Advanced Membrane Technologies Stanford University, May 07, 2008

Water-Energy-Carbon Nexus and Your Membrane Plant

Alan Zelenka
Energy Services Leader
Kennedy/Jenks Consultants

The Water-Energy-Carbon Nexus

- Energy is needed to produce potable water
- Energy production creates carbon emissions
- Saving or creating water reduces energy consumption, lowers carbon emissions, and saves money!

Road Map

- ▶ Why to do a Climate Action Plan (CAP)
- Greenhouse Gas (GHG) Regulatory Structure
- How to do a CAP
- Case Study: Carlsbad Desalination Plant
- Describe some Benefits and Risks

Why do a Climate Action Plan?

- Regulatory
 - AB 32
 - RPS
 - Siting criterion
 - Permit Requirement?
- Political
 - Commissioner or Board action
 - Internal Sustainability or Green initiative
 - Consumer/ratepayer pressures
- High Energy and Operations Costs

Recent Events in California

- Attorney General Jerry Brown lawsuits against Conoco Philips & San Bernardino County – for failure to include a CAP in their environmental analysis
- Carlsbad Desal Plant SLC & CCC permit conditions, bootstrapped their regulatory authority!
- ▶ Is it now the standard in California?

GHG Regulatory Timeline & Structure

- ▶ 1988 IPCC (Intergovernmental Panel on Climate Change) was established by the U.N.
- ▶ 1992 UNFCCC (U.N. Framework Convention on Climate Change) was created
- ▶ 1997 Kyoto Protocol negotiated
- ► 2001 World Business Council for Sustainable
 Development and the World Resources Institute
 created "Greenhouse Gas Protocol: A Corporate
 Accounting and Reporting Standard"

GHG Regulatory Timeline & Structure

- 2001 SB 1771 established California Climate Action Registry (CCAR)
- ▶ 2003 CCAR creates "General Reporting Protocol"
- ▶ 2006 AB 32 Global Warming Solutions Act
 - 2000 levels by 2010, 1990 levels by 2020, 80% below 1990 by 2050
 - Cap & Trade System (in-progress)
 - CARB is lead state agency for enforcement
 - CARB uses CCAR as a resource

What Must Be Done First?

- Establish the goal
 - Carbon neutral
 - Carbon reduction
- **▶** What is driving the plan?
 - Permit requirement
 - Local agreement
 - Creation of revenue

Climate Action Plan Steps

- Conduct a greenhouse gas (GHG) inventory
- Identify mitigation options
- Evaluate and analyze options
- Select best option
 - Implement and monitor plan

Conduct a GHG Inventory

- Use recognized reporting protocols & tools from:
- Determine your geographic & organizational boundaries for emissions
- Report CO₂ only or all GHGs?
- Establish your baseline year: 1990, current year, future first year of operations

- Calculate your direct emissions
- Calculate your indirect emissions from electricity consumption

Conduct a GHG Inventory

- Quantify Direct Emissions
 - Process, Stationary & Mobile Combustion, Imported & Fugitive
- Quantify Indirect Emissions
 - Purchased Electricity Emissions Factor from the local utility

Conduct a GHG Inventory

- Use recognized reporting protocols & tools from:
- Determine your geographic & organizational boundaries for emissions
- ► Report CO₂ only or all GHGs?
- Establish your baseline year: 1990, current year, future first year of operations

- Calculate your direct emissions
- Calculate your indirect emissions from electricity consumption
- Calculate any credits for avoided energy use and net carbon footprint
- Evaluate your risk
- Total your annual emissions of CO₂ and/or CO₂e

Identify & Analyze Options

- Improve the energy efficiency of the project
- Renewables: on-site or remote location
- Green power direct purchases or from your electric utility
- Carbon reduction projects or Offsets
- Renewable Energy Credits (RECs) or Green Tags

Select the Best Option

- Lower your energy use first!
- Assess political and regulatory influences on the selection of options
- Calculate the capital cost and life-cycle cost of each option
- Conduct a cost/benefit and "Triple **Bottom Line**" analysis to determine net benefits of project
- Evaluate Risks
- Conduct public and regulatory review as appropriate to secure approval of selected option

Implement the Plan

- Use reputable and experienced organizations with experience doing RECs and Offsets and Renewable Projects!
- ▶ It is not as easy as it looks!

Monitor the Plan

- Continuously monitor and control the plan
- Annually update your carbon footprint and renew the plan

Case Study: Carlsbad Desalination Plant

- ► Location: City of Carlsbad, CA
- ► 56 MGD (~\$300 Million Capital Cost)
- First major desal plant in California
- Water purchased by 7 local agencies

Case Study: Carlsbad Desalination Plant

- Displaces imported water from Northern California
- Co-located with electric power plant with existing intake from lagoon
- Volunteered to become Carbon Neutral
- Permitting Controversial (SLC & CCC)

Carbon Footprint: Two Key Metrics

- Energy Use by the Project (MWh)
 - Initial from engineering estimate
 - Actual from utility billing data
 - May change over time
- Emissions Factor for Electricity Used
 - Emissions Factor is the pounds of CO₂ per MWh of electricity used
 - Will change over time
 - Utility EF or default EF

Project Energy Use

- New Desalination Plant will use 31.3 aMW of power
- Poseidon will install a High Efficiency Energy Recovery Device Saving 10%
- Poseidon Will Use 28.1 aMW of SDG&E System Power
 - 246,156 MWh per year
 - aMW x 8760 hrs/yr = MWh
 - 1000 KWh = 1 MWh

SWP Facilities

Net Carbon Footprint Calculation

- The Carlsbad Project eliminates need for equal amount of SWP water
- ► As a result, Carlsbad will avoid pumping of water over the Tehachapi's, avoid the energy (21.8 aMW), and avoid the emissions
- After applying this credit, the net energy used to provide desalinated water to the San Diego region is 6.3 aMW
 - **■** 55,538 MWh per year

Net Carbon Footprint Calculation

- Carlsbad's Gross Carbon Footprint is 61,004 metric tons of C0₂
 - Using SDG&E Emissions Factor of 546 tons of C0₂ per MWh for delivered system power
- ►SWP has no CCAR Report, used the SDG&E emissions factor to calculate SWP's carbon footprint of 47,240 metric tons of CO₂
- ► The Carlsbad Desalination Plant's Net Carbon Footprint is 13,764 metric tons per year of CO₂

Net Carbon Footprint Calculation

	aMW	Metric Tons of CO ₂
Typical Plant	31.3	67,950
After ERD	28.1	61,004
SWP Credit	21.8	47,240
Net Footprint	6.3	13,764

If CARB's interim EF of 1,100 tons of C0₂ were used, all the numbers would double.

Comparing Utility Emissions Factors

CCAR Annual Emission Reports					
Utility	Report Year	Report Date	Emission Factor		
SDG&E	2005	7-Mar-07	546		
SDG&E	2004	16-Mar-06	614		
PG&E	2005	1-Dec-06	489		
PG&E	2004	12-Oct-06	566		
SCE	2005	30-Jan-06	666		
SCE	2004	6-Feb-06	679		

Carbon Mitigation Options

- Direct Emissions Reductions
 - Process Changes
 - Credits
 - Energy Efficiency
- ► Indirect Emissions Mitigation
 - Renewables
 - Renewable Energy Credits (RECs) or Green Tags
 - Carbon Offset Projects

Carlsbad's Climate Action Plan Elements

- Commitment is to reduce net carbon emissions to zero through implementing some or all of the following measures:
 - 1. Efficient Energy Recovery Devise
 - 2. Other Energy Efficiency
 - 3. LEED-type Process
 - 4. Possibly Rooftop Solar PV Project
 - 5. Wetlands Mitigation Project
 - 6. Carbon Offset Projects or RECs (local projects)
 - 7. Annually Update & Renew the Plan

Short-Term Benefits

- Regulatory Approval
- Environmental Compliance Strategy
 - Site selection (BARD)
- Lower Operating Costs (but increased capital costs)
- ► PV Project, Wetlands Mitigation, Energy Efficient Design, Local Offset Projects = Good PR!
- Responding to the political pressures & doing the right thing

Risks & Long-Term Considerations

- Which Emissions Factor?
 - Utility EF can go up (over time likely to go down)
- Offset and REC price escalation or rule changes
 - RECs 1 3 years
 - Offset 10 years plus
- Regulatory scheme could causes double counting problem
 - Who is responsible for the mitigation?
- Plant's energy use could increase
- Plant's direct emissions could increase

