Purification of water. Disinfection of water. Chlorination-principles and methods. Other methods for disinfection of water

Water purification is the process of removing undesirable chemicals, biological contaminants, suspended solids and gases from contaminated water. The goal is to produce water fit for a specific purpose. Most water is purified for human consumption (drinking water) but water purification may also be designed for a variety of other purposes, including meeting the requirements of medical, pharmacology, chemical and industrial applications. In general the methods used include physical processes such as filtration and sedimentation, biological processes such as <u>slow sand filters</u> or <u>activated sludge</u>, chemical processes such as **flocculation** and **chlorination** and the use of electromagnetic radiation such as ultraviolet light.

The purification process of water may reduce the concentration of particulate matter including suspended particles, parasites, bacteria, algae, viruses, fungi; and a range of dissolved and particulate material derived from the surfaces that water may have made contact with after falling as rain.

The standards for drinking water quality are typically set by governments or by international standards. These standards will typically set minimum and maximum concentrations of contaminants for the use that is to be made of the water.

It is not possible to tell whether water is of an appropriate quality by visual examination. Simple procedures such as boiling or the use of a household activated carbon filter are not sufficient for treating all the possible contaminants that may be present in water from an unknown source. Even natural spring water - considered safe for all practical purposes in the 19th century - must now be tested before determining what kind of treatment, if any, is needed. Chemical analysis, while expensive, is the only way to obtain the information necessary for deciding on the appropriate method of purification.

According to a 2007 World Health Organization report, 1.1 billion people lack access to an improved drinking water supply, 88% of the 4 billion annual cases of diarrheal disease are attributed to unsafe water and inadequate sanitation and hygiene, and 1.8 million people die from diarrheal diseases each year. The WHO estimates that 94% of these diarrheal cases are preventable through modifications to the environment, including access to safe water. Simple techniques for treating water at home, such as chlorination, filters, and solar disinfection, and storing it in safe containers could save a huge number of lives each year. [2] Reducing deaths from waterborne diseases is a major public health goal in developing countries.

Control room and schematics of the water purification plant to <u>Lac de Bret</u>, Switzerland.

Sources of water

Groundwater:

The water emerging from some deep ground water may have fallen as rain many tens, hundreds, or thousands of years ago. **Soil** and rock layers naturally filter the ground water to a high degree of clarity and often it does not require additional treatment other than adding chlorine as a preservative. Such water may emerge as springs, artesian springs, or may be extracted from boreholes or wells. Deep ground water is generally of very high bacteriological quality (i.e., pathogenic bacteria or the pathogenic protozoa are typically absent), but the water may be rich in dissolved solids, especially <u>carbonates</u> and <u>sulfates</u> of calcium and magnesium.

Groundwater:

Depending on the **strata** through which the water has flowed, other ions may also be present including **chloride**, and **bicarbonate**. There may be a requirement to reduce the <u>iron</u> or <u>manganese</u> content of this water to make it pleasant for drinking, cooking, and laundry use. Disinfection may also be required. Where groundwater recharge is practised (a process in which river water is injected into an aquifer to store the water in times of plenty so that it is available in times of drought), the groundwater is equivalent to lowland surface waters for treatment purposes.

Upland lakes and reservoirs:

Typically located in the headwaters of river systems, upland reservoirs are usually sited above any human habitation and may be surrounded by a protective zone to restrict the opportunities for contamination. Bacteria and pathogen levels are usually low, but some bacteria, protozoa or algae will be present. Where uplands are forested or peaty, **humic acids** can colour the water. Many upland sources have low pH which require adjustment.

Rivers, canals and low land reservoirs:

Low land surface waters will have a significant bacterial load and may also contain algae, suspended solids and a variety of dissolved constituents.

Atmospheric water generation

is a new technology that can provide high quality drinking water by extracting water from the air by cooling the air and thus condensing water vapor.

Rainwater harvesting or fog collection

which collects water from the atmosphere can be used especially in areas with significant dry seasons and in areas which experience fog even when there is little rain.

Treatment

Treatment

The processes below are the ones commonly used in water purification plants. Some or most may not be used depending on the scale of the plant and quality of the water.

Pumping and containment – The majority of water must be pumped from its source or directed into pipes or holding tanks. To avoid adding contaminants to the water, this physical infrastructure must be made from appropriate materials and constructed so that accidental contamination does not occur.

Screening (see also <u>screen filter</u>) – The first step in purifying surface water is to remove large debris such as sticks, leaves, rubbish and other large particles which may interfere with subsequent purification steps. Most deep **groundwater** does not need screening before other purification steps.

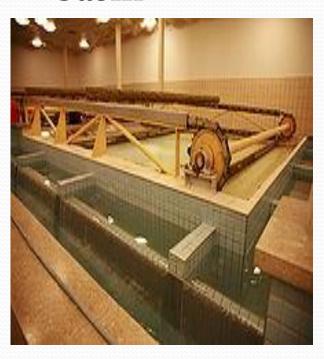
Storage – Water from rivers may also be stored in bankside reservoirs for periods between a few days and many months to allow natural biological purification to take place. This is especially important if treatment is by <u>slow</u> sand filters. Storage reservoirs also provide a buffer against short periods of drought or to allow water supply to be maintained during transitory pollution incidents in the source river.

Pre-conditioning – Water rich in hardness salts is treated with soda-ash (sodium carbonate) to precipitate calcium carbonate out utilizing the common-ion effect.

Pre-chlorination – In many plants the incoming water was chlorinated to minimize the growth of fouling organisms on the pipe-work and tanks. Because of the potential adverse quality effects (see chlorine below), this has largely been discontinued.

Widely varied techniques are available to remove the fine solids, micro-organisms and some dissolved inorganic and organic materials. The choice of method will depend on the quality of the water being treated, the cost of the treatment process and the quality standards expected of the processed water.

Distilled water has a pH of 7 (neither alkaline nor acidic) and sea water has an average pH of 8.3 (slightly alkaline). If the water is acidic (lower than 7), <u>lime</u>, <u>soda ash</u>, or <u>sodium hydroxide</u> is added to raise the pH. For somewhat acidic waters (lower than 6.5), forced draft degasifiers are the cheapest way to raise the pH, as the process raises the pH by stripping dissolved carbon dioxide (carbonic acid) from the water.


Lime is commonly used for pH adjustment for municipal water, or at the start of a treatment plant for process water, as it is cheap, but it also increases the ionic load by raising the water hardness. Making the water slightly alkaline ensures that coagulation and flocculation processes work effectively and also helps to minimize the risk of **lead** being dissolved from lead pipes and lead solder in pipe fittings. Acid (HCl or H₂SO₄) may be added to alkaline waters in some circumstances to lower the pH.

Having alkaline water does not necessarily mean that lead or copper from the plumbing system will not be dissolved into the water but as a generality, water with a pH above 7 is much less likely to dissolve heavy metals than water with a pH below 7.

floc floating at the surface of a basin

Mechanical system to push floc out of the water basin

Flocculation is a process which clarifies the water. Clarifying means removing any turbidity or colour so that the water is clear and colourless. Clarification is done by causing a precipitate to form in the water which can be removed using simple physical methods. Initially the precipitate forms as very small particles but as the water is gently stirred, these particles stick together to form bigger particles.

Many of the small particles that were originally present in the raw water adsorb onto the surface of these small precipitate particles and so get incorporated into the larger particles that coagulation produces. In this way the coagulated precipitate takes most of the suspended matter out of the water and is then filtered off, generally by passing the mixture through a coarse sand filter or sometimes through a mixture of sand and granulated anthracite (high carbon and low volatiles coal). Coagulants / flocculating agents that may be used include:

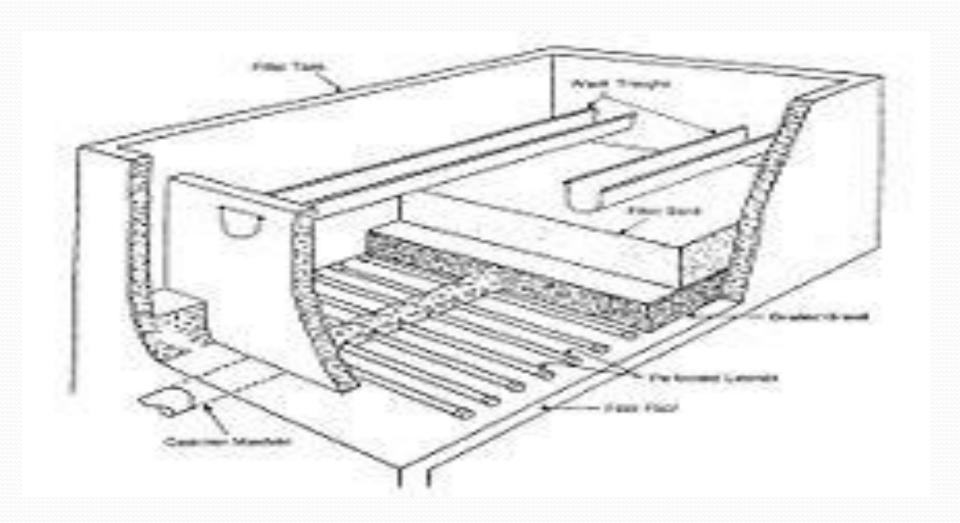
- Iron(III) hydroxide. This is formed by adding a solution of an iron (III) compound such as iron(III) chloride to pre-treated water with a pH of 7 or greater. Iron (III) hydroxide is extremely insoluble and forms even at a pH as low as 7. Commercial formulations of iron salts were traditionally marketed in the UK under the name Cuprus.
- Aluminium hydroxide is also widely used as the flocculating precipitate although there have been concerns about possible health impacts and mishandling led to a <u>severe poisoning incident</u> in 1988 at <u>Camelford</u> in south-west UK when the coagulant was introduced directly into the holding reservoir of final treated water.

PolyDADMAC is an artificially produced polymer and is one of a class of synthetic polymers that are now widely used. These polymers have a high molecular weight and form very stable and readily removed flocs, but tend to be more expensive in use compared to inorganic materials. The materials can also be biodegradable.

Sedimentation

Waters exiting the flocculation basin may enter the sedimentation basin, also called a clarifier or settling basin. It is a large tank with slow flow, allowing floc to settle to the bottom. The sedimentation basin is best located close to the flocculation basin so the transit between does not permit settlement or floc break up. Sedimentation basins may be rectangular, where water flows from end to end, or circular where flow is from the centre outward. Sedimentation basin outflow is typically over a weir so only a thin top layer—that furthest from the sediment—exits.

Sedimentation


The amount of floc that settles out of the water is dependent on basin retention time and on basin depth. The retention time of the water must therefore be balanced against the cost of a larger basin. The minimum clarifier retention time is normally 4 hours. A deep basin will allow more floc to settle out than a shallow basin. This is because large particles settle faster than smaller ones, so large particles collide with and integrate smaller particles as they settle. In effect, large particles sweep vertically through the basin and clean out smaller particles on their way to the bottom.

Sedimentation

As particles settle to the bottom of the basin, a layer of sludge is formed on the floor of the tank. This layer of sludge must be removed and treated. The amount of sludge that is generated is significant, often 3 to 5 percent of the total volume of water that is treated. The cost of treating and disposing of the sludge can be a significant part of the operating cost of a water treatment plant. The tank may be equipped with mechanical cleaning devices that continually clean the bottom of the tank or the tank can be taken out of service when the bottom needs to be cleaned.

Filtration

After separating most floc, the water is filtered as the final step to remove remaining suspended particles and unsettled floc.

The most common type of filter is a <u>rapid sand filter</u>. Water moves vertically through sand which often has a layer of activated carbon or anthracite coal above the sand. The top layer removes organic compounds, which contribute to taste and odour. The space between sand particles is larger than the smallest suspended particles, so simple filtration is not enough. Most particles pass through surface layers but are trapped in pore spaces or adhere to sand particles. Effective filtration extends into the depth of the filter. This property of the filter is key to its operation: if the top layer of sand were to block all the particles, the filter would quickly clog.

To clean the filter, water is passed quickly upward through the filter, opposite the normal direction (called backflushing or backwashing) to remove embedded particles. Prior to this, compressed air may be blown up through the bottom of the filter to break up the compacted filter media to aid the backwashing process; this is known as air scouring. This contaminated water can be disposed of, along with the sludge from the sedimentation basin, or it can be recycled by mixing with the raw water entering the plant although this is often considered poor practice since it re-introduces an elevated concentration of bacteria into the raw water

Some water treatment plants employ pressure filters. These work on the same principle as rapid gravity filters, differing in that the filter medium is enclosed in a steel vessel and the water is forced through it under pressure.

Advantages:

- Filters out much smaller particles than paper and sand filters can.
- Filters out virtually all particles larger than their specified pore sizes.
- They are quite thin and so liquids flow through them fairly rapidly.
- They are reasonably strong and so can withstand pressure differences across them of typically 2-5 atmospheres.
- They can be cleaned (back flushed) and reused.

Membrane filtration

Membrane filters are widely used for filtering both drinking water and **sewage**. For drinking water, membrane filters can remove virtually all particles larger than 0.2 um—including giardia and <u>cryptosporidium</u>. Membrane filters are an effective form of tertiary treatment when it is desired to reuse the water for industry, for limited domestic purposes, or before discharging the water into a river that is used by towns further downstream. They are widely used in industry, particularly for beverage preparation (including bottled water). However no filtration can remove substances that are actually dissolved in the water such as phosphorus, nitrates and heavy metal ions.

Slow "artificial" filtration (a variation of bank filtration) to the ground, Water purification plant Káraný, Czech Republic

Slow sand filters may be used where there is sufficient land and space as the water must be passed very slowly through the filters. These filters rely on biological treatment processes for their action rather than physical filtration. The filters are carefully constructed using graded layers of sand with the coarsest sand, along with some gravel, at the bottom and finest sand at the top. Drains at the base convey treated water away for disinfection. Filtration depends on the development of a thin biological layer, called the zoogleal layer or **Schmutzdecke**, on the surface of the filter.

An effective slow sand filter may remain in service for many weeks or even months if the pre-treatment is well designed and produces water with a very low available nutrient level which physical methods of treatment rarely achieve. Very low nutrient levels allow water to be safely sent through distribution system with very low disinfectant levels thereby reducing consumer irritation over offensive levels of chlorine and chlorine by-products. Slow sand filters are not backwashed; they are maintained by having the top layer of sand scraped off when flow is eventually obstructed by biological growth.

A specific 'large-scale' form of slow sand filter is the process of bank filtration, in which natural sediments in a riverbank are used to provide a first stage of contaminant filtration. While typically not clean enough to be used directly for drinking water, the water gained from the associated extraction wells is much less problematic than river water taken directly from the major streams where bank filtration is often used.

Removal of ions and other dissolved substances

Ultrafiltration membranes use polymer membranes with chemically formed microscopic pores that can be used to filter out dissolved substances avoiding the use of coagulants. The type of membrane media determines how much pressure is needed to drive the water through and what sizes of micro-organisms can be filtered out.

Removal of ions and other dissolved substances

lon exchange: Ion exchange systems use ion exchange resin- or zeolite-packed columns to replace unwanted ions. The most common case is water softening consisting of removal of Ca²⁺ and Mg²⁺ ions replacing them with benign (soap friendly) Na⁺ or K⁺ ions. Ion exchange resins are also used to remove toxic ions such as nitrate, nitrite, lead, mercury, arsenic and many others.

Removal of ions and other dissolved substances

Electrodeionization: Water is passed between a positive electrode and a negative electrode. Ion exchange membranes allow only positive ions to migrate from the treated water toward the negative electrode and only negative ions toward the positive electrode. High purity deionized water is produced with a little worse degree of purification in comparison with ion exchange treatment. Complete removal of ions from water is regarded as <u>electrodialysis</u>. The water is often pre-treated with a reverse osmosis unit to remove non-ionic organic contaminants.

Disinfection

Disinfection is accomplished both by filtering out harmful micro-organisms and also by adding disinfectant chemicals. Water is disinfected to kill any pathogens which pass through the filters and to provide a residual dose of disinfectant to kill or inactivate potentially harmful micro-organisms in the storage and distribution systems. Possible pathogens include viruses, bacteria, including Salmonella, Cholera, Campylobacter and Shigella, and protozoa, including Giardia lamblia and other cryptosporidia. Following the introduction of any chemical disinfecting agent, the water is usually held in temporary storage - often called a contact tank or clear well to allow the disinfecting action to complete.

Chlorine disinfection

The most common disinfection method involves some form of chlorine or its compounds such as chloramine or chlorine dioxide. Chlorine is a strong oxidant that rapidly kills many harmful micro-organisms. Because chlorine is a toxic gas, there is a danger of a release associated with its use. This problem is avoided by the use of sodium hypochlorite, which is a relatively inexpensive solution that releases free chlorine when dissolved in water. Chlorine solutions can be generated on site by electrolyzing common salt solutions.

Chlorine disinfection

A solid form, <u>calcium hypochlorite</u> exists that releases chlorine on contact with water. Handling the solid, however, requires greater routine human contact through opening bags and pouring than the use of gas cylinders or bleach which are more easily automated. The generation of liquid sodium hypochlorite is both inexpensive and safer than the use of gas or solid chlorine. All forms of chlorine are widely used despite their respective drawbacks. One drawback is that chlorine from any source reacts with natural organic compounds in the water to form potentially harmful chemical by-products trihalomethanes (THMs) and haloacetic acids (HAAs), both of which are carcinogenic in large quantities and regulated by the United States Environmental Protection Agency (EPA) and the **Drinking Water Inspectorate** in the UK.

Chlorine disinfection

The formation of THMs and haloacetic acids may be minimized by effective removal of as many organics from the water as possible prior to chlorine addition. Although chlorine is effective in killing bacteria, it has limited effectiveness against protozoa that form cysts in water (<u>Giardia lamblia</u> and <u>Cryptosporidium</u>, both of which are pathogenic).

Chlorine dioxide disinfection

Chlorine dioxide is a faster-acting disinfectant than elemental chlorine, however it is relatively rarely used, because in some circumstances it may create excessive amounts of chlorite, which is a by-product regulated to low allowable levels in the United States. Chlorine dioxide is supplied as an aqueous solution and added to water to avoid gas handling problems; chlorine dioxide gas accumulations may spontaneously detonate.

Chloramine disinfection

The use of chloramine is becoming more common as a disinfectant. Although chloramine is not as strong an oxidant, it does provide a longer-lasting residual than free chlorine and it won't form THMs or haloacetic acids. It is possible to convert chlorine to chloramine by adding ammonia to the water after addition of chlorine. The chlorine and ammonia react to form chloramine. Water distribution systems disinfected with chloramines may experience nitrification, as ammonia is a nutrient for bacterial growth, with nitrates being generated as a by-product.

Ozone disinfection

os is an unstable molecule which readily gives up one atom of oxygen providing a powerful oxidizing agent which is toxic to most waterborne organisms. It is a very strong, broad spectrum disinfectant that is widely used in Europe. It is an effective method to inactivate harmful protozoa that form cysts. It also works well against almost all other pathogens. Ozone is made by passing oxygen through ultraviolet light or a "cold" electrical discharge. To use ozone as a disinfectant, it must be created on-site and added to the water by bubble contact. Some of the advantages of ozone include the production of fewer dangerous by-products (in comparison to **chlorination**) and the lack of taste and odour produced by ozonisation.

Ozone disinfection

Although fewer by-products are formed by ozonation, it has been discovered that the use of ozone produces a small amount of the suspected carcinogen bromate, although little **bromine** should be present in treated water. Another of the main disadvantages of ozone is that it leaves no disinfectant residual in the water. Ozone has been used in drinking water plants since 1906 where the first industrial ozonation plant was built in Nice, France. The U.S. Food and Drug Administration has accepted ozone as being safe; and it is applied as an anti-microbiological agent for the treatment, storage, and processing of foods.

Ultraviolet disinfection

<u>Ultraviolet light</u> is very effective at inactivating cysts, in low turbidity water. UV light's disinfection effectiveness decreases as turbidity increases, a result of the absorption, scattering, and shadowing caused by the suspended solids. The main disadvantage to the use of UV radiation is that, like ozone treatment, it leaves no residual disinfectant in the water; therefore, it is sometimes necessary to add a residual disinfectant after the primary disinfection process. This is often done through the addition of chloramines, discussed above as a primary disinfectant. When used in this manner, chloramines provide an effective residual disinfectant with very few of the negative aspects of chlorination.

Hydrogen peroxide disinfection

Works in a similar way to ozone. Activators such as formic acid are often added to increase the efficacy of disinfection. It has the disadvantages that it is slow-working, phytotoxic in high dosage, and decreases the pH of the water it purifies.

Various portable methods of disinfection

Available for disinfection in emergencies or in remote locations. Disinfection is the primary goal, since aesthetic considerations such as taste, odor, appearance, and trace chemical contamination do not affect the short-term safety of drinking water.

Solar water disinfection

- One low-cost method of disinfecting water that can often be implemented with locally available materials is <u>solar disinfection</u> (SODIS). Unlike methods that rely on <u>firewood</u>, it has low impact on the environment.

Water fluoridation: in many areas fluoride is added to water with the goal of preventing tooth decay. Fluoride is usually added after the disinfection process. In the U.S., fluoridation is usually accomplished by the addition of hexafluorosilicic acid, which decomposes in water, yielding fluoride ions.

Water conditioning: This is a method of reducing the effects of <u>hard water</u>. Hardness salts are deposited in water systems subject to heating because the decomposition of bicarbonate ions creates carbonate ions that crystallise out of the saturated solution of calcium or magnesium carbonate. Water with high concentrations of hardness salts can be treated with soda ash (sodium carbonate) which precipitates out the excess salts, through the <u>common-ion effect</u>, producing calcium carbonate of very high purity. The precipitated calcium carbonate is traditionally sold to the manufacturers of toothpaste. Several other methods of industrial and residential water treatment are claimed (without general scientific acceptance) to include the use of magnetic or/and electrical fields reducing the effects of hard water.

Plumbosolvency reduction: In areas with naturally acidic waters of low conductivity (i.e. surface rainfall in upland mountains of igneous rocks), the water may be capable of dissolving **<u>lead</u>** from any lead pipes that it is carried in. The addition of small quantities of phosphate ion and increasing the pH slightly both assist in greatly reducing plumbo-solvency by creating insoluble lead salts on the inner surfaces of the pipes.

- Radium Removal: Some groundwater sources contain radium, a radioactive chemical element. Typical sources include many groundwater sources north of the <u>Illinois</u> <u>River</u> in <u>Illinois</u>. Radium can be removed by ion exchange, or by water conditioning. The back flush or sludge that is produced is, however, a low-level <u>radioactive waste</u>.
- Fluoride Removal: Although fluoride is added to water in many areas, some areas of the world have excessive levels of natural fluoride in the source water. Excessive levels can be toxic or cause undesirable cosmetic effects such as staining of teeth. Methods of reducing fluoride levels is through treatment with activated alumina and bone char filter media.

Boiling: Water is heated hot enough and long enough to inactivate or kill micro-organisms that normally live in water at room temperature. Near sea level, a vigorous rolling boil for at least one minute is sufficient. At high altitudes (greater than two kilometres or 5000 feet) three minutes is recommended. In areas where the water is "hard" (that is, containing significant dissolved calcium salts), boiling decomposes the bicarbonate ions, resulting in partial precipitation as calcium carbonate. This is the "fur" that builds up on kettle elements, etc., in hard water areas. With the exception of calcium, boiling does not remove solutes of higher boiling point than water and in fact increases their concentration (due to some water being lost as vapour). Boiling does not leave a residual disinfectant in the water. Therefore, water that has been boiled and then stored for any length of time may have acquired new pathogens.

Granular Activated Carbon filtering: a form of activated <u>carbon</u> with a high surface area, adsorbs many compounds including many toxic compounds. Water passing through activated carbon is commonly used in municipal regions with organic contamination, taste or odors. Many household water filters and fish tanks use activated carbon filters to further purify the water. Household filters for drinking water sometimes contain silver as metallic silver nanoparticle. If water is held in the carbon block for longer period, microorganisms can grow inside which results in fouling and contamination. Silver nanoparticles are excellent anti-bacterial material and they can decompose toxic halo-organic compounds such as pesticides into nontoxic organic products.

Distillation involves boiling the water to produce water vapour. The vapour contacts a cool surface where it condenses as a liquid. Because the solutes are not normally vaporised, they remain in the boiling solution. Even distillation does not completely purify water, because of contaminants with similar boiling points and droplets of unvapourised liquid carried with the steam. However, 99.9% pure water can be obtained by distillation.

- Reverse osmosis: Mechanical pressure is applied to an impure solution to force pure water through a semi-permeable membrane. Reverse osmosis is theoretically the most thorough method of large scale water purification available, although perfect semi-permeable membranes are difficult to create. Unless membranes are well-maintained, algae and other life forms can colonize the membranes.
- The use of iron in removing arsenic from water. See <u>Arsenic contamination of groundwater</u>.

Direct contact membrane distillation (DCMD). Applicable to desalination. Heated seawater is passed along the surface of a hydrophobic polymer membrane. Evaporated water passes from the hot side through pores in the membrane into a stream of cold pure water on the other side. The difference in vapour pressure between the hot and cold side helps to push water molecules through.

Gas hydrate crystals centrifuge method. If carbon dioxide gas is mixed with contaminated water at high pressure and low temperature, gas hydrate crystals will contain only clean water. This is because the water molecules bind to the gas molecules at molecular level. The contaminated water is in liquid form. A centrifuge may be used to separate the crystals and the concentrated contaminated water.

In Situ Chemical Oxidation, a form of advanced oxidation processes and advanced oxidation technology, is an environmental remediation technique used for soil and/or groundwater remediation to reduce the concentrations of targeted environmental contaminants to acceptable levels. ISCO is accomplished by injecting or otherwise introducing strong chemical oxidizers directly into the contaminated medium (soil or groundwater) to destroy chemical contaminants in place. It can be used to remediate a variety of organic compounds, including some that are resistant to natural degradation

In case of emergency water can be treated with widely available swimming pool chemicals. Suspended solids can be removed with a flocculant in a large container such as a new plastic garbage can and it can be filtered with a swimming pool filter or (preferably) filtering sand for pool filters (needs to be about 18 inches or .5 meters of depth). It can then be sterilized and preserved with swimming pool chlorination chemicals or with household bleach. Chlorine levels can be tested with an inexpensive swimming pool test kit, which does not require laboratory skills.

Chlorine levels above 10 parts per million will provide effective sterilization and exposure to sunlight can be used to reduce chlorine level to 1 ppm while also providing additional sterilization. The laboratory method for diluting strong solutions is to make successive 10:1, or similar dilutions, and accuracy is not essential because you will confirm the treated water with testing. The goal is to predict and approximate strength of final treatment. (Household bleach is 6% sodium hypochlorite (NaOCl), which is 38.6% chlorine, making bleach 2.3% chlorine. Stored water should have chlorine levels above 1 ppm, and unless tightly sealed, it should be kept away from sunlight to keep the chlorine from being driven off.

Safety and controversies

- Drinking water pollution detector Rainbow trout (Oncorhynchus mykiss) are being used in water purification plants to detect acute water pollution
- The examples and perspective in this article deal primarily with the United States and do not represent a <u>worldwide</u> <u>view</u> of the subject. Please <u>improve this article</u> and discuss the issue on the <u>talk page</u>. (April 2011)
- In April, 2007, the water supply of <u>Spencer, Massachusetts</u> became contaminated with excess <u>sodium hydroxide</u> (lye) when its treatment equipment malfunctioned.

Distillation removes all minerals from water, and the membrane methods of reverse osmosis and nanofiltration remove most to all minerals. This results in demineralized water which is not considered ideal drinking water. The World Health Organization has investigated the health effects of demineralized water since 1980. [15] Experiments in humans found that demineralized water increased diuresis and the elimination of <u>electrolytes</u>, with decreased <u>blood</u> serum potassium concentration

Magnesium, **calcium**, and other minerals in water can help to protect against nutritional deficiency. Demineralized water may also increase the risk from toxic metals because it more readily leaches materials from piping like lead and cadmium, which is prevented by dissolved minerals such as calcium and magnesium. Low-mineral water has been implicated in specific cases of lead poisoning in infants, when lead from pipes leached at especially high rates into the water.

Recommendations for magnesium have been put at a minimum of 10 mg/L with 20-30 mg/L optimum; for calcium a 20 mg/L minimum and a 40-80 mg/L optimum, and a total water hardness (adding magnesium and calcium) of 2 to 4 mmol/L. At water hardness above 5 mmol/L, higher incidence of gallstones, kidney stones, urinary stones, arthrosis, and arthropathies have been observed. Additionally, desalination processes can increase the risk of bacterial contamination.

Manufacturers of home water distillers claim the opposite—that minerals in water are the cause of many diseases, and that most beneficial minerals come from food, not water. They quote the American Medical Association as saying "The body's need for minerals is largely met through foods, not drinking water." The WHO report agrees that "drinking water, with some rare exceptions, is not the major source of essential elements for humans" and is "not the major source of our calcium and magnesium intake", yet states that demineralized water is harmful anyway".

Additional evidence comes from animal experiments and clinical observations in several countries. Animals given zinc or magnesium dosed in their drinking water had a significantly higher concentration of these elements in the serum than animals given the same elements in much higher amounts with food and provided with low-mineral water

Thank you