the United States has lagged 

that of light-water reactors which must use enriched fuel. The reason 

4 



4 

bility of the enriched uranium fuels and the expense of the heavy-water. 

From the start of the power reactor development, enriched uranium has 

been available, and the first power reactors built used this enriched 

fuel. Because of the experience with these early light-water moderated 

power reactors, improvements have resulted, and today these reactors can 

be built in the United States more economically than any other reactors. 

Thus for any other reactor system to become competitive within this 

country, the costs associated with that reactor type must be reduced. 

Outside the United States where enriched uranium fuels are not 

readily available there is a greater incentive for the use of natural 

uranium. In these countries, heavy-water moderated power reactors are 

becoming competitive. 

It is the purpose of this thesis to investigate the possibilities of 

shim control of heavy-water moderated power reactors by removal of a 

light-water poison and to ascertain whether or not this method of shim 

control can result in a decrease in net power costs. 
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There are three kinds of control needed for thermal nuclear reactors. 

These are shut-down control, regulating control, and shim control. 

Shut-down control is the method that is used only to stop the 

nuclear chain reaction,within the reactor. For most nuclear power 

reactors shut-down control is achieved by safety rods. These are rods 

containing a material with a very high neutron capture cross section. 

Upon insertion of these rods within the reactor, the effective multi­

plication factor, keff, is reduced to a value below 1.0000 and the neutron 

level decreases. Frequently nuclear reactors have a back up emergency 

shut-down control for scramming the reactor in the event of some mal­

function. This could be the dumping of the reactor moderator or the 

insertion of additional poison. 

Regulating control of a nuclear reactor is the control that is used 

to change the power level of a reactor and keep it operating at some 

power level. The amount of excess reactivity contained within the 

regulating control is very small. This prevents sudden changes in re­

activity that would cause the reactor to become prompt critical. Regu­

lating control is achieved by means of a regulating rod. 

Shim control of a nuclear reactor is that control used to adjust 

the effects of long term reactivity changes within the reactor. These 

reactivity changes come from the gradual increase of fission products 

and changes in the isotopic concentration of fissionable materials. 

These changes in reactivity are more than can be controlled by the 

regulating rods, and shim control is provided. In. most reactors shim 
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control is provided by means of shim rods which contain a neutron poison 

material. As fission products build up within the reactor and the 

number of fissionable isotopes decreases the shim rods are slowly with­

drawn so the reactor remains just critical. 

In power reactors shim rods must be replaced at regular intervals, 

frequently at the end of each fuel cycle. The reason for this is that 

the poison isotope within the shim rod has been depleted, and the shim 

rod can not provide the amount of control that is necessary. 

Because of the frequency that a large number of expensive shim rods 

must be replaced, an alternate method of shim control could prove 

advantageous. 

For some heavy-water reactors that have been proposed (33) twenty-

five shim rods are specified. The cost of these shim rods in 1959 was 

$24,100 per rod (34). Thus any method which can be used for shim control 

that does not require shim rods is worthy of investigation. 

This thesis proposes that the shim control be attained by poisoning 

the heavy-water moderator and coolant with a variable amount of light-

water. The control would be obtained by removing the light-water from 

the heavy water with a distillation system. This system would be similar 

to the one used to maintain the required heavy-water concentration in a 

heavy-water moderated power reactor. 

The advantages of this system are several. First, the expensive 

shim rods would not have to be replaced at the end of each fuel cycle. 

Secondly, the presence of shim control rods cause the flux distribution 

to be disturbed throughout the reactor resulting in a higher maximum to 

average flux ratio. The lower maximum-to-average flux ratio obtained by 



means a longer fuel cycle and a better utilization of the fuel. 

The disadvantages of this system are a larger distillation unit, 

a larger heavy water inventory, and a lower conversion ratio. A larger 

distillation unit is needed because more light water must be removed. 

Normally the only light water that is to be removed is the light water 

that has leaked into the heavy water system. But with this system of 

control much more light water is needed for control than would leak into 

the heavy water. The removal of the greater amount of light water 

requires a larger distillation system. 

Since the distillation does not completely separate the light water 

but only gives a mixture with a higher light water concentration than 

is in the reactor system, a large amount of heavy water is removed with 

the light water. 

The lower conversion ratio of fertile atoms to fissionable atoms 

comes from a higher resonance escape probability. This conversion ratio 

is a measure of the amount of plutonium formed, and since fewer neutrons 

are captured in the U-238 resonances, fewer atoms of the plutonium 

isotopes are formed. The effect of this is a slight reduction in the 

long term reactivity, and a smaller amount of plutonium produced. 

Other methods of shim control that do not use control rods have 

been proposed. The most notable are the spectral shift, a burnable 

poison, a soluble poison, and the control by variation of the moderator 

level. 

The spectral shift concept has been developed by Babcock and Wilcox 

Company (39). With this method of shim control, reactivity is gained 
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concentration of approximately 80 per cent. The lattice of a spectral 

shift reactor is under moderated. Therefore the addition of light water, 

which has a greater slowing down poer, causes an increase in reactivity. 

This comes from a downward shift of the neutron energy spectrum. The 

current spectral shift reactors are designed for an enrighment of 4% U235. 

At this enrichment of U235, there is no initial increase in reactivity 

due to the increase of plutonium so that the shim control is obtained 

by only the addition of light water. At the end of the fuel cycle 

enough light water has been added to reduce the heavy water concentra­

tion to approximately 20 per cent. (Actually the spectral shift reactor 

core is more nearly that of a light-water reactor than it is to a heavy-

water reactor.) There is no on-site distillation unit associated with 

a spectral shift reactor. The heavy water that is removed is sent off-

site for upgrading to the initial D20 concentration. The light water 

that leaks into the reactor is not a problem since light water is being 

added at all times. 

The advantage of shim control by the removal of a light-water poison 

is that natural uranium fuel can be used. 

When a burnable poison is used for shim control a material of high 

neutron cross section is placed within the reactor fuel. The reactivity 

is gained for shim control by the gradual depletion of this neutron 

poison. The main disadvantage of this method is its inflexibility. This 

method can control only a decreasing reactivity. As with the spectral 

shift concept, this method can only be used with reactor that are least 

least slightly enriched with U-235. Because of the initial increase in 
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is no outside control of the reactivity added by removal of the poison. 

Frequently when this method is used, it serves to decrease the initial 

reactivity to a value that can be controlled by shim rods. 

When a soluble poison is used for shim control it is added to the 

liquid coolant or moderator. It has the advantage over a burnable 

poison, in that it can be added at any time during the fuel cycle. And 

by some means, such as ion exchange or other chemical techniques, can 

be removed from the reactor system. The disadvantages of this method 

are the changes it makes in the nature of the coolant or moderator. The 

addition of a soluble neutron poison to the coolant or moderator may make 

it more corrosive, and it is more difficult to maintain the purity of 

the liquid. Corrosion is frequently controlled by adjusting the liquid 

to a proper pH value. The pH value that is optimum for corrosion con­

trol may not be the one that is optimum for maintaining the solubility 

of the neutron poison. The soluble neutron poison may make it difficult 

to maintain the purity of the coolant or moderator more difficult, 

because methods used to remove the undesired impurities may also remove 

the soluble poison. 

The advantage of light water as a neutron poison over some soluble 

poison is that light water is completely compatible with heavy water. 

The Canadians are using moderator level control for two of their 

heavy-water reactors, the NPD and the CANDU. By adjusting the level 

of the moderator the leakage of neutron from the reactor is changed. 

An increase in moderator level decreases the leakage and causes the 

reactivity to increase. Although this method does not require the 
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uniform vertical flux distribution and the optimum maximum-to-average 

flux for the long term reactivity considerations. 

When the methods of burnable poison, soluble poison, and moderator 

level adjustment are used, the problem of leakage of light water into 

the reactor still exists and a method must be provided to maintain the 

DgO concentration. 

Klug and Zwiefel (28) have made a study of H^O-DgO reactors in hope 

of finding a reactor that could be controlled by adjusting the 

mixture. They determined the infinite multiplication factor, , as 

a function of HgO concentration for various metal-to-water ratios and 

for various fuel element diameters. It is their contention that if k 

reached a maximum value greater than 1.000 at some intermediate con­

centration, this could be used for reactor control. For natural uranium 

fuel they did not find such a peak, but they did find one for a low 

enriched fuel. 

When shim control is attained by light water removal it is not 

necessary to operate in a region where ̂  has a peak value. It is only 

necessary that vary as a function of light water concentration. 

The work of the author has been to take a model of a heavy-water 

nuclear reactor and show that it can be shim controlled by light water 

removal. This is done by calculating the excess reactivity and its time 

variation with standard techniques. This time variation of the excess 

reactivity is related to a time dependent HgO concentration and the re­

actor size and the distillation system and requirements and size are 

determined. A comparison is then made between shim control by removal of 

a light-water poison and shim control by control rods or some other means. 
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To study this problem a reactor model was chosen to demonstrate the 

feasibility of shim control by removal of a light-water poison. It was 

desired to choose a model that would be representative of proposed 

heavy-water moderated power reactor and at the same time be simple 

enough to be described simply by analytical methods. 

In keeping with the current trends in the size of proposed heavy-

water moderated power reactors, the thermal output of the reactor was 

chosen as 1000 megawatts, and a 25% thermal efficiency gave an electrical 

output of 250 megawatts. These values are in agreement with those of 

heavy-water moderated power reactors studied by Sargent and Lundy 

Engineers (33) and duPont (2). 

Although there are several heavy-water reactor types (2, 3) those 

that were studied by Sargent and Lundy and duPont were chosen because 

they are more nearly the size that would be used to produce economical 

power and also more information is available on them. 

The team of Sargent and Lundy and duPont investigated four types 

of heavy-water moderated and cooled power reactors ; a boiling D^O reactor 

a direct cycle pressure tube reactor, a pressurized 0^0 indirect cycle 

pressure vessel reactor, and a pressurized DgO indirect cycle pressure 

tube reactor. Of these four types, the latter is chosen. This choice is 

arbitrary, but any result from this- type of reactor could be considered 

as applicable for the others. 

The fuel selected is natural uranium dioxide. The oxide is chosen 

over the metal because of the higher temperature that can be obtained 
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(2, 33) the size of this reactor could be determined. Thus the fuel 

elements are considered to be on an 11 inch triangular pitch, and the 

total number of fuel elements is 330. In the proposed reactors of 

Sargent and Lundy and duPont, the pitch is 11.1 inches and the number of 

fuel elements for their 200 electrical megawatt plant is 284 and for 

their 300 electrical megawatt plant it is 356. 

A layout of an one-sixth segment of the reactor core is shown in 

Figure 1. The middle seven fuel elements have been removed. This removal 

reduces the number of fuel elements required and also reduces the maximum-

to-average flux within the reactor. 

This model of the reactor has a one foot radial and vertical re­

flector, which is the same as the reactors proposed by both Sargent and 

Lundy and duPont. The active core height for this reactor is 19.00 feet, 

the active diameter is 18.7 feet, and the total fuel loading is 76 metric 

tons of uranium. 

The element is similar to the type of element in the proposed re­

actors of Sargent and Lundy and duPont. The fuel element is housed in a 

Zircalloy-2 pressure tube housing that has an inside diameter of 4.650 

inches and a wall thickness of 0.162 inch. The fuel is in the form of 

0.500 inch diameter fuel rods clad with 0.025 inch Zircalloy-2. There 

are 37 rods to a fuel element. These rods are spaced 0.652 inch center 

to center in a hexagonal array. A cross section of a fuel element is 

shown in Figure 2. 

The coolant for this reactor is a mixture of DgO and HgO with the 

same composition as the moderator. The average operating temperature of 
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the coolant is 240"C (464"r)« The average temperature of the moderator is 

68°C (155°F), and the average temperature of the fuel is 927°C (1701°F). 

The amount of moderator required for this reactor system is determined 

from an average of the values for the Sargent and Lundy reactor (33) plus 

the amount needed for the distillation. The average of 200 electrical 

megawatt and the 300 electrical megawatt reactors of Sargent and Lundy 

is 368,5 metric tons of moderator. The value is considered a minimum 

amount for the reactor and the steam generating facilities. An additional 

412 metric tons of heavy water are required for the distillation scheme 

to be described later. 

A summary of the characteristics of this reactor along with those 

of the reactor proposed by Sargent and Lundy are given in Table I. 

Table 1. Summary of design data for various reactor power plants 

Reactor 
Reactor Model 200 Mwe(33) 300 Mwe(33) 

Total thermal power, megawatts 1000 835 1145 

Net plant power, Mwe 250 217 300 

Net plant efficiency 25.0 26.0 26.0 

Reactor core 

Active diameter, feet 18.7 16.8 18.7 

Active height, feet 19,0 17.5 20.5 

Lattice pitch, inches 11.0 11.1 11.1 

Number of fuel elements 330 284 356 

Reflector thickness, feet 1.0 1.0 1.0 
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Reactor 
Reactor Model 200 Mwe(33) 300 Mwe(33) 

Pressure tube material Zr-2 Zr-2 Zr-2 

I.D. of pressure tube, inches 4.650 4.650 4.650 

Wall thickness, inches .162 .162 .162 

Primary coolant temperature °F 464 483 483 

Core loading metric tons U 76 62.2 91.2 

DgO inventory, metric tons 780 326.5 410 
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Of basic importance in the study of the feasibility of shim control 

of heavy-water moderated power reactors is a knowledge of the excess 

reactivity of the reactor. For it is from such knowledge that the amount 

of control needed can be determined. The criticality of a reactor is 

defined by the Fermi critical equation (20, 40), Equation 1. 

-B2T k_ e 

"eff " 

1 + L2B2 

k.,, = CD 

where 

is the infinite multiplication factor 

B2 is the buckling and B is the lowest eigenvalue of the 
critical equation 

T is the average age of thermal neutrons 

L is the diffusion length 

and keff is the effective multiplication factor. 

The reactivity is defined by Equation 2. 

%ex ^eff ~ 1 P = (2) 
^eff ^eff 

where 

p is the reactivity 

and kex is the excess multiplication factor. 

The factors that make up keff are the lattice parameters and are 

dependent upon the materials and geometry of the reactor. Various 

methods and recipes are used to calculate the lattice parameters needed 

in this study. 



18 

The infinite multiplication factor is defined by Equation a (ai). 

k = nepf (3) 

where 

n is the thermal reproduction factor 

e is the fast fission factor 

p is the resonance escape probability 

and f is the thermal utilization. 

This relationship is known as the four factor formula. The four factors; 

n, s, p, and f must be defined so that they are dimensionally consistent 

and the infinite multiplication factor, k^ is defined as the ratio of 

thermal neutrons absorbed in one generation to the number of thermal 

neutrons absorbed in the next generation. In this study, n, the thermal 

reproduction factor is defined as the number of fast neutrons produced 

per absorption of a neutron in any part of the fuel element. The fast 

fission factor, e, is defined as the total number of fast neutrons pro­

duced by fission due to neutrons of all energies divided by the number 

of fast neutrons produced by fission due to thermal neutrons. The 

resonance escape probability, p, is defined as the fraction of fast 

neutrons that are slowed to thermal energies without being captured. 

The thermal utilization is defined as the ratio of the number of neutrons 

absorbed within the fuel element to the number of neutrons absorbed 

within the reactor. 

2 T 
In Equation 1, the term e"B is the fast leakage and this is the 

fraction of neutrons that leak from the reactor while they are being 

thermalized. In the same equation the factor (1 + I^B2)"1 is the fraction 
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product of the fast leakage factor and the thermal leakage factor and is 

given by Equation 4. 

_g2t 
Total leakage = e . (4) 

1 + L2B2 

The methods used to calculate each of the lattice parameters are discussed 

below. 

A. Infinite Multiplication Factor 

The infinite multiplication factor is calculated using the four 

factor formula relationship in Equation 3. 

B. Thermal Reproduction Factor 

The thermal reproduction factor is the ratio of fast neutrons pro­

duced to the number of neutrons absorbed within the fuel element and is 

expressed in Equation 5. 

n = (5) 
a 

where 

n is the number of neutrons produced per fission 

Zf is the homogenized macroscopic fission cross section 

and la ^ the homogenized macroscopic absorption cross section. 

The values of v used for the various fissionable isotopes are given 

below in Table 2. 
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Isotope v (23) 

Uranium-235 2.47 

Plutonium-239 2.88 

Plutonium-241 2.91 

The macroscopic cross sections for the fuel element are given by 

Equation 6. 

Ei ° ffuelCN25 °25i + N28 a28i + N0 a0i + • • • (6) 

+ ^coolant (% °Hi + ND aDi + N0 0Oi) 

+ ^clad Nzr °Zr 

ffuei is the volume fraction of fuel, .396 

f coolant ^-s the volume fraction of coolant, .546 

fciad is the volume fraction of cladding, .148 

N is the atomic number density of the isotopes 

a is the microscopic cross section for reaction i with 
the isotope. 

The subscripts are as follows: 

25 is the uranium 235 isotope 

28 is the uranium 238 isotope 

0 is oxygen 

H is hydrogen 

D is deuterium 

where 
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and Zr IS airCvuXuiïi. 

(For a discussion of microscopic cross sections see Appendix A.) Elements 

included in the fuel fraction of the fuel element are uranium (isotopes 

235 and 238), oxygen, xenon 135, samarium 149, plutonium (isotopes 239, 

240, and 241), and the fission products of Uranium-235, Plutonium-239, 

and Plutonium-241. 

Co Fast Fission Factor 

The fast fission factor is determined using a method developed by 

Fleishman and Soodak (16). This method is based on the original work of 

Spinrad (38). Spinrad defines the fast effect as the number of fast 

neutrons escaping into the moderator from the fuel to the number of fast 

neutrons produced from thermal neutron induced fission. This method 

divides the fast neutrons remaining in the reactor into three groups : 

Group 1 Neutrons with energies above 1.4 Mev (the fission 
threshold for Uranium-238.) 

Group 2 Fission neutrons with energies less than 1.4 Mev 

Group 3 Neutrons that have scattered from group 1 to energies 
below 1.4 Mev. 

Equation 7 is the equation for the fast effect. 

1 - £= C^Gj - ̂ 2^2 ~ ^3^3 (7) 

where 

C% is the number of collisions in Group 1 per original fission 

Gi is the gain in number of neutrons per collision in Group 1 

and is the loss in neutron number per collision of a Group 1 neutron. 

The relationship for the collision numbers are given by Equations 

8, 9, and 10. 
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t-iF-i 
«-! = — ; (8) 

V1 £1 Slf + E11 
1 -

Elt 

(" tH 
1 " P2 %2t 

C3 = P3 111 Cx (10) 
z33 slt 

The equations for the gain and losses are given by Equations 11, 12, 

and 13. 

Gj = C"1 ' 1) zlf -4c (H) 

Sit 

Z2c 
L
2=- (12, 

L3 = — (13) 
z3t 

In the above equations is the fraction of fission neutrons in 

group i, (fj = .561) and f^ = .439 for Uranium-235), the P's are 

collision probabilities obtained from the work of Case (8). The Z's are 

macroscopic cross sections, identified by the subscripts f, c, or t for 

fission, capture, or transport within the respective energy groups. v 

is the number of neutrons per fission. 

In calculation the fast effect the cross sections used for Zr, 

and DgO are those given by Soodak and Sullivan (37). The values of the 

cross sections for HgO used in this investigation are obtained by examin­

ing the fast group cross sections for hydrogen and oxygen given in the 
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In applying the method of Fleishman and Soodak (16) to complex fuel 

elements moderated with DgO, Crandall (12) suggests that the fuel elements 

can be homogenized. When this is done the same volume fractions that are 

used in the determination of the homogenic macroscopic fuel element cross 

sections (see page 20) are used. 

The resonance escape probability for a heterogenous reactor is 

defined (20) by Equation 14. 

where 

N0 is the number density of the resonance absorber (U-238) 

V0 is the volume of the resonance absorber 

Vj is the volume of the moderator 

?lZsl is the slowing down power of the moderator 

<j>0 is the average flux in the absorber 

<j>l is the average flux in the moderator 

The main problem in calculating the resonance escape probability is 

that of determining the effective resonance integral. The resonance 

integral is given (32) by Equation 15. 

D. Resonance Escape Probability 

N0V0*o 
(14) 

s known as the resonance integral 

(15) 
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A is a term representing the volume absorption in the fuel 

B is a term related to the surface absorption 

Seff is the effective surface of the fuel, given 
by Equations 16 and 17 

and M is the mass of the fuel element. 

The following equations give the effective surface for a cluster of fuel 

rods. 

S@ff = scl + Y(so " Sci) (16) 

Y = 2 Zs p Po(Es P) (17) 

In these equations Sc^ is the surface of the smallest hexagon in­

closing the fuel cluster. (This surface in the past was frequently called 

the rubber band surface.) S0 is surface area of all fuel rods of radius 

within the fuel element. Is is the macroscopic scattering cross section 

of neutrons at the resonance energy within the rod. P0 is the non-

collision probability with the rod, and is defined by Equation 18. 

P0 = 1 - Pc . (18) 

where Pc is the collision probability discussed in connection with fast 

effect. 

The neutron energy range of the resonance integrals is from 4 to 

100 ev. Crandall (12) states that experiments at Savannah River indicate 

that the resonance absorption energy can be assumed to be 30 ev. Using 

this energy of 30 ev, the microscopic scattering cross sections are 

obtained from Reactor Physics Constants (1). 

The values of A and B for UO2 moderated by DgO have been determined 
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(19) 

The effective resonance integral is for fuel at room temperature. 

In power reactors the effect of Doppler broadening of the absorption 

integrals must' be taken into account. Hellstrand (22) gives the follow­

ing expression in Equation 20 for the effect of the Doppler coefficient. 

Re I e " R. I sq 1 + g(jT - (20) 

where for UO2 

g = (0.58 + 0.5 S/M) x 10-2. 

This effective resonance integral Equation 14 becomes Equation 21. 

P = ezp R.I.) (21) 

With Equation 21 in complex fuel element geometries the moderator is 

assumed to be not only the moderator, but also the cladding and the 

coolant. 

E. Thermal Utilization Factor 

The thermal utilization factor, f, in this investigation is calculated 

by the use of Equation 22. This equation is an approximation derived 

from the use of integral transport theory (1). 

4 - 1 = b2 - *2 fss G + téb2C (22) 
f a: :fc 

+ b2 - a2 z (i X + 1 
a mc \ 2 
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is the total cross section of the moderator 

ZjjjC is the capture cross section of the moderator 

ZFC is the capture cross section within the fuel element 

Zft is the total cross section with the fuel element 

*m " 3 ^mt -^mc 

C=I l ¥ L £2 ink - i  .  I  J  
b2 a 4a /b2 

Ï Ï - 1  '  

and G = , where is the average flux in the fuel element. 
*f 

The approximation used for G is given in Equation 23. 

G = 1 + 0*1 B(aZ_) (23) 

2ft 

where . 

B(x) = 1 

l-?c 
X2 

\ 
I0(x)K0(x) + I2(X)K lCx^ 

+ xI0(x)K1(x) - x -1 

I0, K0, li, are Bessel functions and P is the collision proba­

bility. 

In Equations 22 and 23 a is the radius of a fuel element, and- b is 

the radius of a unit cell. The values of X and B are tabulated as a 

function of aZft in Reactor Physics Constants (1). 

In these calculations the fuel element has been homogenized to in­

clude everything within the fuel element housing tube. For a discussion 

of cross sections and number densities used in this set of calculations 

see Appendix A. 
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2 

y 
(24) 

F, Fast Leakage cactor 

The fast leakage factor e"®^ is determined from the geometric buck­

ling B| and the age to thermal of the neutrons. The buckling is related 

to the size of the reactor through Equation 24. 

B* = BV B§ . L g  

where 

Br is the radial geometric buckling 

Bjj is the axial geometric buckling 

R is the radius of core + reflector savings 

H is the height of the core + 2 times reflector savings. 

The reflector savings, 6, is given (40) by Equation 25. 

DI 
5 = z — tanh kitT (25) 

DII KII 11 

where 

1 
Dj is the diffusion coefficient of the homogenized core (3 Ztr)~ 

Djj is the diffusion coefficient of the reflector 

*11 ~ 3 Za%tr 

2tr is the macroscopic transport cross section 

Za is the macroscopic absorption cross section 

and T is the thickness of the reflector. 

According to the definition of Fermi (31), the age is defined in 

Equation 26. 

T- j U - ^  
° B 
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m calculation or tne age in L̂ U reactors Soodak and buliivan divide 

the age into two parts (37) as in Equation 27. 

T = ti + T2 (27) 

where 

72 is the age in DgO down to .1 Mev, 38 cm^ 

is the remaining age to thermal 

Tg can be expressed by Equation 28. 

D &u = Au 

Ç 2S 3^ tr^^s 
(28) 

where 

Au is the lethargy between .1 Mev and thermal 

z
tr and Zg are macroscopic transport and scattering cross sections 

and Ç is the logarithmic energy decrement. 

Soodak and Sullivan (37) determine Au by assuming the age to thermal for 

D2O to be 120 cm^. The values of macroscopic cross section are obtained 

by homogenizing the entire reactor core. This is possible since the fast 

flux is assumed to be flat across the unit cell (12). The microscopic 

cross sections of Soodak and Sullivan (37) are used in these age calcula­

tions. 

G. Thermal Leakage Factor 

To calculate the thermal leakage factor, (1 + once the buckling 

is known, it is necessary only to determine the thermal diffusion length. 

The diffusion length, L, is defined by Equation 29 (20). 
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where 

D is the diffusion coefficient for neutrons 

and Za is the macroscopic cross section for absorption.. Weinberg and 

Wigner (40) show that the diffusion coefficient can be approximated as in 

Equation 30. 

D = 
Zs = L (30) 

3zitr 3 %tr 

where 

2^ is the macroscopic scattering cross section 

2tr is the macroscopic transport cross section 

Z is the total macroscopic cross section 

Therefore from Equations 29 and 30, L2 can be expressed as in Equation 31. 

L2 = I (31) 

3 Etr 

In calculating the thermal leakage using this relationship for thermal 

diffusion length the macroscopic cross section was based on the entire 

reactor core being homogenized. When this technique is used the values 

obtained are in agreement with those of Soodak and Sullivan (37). 

By the use of the factors described above the effective multiplica­

tion can be calculated using Equation 1. 
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In the study of nuclear reactor shim control over the entire fuel 

cycle it is necessary to know the time variation of the amount of excess 

reactivity. In high power nuclear reactors the reactivity changes because 

of the change in concentrations of fissionable isotopes and the build up 

of fission products. 

In low enriched or natural uranium fuel reactors the build of plutonium 

isotopes initially causes the amount of excess reactivity to increase. 

The first plutonium isotope, Pu-239, is formed from the following nuclear 

reaction. 

U238 + ̂  x U239 S \ Np239 B \ Pu239 

The next isotope of plutonium, Pu24°, is formed by the subsequent non-

fission capture of a neutron in Pu239. Pu24* is formed by the capture of a 

neutron in Pu240. 

The initial increase in reactivity is due to the Pu239 and Pu24* iso­

topes. These isotopes are fissionable, and the more of these isotopes are 

formed, the more the excess reactivity will increase. For natural uranium 

fuel reactors these plutonium isotopes initially build up faster than 

the U-235 atoms are depleted. 

The conversion ratio is defined as the number of fissionable atoms 

produced per fissionable atom destroyed. Equation 32 (5) defines the 

conversion ratio. 

C = + nePiCl-p) 
NfOf 

(32) 
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N is the number of furtile atoms per cubic centimeter 
g r 

Nf is the number of fissionable atoms per cubic centimeter 

cfg is the microscopic cross section of the furtile isotope 

Of is the cross section of the fissionable isotope 

n is the thermal reproduction factor 

e is the fast fission factor 

P% is the non-leakage probability of neutrons slowing down to 
the energy of the fertile isotope resonances 

and (1-p) is the resonance capture probability. 

For the reactor described in Chapter III with a DgO concentration of 

0.96 the conversion ratio is 0.7565. For the same reactor with a DgO con­

centration of 0.9975, the conversion ratio is 0.7823. The later case would 

be the normally shim controlled nuclear reactor. 

The amount of excess reactivity eventually begins to decrease as the 

plutonium atoms reach their equilibrium concentrations and the number of 

fission products increases. 

To determine the time dependency of the excess reactivity it is neces­

sary to know the time variation of the important isotopes with the fuel. 

Benedict and Pigford (5) derive the relationships given in Equation 34 

through 44 for these isotopes, as a function of integrated flux,6, where 8 

is defined by Equation 33. 

o 
(33) 

For Uranium 235 

n25 = N25 exp(- <j25e) (34) 
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n49 = C1 + C2exp(-c 25®)" (C1 + C2)exp(- (35) 

where C2, C2, and y are defined by Equations 36, 37, and 38. 

C1 = N28 0 2S/Y°49. (36) 

C1 = N25 c2S n25 Pl(y°49 " 25^• (37) 

Y = 1 - 1149e Pj(l-p) . (38) 

For Plutonium 240. 

N40 - C3 + C^exp(- ©256) + Cgexp(-YO^g8)» (39) 

(^3 + ^4 + Cg)exp(- a4O0). 

where C3, C4, and Cg are defined by Equations 40, 41, and 42. 

c3 = N28°28a49/CT40Y(1 + °49) . 

C = N25^25 ePj(l-p) 025 Q49 (*49 

4 (1 + *49)(*25 " YO49)(^25 " °40) 

C5 = C3 g40 _ c4(q25 -q40) 

YO49 - 040 Y°49 " °40 

For the fission products of U-235 and Pu-239, the concentrations are 

given by Equations 43 and 44. 

Np(25) = N 25— f1 - exp(-©250) V (43) 

1 + 025 ^ J 

(40) 

(41) 

(42) 
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Np(49) = g49 Ci + C2 ' 1 ~ exP(- ^ 

1 +a49 °25 

- (CX + c2) 1 - exp(-10498) 
049 

Two other important isotopes are those of Xenon 135 and Samarium 149. 

The concentrations of these two isotopes are given by Equations 45 and 46. 

Nv~ = Nf of * (yXe + yi) 

*Xe * °Xe<f 

_ Nf of 4>ySm N{ a fySm 
NSm ~ = (46) 

**Sm °Sm 

where y is the fission yield. 

In the above equations the subscripts have the following meaning : 

25 is U-235 

28 is Pu-239 

49 is Pu-239 

40 is Pu-240 

41 is Pu 241 

Xe is Xenon 135 

5m is Samarium 149 

and f is fissionable atoms. 

Benedict and Pigford (5) also give equations for the number densities 

of U 236, Pu 241, and the fission products of Pu 241, but these equations 

were not used for these reactivity studies. The effect of U 236 is con­

sidered in the fission product cross section of the U 235 fission 

products (24). In natural uranium fueled reactors very little Pu-241 is 

formed. A simpler approximation for the amount of Pu-241 and its fission 



34 

products is used based on the concentration or ?u-240e 

The values of microscopic cross section and U-235 and U-238 number 

densities that are used in this investigation are given in Appendix A. 

The calculation of the long term reactivity of a heavy water reactor 

system where the light concentration varies is complicated by the fact 

that the fast fission factor, resonance escape probability and the non-

leakage of epi-resonance neutrons are all functions of light water con­

centration. For this reason number densities of the plutonium isotopes 

could not be determined directly, but had to be based on some averaged 

values of e, p, and Pj_. 

The primary purpose of predicting the time dependency of reactivity is 

to determine the amount of shim control required. When the shim is con­

trolled by light water, the purpose is to then determine the time dependency 

of the light water concentration. The required concentration of light 

water can be found by making a series of reactivity calculations at 

various times after the start of the fuel cycle. Then the correct con­

centration is the one where the reactor will be just critical. These 

criticality calculations are made using techniques described in Section IV. 

The reactor is just critical when keff is equal to 1.0000. 

The following technique is used to adjust the values of e, p, and P^ 

for making plutonium isotope concentration calculations. The fuel cycle 

is divided into a number of time increments. For the first time increment 

the values of e, p, and P% used are those for the initial critical reactor. 

These values are associated with an H2O concentration of 3.69 mol per cent. 

The values of the fast effect is 1.02302, resonance escape probability is 

0.9092, and the fast neutron non-leakage is 0.9925. With these values 
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lated, the criticality is determined by the techniques of Chapter IV, and 

from these numbers is determined the just critical HgO concentration. 

For this case the concentration is 4.28 aol per cent. The values of e, p, 

and P2 for the second time increment are the time weighted averages of the 

values for the previous time increments and the values associated with the 

present HgO concentration. Again using the averaged values of e, p, and 

P%, new concentrations of the plutonium isotopes are determined, the 

criticalities calculated, and the just critical HgO concentration found 

for the end of the second time increment. The procedure is repeated to 

the end of the fuel cycle. 

The time increments used are taken in terms of integrated flux times, 

6, as given by Equation 33. 6 has the dimensions of cm"2, and the incre­

ments used are 1020 cm-2, 2 x 1020 cm-2, and 2.5 x 1020 cm-2. The final 

value of 0 was 30.0 x 1020 cm-2. 

The actual time of an increment can be found from the intermediate 

flux time by knowing the average flux over a time interval. The average 

flux can be determined from Equation 47. 

•fuel - "ssion rate 
vfuel zf 

where 

$fUei is the average flux with the fuel 

Vfuei the volume of the fuel 

Zf is the macroscopic fission cross section. 

The fission rate is dependent upon the reactor power. The fission rate per 
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the fission rate is 3.1 x 10*9 see"*. For 330 fuel elements with a 

volume of 26,800 cm3 each, the average initial flux is 8.68 x 10*3/cm2 sec. 

The concentrations of the various isotopes within the fuel element 

are given in Table 3 and Figure 3. The concentration of HgO necessary to 

make the reactor just critical are given in Figure 4. It is from this 

information in Figure 4 that the requirements for the distillation system 

for shim control are determined. 

In order that shim control by the removal of a light-water poison be 

compared with other methods of shim control, the amount of excess re­

activity as a function of time is determined for a hea.vy water reactor. 

This reactor is assumed to be similar to the reactor model discussed in 

Chapter III, except that it operates with a constant 0^° concentration of 

99.75 mol per cent. The techniques of calculating the amount of excess 

reactivity is similar to the technique discussed in this chapter. The 

main differences are that the values of e, p, and P% are assumed constant 

and it is not necessary to find the just critical concentration of HgO. 

The excess reactivity as a function of integrated flux time is shown in 

Figure 5. 
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labié 5. Averaged isotope concentration in fuel 

Integrated 
flux U 235 Pu 239 Pu 240 Pu 241 F.P. U 235 

1020cm"2 1020cm~3 1020cm~3 1020cm"3 1020cm"3 1020cm"3 

0.0 1.595 0.0000 0.00000 0.00000 0.00000 

1.0 ' 1.549 0.0338 0.00063 0.00001 0.03920 

2.0 1.509 0.0637 0.00241 0.00009 0.07726 

4.0 1.412 0.1122 0.00857 0.00051 0.15006 

6.0 1.336 0.1506 0.01722 0.00148 0.2187 

8.0 1.259 0.1797 0.02746 0.00311 0.2835 

10.0 1.187 0.2022 0.03872 0.00503 0.3444 

12.0 1.119 0.2196 0.05046 0.00741 0.4019 

14.0 1.055 0.2332 0.06234 0.01020 0.4561 

16.0 0.9945 0.2456 0.07407 0.01331 0.5072 

18.0 0.9373 0.2513 0.08544 0.01662 0.5553 

20.0 0.8837 0.2570 0.09621 0.02009 0.6007 

22.5 0.8205 0.2620 0.1093 0.02454 0.6672 

25.0 0.7625 0.2653 0.1210 0.02838 0.7032 

27.5 0.7085 0.2657 0.1327 0.03839 0.7637 

30.0 0.6578 0.2673 0.1433 0.04144 0.8074 
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T«sT\l a % Cmio/)1) 

Integrated 
flux 

1020cm-2 

FP Pu239 

1020cm_3 

FP Pu241 

1020cm-3 

Xel35 

1016cm-3 

Sml49 

1020cm-3 

Actual 
time 
days 

0.0 0.0Q000 0.00000 0.01787% 0.000222s 0.0 

1.0 0.00174 0.00000 0.1787 0.000222 13.3 

2.0 0.00537 0.00000 0.1823 0.000231 27.1 

4.0 0.02500 0.00005 0.1913 0.000242 56.0 

6.0 0.05122 0.00021 0.1982 0.000252 86.2 

8.0 0.08443 0.00035 0.2042 0.000262 117.4 

10.0 0.1230 0.00064 0.2058 0.000262 149.0 

12.0 0.1657 0.00097 0.2058 0.000262 180.8 

14.0 0.2098 0.00344 0.2058 0.000267 212.7 

16.0 0.2623 0.00528 0.2063 0.000265 244.4 

18.0 0.3107 0.00761 0.2063 0.000264 275.9 

20.0 0.3626 0.01048 0.2034 0.000260 307.1 

22.5 0.4288 0.01436 0.2018 0.000258 345.7 

25.0 0.4966 0.01896 0.1971 0.000254 383.1 

27.5 0.5654 0.02477 0.1946 0.000248 420.1 

30.0 0.6346 0.03170 0.1940 0.000246 457.0 

aThese values are equilibrium values and are reached a few hours 
after reactor starts up. 
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Within the larger heavy-water moderated nuclear power plants, such as 

the production reactors at Savannah River (6), the CANDU reactor (29), 

and power plants proposed by Sargent and Lundy (33), a distillation unit 

is integrated with the heavy-water system of the reactor to reconstitute 

the heavy water. A thorough description of the system used at Savannah 

River is given by Bertsche (6). With these reactors, the purpose of the 

distillation system is to remove light water that has leaked into the 

heavy-water system. The light water is eliminated by fractional distilla­

tion of the heavy-light water mixture. 

At the Savannah River plant (6, 35) this distillation is done by re­

moving a side stream of 7 gallons per minute from the reactor to the 

distillation system. The distillation system consists of two columns 

connected in series. Each column is operated under a vacuum and has 90 

sieve plates. The system has a rectifying section, in which the light 

water is increased from a feed concentration of approximately 0.25 mol 

per cent to 12 mol per cent H2O, and a stripping section in which the 

light-water concentration is decreased to 0.23 mol per cent HgO. These 

systems were designed for a product rate of 1150 to 1250 pounds per year 

of HgO at a feed concentration of 99.75 per cent to the bottom plate, 

an overhead draw off rate of 1.5 pounds per hour, a vacuum of 100 mm hg at 

the condensers, and a boil-up rate between 3000 and 4000 pounds per hour. 

The distillation system for the heavy-water power reactors proposed 

by Sargent and Lundy are designed to remove one pound of water per day 

from the reactor. This system consists of two 90 foot columns packed 
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with 1 inch bcï'i saddles. The rectifying section pi-oduces a mixture of 25 

per cent light water and 75 per cent heavy water. 

A distillation system that is used for shim control differs in three 

ways from the distillation systems mentioned above. First the shim con­

trol distillation systems are larger than the usual distillation system 

associated with a reactor. This larger distillation system is necessary 

since more light water must be removed. Secondly, where the usual dis­

tillation system operates at nearly constant feed composition and rate, 

the shim controlling distillation system must handle a range of feed 

compositions and rates. And thirdly, shim control distillation must 

supply the reactor with heavy water than can have a concentration that 

is either greater than that of the reactor or less than that of the re­

actor. The last condition comes from the fact that in low enriched power 

reactors, there is an initial increase in reactivity due to the build up 

of the plutonium isotopes. During this part of the fuel cycle light 

water is effectively added to the system to compensate build up. Later 

in the fuel cycle as fission products build up the reactivity decreases 

and the light water must be removed. The light water can be added to 

the system by returning to the reactor only the overheads products of the 

rectifying section which has a lower D20 concentration and a higher 

The light water is removed by returning to the reactor the bottoms 

product of the stripping section, which has a lower HgO concentration. 

A flow sheet of the scheme that has been devised to do this is shown in 

Figure 6. This distillation system has three series connected, 83 

bubble-cap plates. The feed from the reactor enters between the first 

and second columns. The first column is the stripping section and the 
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from the stripping section is piped to an enriched storage tank. The 

enriched storage will hold a light-heavy water mixture that has a higher 

DgO concentration than does the reactor. The overheads product from the 

rectifying section is piped to the depleted storage which-contains a 

light-heavy water mixture with a concentration of heavy water less than 

that of the reactor. 

The moderator storage contains a light-heavy water mixture that has 

the same heavy water concentration as the reactor. This storage contains 

the amount of moderator that is in excess of the amount needed in the 

reactor core itself. The amount in the excess moderator storage varies 

during the fuel cycle and at one time its contents approach empty. 

To shim control the reactor the distillation system is operated in 

the following manner. At the start of the fuel cycle most of the water 

will be in the reactor and the excess moderator storage. The enriched 

storage will be empty and within the depleted storage will be a 56 mol 

per cent HgO light-heavy water mixture. The amount contained initially 

in the depleted storage will be the amount of light water needed to 

counter the initial build up of reactivity. 

As the fuel cycle starts, a side stream is drawn from the reactor 

system and is sent to the distillation system. The fraction enriched in 

DgO is sent to the enriched storage for use later in the fuel cycle, and 

the fraction depleted in 0^O is sent to the deplete storage for use in 

shim control during the period of reactivity increase within the reactor. 

The shim control is obtained by controlling the flow rate from the de­

pleted storage to the reactor. If the initial amount contained within 
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storage will approach empty at some time during the period of reactivity 

increase. After approaching empty the volume contained in the depleted 

storage will again increase. The reason for this is that at the time 

the rate of reactivity build-up has decreased to a point where the amount 

of additional light water needed to shim control is less than is being 

supplied by the distillation system. 

When the reactivity within the reactor ceases to increase and 

reaches its peak, the flow from the depleted storage to the reactor is 

stopped and the flow from the enriched storage is started. From this 

time to the end of the fuel cycle shim control is obtained by controlling 

the flow from the enriched storage to the reactor. 

As the excess reactivity within the reactor begins to decrease the 

amount of flow from the enriched storage to the reactor is less than the 

flow from the distillation system to the enriched storage. During this 

time the amount within the excess moderator storage decreases while the 

amount within the enriched storage increases. Later during the cycle 

the rate of change of reactivity increases and the flow from the enriched 

storage to the reactor is greater than the flow from the distillation 

system to the enriched storage. During this part of the cycle the amount 

in the excess moderator storage increase while the amount in the enriched 

storage decreases. Finally at the end of the fuel cycle the enriched 

storage is empty. 

During the part of the fuel cycle in which the excess reactivity is 

decreasing, the amount of liquid in the depleted storage has been in­

creasing. As the spent uranium fuel is removed from the reactor and 
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storage is drained into the moderator system of the reactor until the 

enrichment of H20 is enough for the initial shim control. When this is 

done the amount remaining in the depleted storage will be equal to the 

amount initially within this storage and is ready to be used for shim 

control of the initial increase of excess reactivity. 

This completes the fuel cycle and the distillation required to 

accomplish the shim control, The only heavy-water that needs to be added 

to the system is that to replace leakage. Furthermore none of the 

depleted D20 has to be sent to an off-site installation for upgrading to 

a higher D20 enrichment. A discussion of the distillation system calcula­

tions and flow rates is given in the next section. 
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In designing distillation columns for the separation of light and 

heavy water certain physical properties of the system must be known. 

One of the most important of these properties is that of relative vola­

tility. 

The relative volatility,a, is defined (17) in Equation 48. 

where 

a is the relative volatility of componet a relative to component b 

xa is the mol fraction of a in the liquid 

ya is the mol fraction of a in the vapor 

Pa is the vapor pressure of a 

and Py is the vapor pressure of b. 

The relative volatility is independent of concentration for ideal solu­

tions that obey Raoult's law. Raoult's law is given by Equation 49. 

pa is the partial pressure of component a in the vapor. 

Thus the relative volatility is a measure of separation that would 

be obtained in the single partial evaporation of a liquid and the con­

densation of its vapors. A second separation can be obtained by re-

evaporating the condensate and condensing the vapor. A distillation 

column is a series of condensations and re-evaporations to obtain the 

(48) 

Pa = xapa (49) 

where 
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Whenever water contains both hydrogen and deuterium three compounds 

exist in equilibrium with each other. These three compounds are HgO, 

HDO, and DgO. Their nature is such that their equilibrium is quickly 

formed through the reaction below. 

H20 + D20 = 2 HDO 

Figure 7 shows the concentration of HgO, HDO, and D^O as a function of 

DgO concentration. In this figure it is seen that at low concentrations 

of D^O the main components are H^O and HDO. At high concentration of 

DgO the main components are HDO and D^O. It is only in the middle con­

centrations of DgO that all three compounds exist to an appreciable 

extent. Thus in the low concentrations of D^O the relative volatility 

is the relative volatility of H^O and HDO, and in the high range of D^O 

concentration it is the relative volatility of HDO and D^O. 

Benedict and Pigford (5) state that the relationship of the vapor 

pressures of H^O, HDO, and D^O is that of Equation 50. 

pH20 pHDO 
—— = (50) 
PHDO PD20 

Equation 50 means that the relative volatilities of the two are equal, 

and then the separation factors at the high and low D^O enrichments are 

the same. Bebbington and Thayer (4) suggest that this relative volatility 

can be used over the entire range of DgO concentrations. For although 

the actual relative volatility deviates from this near the middle con­

centration ranges and this makes for a slight over design, the difference 

is not of practical importance. 
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For the purposes of the discussion and notation the hydrogen ccn= 

centration of water will be expressed in mol per cent H20 and the 

deuterium concentration in mol per cent D20. 

In determining a value for a, it is assumed that the average operat­

ing pressure with each distillation column is 100 mm Hg. Bertsche (6) 

suggests that this is about the optimum operating condition for this 

kind of distillation. From the data given by Kirshenbaum (27) a pressure 

of 100 mm Hg for D20 corresponds to a temperature of approximately 52°C. 

At this temperature the relative volatility is 1.051. 

Because this value of relative volatility is close to one, signifi­

cant separation can only be obtained at high reflux ratios. The reflux 

ratio, R is defined by Equation 51. 

where 

L0 is amount of liquid returned from the condenser to the 
top of the distillation column 

and D is the amount of overheads product withdrawn from the 
condenser. 

A value of 1600 was chosen for the reflux ratio for these calcula­

tions in this investigation. The comparable value of reflux ratios 

in the reactor integrated distillation systems at the Savannah River 

Plant is 1999.0. 

The number of theoretical states required is determined by using the 

McCabe-Thiele technique (30). For purposes of illustration a McCabe-

Thiele diagram is.shown in Figure 8. (In general use the McCabe-Thiele 

method lends itself readily to solution by graphical techniques. But 
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an analytical McCabe-Thiele technique. In Figure 8, the value of a is 

not the one used in this investigation.) 

The number of plates is determined by considering a vapor feed 

composition of 1 mol per cent HgO. The i-line, which represents the 

feed composition is from the x = y line to the equilibrium curve. The 

equation for the equilibrium curve is given in Equation 52, which is 

derived from Equation 48. 

ox 

yeq = 1 " X = — (52) 
, . '«x 1 + (a- l)x 
1 + tt7 

where 

yeq is the equilibrium mol fraction of HgO in the vapor 

x is the mol fraction of H2O in the liquid. 

The i-line intersects the equilibrium curve at a liquid concentration 

of 0.96 mol per cent HgO. An operating line for the slipping section 

is chosen so as to bisect the i-line between 0.96 and 1.00 mol per cent, 

or at a concentration of 0.98 mol per cent HgO. The slope, m, of an 

operating line in the stipping section is given by Equation 53. 

" ' TTTi (53> 

This operating line intersects the x = y line at a concentration of 

32.96 mol per cent This is the value at xD in Figure 8. The equa­

tion for this Operating line is given in Equation 54. 

yop = xD - m(xD - x) = .000206 + .999375 xop (54) 
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y0p is the mol fraction of H20 in the vapor at operating conditions 

xop is the mol fraction of H20 in the liquid at operating 
conditions. 

For this case the calculation of the number of stages is done by 

starting on the operating line at xQp equal to 0.0098. With this value 

of x, a value of y on the equilibrium curve is obtained by Equation 52. 

The equilibrium value y is 0.010207 and is equal to operating line value 

of y. This equality represents the condensing of the vapors rising 

from the first stage. From this value of yDp a value of xQp from 

Equation 54 is determined to be 0.010007. This completes the calculation 

of the first stage. For the second stage and subsequent stages this 

procedure is repeated until the concentration of H20 becomes 0.3296 mol 

fraction. Table 4 shows the steps involved in this calculation. From 

Table 4 the total number of theoretical stages is seen to be 117. 

The number of stages in the rectifying section is one-half the 

number in the stripping section or 58. The separation obtained in this 

section is determined in a way similar to that used to determine the 

number of stages in the stripping section. In the analysis of this 

section, the operating line is arbitrarily constructed between x = 0.98 

mol per cent HgO on the i-line and the point x = 0.2 mol per cent H20 

on the x = y line. The relationship for this operating line is given by 

Equation 55. 

yop = 1.02974x - .00005454 . (55) 

Starting with a y value of 1 mol per cent H20 (this corresponds to 

an x value of 0.98 mol per cent H20 in the previous discussion) similar 
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Stage X yeq = y0p Stage x yeq = yop Stage x yeq = yop 

1 .0098 .01021 40 .0250 .02603 79 .0950 .09860 
2 .0100 .01050 41 .0258 .02685 80 .0984 .10211 
3 .0103 .01084 42 .0266 .02769 81 .1019 .10573 
4 .0105 .01093 43 .0274 .02852 82 .1055 .10945 
5 .0107 .01114 44 .0283 .02945 83 .1093 .11337 
6 .0109 .01135 45 .0292 .03039 84 .1132 .11740 
7 .0111 .01156 46 .0302 .03143 85 .1172 .12152 
8 .0113 .01177 47 .0312 .03247 86 .1213 .12574 
9 .0115 .01198 48 .0322 .03351 87 .1256 .13018 
10 .0117 .01219 49 .0333 .03465 88 .1300 .13472 
11 .0119 .01239 50 .0344 .03579 89 .1327 .13751 
12 .0121 .01260 51 .0356 .03704 90 .1373 .14225 
13 .0124 .01291 52 .0368 .03829 91 .1421 .14704 
14 .0127 .01323 53 .0381 .03964 92 .1469 .15213 
15 .0130 .01353 54 .0394 .04099 93 .1520 .15738 
16 .0133 .01385 55 .0408 .04244 94 .1572 .16273 
17 .0136 .01416 56 .0422 .04389 95 .1626 .16828 
18 .0139 .01448 57 .0437 .04545 96 .1681 .17393 
19 .0142 .01479 58 .0452 .04699 97 .1738 .17979 
20 .0145 .01510 59 .0468 .04867 98 .1796 .18563 
21 .0149 .01552 60 .0484 .05033 99 .1856 .19190 
22 .0153 .01593 61 .0501 .05209 100 .1918 .19826 
23 .0157 .01635 62 .0519 .05396 101 .1981 .20464 
24 .0160 .01666 63 .0537 .05583 102 .2046 .21138 
25 .0164 .01708 64 .0558 .05801 103 .2113 .21924 
26 .0168 .01749 65 .0578 .06008 104 .2181 .22520 
27 .0172 .01791 66 .0599 .06226 105 .2251 .23235 
28 .0177 .01843 67 .0620 .06445 106 .2322 .23962 
29 .0182 .01895 68 .0642 .06672 107 .2395 .24707 
30 .0187 .01947 69 .0665 .06910 108 .2470 .25664 
31 .0192 .01999 70 .0689 .07159 109 .2565 .26442 
32 .0197 .02051 71 .0714 .07418 110 .2643 .27238 
33 .0203 .02113 72 .0740 .07687 111 .2723 .28053 
34 .0209 .02176 73 .0767 .07966 112 .2804 .28878 
35 .0215 .02238 74 .0795 .08256 113 .2887 .29722 
36 .0221 .02307 75 .0824 .08556 114 .2972 .30586 
37 .0228 .02373 76 .0854 .08867 115 .3058 .31460 
38 = 0235 ,02446 77 .0885 .09188 116 .3145 .32344 
39 .0242 .02519 78 .0917 .09518 117 

118 
.3234 
.3325 

.33247 
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obtained. This is equated to an operating x. The operating x is used 

in Equation 55 to obtain a value of y which becomes the initial value. 

This process is continued until 58 are stepped off. (The 58 stages 

correspond to the one tower in the rectifying section while in the 

stripping section there are two towers.) The results of this procedure 

are given in Table 5. In this table it is seen that the final concentra­

tion of the bottoms product is 0.1996 mol per cent H2O. 

Bertsche (6) defines an enrichment factor, E, by Equation 56. 

XT 

e • 4P (56) 
1 -• ZB 

where 

y-p is the concentration of the more volatile component in 
the overheads 

and yB is the concentration of the more volatile component 
in the bottoms product. 

For the stripping section of this distillation system the value of y? 

can be considered the overheads product concentration, 32.96 mol per 

cent H2O and yB is the feed concentration, 1.0 mol per cent HgO. 

Likewise for the rectifying section y-p is the feed concentration, 1 mol 

per cent and yB is the bottoms concentration 0.2 mol per cent. 

Using these values in Equation 56, the enrichment factor in the stripping 

section is 48.5 and in the rectifying section it is 5.02. Bertsche 

further states (6) that enrichment factor does not change if all other 

operating properties of the column remain the same. Thus through the use 

of the enrichment factor, it is possible to quickly calculate by means 

of Equation 56 the overheads and bottoms product concentrations for 
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Table 5. Mcuabe-ihieie calculation in the rectifying 

Stage y xeq = xop Stage y xeq = xop 

1 0.01000 0.00960 30 0.00517 0.00496 
2 0.00989 0.00950 31 0.00504 0.00484 
3 0.00969 0.00930 32 0.00491 0.00471 
4 0.00949 0.00911 33 0.00478 0.00459 
5 0.00929 0.00892 34 0.00465 0.00446 
6 0.00910 0.00874 35 0.00452 0.00434 
7 0.00891 0.00855 36 0.00439 0.00421 
8 0.00872 0.00837 37 0.00426 0.00409 
9 0.00853 0.00819 38 0.00414 0.00397 
10 0.00834 0.00801 39 0.00402 0.00386 
11 0.00816 0.00783 40 0.00390 0.00374 
12 0.00798 0.00766 41 0.00378 0.00363 
13 0.00781 0.00750 42 0.00367 0.00352 
14 0.00763 0.00732 43 0.00356 0.00342 
15 0.00746 0.00716 44 0.00345 0.00331 
16 0.00729 0.00700 45 0.00334 0.00321 
17 0.00712 0.00684 46 0.00323 0.00310 
18 0.00696 0.00668 47 0.00313 0.00300 
19 0.00680 0.00653 48 0.00303 0.00291 
20 0.00664 0.00637 49 0.00293 0.00281 
21 0.00648 0.00622 50 0.00283 0.00272 
22 0.00632 0.00607 51 0.00273 0.00262 
23 0.00617 0.00592 52 0.00263 0.00252 
24 0.00602 0.00578 53 0.00253 0.00243 
25 0.00587 0.00564 54 0.00244 0.00234 
26 0.00573 0.00550 55 0.00235 0.00226 
27 0.00559 0.00537 56 0.00226 0.00217 
28 0.00545 0.00523 57 0.00217 0.00208 
29 0.00531 0.00510 58 0.00208 0.001996 

- 59 0.001993 



58 

» «** *. VVV> vvuty V*» A W AViW l*AVi«VMV 14ft* Allg WW gV WilXVWgli A9llgWltJT VIV-V# CLU» 15 — 

Thiele calculations. Using the two aforementioned enrichment factors the 

overheads product concentration, and the bottoms product concentration 

y g are determined for various feed concentrations. Table 6 gives values 

of these concentrations that are used for this distillation system. 

Table 6 also gives the ratio of the feed rate to overheads products 

rate and the bottoms product rate to the overheads feed rate. These 

rates are determined from material balances in Equations 57 and 58. 

Overall balance around distillation unit. 

F = B + D (57) 

where 

F is the feed rate 

B is the bottoms product rate 

D is the overheads product rate. 

HgO balance around distillation unit. 

XpF = XgB + xj)D (58) 

where 

Xp is the mol fraction of in the feed 

Xg is the mol fraction of HgO in the bottoms product 

Xj) is the sol fraction of HgO in the overheads product. 

Combining Equations 57 and 58 the ratios of B/D and F/D are given by 

Equations 59 and 60. 

$ • ^5 
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XF XB xD B/D F/D 

0.03985 0.00820 0.6681 19.858 20.858 

0.04465 0.00922 0.6939 18.324 19.324 

0.04830 0.01001 0.7111 17.309 18.309 

0.05105 0.01006 0.7229 16.612 17=612 

0.05090 0.01057 0.7223 16.648 17.648 

0.04855 0.01006 0.7122 17.242 18.242 

0.04565 0.00944 0.6988 18.037 19.037 

0.04195 0.00885 0.6799 19.274 20.274 

0.03750 0.00770 0.6539 20.686 21.686 

0.03265 0.00668 0.6208 22.645 23.646 

0.02780 0.00566 0.5810 24.993 25.993 

0.02340 0.00475 0.5375 27.565 28.565 

0.01655 0.00334 0.4494 32.768 33.768 

0.01085 0.00218 0.3473 38.802 39.802 

0.00600 0.00120 0.2264 45.941 46.941 

F 

D 

XD - XB 

XF - XB 
(60) 

The rates required for this distillation system can now be de­

termined from the data in Table 6 and a knowledge of the concentration of 

light water within the reactor system as a function of time. The varia­

tion of light water concentration as a function of time is given in 
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The rate equations can be obtained by a material balance between 

the reactor system and the distillation system. Figure 6 shows a 

simplified flow sheet of a distillation system for shim control of a 

nuclear reactor. The material balances are made on this system. The 

excess moderator or storage and the contents of the moderator and coolant 

with reactor will be considered as the reactor inventory. At any 

time, t, after the start of a fuel cycle the amounts of liquid in the 

reactor, the enriched storage, and the depleted storage are given by 

Equations 61, 62, and 63. 

where 

R(t) 

E(t) 

S(t) 

F(t) 

D(t) 

B(t) 

H(t) 

T(t) 

R(t) = R(o) - I F(t)dt +1 H(t)dt (61) 

f t  J o  J o  
+Jo T(t)dt 

ft ft 
E(t) = E(o) +J B(t)dt -J H(t)dt (62) 

S(t) = S(o) +J D(t)dt - J T (t) dt (63) 

is the reactory inventory at time t 

is the enriched storage inventory at time t 

is the depleted storage inventory at time t 

is the feed rate to the distillation system at time t 

is the overhead products rate at time t 

is the bottoms product rate at time t 

is the flow from enriched storage to the reactor 

is the flow from depleted storage to the reactor. 
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The mol fraction concentration of H?0 at any time t in the reactor, the 

enriched storage, and the depleted storage are given by Equations 64, 65, 

and 66. 

x=(t) 
_ R(O)XR(O) - JxR(t)F(t)dt + JXs(t)T(t)dt 

R(t) 

X£(t)H(t)dt 

xE(t) 

xc(t) 

_ XG(o)S(o) + ^xgD(t)dt - j xg(t)T(t)dt 

E(t) 

= *s(°)S(o) + /xDP(t)dt - f x s (t)T(t)dt 

S(t) 

(64) 

(65) 

(66) 

where x(t) is the mol fraction concentration of H20. 

In the above equations the subscripts R, S, E, B, D, and F indicate 

reactor system, depleted storage, enriched storage, distillation bottoms 

product, distillation overheads product, and feed. The feed concentra­

tion, Xp, is the same as the concentration within the reactor, xR. 

The relationships for the flow rates from the enriched storage to 

the reactor, H(t), and the flow rate from the depleted storage to the 

reactor, T(t), can be obtained by combining Equations 61 and 64. 

/F R(o) xR(t) - xR(o) 

x (t) - xR(t) 

dt J H 

/' dt + I H(t) 

+ JT( t ) xR(t) - xs(t) 

xR(t) - xE(t) 

= 0 (67) 

dt 
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(68) 

In the operation of this system for shim control, flow to the reactor 

system at any time will be either from the enriched storage or the de­

pleted storage, but not from both. Therefore when H(t) has a non-zero 

value T(t) is zero, and when T(t) has a non-zero value H(t) is zero. 

Thus, H(t) and T(t) can be expressed by Equations 69 and 70. 

To keep the reflux patio of the system constant the overheads 

product must be removed at a constant rate, i.e., D is constant. If this 

rate is too low enough light water will not be removed and the fuel cycle 

will end too quickly. If the rate is too high all of the moderator will 

To illustrate the above effect in shim control by distillation, 

three ratios of yearly overhead product removal to initial reactor system 

inventory are studied. These three ratios were 0.065, 0.060, and 0.056. 

These studies are made in the manner described below. 

The first step in these studies is to divide the fuel cycle into a 

series of time intervals. The length of these time intervals varied 

from 13 to 39 days depending on the rate of chance of the H2O concentration 

(69) 

(70) 

be removed from the reactor and again the fuel cycle will be ended early. 
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sumed to vary linearly, so that a numerical average can be taken as the 

average H20 concentration in the feed. Using the average H20 con­

centration in the feed, xp, average values of H20 concentration in the 

overheads product, XQ, the bottoms product, xg,. and the feed rates and 

bottoms product as a function of initial reactor inventory can be 

determined from Table 6. (Actually the values of Xp listed in Table 6 

are the average values of H20 concentration used.) Using the values from 

Table 6, the values of reactor system inventory, depleted storage and 

enriched storage can be determined. (The depleted storage and enriched 

storage and their part in shim control is discussed in Chapter VI.) 

Over each of the time intervals the various rates and concentrations 

are assumed to be independent of time, so that Equations 61, 62, 63, 65, 

66, 69 and 70 can be modified to become Equations 71 through 77. 

R(t2) = R(ti) - FAt + HAt + TAt (71) 

E(t2) = E(ti) + BAt - HAt (72) 

S (t2) = S(tj^) + DAt - TAt 

x%(t2) = xECtl)£(tl) + xBBAt " Xg(ti)HAt 

E(t2) 

Xg(tg)= xs(ti)S(ti) * XpD^t - Xg(ti)T6t 

2 S(t2) 

H = R(t1) Xpty " *F^l) 

xE(t2) ~ xp(t2) 

(73) 

(74) 

(75) 

(76) 
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T = prVxF(*2) -

XS(t2) - xF(t2) 
(77) 

£ 
In these equations At is 

o 
dt 

It can be shown that for values of HAt less than E(t^) + BAt or TAt 

less than S(ti) + DAt, Equations 74 and 75 can be written as Equation 78 

and 79. 

The fraction of liquid in reactor system, the enriched storage and 

the depleted storage for each to the three ratios of yearly overheads 

product to reactor inventory are given in Table 7. Figure 9 shows the 

fraction of the heavy water in the reactor system for each of the three 

ratios. 

The ratio 0.065 is too high and after 376 days all of the moderator 

is removed from the reactor. The ratio 0.056 is too low and after 398 

days all of the moderator is removed from the enriched storage so that 

shim control is no longer possible. With a 0.060 ratio of yearly over­

heads product to reactor inventory it is possible to obtain a fuel cycle 

length of 433 days. It is this ratio that is used in this demonstration. 

The amount of water in the initial reactor inventory now can be 

determined. The reactor must always contain at least 368.5 metric tons 

of a light-heavy water mixture. This amount is needed to assure enough 

moderator and coolant for the operating reactor. According to Figure 9 

xE(t2) = *EC*l)E(tl) * x5S-t (78) 

E(tj) + BAt 

xs(t2) = xE(t1)S(t1) + XpPAt 

S(t%) + DAt 

(79) 



Table 7. Fractions of heavy water in reactor system, enriched storage, and depleted storage 

Ratio 0.056 Ratio 0.060 Ratio 0.065 
Time 
days RSE RSE R S 

0 0.9868 0.0132 0.0000 0.9878 0.0122 0.0000 0.9875 0.0124 0.0000 
13 0.9482 0.0058 0.0452 0.9540 0.0042 0.0418 0.9570 0.0042 0.0388 
27 0.9067 0.0023 0.0902 0.9161 0.0005 0.0832 0.9222 0.0004 0.0773 
56 0.8183 0.0027 0.1782 0.8347 0.0006 0.1647 0.8470 0.0001 0.1529 
86 0.7280 0.0056 0.2656 0.7512 0.0034 0.2454 0.7698 0.0024 0.2278 
117 0.6670 0.111 0.3211 0.6992 0.0084 0.2923 0.7255 0.0071 0.2674 
149 0.6084 0.0167 0.3796 0.6452 0.0136 0.3412 0.6804 0.0119 0.3077 
181 0.5498 0.0223 0.4322 0.5994 0.0188 0.3819 0.6458 0.0167 0.3375 
213 0.4951 0.0279 0.4813 0.5613 0.0239 0.4148 0.6225 0.0215 0.3559 
244 0.4475 0.0333 0.5234 0.5365 0.0290 0.4346 0.6182 0.0262 0.3556 
276 0.3868 0.0389 0.5785 0.5082 0.0341 0.4576 0.6190 0.0310 0.3500 
307 0.3142 0.0444 0.6457 0.4824 0.0391 0.4784 0.6344 0.0356 0.3300 
346 0.1784 0.0512 0.7746 0.4502 0.0454 0.5043 0.6902 0.0415 0.2683 
383 0.0000* 0.0565 0.9435 0.4450 0.0515 0.5098 0.8503 0.0471 0.1024 
420 0.5832 0.0575 0.3648 0.9492 0.0508 0.0000b 

433 0.9404 0.0596 0.0000 

aThe reactor inventory is depleted in 376 days. 

^The enriched storage is emptied in 398 days. 
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0.44 and this occurs at 366 days after the start of the fuel cycle. Thus 

to maintain the minimum of 368.5 metric tons with the reactor system, 

the initial reactor inventory must be 780 metric tons of heavy water. 

The overheads product rate is determined from the 0.060 ratios and 

the initial reactor inventory. This rate is 11.72 pounds per hour. 

For a reflux ratio of 1600, the reboilers must vaporize 18,750 pounds 

per hour. The flow rates of B, F, H, and T are given in Table 8. 

Table 8. Distillation unit flow rates 

Time B F H T 
(days) (lbs/hr) (lbs/hr) (lbs/hr) (lbs/hr) 

0-13 262 274 0 58.5 

13-27 224 236 0 31.8 

27-56 211 223 0 11.9 

56-86 203 215 0 5.4 

86-117 203 215 89 0 

117-149 211 223 96 0 

149-181 220 232 124 0 

181-213 236 248 159 0 

213-244 232 264 206 0 

244-276 290 302 222 0 

276-307 305 317 254 0 

307-346 336 348 289 0 

346-383 400 412 392 0 

383-420 479 491 725 0 

420-434 540 552 2720 0 
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optimum vapor velocity is 13.3 ft/sec or at these pressures 270^_lk£_^__ 

For a total vapor flow of 18,750 pounds per hour the cross section of 

the tower is 69.6 sq.ft. This corresponds to tower diameter of 9.42 

feet. 

For bubble cap towers used in DgO distillation the overall plate 

efficiency is 70% (4). Thus for the three towers of 58 theoretical 

plates each, each tower will have 83 actual plates. As a comparison, 

the production of heavy water at the Dana Plant in Dana, Indiana, towers 

are used that are 10.5 feet in diameter with 72 plates, and also towers 

8.0 feet in diameter with 83 plates. 
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From the results of the preceding chapters it is seen that shim 

control of heavy-water moderated power reactors by removal of a light-

water poison is possible. The distillation system required for a 250 

electrical megawatt nuclear power plant is described in Chapters VI and 

VII. 

For this particular system criticality can be maintained for 433 

days. This is based on the reactor operating at a thermal power of 1000 

megawatts. For a fuel loading of 76 metric tons of uranium, a burn up 

of 5,700 megawatt days per ton of uranium is obtained. Based on the 

plutonium concentration at the end of the fuel cycle, 159 kilograms of 

plutonium are produced and are available for use as plutonium credit. 

The radial flux distribution is given in Figure 10. From this 

figure the maximum-to-average flux is determined to be 1.65505. The flux 

distribution was determined by a computer code AIM-6 (15) which is 

described in Appendix B. 

Part of the study of the feasibility of shim control by light water 

removal will be a comparison with other methods of shim control. For 

heavy-water reactors of this type, estimates of burn up have been ob­

tained (2). For a 200 megawatt electric nuclear power plant a burn up of 

6800 megawatts a day per metric ton of uranium was obtained. And for a 

300 megawatt electric nuclear power plant the bum up is estimated to be 

7800 megawatt days per ton. These two estimates are for a four zone 

refueling scheme. This means that one-fourth of the fuel is replaced at 

a time. This zone refueling increases the attainable bum up. In studies 
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by Sargent and Lundy (55). the burn up in this type or reactor is in­

creased approximately 45% by changing from batch refueling to a three 

zone refueling technique. The reactor model chosen for this study is 

assumed to be batch refueled. Such an assumption simplifies the criti­

cal ity calculations. If the refueling were to be changed to a three 

zone refueling scheme and the burn up was assumed to be increased by 45%, 

then the attainable burn up would be 8,250 megawatt days per ton of 

uranium. 

Because the estimated burn up is a function of the technique used 

in its calculation, another comparison of bum up can be made using the 

same techniques of calculation as are used in this demonstration. In 

this comparison a reactor model similar to that described in Section III 

is chosen except that the DgO concentration is maintained at a constant 

99.75 mol per cent. These calculations are described on page 35 and 

the results presented in Figure 5. The length of time that criticality 

can be maintained with such a reactor is 466 days. For fuel loading of 

76 metric tons of uranium and a thermal power level of 1000 megawatts the 

bum up attainable is 6,150 megawatt days per metric ton of uranium. 

This reactor produces 164 kilograms of plutonium. This value of bum up 

and plutonium production are probably high since in their calculation no 

account is made of the disturbance of the neutron fluxes caused by the 

shim control rods. 

The economic feasibility of shim control by light water removal is 

dependent on five main factors. These are 

1) Control rod cost 

2) Distillation equipment cost 



72 

3) ÏM) inventory cost 

4) Attainable burn up 

5) Plutonium credit. 

Of these only the first three will be considered here. The last two, 

burn up and plutonium credit will be assumed the same until further infor­

mation is available. There are also some lesser costs that will be 

neglected. Among these lesser items are operating cost for the distil­

lation system and in-leakage of light water to the system. The distilla­

tion operating cost work in favor of shim control by rods. The smaller 

distillation unit would result in less operating expense. On the other 

hand, in-leakage of water works in favor of shim control by light water 

removal. Because a greater amount of light water can leak into this 

system certain tolerances can be lessened. (Sargent and Lundy (34) 

have determined that a savings of .06 mil/kwhr could be realized from a 

95% DgO concentration compared to a 99.75 per cent DgO concentration. 

The main savings is in the fact that more light water could leak into the 

reactor.) 

The cost comparisons of the two methods of shim control is based 

on the costs prevailing in 1959, the date of the cost of the shim rod con­

trolled reactor. 

The cost of a bubble cap distillation tower 9 feet 6 inches in 

diameter, made of ordinary steel is $1200 per plate based on an Engineer­

ing News Record index(ENR) of 400 (9). The ENR Index in July 1959, was 

804.61 (10). Thus for an 83 plate distillation tower the installed cost 

in 1959 was $200,000. (The October, 1963, ENR Index was 914.88 (11), so 

the 1963 cost is $228,000.) The total cost of three such towers and the 
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preciation rate on nuclear plants is 14% per year, therefore the yearly 

cost is $117,500. 

The comparable cost associated with the rod controlled reactor must 

include not only the distillation cost but also the costs of the rods. 

The 1959 cost of the distillation unit is $164,700 (33), or $23,000 

annually. The costs of the rods is $24,100 a piece (34). A 1000 thermal 

megawatt reactor of this type will require 23 shim rods (33). The control 

rod cost is $555,000 per set. If the control rods last for one fuel 

cycle, then for a 433 day fuel cycle, and a load factor of .8, the life­

time is 1.48 years. The annual cost is $375,000. (Sargent and Lundy (34) 

give the life of control rods as approximately one year.) Based on the 

depreciation of equipment cost and the cost of control rods, the annual 

cost of shim control by shim rods is $398,000. This compares with shim 

control by light water removal cost of $117,500. 

However, the value of the 368.5 metric tons of heavy water required 

in the shim rod controlled reactor is $22,700,000 based on a D20 price of 

$28 per pound (34). The value of 780 metric tons of 97.31 mol per cent 

DgO is $45,000,000 based on a price of $26.60 per pound. In cost estima­

tion, the AEC requires the DgO be depreciated at a rate of 12.5 per cent 

per year. Then the inventory charges for the rod controlled reactor are 

only $2,840,000 per year compared with $5,640,000 per year for a reactor 

shim controlled by light water removal. This is a net disadvantage for 

the light water removal technique of $2,519,500 per year or 1.42 mil per 

kilowatt hour. 

Another consideration of interest is the temperature and void 
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coefficients or reactivity. For tnxs reactor system two temperature co­

efficients of reactivity were examined. Temperature coefficients of 

reactivity are determined by making two reactivity calculations. One is 

made at a reference temperature and the second at a temperature 100°C 

higher. 

The number densities of the liquids are changed properly and the 

microscopic cross sections are recalculated by the methods of Appendix 

A. The first temperature coefficient considered only an increase in the 

temperature of the fuel elements and the associated coolant. This 

temperature coefficient as a function of light water enrichment is given 

in Figure 11. This temperature coefficient is always negative. 

The second coefficients considered a temperature rise that is 

assumed to be the same for both moderator and fuel-coolant. These co­

efficients are presented in Figure 12. Part of these coefficients are 

positive and this is because of contribution of the moderator. The 

assumption that the temperature rise in the moderator is equal to the 

temperature rise of the fuel and coolant is overly conservative. The 

large heat capacity of the moderator as compared with fuel and coolant 

where the heat is being generated would make the temperature rise within 

the moderator only a small fraction of the temperature rise within the 

fuel and coolant. If this fact had been taken into consideration the 

overall temperature coefficients would have been negative. 

The void coefficient of the coolant is determined by reducing the 

number density of the coolant by a given percentage, and then based on 

this reduced coolant number density the reactivity of the system is re­

calculated. The void coefficient of the coolant is shown in Figure 13. 
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Although it is positive it is small (51) and when coupled to the negative 

temperature coefficient should present no difficult control problems. 
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In the previous section it was shown that although shim control of 

heavy-water reactors is possible by removing a light-water poison, it is 

not economically advantageous with the distillation technique proposed 

here. The main disadvantage is the greater amount of inventory 

required, and if some way can be found to reduce the inventory, this 

method of shim control may have an economic advantage. 

It is recommended that in any future study of this problem a multi-

zone refueling scheme be considered. This would have two promising 

effects., First, it would increase the attainable bum up. Second, the 

use of multizone refueling would reduce the amount of excess reactivity 

that must be controlled. This would reduce the distillation requirements 

and hence the DgO inventory requirements. 

Another method to reduce the heavy water inventory would be to use 

the same distillation system for shim controlling several reactors in a 

power complex. These reactors would have their refueling cycles out of 

phase with each other. In this way the enriched 0^O storage of one reactor 

would be used as the moderator for another reactor. This would spread 

the extra inventory cost over several reactors and increase the economic 

feasibility. 

Before this system of shim control could be used in a power reactor 

further study should be made into the reactor kinetics. The main purpose 

of this study would be to make sure that moderator temperature coeffici­

ents and coolant void coefficients have no adverse effect on reactor 

stability. 
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A. Number Densities 

The number density of an element is the number of nuclei! of that 

element per unit of volume. The number density is given by Equation 80. 

Xj, is the atomic fraction of i 

Ai is the atomic number of i 

NAv is Avargadro's number 6.02 x lO^3 atoms/mol (13). 

In determining the number densities of mixtures of light and heavy 

water one finds that only a limited amount of data is available on the 

density of pure D^O. Kirshertbaum (27) gives the density of pure DgO at 

25°C as 1.10775 t .00016. The variation of density with temperature is 

given only for temperatures up to about 40°C. A ratio of D20 density at 

240°C to its density at 20°C of 0.8118 is used by Savannah River Labora­

tory, according to B. C. Rusche, Savannah River Laboratory, Aiken, South 

Carolina. (Private communication, letter concerning properties of heavy 

water. May 14, 1963) To find densities at other temperatures interpola­

tion or extrapolation is used. 

The density of light-heavy water mixtures is obtained by interpola­

tion. The densities of light water are taken from Keenan and Keyes (26). 

In obtaining the actual number density of the water mixtures, the 

(80) 

where 

N^ is the number density of the element, number/cm3 

p is the physical density of the material, gm/cm3 
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first step is to obtain the overall molecular density of oxygen number 

density. Not only are both atom densities of hydrogen and deuterium 

obtained from this number, but also number densities of H20 and D20. 

These number densities are determined for temperatures of 68°C, 168°C, 

and 340°C. As an example the number densities at 68°C are presented in 

Table 9. 

Table 9. Number densities of light-heavy water mixture3 at 68°C 

XD2O Nd NH %0 ND2O %2o 

0.94 0.06036 0.003853 0.03211 0.03018 0.001927 

0.95 0.06099 0.003210 0.03210 0.03050 0.001605 

0.96 0.06120 0.002568 0.03209 0.03060 0.001289 

0.97 0.06225 0.001925 0.03209 0.03112 0.000967 

0.98 0.06288 0.001283 0.03208 0.03144 0.000641 

0.99 0.06350 0.000641 0.03207 0.03175 0.000321 

1.00 0.06413 0.000000 0.03207 0.03207 0.000000 

The number densities with the fuel elements are taken at room temper­

ature. For although the density changes, so does the dimensions, and the 

number of atoms remains the same. Within the fuel itself, only the 

number densities of the two uranium isotopes and oxygen need be de­

termined. The number densities of plutonium and fission products are 

determined from the techniques in Chapter V. The initial number densi­

ties of non-water elements are based on the values of Davis and Hauser 
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(14) and are given in Table iv. 

Table 10. Initial number densities of non-water elements at 28°C 

Element Number density 

Zirconium 0.0423 x 1024/cm3 

Oxygen 0.0444 x 1024/cm3 

Uranium-238 0.0221 x 1024/cm5 

„ Uranium-235 1.595 x 1020/cm3 

B. Cross Sections 

The thermal neutron flux is assumed to have a Maxwellian distribu­

tion of energies. For a Maxwellian energy distribution the average 

microscopic absorption cross section for those elements that follow the 

"1/v" law is given in Equation 81 (20). 

era (T2) = Oa(Ti) J1Ï (81) 

where 

°a CT2) is the average cross section at temperature Tg 

°a (^l) is the cross section of neutrons with energy kTj. 

The 2200 m/sec cross section are used as the reference cross sections. 

These cross sections come from either Davis and Hauser (14), Friedlander 

and Kennedy (18), or Benedict and Pigford (5), or Hughes and Schwartz (23). 

For those elements that do not follow the "1/v" law, a non-"l/v" 

correction must be applied. For Uranium 235 Benedict and Pigford (5) 

give a value of 0.981. This factor is applied to both absorption and 
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For the plutonium isotopes Pu-239, Pu-240, and Pu-241 which do not 

follow the "1/v" law, the absorption and fission cross section are de­

termined by averaging the Maxwellian energy distribution for temperature 

of 1200°K and 1300°K over the values of cross section obtained from 

Hughes (23). 

The absorption cross sections for fission products are a function 

of flux time and the fissionable isotope from which the fission products 

come. These cross sections as a function have been experimentally deter­

mined by Hurst, Kennedy, and Walker (24). The cross section for fission 

products of U-235 and Pu-241 contain within them the contributions of 

isotopes U-236 and Pu-242 respectively. 

At thermal energies the scattering cross section is assumed to be 

independent of energy. The transport cross section is the sum of the 

absorption and scattering cross sections. 

The microscopic cross sections that are calculated are presented in 

Table 11. 
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Element Temperature °a as at &f 

H2O 68°C 0.528 103 103.5 H2O 
168°C 0.48 103 103.5 
240°C 0.448 103 103.4 
340°C 0.408 103 103.4 

D2O 68°C 0.0008 13.6 13.6 D2O 
168°C 0.0007 13.6 13.6 
240eC 0.0007 13.6 13.6 
340°C 0.0006 13.6 13.6 

Zr 240°C 0.12 8 8.12 
340°C 0.11 8 8.11 

Xe 135 1200°K 1.2x106 1.2x106 
1300°K 1.1x106 1.1x106 

Sm 149 1200°K 2.36x104 2.36x104 
1300°K 2.28x104 2.28x104 

0 1200eK 0.00001 4.2 . 4.2 
1300°K 0.00001 4.2 4.2 

U-238 1200°K 1.205 8.3 9.5 
1300°K 1.157 8.3 9.4 

U-235 1200°K 295 8.3 30 3 252 
1300°K 276 8.3 283 238 

Pu-239 1200°K 1371 10 1381 879 

Pu-240 1200°K 445 10 455 

Pu-241 1200°K 1170 10 1180 849 
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The AIM-6 code (15) is a multigroup, one dimensional diffusion code 

written by Atomics International in FORTRAN for an IBM 704 or 709 type 

machine with a core memory of 32,000. The Atomics International version 

of this program can handle problems with 101 space points, 18 neutron 

energy groups, downscattering to lower groups from 17 groups, 20 

regions of different materials with up to 10 elements or isotopes per 

region. 

Since this program is written in FORTRAN (25) it can be easily 

adapted to other machines using the FORTRAN programing system. At Iowa 

State University there is an IBM-7074 computing machine and it was 

decided to convert the AIM-6 code to use on this machine. The IBM-7074 

differs from the IBM-704 or 709 in several ways. When using the AIM-6 

code there are two main differences. First the IBM-7074 has only 20,000 

storage locations within its memory. Second the IBM-7074 is not capable 

of performing an operation called "chain". These two differences make 

the AIM-6 code not so easily converted to use on the IBM-7074. 

The first difference caused the most changes to be made in the 

AIM-6 code. The most significant change made in the AIM-6 was reducing 

the number of energy groups from 18 to six. Then to get all the program 

into the 20,000 memory locations of the IBM-7074, all of the variables 

had to be re-assigned to new locations. 

The "chain" operation is used for large programs. The program is 

written in a number of smaller sections. Each section is called a 

chain. When the program is run it is placed on tape. The chains are read 
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operated. When the part is finished the next chain is called from tape 

into memory replacing the previous section. This procedure is repeated 

until the end of the last chain. When the last chain is completed, the 

tape is rewound, and the first chain is read from the tape into memory 

to start the second problem. 

The Atomic International version of AIM-6 is divided into a two 

section chain. To adapt AIM-6 for the IBM-7074, the AI version was 

divided into two separate programs. The first one and its data are read 

into memory. When the operations of this program are completed, the 

variables that have been calculated are read from the memory to an 

auxiliary tape. The second program is read into the memory. The first 

operation of the second program is to read the variables from the 

auxiliary tape back into memory. 

Although this procedure does allow the AIM-6 to be used on the ISU 

computer, only one problem at a time can be run. Both programs must be 

reloaded for each problem. 

The input data for this code is described in the AIM-6 program 

description (15). Because of the modifications made on this code, there 

are four changes in the required input data. 

First, the six group microscopic cross sections for 19 different 

elements must be included. This data is prepared as a package which is 

loaded immediately after the program and just before the data described 

in the program description (15). In the cross section library there is 

one card for each energy group of each element. Each card contains 

eight cross sections. They are the absorption cross section, the fission 
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sections for scattering from a higher energy group. 

Although all elements or groups may not be used'; nevertheless, 114 

cards must be included in the library. 

The second change required in the input data is the atomic weights 

of the elements in the cross section library. The atomic weights are 

listed with the "floating point data." These weights are placed in 

locations 1997 through 2015 of the "floating point data." (See the 

program description (15) for details of "floating point data"). 

The third change required in the input data is the fission spectrum. 

This spectrum is provided by the fraction of neutrons bom in each 

energy group. These fractions must be included with the "floating point 

data," and are placed in locations 7124 through 7129 of the "floating 

point data." 

The fourth change in the input data is the lethargy of each energy 

group. The lethargies are included in the "floating point data," and 

are placed in locations 1216 through 1221. 

This modified version of the AIM-6 code is used for the determina­

tion of the flux distribution with the reactor model. The reactor is 

considered to be a cylinder. The fuel elements are homogenized into 

rings, which include uranium, oxygen, zirconium, xenon, and samarium. 

The moderator and coolant are also homogenized into rings, and consist 

of hydrogen, deuterium, and oxygen. Thus the model has 9 fuel rings and 

10 moderator rings. 

Four neutron energy groups are used. (The cross sections of 

groups 5 and 6 are made zero in the library.) The cross sections used 
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listed in Table 13. 

(The microscopic cross sections and number densities of xenon and 

samarium are adjusted so that the correct macroscopic cross section is 

obtained. This is necessary due to the limit of significant figures in 

the number densities. The, number densities are used as data in terms of 

numbers times 1024. Only 6 figures are carried, so the minimum number 

density is I0i8. Although xenon and samarium concentrations are less 

than 1018, they have very large cross sections. Therefore the real 

number densities of these isotopes are increased by some factor and the 

cross sections decreased by the same factor. In this way the correct 

macroscopic cross sections are obtained.) 

Table 12. Cross section library for AIM-6 code 

Element Group aa vaf at °trl atr2 atr3 

U-235 

U-238 

H 

1 
2 
3 
4 
5 
6 
1 
2 
3 
4 
5 
6 
1 
2 
3 
4 
5 
6 
1 

1.44 
2.90 

47.1 
295.2 

3.5238 
5.4923 
74.78 

623.7 

0.43565 
0.403300 
0.328 
1.205 

0.00040 
0.00040 
0.01236 
0.264 

6.539 
9.5244 
24.0 
303.5 

0.987392 
0.000331 

1.92 

5.68233 
1.92 
8.53 
9.5 

1.54 
2.6575 
6.348 

49.65 

1.305 

1.475 
2.085 

2.13103 
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Element Group va 4 °t °trl °tr2 °tr3 

Pu-239 
Pu-240 
Xe-135 

Sm-149 

P.P. 25 
P.P. 49 
Pu-241 
0 

Zr 

2 
3 
4 
5 
6 
1-6 
1-6 
1-3 
4 
5 
6 
1-3 
4 
5 
6 
1-6 
1-6 
1-6 
1 
2 
3 
4 
5 
6 
1-6 
1-6 
1-6 
1 
2 
3 
4 
5 

0.0004 

2.3204 0.3679 
2.27606 0.46562 
4.7 0.59465 

This element not used, place 6 blank cards 
This element not used, place 6 blank cards 

1 .2  

1.0 

1 . 2  

1.0 

This element not used, place 6 blank cards 
This element not used, place 6 blank cards 
This element not used, place 6 blank cards 
0.0247 2.5386 

3.618 0.2085 
3.798 

0.00001 4.2 
0.0955 

0.049 

13th element not specified, place 6 blank cards 
14th element not specified, place 6 blank cards 
15th element not specified, place 6 blank cards 

3.841 
7.8391 0.583 

0.0077 6.384 0.05 
0.12 8.12 0.02 

i - O  

1-6 
1-6 

17th element not specified, place 6 blank cards 
18th element not specified, place 6 blank cards 
19th element not specified, place 6 blank cards 
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Number Description Remarks 

+ 1 MTEST No changes to library 
0 DTEST Simple diffusion coefficient 

19 4 3 2 M,NOG,NDS,MA Regions, groups, downscattering, 
materials 

12 12 12 R1,R2,R3,... The material in each region 
12 12 12 
12 12 12 
12 12 1 RI 9 

3 1 Load Instr. Number densities of material 1 
3.0025678 Number density of element 3,H 
4.061205 Number density of element 4,0 
12.032094 Number density of element 12,0 

5 11 Load Instr. Number densities of material 2 
2.016113 No. density of element 2, U-238 

• 1.00011629 No. density of element 1, U-235 
7.0017029 No. density of element 7, Xe 
8.000523 No. density of element 8, Sm 
12.032517 No. density of element 12, 0 
11 16 Load Instr. Material 2 No. densities con't. 
16.011460 No. density of element 16, Zr 

1 CONG. SEAR Alphanumeric card 
CH ZERO BUR 
NUP UNIFORM 
XE-SM 

5 1 Load Instr. 
2 Geometry Cylinder 
1 Origin d /dr = 0 
1 Edge = 0 
1 Convergence Eigenvalue convergence 
1 Simple extrapolation 

5 6 Load Instr. 
2 Print eigenvalue and fluxes 
1 Print every point 
1 Source specified by region 
1 Constant buckling all regions 
1 Buckling group independent 
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Table 15. (Continued) 

Number Description Remarks 

11 Load Instr. 

2 
2 

Print input and cross sections 
Print date 

19 Number of regions 
89 Number of points 
4 Number of groups 

16 , Load Instr. 
3 Number of downscatterings 
11 Interface region I 
15 Interface region 2 
19 Interface region 3 
23 Interface region 4 

21 Load Instr. 
27 Interface region 5 
31 Interface region 6 
35 Interface region 7 
39 Interface region 8 
43 Interface region 9 

26 Load Instr. 
47 Interface region 10 
51 Interface region 11 
55 Interface region 12 
59 Interface region 13 
63 Interface region 14 

31 Load Instr. 
67 Interface region 15 
71 Interface region 16 
75 Interface region 17 
79 Interface region 18 
89 Interface region 19 

37 
1 
4 
1 

Load Instr. 
Flux normalized by point 
Normalized on group 4 
Normalized on point 1 

5 41 
4 

Load Instr 
Print 4 groups 
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Number Description Remarks 

1 Print group 1 
2 Print group 2 
3 Print group 3 
4 Print group 4 

3 61 Load Instr. 
1 Element number of fissile element 
0 Median energy option not used 
2 Element No. of fertile element 

2 70 Load Instr. 
2 Cone. Search on 2 elements 
0 Direction of Cone, change 

11 76 Load Instr. 
1 Concentration Search 

2 1 Load Instr. 
.0001 Convergence for flux 
.001 Convergence for criticality 

1 24 Load Instr. 
.000101106 Buckling 

5 44 Load Instr. 
.0 Initial source guess region 1 
.117 Initial source guess region 2 
.0 Initial source guess region 3 
.139 Initial source guess region 4 
.0 Initial source guess region 5 

5 49 Load Instr. 
.156 Initial source guess region 6 
.0 Initial source guess region 7 
.154 Initial source guess region 8 
.0 Initial source guess region 9 
.148 Initial source guess region 10 

5 54 Load Instr* Initial source guess region 11 
.0 Initial source guess region 11 
.117 Initial source guess region 12 
.0 Initial source guess region 13 
.095 Initial source guess region 14 
.0 Initial source guess region 15 
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Number Description Remarks 

4 49 Load Instr. 
.05 Initial source guess region 16 
e0 Initial source guess region 17 
.026 Initial source guess region 18 
.0 Initial source guess region 19 

5 164 Load Instr. 
5.0 Increment width region 1 
.675 Increment width region 2 
5.65 Increment width region 3 
.682 Increment width region 4 
5.65 Increment width region 5 

5 169 Load Instr. 
.690 Increment width region 6 
5.65 Increment width region 7 
.689 Increment width region 8 
5.65 Increment width region 9 
.694 Increment width region 10 

5 174 Load Instr. 
5.65 Increment width region 11 
.691 Increment width region 12 
5.65 Increment width region 13 
.692 Increment width region 14 
5.65 Increment width region 15 

4 179 Load Instr. 
.692 Increment width region 16 
5.65 Increment width region 17 
.761 Increment width region 18 
3.048 Increment width region 19 

4 1216 Load Instr. 
2.50 Group 1 lethargy 
7.50 Group 2 lethargy 
16.6 Group 3 lethargy 
20.0 Group 4 lethargy 

4 1997 Load Instr. 
235.1175 Atomic weight element No. 1 
238.12522 Atomic weight element No. 2 
1.008145 Atomic weight element No. 3 
2.01474 Atomic weight element No. 4 
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Table 13. (Continued) 

Number Description Remarks 

4 2001 Load Instr. 
239.0 Atomic weight element No. 5 
240.0 Atomic weight element No. 6 
135.0 Atomic weight element No. 7 
149.00 Atomic weight element No. 8 

4 2005 Load Instr. 
116.5 Atomic weight element No. 9 
118.0 Atomic weight element No. 10 
241.0 Atomic weight element No. 11 
16.0 , Atomic weight element No. 12 

Load Instr. 
Atomic weight element No. 13 
Atomic weight element No. 14 
Atomic weigh!, element No. 15 
Atomic weight element No. 16 

4 2009 
26.99021 
55.85 
39.1 
91.22 

3 2013 
92.9353 
88.92 
52.01 

Load Instr. 
Atomic weight 
Atomic weight 
Atomic weight 

element No. 17 
element No. 18 
element No. 19 

7124 
.7524 
.2454 
.000 
.000 

Load Instr. 

11 
.990 

8197 Load Instr. 

1 JULY 1963 S 
AMPLE PROBLEM 
FOR AIM-6 CO 
NCENTRATION S 
ARCH 

Alphanumeric 
Card 

Fission neutron fraction group 1 
Fission neutron fraction group 2 
Fission neutron fraction group 3 
Fission neutron fraction group 4 

Cone, adjustment factor 

This card is for the second 
program. This is the only 
data card for the second 
program. 
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