Table of Contents

ntroduction	2
Safety Switches	4
Symbols	7
Need for Circuit Protection	9
-uses	17
-use Ratings and Classifications	21
Enclosures	24
Switch Design	29
Safety Switch Ratings	35
Switch Circuit Types and Terminology	38
VBII General Duty Safety Switches	42
VBII Heavy Duty Safety Switches	44
Catalog Numbers	52
Selecting Safety Switches	55
Review Answers	65
Final Exam	66
quickSTEP Online Courses	72

Introduction

Welcome to another course in the STEP (**S**iemens **T**echnical **E**ducation **P**rogram) series, designed to prepare our distributors to sell Siemens Energy & Automation products more effectively. This course covers **Safety Switches** and related products.

Upon completion of **Basics of Safety Switches** you should be able to:

- Explain the need for circuit protection
- Identify fuse types and classes
- Explain the basic construction and operation of a Siemens safety switch
- Explain the operation and benefits of Siemens VBII Safety Switches and visible blade designs
- Identify various types of Siemens safety switches
- Explain the difference between fusible and non-fusible safety switches
- Identify circuit protection ratings for various types of Siemens safety switches
- Identify safety switch accessories

This knowledge will help you better understand customer applications. In addition, you will be better able to describe products to customers and determine important differences between products. You should complete **Basics of Electricity** before attempting **Basics of Safety Switches**. An understanding of many of the concepts covered in **Basics of Electricity** is required for **Basics of Safety Switches**.

If you are an employee of a Siemens Energy & Automation authorized distributor, fill out the final exam tear-out card and mail in the card. We will mail you a certificate of completion if you score a passing grade. Good luck with your efforts.

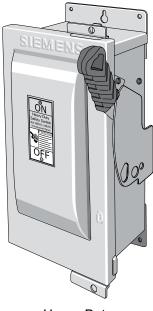
Siemens is a trademark of Siemens AG. Product names mentioned may be trademarks or registered trademarks of their respective companies. Specifications subject to change without notice.

National Electrical Code [®] and NEC [®] are registered trademarks of the National Fire Protection Association, Quincy, MA 02269.

Portions of the National Electrical Code are reprinted with permission from NFPA 70 °-2008, National Electrical Code ° Copyright © 2008. National Fire Protection Association, Quincy MA 02169. This reprinted material is not the complete and official position of the National Fire Protection Association on the referenced subject which is represented by the standard in its entirety.

National Electrical Manufacturers Association is located at 2101 L. Street, N.W., Washington, D.C. 20037. The abbreviation "NEMA" is understood to mean National Electrical Manufacturers Association.

Underwriters Laboratories Inc. and UL are registered trademarks of Underwriters Laboratories Inc., Northbrook, IL 60062.


Other trademarks are the property of their respective owners.

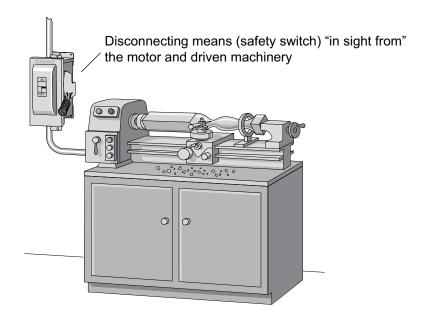
Safety Switches

A **safety switch** is a common type of enclosed switch. Safety switches are generally used for two purposes:

- 1) As a disconnecting means for a service entrance
- 2) As a disconnecting means and fault protection for motors

The enclosure provides a degree of protection to personnel against incidental contact with live electrical equipment. It also provides protection for the enclosed equipment against specific environmental conditions. Safety switches may consist of a switch only or may consist of a switch and fuses. There are two families of Siemens safety switches: **general duty** and **heavy duty**.

Heavy Duty



General Duty

Application

Safety switches can be used in any number of applications. The *National Electrical Code* (*NEC*), for example, requires that a disconnecting means shall be located in sight from the motor location and the driven machinery location (Article 430.102(B)).

The NEC® defines "in sight" as visible and not more than 50 feet (15.24 m) distant (Article 100 - definitions). Regardless of where the safety switch is used, the function is to provide a means to connect and disconnect the load from its source of electrical power.

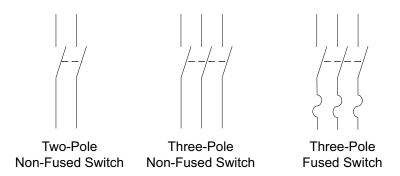
With power removed, the operator can safely service the machinery without coming into contact with live electrical components or having the motor accidently start.

Additional Information

This book offers an introduction to Safety Switches, but more information is available from your local Siemens sales representative.

Among the booklets available are the Safety Switch Application and Selection Guide, the Safety Switch Cross-Reference Guide, and the Safety Switch Replacement Parts Guide.

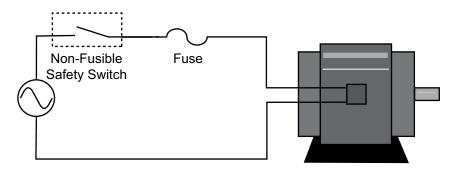
Web Site


Information is also available on the Siemens Energy & Automation web site: **http://www2.sea.siemens.com**.

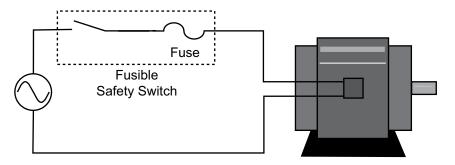
Symbols

Switch Symbols

Symbols are used in a diagram to represent components. The symbols commonly used for a disconnect switch are shown below. The switch is normally shown in its "off" or "open" state.

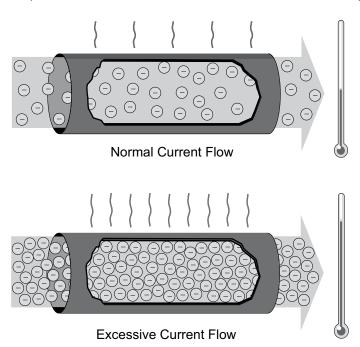

Fuse Symbols

Fuses are represented in an electrical circuit by either of the following symbols:


Non-Fusible Safety Switch

A safety switch with no associated fuses is referred to as a **non-fusible safety switch**. A non-fusible safety switch has no circuit protection capability. It simply provides a convenient means to open and close a circuit. Opening the circuit disconnects the load from its source of electrical power, and closing the circuit connects the load. Circuit protection must be provided by external overcurrent devices such as a circuit breaker or fuses. In the following illustration, power is supplied to a motor through a non-fusible safety switch and a separate fuse.

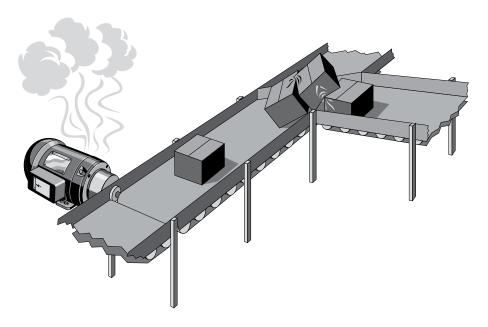
Fusible Safety Switch


A safety switch can be combined with fuses in a single enclosure. This is referred to as a **fusible safety switch**. The switch provides a convenient means to manually open and close the circuit, and the fuse provides overcurrent protection.

Need for Circuit Protection

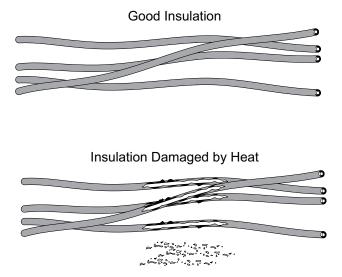
Current and Temperature

Current flow in a conductor always generates heat. The greater the current flow in a given size conductor, the hotter the conductor. Excess heat is damaging to electrical components and conductor insulation. For this reason conductors have a rated continuous current carrying capacity, or ampacity. Overcurrent protection devices, such as fuses, are used to protect conductors from excessive current flow. Fuses are designed to keep the flow of current in a circuit at a safe level to prevent the circuit conductors from overheating.

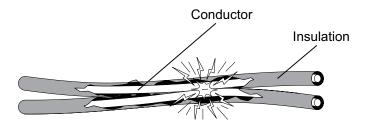


Excessive current is referred to as **overcurrent**. The *National Electrical Code*® defines overcurrent as any current in excess of the rated current of equipment or the ampacity of a conductor. It may result from overload, short circuit, or ground fault (Article 100-Definitions).

Reprinted with permission from NFPA 70 °-2008, the *National Electrical Code* °, Copyright© 2008 National Fire Protection Association, Quincy, MA 02169. This reprinted material is not the complete and official position of the National Fire Protection Association on the referenced subject which is represented only by the standard in its entirety.


Overloads

An **overload** occurs when too many devices are operated on a single circuit, or when a piece of electrical equipment is made to work harder than it is designed to work. For example, a motor rated for 10 amperes may draw 20, 30, or more amperes in an overload condition. In the following illustration, a package has become jammed on a conveyor, causing the motor to work harder and draw more current. Because the motor is drawing more current, it heats up. Damage will occur to the motor in a short time if the problem is not corrected, or if the circuit is not shut down by the overcurrent protection device.


Conductor Insulation

Motors, of course, are not the only devices that require circuit protection for an overload condition. Every circuit requires some form of protection against overcurrent and the heat it produces. For example, high levels of heat to insulated wire can cause the insulation to break down and flake off, exposing the conductors.

Short Circuits

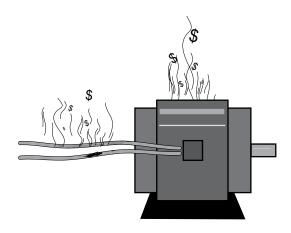
When exposed conductors touch, a **short circuit** occurs, and the circuit resistance drops to nearly zero. Because of this very low resistance, short-circuit current can be thousands of times higher than normal operating current.

Ohm's Law shows the relationship of current, voltage, and resistance. For example, a 240 volt motor with 24 ohms of resistance would normally draw 10 amperes of current.

$$I = \frac{E}{R}$$

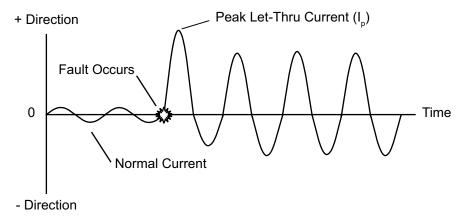
$$I = \frac{240}{24}$$

$$I = 10 A$$

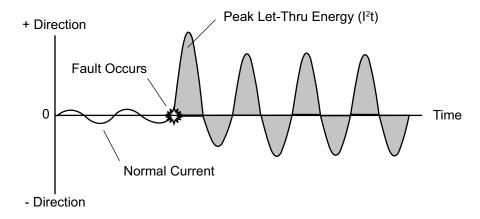

When a short circuit occurs, resistance drops dramatically. For example, if the above resistance dropped to 24 milliohms due to a short circuit, the current would increase to 10,000 amperes.

$$I = \frac{240}{.024}$$

$$I = 10,000 A$$

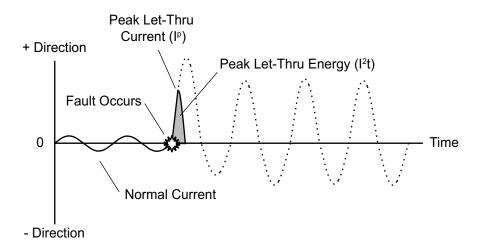

Preventing Damage

The heat generated by short-circuit current can rise to dangerous levels quickly, causing extensive damage to conductors and connected equipment. This heat-generating current must be interrupted instantaneously when a short circuit occurs. Slight overcurrents can be allowed to continue for some period of time, but, as the overcurrent magnitude increases, the protection device must act more quickly.



Short-Circuit Current in Unprotected Electrical Circuits

When a short circuit occurs in an unprotected circuit, current will continue to flow until the circuit is damaged, or until the power is removed manually. The peak short-circuit current of the first cycle is the greatest and is referred to as **peak let-through current (I_P)**. The electromagnetic force associated with this current can cause mechanical damage to electrical components.



The maximum destructive energy let-through (l²t) is a measure of the energy associated with this current. It is capable of producing enough heat to melt conductors.

Short-Circuit Current in Protected Electrical Circuits

A properly applied overcurrent protection device will open the circuit quickly, limiting peak let-through current (I_P) and energy (I_P^2 t).

Article 240

Article 240 of the *NEC*[®] covers requirements for overcurrent protection and the use of overcurrent protective devices to prevent damage to conductors and equipment. You are encouraged to become familiar with this material.

Ampacities of Insulated Conductors

Conductors are rated by how much current they can carry continuously, known as **ampacity**. The following table, part of NEC® Table 310.16, is provided for example. As noted in this table, a #8 American Wire Gauge (AWG) copper conductor with Type THW insulation is rated for 50 amperes at 75° C. A #1 AWG copper conductor with Type THW insulation rated at 75° C can carry 130 amperes. To avoid overloads and prevent insulation damage, it is necessary to keep the current from exceeding the conductor's continuous current rating.

Table 310.16 (partial). Allowable Ampacities of Insulated Conductors Rated 0 through 2000 Volts, 60°C Through 90°C (140°F Through 194°F) Not More than Three Current-Carrying Conductors in Raceway, Cable, or Earth (Directly Buried), Based on Ambient Temperature of 30°C (86°F)

Size	1	Temperature Rating of Conductor			
	60°C (140°F)	75°C (167°F)	90°C (194°F)		
AWG or kemil	Types TW, UF	Types FEPW, RH, RHW, THHW,THW, THWN, XHHW, USE, ZW	Types TBS,SA, SIS, FEP, FEPB, MI, RHH, RHW- 2, THHN, THHW, THW-2, THWN- 2, USE-2, XHH, XHHW, XHHW- 2, ZW-2		
		COPPER			
18	_	_	14		
16	_	_	18		
14	20	20	25		
12	25	25	30		
10	30	35	40		
8	40	50	55		
6	55	65	75		
4	70	85	95		
3	85	100	110		
2	95	115	130		
1	110	130	150		
1/0	125	150	170		
2/0	145	175	195		
3/0	165	200	225		
4/0	195	230	260		

Reprinted with permission from NFPA 70 °-2008, the *National Electrical Code* °, Copyright© 2008 National Fire Protection Association, Quincy, MA 02169. This reprinted material is not the complete and official position of the National Fire Protection Association on the referenced subject which is represented only by the standard in its entirety.

Sizing Conductors and Overcurrent Devices

According to the NEC[®], a continuous load is a load where the maximum current is expected to continue for 3 hours or more (Article 100 - Definitions).

NEC[®] Article 210.19(A) discusses branch circuit conductor minimum ampacity and size for circuits with no more than 600 volts applied. Similarly, *NEC*[®] Article 210.20(A), covers branch circuit overcurrent protection. According to these articles, the ampacity rating of branch-circuit conductors and the ampere rating of the overcurrent protection device shall be not less than the non-continuous load plus 125% of the continuous load.

For example, if a circuit had a continuous current load of 100 amperes, then the ampacity of the conductors and the rating of the overcurrent device would need to be at least 125 amperes plus any non-continuous load.

The NEC° provides an exception for Articles 210.19(A) and 210.20(A) under the following condition.

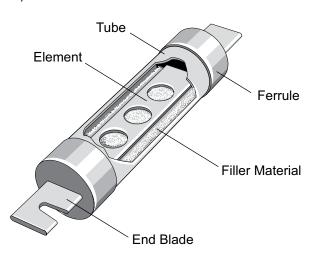
Where the assembly, including the overcurrent devices protecting the branch circuit(s) is listed for operation at 100% of its rating.

Under this exception, the ampacity of the branch circuit conductors and the ampere rating of the overcurrent protective device are permitted to be the sum of the continuous and non-continuous loads.

Note: the 2008 NEC® provides an additional similar exception to Article 210.19A for ground conductors not connected to an overcurrent device.

Reprinted with permission from NFPA 70 °-2008, the *National Electrical Code* °, Copyright© 2008 National Fire Protection Association, Quincy, MA 02169. This reprinted material is not the complete and official position of the National Fire Protection Association on the referenced subject which is represented only by the standard in its entirety.

Review 1

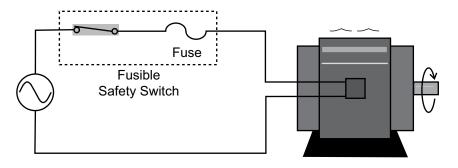

1.	A safety switch with fuses in a single enclosure is referred to as a safety switch.
2.	NEC® defines "in sight" as visible and not more than feet distant.
3.	With an increase in current, heat will
	a. increase b. decrease c. remain the same
4.	Three causes of overcurrent are,,,, and ground faults.
5.	A occurs when two bare conductors touch.
6.	An occurs when electrical equipment is required to work harder than it is rated.
7.	During a short circuit, the peak current of the first cycle is known as current.
8.	Peak let-thru can be limited by a properly applied overcurrent protective device.
9.	Article of the <i>NEC</i> [®] covers overcurrent protection.

Fuses

Circuit protection would be unnecessary if overloads and short circuits could be eliminated. Unfortunately, they do occur. To protect a circuit against these destructive currents, a protective device automatically disconnects the electrical equipment from the power source when a fault condition occurs. A **fuse** is the simplest device for interrupting a circuit experiencing an overload or a short circuit.

Fuse Construction

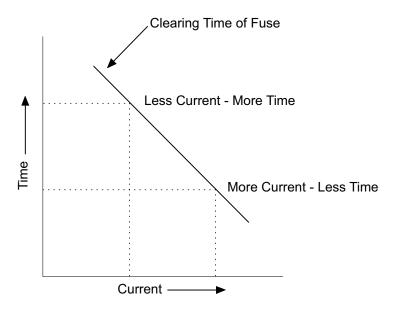
A typical fuse, like the one shown below, consists of an element electrically connected to ferrules. These ferrules may also have attached end blades. The element provides a current path through the fuse. It is enclosed in a tube, and surrounded by a filler material.


Closed Switch Symbol

As mentioned earlier, switches are normally shown in their "off" or "open" position. For the purpose of illustration, the following symbol can be used to show a switch closed, connecting the load to the power source. This is not a legitimate symbol. It is used here for illustrative purposes only.

Using a Fuse in a Circuit

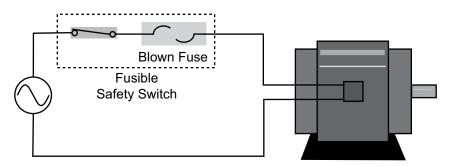
In the following example a motor is connected to a voltage source through a fusible safety switch. The switch and fuse function as part of the conductor supplying power to the motor.


Fuse Subject to Overcurrent

Current flowing through the fuse element generates heat, which is absorbed and dissipated by the filler material. When an overcurrent occurs, temperature in the element rises. In the event of a transient overload condition, the excess heat is absorbed by the filler material. However, if a sustained overload occurs, the heat will eventually melt open an element segment. This will stop the flow of current.

Fuse Clearing Time

Fuses have an **inverse time-current characteristic**. The greater the overcurrent, the less time it takes for the fuse to open. This is referred to as the **clearing time** of the fuse.


Open Fuse Symbol

For the purpose of explanation, the following symbol is used to show an open fuse, commonly referred to as a blown fuse. This is not a legitimate symbol. It is used here for illustrative purposes only.

Overload Current

In the following example of a motor circuit, an overload has occurred, causing the fuse to open and removing power from the motor. As a result, the motor is stopped even though the switch is closed. Keep in mind that the fuse in the fusible safety switch is sized to protect the conductors that supply current to the motor. Overload protection for the motor is normally provided separately, often by an overload relay.

Short-Circuit Current

Short-circuit current, which can be several thousand amperes, generates extreme heat. When a short circuit occurs, several element segments can melt simultaneously, which helps remove the load from the power source quickly. Short-circuit current is typically cut off in less than half a cycle, before it can reach its full value.

Fuse During Fault

Fuse After Fault

Non-time-Delay Fuses

Non-time-delay fuses, also called **fast-acting fuses,** provide excellent short-circuit protection. However, short duration overloads, such as motor starting current, may cause nuisance openings of non-time-delay fuses. For this reason, they are best used in circuits not subject to large current surges. Non-time-delay fuses usually hold 500% of their rating for approximately one-fourth of a second, after which the current-carrying element melts. This means that these fuses should not be used in motor circuits, which often have starting currents greater than 500%.

Time-Delay Fuses

Time-delay fuses provide both overload and short-circuit protection. Time-delay fuses usually allow five times the rated current for up to ten seconds. This is normally sufficient time to allow a motor to start without nuisance opening of the fuse. However, if an overload condition occurs and persists, the fuse will open.

Fuse Ratings and Classifications

Ampere Rating

Each fuse has a specific **ampere rating**, which is its continuous current-carrying capacity. The ampere rating of the fuse chosen for a circuit usually should not exceed the current-carrying capacity of the circuit. For example, if a circuit's conductors are rated for 10 amperes, the largest fuse that should be selected is 10 amperes.

However, there are circumstances where the ampere rating is permitted to be greater than the current-carrying capacity of the circuit. For example, motor and welder circuit fuse ratings can exceed conductor ampacity to allow for inrush currents and duty cycles within limits established by the NEC[®].

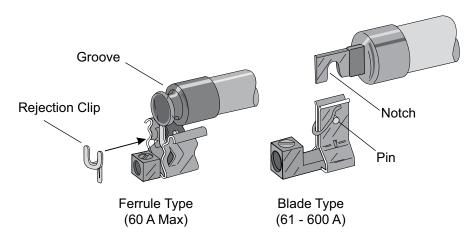
Voltage Rating

The **voltage rating** of a fuse must be at least equal to the circuit voltage. The voltage rating of a fuse can be higher than the circuit voltage, but never lower. A 600 volt fuse, for example, could be used in a 480 volt circuit, but a 250 volt fuse could not be used in a 480 volt circuit.

Interrupting Rating

Fuses are also rated according to the level of fault current they can interrupt. This is referred to as the **interrupting rating** of the fuse and is expressed in amperes (often shortened to amps). A fuse for a specific application should be selected so that it can sustain the largest potential short-circuit current that could occur in the application. This is important because, if the fault current exceeded the interrupting ability of the fuse, the fuse could rupture and extensive damage could occur.

Fuse Classes


Fuses are grouped into **current limiting** and **non-current limiting** classes based on their operating and construction characteristics. Fuses that incorporate features or dimensions for the rejection of another fuse of the same ampere rating, but with a lower interruption rating, are considered current limiting fuses.

Underwriters Laboratories (UL) establishes and standardizes basic performance and physical specifications in developing its safety test procedures. These specifications have resulted in distinct classes of low voltage fuses (600 volts or less). The following chart lists selected UL fuse classes.

Fuse Class	Fuse Overload Characteristic	Ampere Ratings	AC Voltage Ratings	Interrupting Rating
Н	Renewable Fuses, Fast-acting	1-600 A	250 V, 600 V	10,000 A
K5	Fast-acting	1-600 A	250 V, 600 V	50,000 A
J	Time-delay	1-600 A	600 V	200,000 A
J	Fast-acting	1-600 A	600 V	200,000 A
RK1	Time-delay	0.1-600 A	250 V, 600 V	200,000 A
RK1	Fast-acting	1-600 A	250 V, 600 V	200,000 A
RK5	Time-delay	0.1-600 A	250 V, 600 V	200,000 A
Τ	Fast-acting	1-1200 A	300 V, 600 V	200,000 A
L	Time-delay	200-6000 A	600 V	200,000 A

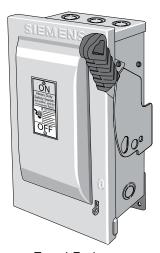
Class R Current Limiting Fuses

The following illustration shows Class R type fuse holders, which feature rejection clips or pins that permit only Class R fuses to be installed. This prevents installation of a fuse with a lower interrupting rating, such as a Class H or K fuse.

Review 2

1.	Fuses have an time-current characteristic.
2.	A fuse can usually interrupt short-circuit current in less than a cycle.
3.	Non-time-delay fuses provide excellent circuit protection.
4.	fuses provide overload and short-circuit protection.
5.	The continuous current carrying capability of a fuse is known as its rating.
6.	The voltage rating of a fuse can be than the circuit voltage, but never
7.	The interrupting rating of a Class R fuse is amperes.

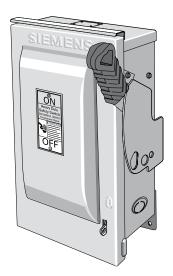
Enclosures


For the purpose of this course, an enclosure is the case that houses the components of an electrical device. The function of the enclosure is to prevent someone from accidentally touching an internal component that may have voltage applied and to protect internal components from damage.

Various standards describe enclosure types. One of the more frequently cited standards is NEMA standard 250. In addition to NEMA standard 250, published by National Electrical Manufacturers Association, UL 50 and UL 508, published by Underwriters Laboratories Inc., are also important standards for electrical equipment enclosures. These standards provide enclosure descriptions, features, and test criteria for hazardous and nonhazardous locations.

The following brief descriptions cover enclosures available for Siemens safety switches. Within the industry, it is common to refer to the enclosure type numbers as NEMA types, but these type numbers also apply to UL 50 and UL 508.

Type 1 Enclosures


Type 1 enclosures are intended for indoor use primarily to provide protection against limited amounts of falling dirt and contact with the enclosed equipment in locations where unusual service conditions do not exist.

Type 1 Enclosure

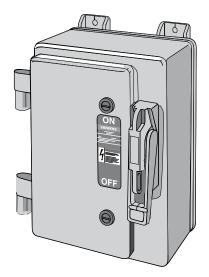
Type 3R Enclosures

Type 3R enclosures are intended for outdoor use primarily to provide a degree of protection against falling rain and sleet. They are not intended to provide protection against conditions such as dust, internal condensation, or internal icing.

Type 3R Enclosure

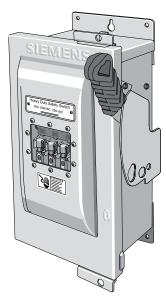
Types 4 and 4X Enclosures

Type 4 enclosures are intended for indoor or outdoor use primarily to provide a degree of protection against windblown dust, rain, splashing water, hose-directed water, and damage from external ice formations. They are not intended to provide protection against conditions such as internal condensation or internal icing.


Type 4X enclosures are made of a material such as stainless steel and are intended primarily to provide a high degree of protection against corrosion, windblown dust and rain, splashing water, and hose-directed water.

Type 4/4X Stainless Enclosure with Viewing Window

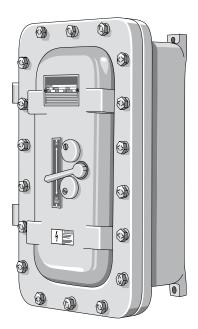
Non-metallic 4X Enclosures


Another safety switch enclosure is a fiberglass-reinforced polyester version of the 4X enclosure. This **non-metallic 4X enclosure** has no external metal parts.

Type 4X Non-Metallic Enclosure

Types 12 Enclosures

Type 12 enclosures provide a degree of protection against dust, falling dirt, and dripping water in indoor locations, but are not intended to protect against conditions such as internal condensation.



Type 12 Enclosure with Viewing Window

Types 7 and 9 Enclosures

Type 7 enclosures are intended for indoor use in locations classified as Class I, Groups A, B, C, or D, as defined in the NEC° .

Type 9 enclosures are intended for indoor use in locations classified as Class II, Groups E, F, or G, as defined in the NEC° .

Type 7 and 9 Enclosure

Hazardous Environments

Articles 500 through 504 of the *National Electrical Code* [®] cover the use of electrical equipment in locations where fire or explosions due to gas, flammable liquids, combustible dust, or ignitable fibers may be possible. While you should never specify a hazardous location, it is important to understand the regulations that apply. It is the user's responsibility to contact local regulatory agencies to define the location as Division I or II and to comply with all applicable codes.

Divisions

Division I refers to a situation where hazardous materials are normally present in the atmosphere. **Division II** identifies conditions where the atmosphere may become hazardous as a result of abnormal conditions. For example, if a pipe carrying a hazardous material developed a leak, the surrounding atmosphere could become hazardous.

Classes and Groups

Hazardous locations are further identified by class and group. **Class I, Groups A, B, C, and D** are chemical gases or liquids.

Class II, Groups E, F, and G include flammable dust.

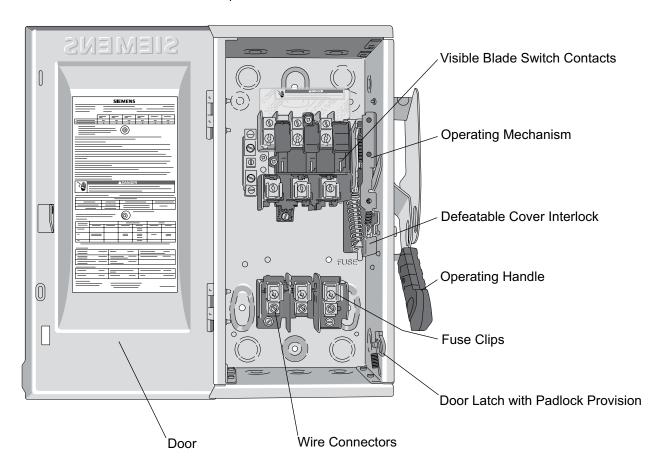
Class III includes all ignitable fibers and lints, such as clothing fiber in textile mills, and flyings, such as saw dust. Class III is not divided into groups.

	Class I		Class II		Class III
	Groups A-D Gases and Liquids		Groups E-G Flammable Dust		
Α	Acetylene	Е	Metallic Dust		Ignitable Fibers
В	Hydrogen	F	Carbon Dust		Flyings
С	Acetaldehyde Ethylene	G	Grain, Plastic or Chemical Dusts		
D	Acetone Gasoline Methanol			•	

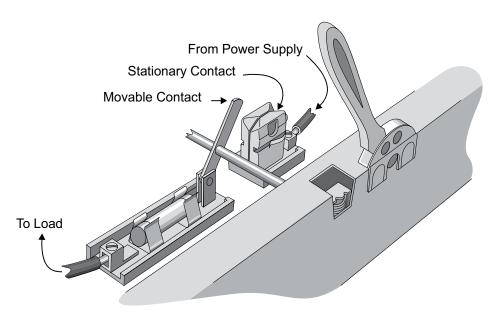
Hubs

Various **hubs** are available for attaching cable conduit to the enclosures.

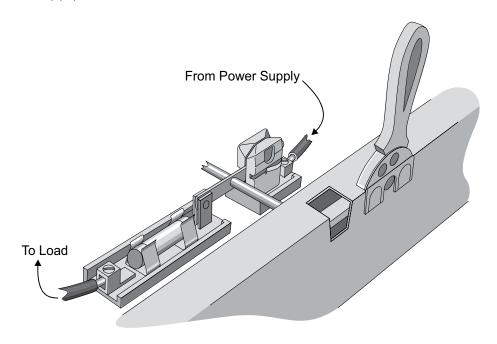
ECHV300 3" Conduit Hub Type 3R Enclosure


ECHS200 2" Conduit Hub Type 3R Enclosure

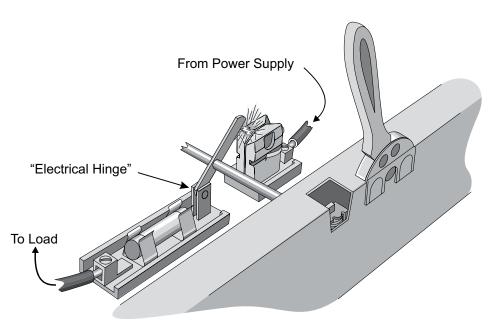
SSH150 1.5" Conduit Hub Type 4/4X Enclosure

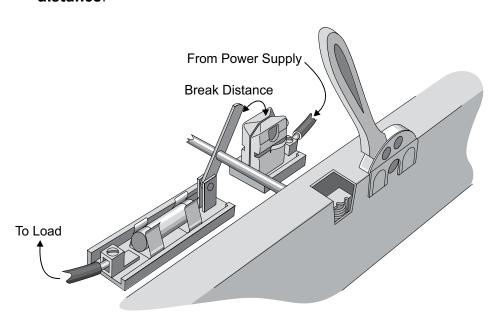

Switch Design

The enclosure houses the switch mechanism, wire connectors, and an operating mechanism. A handle, connected to the operating mechanism, opens and closes the visible blade contacts. If the switch is fusible, the enclosure also houses the fuse clips. Provisions for locking the door and/or switch handle are provided.

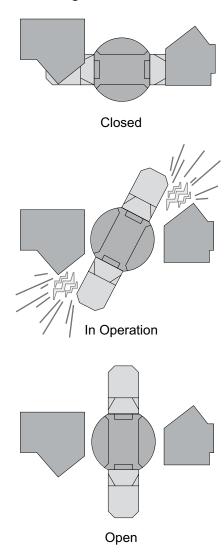


Knife Blade Switch Principle


Switches use contacts to break the circuit and stop the flow of current. A typical switch assembly consists of a stationary contact, a hinged movable contact, and an operating handle. The hinged movable contact may also be referred to as a **knife blade**. If the movable contact is not touching the stationary contact, no current flows.

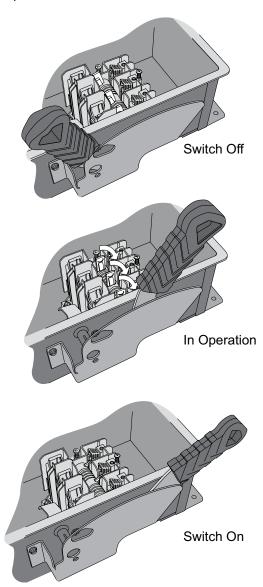

Moving the handle to the "on" position closes the contacts and provides a complete path for current to flow from the power supply to the load.

Moving the handle to the "off" position opens the contacts, interrupting the flow of electricity. As the contacts start to open, current continues to flow across the air gap between the two contacts in the form of an arc. Current continues to flow until the physical distance between the contacts is great enough to interrupt the flow of current.


The point at which the arc is extinguished is called the **break distance**.

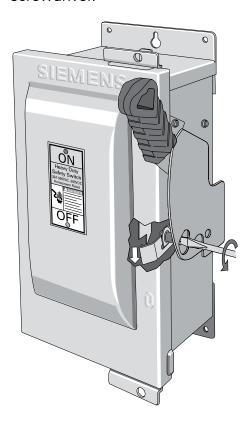
VBII Safety Switch Design

Unlike the knife-blade switch, the switching action of the Siemens 30-200A **VBII Safety Switch** breaks the arc in two places. As a result, two smaller arcs are created, and heat generation is reduced. The switching speed is also increased, since the breaking distance is effectively doubled. The overall result is enhanced performance and increased longevity.


Also, in contrast to the knife blade switch, the VBII Safety Switch blades are self-aligning, ensuring positive contact. Furthermore, the electrical hinge, a wear and friction point, has been eliminated. The result is a fast, positive, and reliable switching action.

VBII Switch Action

Over-center-toggle Switch Action


Another feature which enhances the speed of switching is the **over-center-toggle** design. During operation of the switch, as the handle is moved past the midpoint, the switch suddenly and rapidly snaps from off to on or from on to off, depending upon the direction of movement of the handle. Besides enhancing the switching speed, this also gives a positive feel to the switch operation.

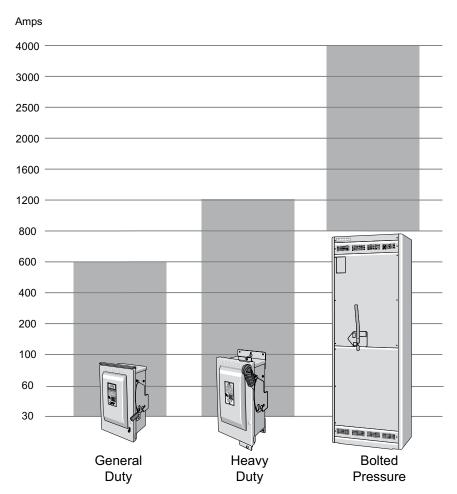
VBII "Over-Center-Toggle" Action

Defeatable Cover Interlock

The VBII **cover interlock** prevents someone from opening the door while the switch is in the "on" position. Normally, the interlock also prevents someone from turning the switch on with the door open. However, for the purposes of testing or servicing, the door interlock is defeatable. As shown in the following illustration, this can be done with an ordinary screwdriver.

Review 3

- Type ____ enclosures are intended for indoor use primarily to provide protection against contact with the enclosed equipment in locations where unusual service conditions do not exist.
- 2. Type ___ enclosures are intended for outdoor use primarily to provide a degree of protection against falling rain and sleet.
- 3. Switches use ______ to break the circuit and stop the flow of energy.
- 4. The VBII 30-200 A switch design breaks the arc in _____ places, thereby reducing heat and switching time.


Safety Switch Ratings

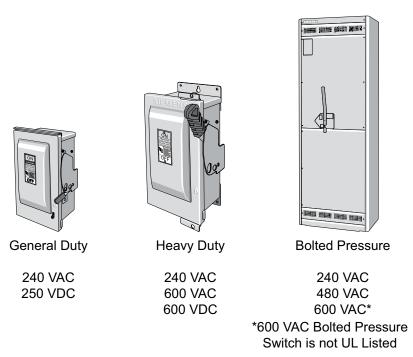
Ampere Rating

Every safety switch has a **current rating**, also called an **ampere rating**, which is the maximum continuous current the switch is designed to carry.

For example, Siemens VBII general duty switches are available with ampere ratings of 30, 60, 100, 200, 400, and 600 amperes. Siemens VBII heavy duty switches are rated for 30, 60, 100, 200, 400, 600, 800, and 1200 amperes.

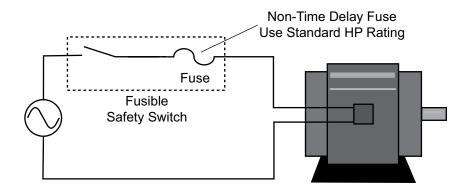
When higher ampere ratings are required, a bolted pressure switch can be used. A bolted pressure switch is designed so that a high clamping pressure is placed on all blade joints. Though not covered in this course, Siemens bolted pressure switches are available with ratings of 800, 1200, 1600, 2000, 2500, 3000, and 4000 amperes.

Short-circuit Current Withstand Rating


The maximum short-circuit current that a safety switch can carry for a short time is called its **short-circuit current** withstand rating.

For example Siemens VBII general duty switches have a maximum short-circuit current withstand rating of 100,000 amperes, while the maximum short-circuit withstand rating of Siemens VBII heavy duty switches is 200,000 amperes. The short-circuit withstand rating for a specific switch depends on the fuse class used.

Voltage Rating


Safety switches are also rated according to the maximum voltage they can handle. The **voltage rating** of the switch must be at least equal to the circuit voltage. In other words, it can be higher than the circuit voltage, but never lower. For example, a safety switch rated for 600 volts can be used on a 480 volt circuit, but a switch rated for 240 volts must not be used on a 480 volt circuit.

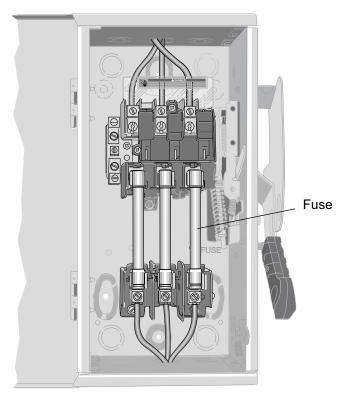
The following chart shows the available voltage ratings for Siemens safety switches and bolted pressure switches.



Dual Horsepower Ratings

All Siemens safety switches have two horsepower ratings for motor applications. This is referred to as **dual horsepower rated**. For example, a switch might have a standard rating of 10 HP and a maximum rating of 30 HP. The standard rating, 10 HP, applies when non-time delay fuses are used.

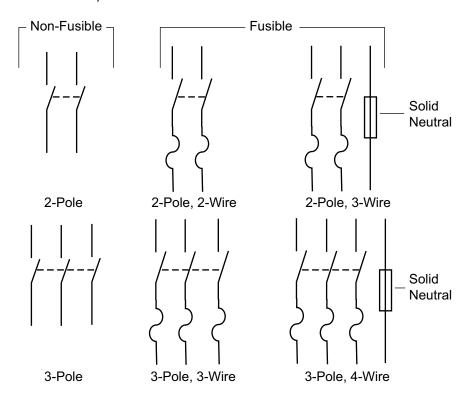
The maximum rating of 30 HP applies when time delay fuses are used.


The following chart reflects the range of horsepower ratings for Siemens safety switches. Refer to the Speedfax catalog for the standard and maximum horsepower ratings for specific catalog numbers.

Safety Switch Type	Voltage	Horsepower Range
Conoral Duty	240 VAC	1½-200
General Duty	250 VDC	5-50
	240 VAC	1½-250
Lloovay Duty	600 VAC	3-500
Heavy Duty	250 VDC	5-50
	600 VDC	15-50

Switch Circuit Types and Terminology

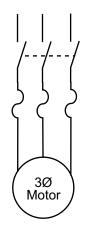
Pole


The term **pole** refers to the number of circuits that can pass through a switch at one time. This is the number of circuits that the device can connect and disconnect. The following drawing, for example, shows a 3-pole safety switch. The three circuits are mechanically connected so that all three poles connect and disconnect the line and load simultaneously when the switch is operated. In this example, each pole is fused for overcurrent protection.

3-Pole Fusible Safety Switch

Circuit Configurations

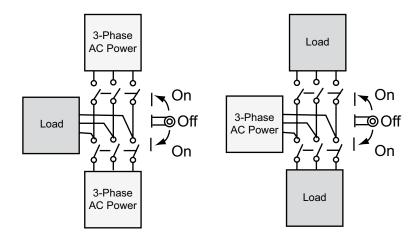
Circuit configuration diagrams for 2- and 3-pole safety switches are shown below. Safety switches may be fusible, non-fusible, or fusible with a solid neutral.



Siemens safety switches are available in all the configurations shown above as well as additional configurations. For example, Siemens heavy duty fusible and non-fusible safety switches are also available with four or six poles.

Example

The circuit configuration required depends on the load and the power supply connected to it. For example, a 3-phase motor needs a 3-pole switch to connect it to a 3-phase power supply. If overcurrent protection is required, a fusible 3-pole safety switch should be selected, as in the following example.


3Ø AC Power Supply

Throw

Throw is the term used to specify the number of circuits to which a conductor can be connected. All the examples shown so far have been for single throw switches. However, Siemens also offers double throw switches in both general duty non-fusible and heavy duty fusible and non-fusible designs.

Double throw switches are intended to transfer loads from one power source to another or to connect a single power source to either of two loads. For example, the illustration shown below shows 3-pole, non-fusible safety switches. For either of the two applications, no power is applied to a load with the switch in the center (Off) position, and only one set of contacts can be closed at a time.

In the application on the left, with the switch in the up position, the upper power source is connected to the load. With the switch in the down position, the lower power source is connected to the load.

In the application on the right, with the switch in the up position, the power source is connected to the upper load. With the switch in the down position, the power source is connected to the lower load.

Review 4

1.	The current rating for a safety switch, also called its rating, is the maximum continuous current the switch is designed to carry.
2.	The maximum short-circuit current that a safety switch can carry for a short time is called its rating.
3.	Siemens safety switches are horsepower rated.
4.	The term refers to the number of circuits that can pass through the safety switch at one time.
5.	The term refers to the number of circuits to which a conductor can be connected.

VBII General Duty Safety Switches

VBII general duty switches are intended for use primarily on power supplies rated at 240 VAC or less, where the available fault current is less than 100,000 amperes (with Class R or T fuses, or 10,000 A max with Class H fuses). They can be supplied in a Type 1 (indoor) or Type 3R (outdoor) enclosure.

Plug Fuse Type Safety Switch

The **general duty plug fuse type switch** is available for 120 or 240 volt systems. It is suitable for 1- or 2-pole applications, and is rated at 30 amperes. A separately supplied, 30-ampere Type S plug fuse is required. This switch is available for use on 2-wire or 3-wire motor applications up to three horsepower. A non-fusible model comes in a 2-pole configuration. It is rated at 60 amperes and can be used with motors up to 10 HP. There are also pullout models available in fused and non-fused versions.

General Duty Switches

Fusible general-duty safety switches are available with two or three poles (both with solid neutral) or with four poles. Fusible switches accept Class H fuses as standard. A field-installable rejection kit is available which rejects all but Class R fuses. **Non-fusible general duty safety switches** are available with two or three poles. All general duty switches have both cover and handle padlocking capabilities.

Ratings

Ampere ratings: 30, 60, 100, 200, 400, or 600 amperes

Fuses: Class H, K, or R (all ampere ratings) or Class T cartridge fuse (70-600 amperes)

Voltage ratings: 240 VAC/250 VDC

Short-circuit current withstand ratings: Suitable for use on systems capable of delivering not more than 100,000 RMS symmetrical amperes of fault current when Class R fuses are installed. Also rated 100,000 AC maximum in 200-600 ampere ratings with Class J and T fuses.

Enclosures

General duty switches are available in a **Type 1 enclosure**, which is intended for indoor use. These switches have interlocks to prevent the cover from being opened when the switch is in the "on" position and to prevent the switch from being turned on with the door open. (There is a front-operable release for this feature.)

This enclosure is intended primarily to provide protection against contact with the safety switch and is used in locations where unusual service conditions do not exist.

General duty 2- and 3-pole safety switches are also available in a **Type 3R enclosure**, which is intended for outdoor use and provides a degree of protection against falling rain and sleet. It is also able to withstand the formation of ice on the enclosure without damage, but is not intended to provide protection against conditions such as dust, internal condensation, or internal icing.

General Duty Safety Switch Type 1 Enclosure

General Duty Safety Switch Type 3R Enclosure

VBII Heavy Duty Safety Switches

Ratings

VBII heavy duty safety switches can be used on power supplies up to 600 Volts, AC or DC, in applications where the available fault current is 200,000 amperes or less. Interlocks prevent someone from inadvertently opening the cover while the switch is in the "on" position or inadvertently turning on the switch while the cover is open. Heavy duty safety switches also have cover and handle padlocking capabilities.

Ampere ratings: 30, 60, 100, 200, 400, 600, 800, or 1200 amperes

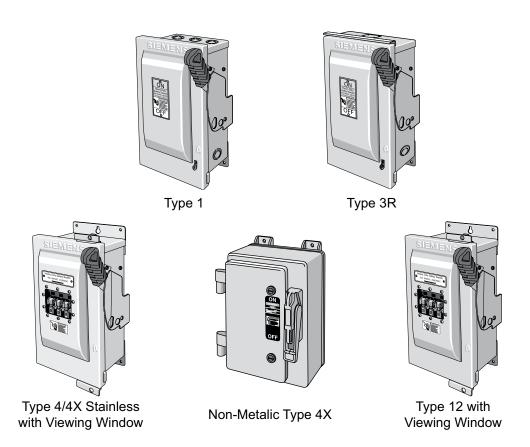
Fuses: Class H, J, K, and R cartridge fuses (up to 600

amperes)

Class T cartridge fuses (up to 1200 amperes) Class L bolt-in fuses (601-1200 amperes)

(Fusible 800 and 1200 ampere switches have Class L

fuse provisions as standard equipment.)


Voltage ratings: 240/480/600 VAC; 250/600 VDC

Short-circuit current withstand ratings: Suitable for use on systems capable of delivering not more than 200,000 RMS symmetrical amperes of fault current when Class J or R fuses are installed except the 800 and 1200 ampere switches, which are suitable for use on circuits capable of delivering not more than 200,000 RMS symmetrical amperes of fault current when Class L fuses are installed. 100-1200 ampere switches with Class T fuses and field adapter kit are also 200,000 RMS symmetrical rated.

Enclosures

Siemens offers a broad selection of heavy duty safety switches with Type 1 or 3R enclosures. Selected heavy duty safety switches are also available with other enclosure types such as Types 4/4X stainless steel with viewing window, Type 4X non-metalic, and Type 12 with viewing window.

Siemens safety switches with Type 4/4X stainless steel or Type 12 enclosures, which have a window for viewing visible blade position, are available with 30 to 400A ratings. The window also allows viewing of indicating fuses for 30 to 200A fusible switches.

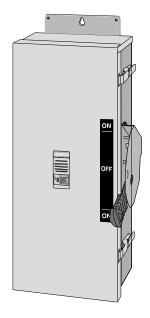
Interlock Receptacle

Interlock receptacle safety switches provide a receptacle for powering heavy-duty portable equipment such as refrigerated trucks, welders, and other portable electric tools. These switches are fitted with a Crouse-Hinds Arktite® or similar receptacle which is interlocked to prevent insertion or removal of the plug when the switch is in the "on" position. The Crouse-Hinds receptacle switch requires a Crouse-Hinds 4-wire, 3-pole, style 2, grounded APJ plug.

Interlock receptacle safety switches are rated for 30, 60, and 100 amperes. These switches are available with Type 12 or 4/4X enclosures.

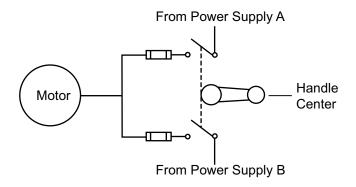
Receptacle

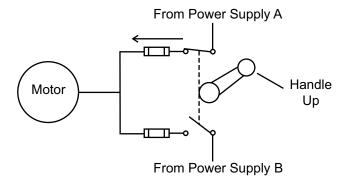
4-Pole and 6-Pole Safety Switches


4-pole and 6-pole heavy-duty fusible and non-fusible safety switches are available with current ratings of 30 to 200 amperes. 4-pole switches are available with either a Type 1 or Type 12/3R enclosure. 6-pole switches are available with either a Type 12/3R enclosure or Type 4X stainless steel enclosure.

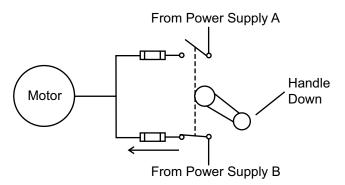
These switches are commonly used as a disconnecting means for 2-speed, 2-winding motors. A 4-pole switch is also used in 3-phase, 4-wire circuits when a switching neutral is required.

Double Throw Switches


Heavy duty, double throw, non-fusible switches are available with current ratings of 30 to 1200 amps. General duty, double throw, non-fusible switches are available with current ratings of 100 or 200 amperes. Most products are available with a Type 1 or Type 12/3R enclosure. A few versions are available with a Type 12/3R or Type 4X enclosure.


Double Throw Switch Application

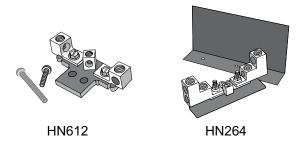
Double throw switches are used to connect a single power source to either of two loads or to transfer loads from one power source to another.


For example, a critical piece of equipment often needs a back-up power supply in case the main power supply fails or needs maintenance. In the following example, a motor can be connected through a **double throw switch** to power supply A or power supply B. When the handle is in the center position, the switch is off and no power flows to the motor.

Moving the handle to the up position connects the motor to power supply A.

Moving the handle to the down position connects the motor to power supply B.

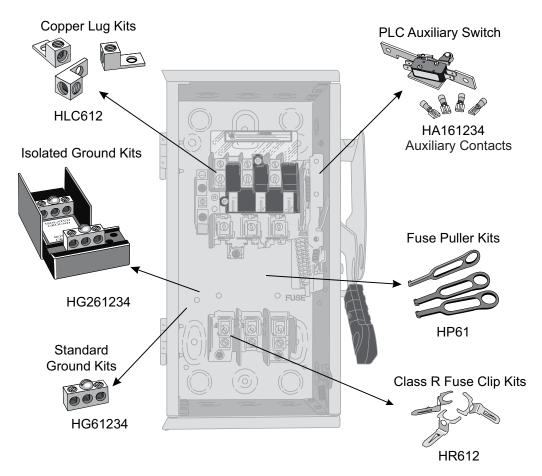
Safety Switch Accessories


A full range of **accessories** is available for Siemens VBII Safety Switches. Some of these are shown below.

Both general duty and heavy duty switches are field-convertible to accept Class J or Class T fuses.

HT63 Class T Fuse Adapter Kit

Standard Neutral Kits can be field installed in both general duty and heavy duty safety switches. UL listed 200% Neutrals are available on 100-600A heavy duty switches.



The Multiple Padlock Accessory is a tamper-proof device to provide for multiple padlocking to meet OSHA or plant requirements.

SL0420 Multiple Padlock Accessory

The following illustration shows some of the other accessories available for general and heavy duty safety switches.

Heavy duty switches are UL approved to accept field installed copper lug kits. Equipment ground kits are available for all general duty and heavy duty switches. They come standard in Type 4/4X and Type 12 switches and can be installed in the field in Type 1 and Type 3R switches.

Isolated ground kits are also available for 30 to 600A heavy duty switches. Some circuits with a high degree of computer or other electronic loading require an isolated ground to prevent interference from the building ground and neutral lines.

Auxiliary contacts are available only for heavy duty switches. They come with one normally open and one normally closed or two normally open and two normally closed contacts. A PLC auxiliary switch is also available for 30 to 200A safety switches. It has very low contact resistance, which is compatible with the low voltages and currents typically found in PLC circuits.

Fuse puller kits can be installed in 30 to 100A heavy duty switches in the field.

Class R fuse clips are used to prevent the installation of non-current-limiting Class H or Class K fuses. All general and 30 to 600A heavy duty switches are field convertible to accept Class R fuse clip kits.

Review 5

1.	Siemens VBII general duty safety switches have ampere ratings from to amperes.
2.	Siemens VBII heavy duty safety switches is have ampere ratings from to amperes.
3.	Siemens VBII heavy duty safety switches have voltage ratings up toVAC/VDC.
4.	Siemens safety switch provides a receptacle for powering heavy duty portable equipment.
5.	are used to connect a single power source to either of two loads or to transfer loads from one power source to another.

Catalog Numbers

Each type of safety switch has a catalog number. The catalog number provides a description of the safety switch. There are eight parts to the catalog number for a Siemens VBII Safety Switch. The following figure illustrates a typical catalog number.

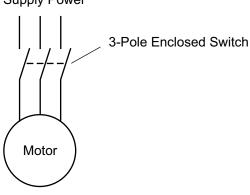
Catalog Number	Part 1	Part 2	Part 3	Part 4	Part 5	Part 6	Part 7	Part 8
HF364NRCU=	Н	F	3	6	4	N	R	CU

Part 1

Part 1 indicates the switch type. There are five types available: General Duty 10k AIC Max. (Plug Fused and 60A Max. Non-Fused), General Duty, Heavy Duty, Heavy Duty Double Throw, and General Duty Double Throw.

From following table shows that the example switch, type H, is a heavy duty switch.

Designator	Switch Type		
L	General Duty 10k AIC Max		
G	General Duty		
Н	Heavy Duty		
DT	Heavy Duty Double Throw		
DTG General Duty Double Throv			


Part 2

Part 2 indicates whether the switch is fused or non-fused. **F** designates a fused switch, and **NF** designates a non-fused switch. For this example, the switch is fused.

Part 3

Part 3 of the catalog number indicates the number of poles. Siemens VBII safety switches can be provided with 1, 2, 3, 4, or 6 poles. A neutral, if required, is not included in the number of poles. The following drawing shows a 3-pole safety switch used with a 3-phase AC motor. The example catalog number also calls for a 3-pole safety switch.

Three-Phase Supply Power

Part 4

Part 4 of the catalog number indicates the voltage rating. The example catalog number indicates a safety switch with a maximum voltage rating of 600 volts.

Designator	Voltage
1	120V or 120/240V
2	240V
6	600V

Part 5

Part 5 of the catalog number refers to the switch's current rating. The example indicates a safety switch with a 200 ampere rating.

Amperes
30A
60A
100A
200A
400A
600A
800A
1200A

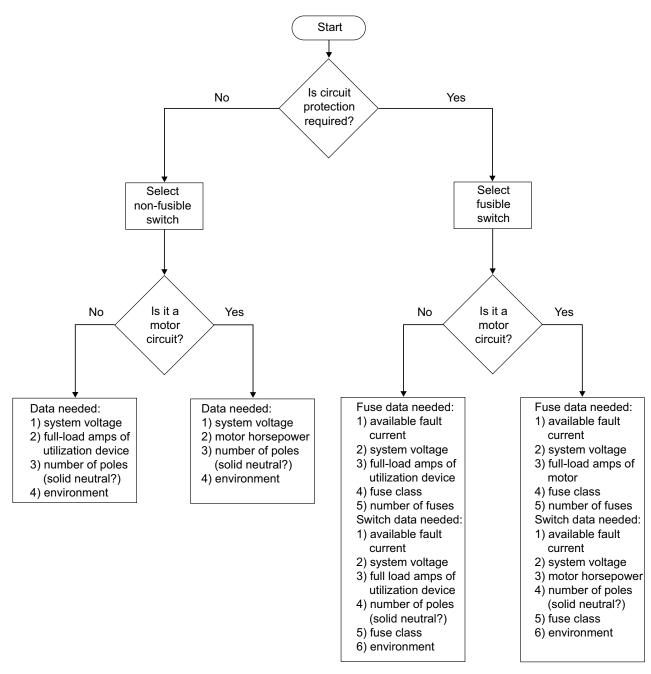
Part 6

Part 6 of the catalog number indicates whether or not a neutral is included with the switch. If no neutral is needed, part 6 of the catalog number is simply omitted. If a neutral is needed, an $\bf N$ is added to the catalog number, as in the example.

Part 7

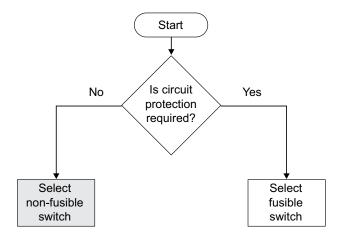
Part 7 of the catalog number indicates the type of enclosure. The example catalog number indicates a safety switch in a NEMA Type 3R outdoor enclosure.

Designator	Enclosure Type
Omit	Type1, Indoor
R	Type 3R, Outdoor
S	Type 4/4X, Stainless Steel
Х	Type 4/4X, Non-Metallic
J	Type 12, Industrial


Part 8

Part 8 of the catalog number is for special applications. The following table lists the possible applications. For example, **CU** indicates factory-installed copper wire grips, as in the example catalog number.

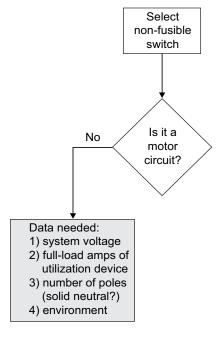
Designator	Special Applications With:
СН	Crouse-Hinds Receptacle
CJ	Factory J Fuse Spacings
CR	Class R Clips Installed
CU	Copper Wire Grips Installed
G	Factory-Installed Ground Bar
PN	Pyle-National Receptacle
W	Viewing Window


Selecting Safety Switches

While selecting a safety switch is not difficult, flow charts can help to make it even easier. The following flow chart can be used to make key decisions in the selection of a safety switch.

Selecting a Non-Fusible Switch

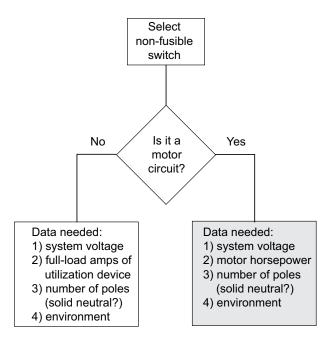
Is circuit protection required? If circuit protection is not required a non-fusible switch would be selected.



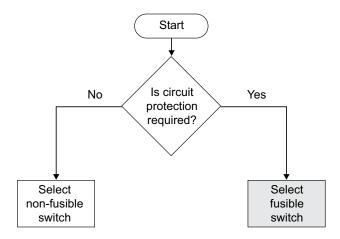
Non-Fusible Switch not Used on a Motor Circuit

If a non-fusible switch is selected, is it for a motor circuit? If the switch is not used in a motor circuit, the following information must be known:

1) System voltage: 120 VAC, 240 VAC, 480 VAC, 600 VAC, 250 VDC, 600 VDC


- 2) Full-load amperes of the device to be used on the switch
- 3) The number of poles required, and if a neutral is needed
- 4) The environment (enclosure type)

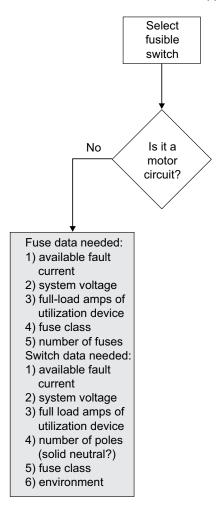
Non-Fusible Switch Used in a Motor Circuit


If the switch is used in a motor circuit, the same data is required, except that motor horsepower replaces full-load current.

- 1) System voltage
- 2) Motor horsepower
- 3) The number of poles required, and if a neutral is needed
- 4) The environment (enclosure type)

Selecting a Fusible Switch

If circuit protection is required, a fusible switch would be selected.

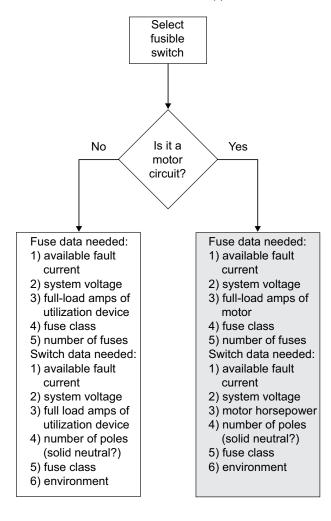

Fusible Switch not Used on a Motor Circuit

If a fusible switch is selected, is it for a motor circuit? If not, the following information must be known to select fuses:

- 1) Available fault current
- 2) System voltage
- 3) Full-load amperes of the device to be used on the switch
- 4) Fuse class
- 5) Number of lines to be fused

The following must be known to select a switch:

- 1) Available fault current
- 2) System voltage
- 3) Full-load amperes of the device to be used on the switch
- 4) Number of poles, and if a neutral is needed
- 5) Fuse class
- 6) Environment (enclosure type)


Fusible Switch Used on a Motor Circuit

If the switch is used on a motor circuit, the following information must be known to select a fuse:

- 1) Available fault current
- 2) System voltage
- 3) Full-load amperes required by the motor
- 4) Fuse class
- 5) Number of lines to be fused

The following must be known to select a switch:

- 1) Available fault current
- 2) System voltage
- 3) Motor horsepower
- 4) Number of poles, and if a neutral is needed
- 5) Fuse class
- 6) Environment (enclosure type)

Example of Selecting a Non-Fusible Safety Switch

In the following example, a safety switch needs to be provided for an application that does not require circuit protection. The full-load current of the utilization device is 45 amperes. It is not a motor. The system voltage is 240 VAC, 3-phase, 3-wire (without neutral). The environment is indoors, and there are no unusual conditions such as dust or liquids.

Recall from earlier discussion that, in general, all conductors (including the switch) must be capable of carrying 125% of the full-load current. The full-load current of the utilization device is 45 amperes; a switch must be selected that can carry 56 amperes.

45 amperes X 125% 56 amperes

Knowing that the switch will be used indoors, with no unusual conditions, a Type 1 enclosure can be selected. The other requirements can be met with a general duty switch. Referring to the General Duty Safety Switches section of the SPEEDFAX catalog, the first 240 volt, 3-pole, non-fusible switch that will handle 56 amperes is a 60 amp switch. The catalog number is GNF322.

		Indoor - Type 1			Outdoor - Type 3R			
System	Ampere	Catalog	List	Ship Wt.	Catalog	List	Ship Wt.	
	Rating	Number	Price \$	Std. Pkg.	Number	Price \$	Std. Pkg.	

240 Volt Non-Fusible

2-Pole or 3-Pole

	30	GNF321		GNF321R		
	60	GNF322		GNF322R		
1 / / /	100	GNF323		GNF323R		
///	200	GNF324		GNF324R		
	400	GNF325		Use 600V	Switch - I	HNF365R
' ' '	600	GNF326		Use 600V	Switch - I	HNF366R

Example of Selecting a Fusible Safety Switch

In the following example, a safety switch needs to be provided for an application that <u>does</u> require circuit protection. This application will have a 480 VAC, 3-phase, 75 HP motor, not needing a neutral connection. The customer has specified an RK5 time-delay fuse, for a potential fault current of 200,000 amperes. The switch will be located indoors with no unusual service conditions.

The application requirements for this example dictate selection of a heavy duty, 600 volt, fusible switch. On the appropriate SPEEDFAX page, locate the enclosure type, that is, Indoor — Type 1.

Next, find the 600 Volt Fusible, 3-pole, 3-fuse table. In the 480 VAC, 3-phase, 3-wire section of this table, select a switch with a horsepower equal rating in the maximum (Max.) column that is equal to or greater than 75. The maximum column must be used because the customer selected time delay fuses. (Had non-time delay fuses been specified, the standard horsepower column would be used.) In this example, 125 HP is the first rating meeting the 75 HP requirement. Reading to the left, the catalog number under Indoor - Type 1 is HF364. Also note that this switch has an ampere rating of 200.

Because a Class R fuse is required for this application, a Class R fuse clip kit is also required. This can be found in the accessory section of the SPEEDFAX. In this example, the fuse kit catalog number is HR64.

ſ			Indoor -		Horsepower Rati			ings	
			Indoor - Type 1			480 V	AC		
						1 Phase,		3 Phase,	
		Ampere	Catalog List Ship Wt.)	3 Wire		
	System	Rating	Number Price \$		Std. Pkg.	Std.	Max.	Std.	Max.

600 Volt Fusible

3-Pole, 3-Fuse								
ĺ	30	HF361			3	71/2	5	15
	60	HF362			5	20	15	30
1///	100	HF363			10	30	25	60
	200	HF364			25	50	50	125
15551	400	HF365					100	250
$ \zeta \zeta \zeta \zeta $	600	HF366					150	400
	800	HF367					200	500
	1200	HF368					200	500

Selecting a Fuse

Section 430.6 of the *NEC*® requires that, where the current rating of a motor is used to determine the ampacity of conductors or ampere ratings of switches, branch-circuit overcurrent devices, etc., the values given in Tables 430.247 through 430.250 must be used instead of the actual motor nameplate current rating. According to *NEC*® Table 430.250, a 75 HP, 460 VAC motor has a full-load current of 96 amperes.

Table 430.250 Full-Load Current, Three-Phase Alternating-Current Motors

The following values of full-load currents are typical for a motor running at speeds usual for belted motors and motors with normal torque characteristics.

Motors built for low speeds (1200 rpm or less) or high torques may require more running current, and multispeed motors will have full-load current varying with speed. In these cases, the nameplate current rating shall be used.

The voltages listed are rated motor voltages. The currents listed shall be permitted for system voltage ranges of 110 to 120, 220 to 240, 440 to 480, and 550 to 600 volts.

	Induct	ion-Type	Squirrel (Cage and	Wound	Rotor (An	nperes)
	115	200	208	230	460	575	2300
Horsepower	Volts	Volts	Volts	Volts	Volts	Volts	Volts
1/2	4.4	2.5	2.4	2.2	1.1	0.9	-
3/4	6.4	3.7	3.5	3.2	1.6	1.3	-
1	8.4	4.8	4.6	4.2	2.1	1.7	-
11/2	12.0	6.9	6.6	6.0	3.0	2.4	-
2	13.6	7.8	7.5	6.8	3.4	2.7	-
3	-	11.0	10.6	9.6	4.8	3.9	-
5	-	15.5	16.7	15.2	7.6	6.1	-
71/2	-	25.3	24.2	22	11	9	
10	-	32.2	30.8	28	14	11	-
15	-	48.3	46.2	42	21	17	-
20	-	62.1	59.4	54	27	22	-
25	-	78.2	74.8	68	34	27	-
30	-	92	88	80	40	32	-
40	-	120	114	104	52	41	-
50	-	150	143	130	65	52	-
60	-	177	169	154	77	62	16
75	-	221	211	192	96	77	20
100	-	285	273	248	124	99	26
125	-	359	343	312	156	125	31
150	-	414	396	360	180	144	37
200	-	552	528	480	240	192	49
250	-	-	-	-	302	242	60
300	-	-	-	-	361	289	72
350	-	-	-	-	414	336	83
400	-	-	-	-	477	382	95
450	-	-	-	-	515	412	103
500	-	-	-	-	590	472	118

Table 430.52 of the NEC° is provided to help select a fuse that will not open while starting a motor and will still provide adequate overcurrent protection. According to this table, the NEC° requires that the ampere rating of an AC motor protected by a time-delay fuse be multiplied by 175%.

Reprinted with permission from NFPA 70 °-2008, the *National Electrical Code* °, Copyright © 2008 National Fire Protection Association, Quincy, MA 02169. This reprinted material is not the complete and official position of the National Fire Protection Association on the referenced subject which is represented only by the standard in its entirety.

Table 430.52 Maximum Rating or Setting of Motor Branch-Circuit Short-Circuit and Ground-Fault Protective Devices

	Percentage of Full-Load Current				
Type of Motor	Nontime Delay Fuse	Dual Element (Time- Delay) Fuse	Instan- taneous Trip Breaker	Inverse Time Breaker	
Single-phase motors	300	175	800	250	
AC polyphase m Squirrel cage - other than Design B energy efficient	otors other tha 300	an wound-ro 175	tor 800	250	
Design B energy efficient	300	175	1100	250	
Synchronous	300	175	800	250	
Wound rotor	150	150	800	150	
Direct current (constant voltage)	150	150	250	150	

Multiplying the motor rating of 96 amperes times 175% results in a fuse size of 168 amperes. Since this is a non-standard fuse size, the next standard fuse size of 175 amperes should be selected.

96 amperes Full-Load Motor Current

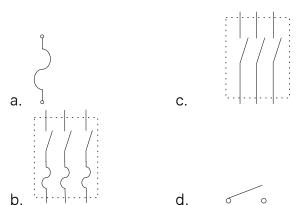
X 175% NEC® Requirement

168 amperes Fuse Rating

Reprinted with permission from NFPA 70 $^{\circ}$ -2008, the *National Electrical Code* $^{\circ}$, Copyright© 2008 National Fire Protection Association, Quincy, MA 02169. This reprinted material is not the complete and official position of the National Fire Protection Association on the referenced subject which is represented only by the standard in its entirety.

Review 6

1.	Select a safety switch when circuit protection is not required.
2.	Select a safety switch when circuit protection is required.
3.	Select a safety switch with a ampere rating, for a non-motor application with a full-load current of 100 amperes.
4.	According to the <i>NEC</i> ®, the ampere rating of a time-delay fuse used with a Design B AC motor should be% of the motor full-load current.

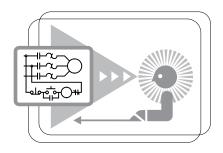

Review Answers

Review 1 1) fusible; 2) 50; 3) a; 4) overloads, short circuits; 5) short circuit; 6) overload; 7) peak let-thru; 8) energy; 9) 240. **Review 2** 1) inverse; 2) half; 3) short; 4) Time-delay; 5) ampere; 6) higher, lower; 7) 200,000. **Review 3** 1) 1; 2) 3R; 3) contacts; 4) two. **Review 4** 1) ampere; 2) short-circuit current withstand; 3) dual; 4) pole; 5) throw. **Review 5** 1) 30, 600; 2) 30, 1200; 3) 600; 4) interlock receptacle; 5) Double throw. **Review 6** 1) non-fusible; 2) fusible; 3) 125; 4) 175.

Final Exam

The final exam is intended to be a learning tool. The book may be used during the exam. A tear-out answer sheet is provided. Please fill out the answer sheet neatly and completely. After completing the test, mail the answer sheet in for grading. A grade of 70% or better is passing. Upon successful completion of the test, a certificate will be issued.

1. The following symbol represents a non-fusible enclosed switch:


- 2. A safety switch combined with fuses in a single enclosure is referred to as a ______ safety switch.
 - a. non-fusible
- c. heavy duty
- b. fusible
- d. general duty
- 3. The *National Electrical Code*® defines "in sight" as visible and not more than _____ feet distant.
 - a. 10
- c. 25
- b. 50
- d. 100
- 4. With an increase of current in a conductor, the conductor's temperature will ______.
 - a. increase
- c. decrease
- b. remain the same d.
- d. decrease sharply

5.	Over	current pro	tection	i is cov	ered by <i>NEC</i> article
	a. b.	110 410	c. d.	780 240	
6.				•	specifies the amount of actor can carry.
	a. b.	impedano resistanco		c. d.	inductance ampacity
7.	the n	_			ntinuous load is a load where ected to continue for
	a. b.	2 6		c. d.	3 10
8.	Fuse	s have a/ar	າ		_ time-current characteristic.
	a. b.	direct proportion	nal	c. d.	indirect inverse
9.	Class		ave an	interru	pting rating of
	a. b.	10,000 50,000		c. d.	100,000 200,000
10.	prima enclo	arily to prov	vide pro ment ir	otection n location	is intended for indoor use n against contact with the ons where unusual service
	a. b.	1 3R		c. d.	4 12
11.	use p falling forma provi	orimarily to g rain and s ation of ice	provid sleet are on the on aga	e a deç nd mus e enclos inst co	es are intended for outdoor gree of protection against t remain undamaged by the sure. They are not intended to nditions such as dust, interna g.
	a. b.	1 3R		c. d.	4 12

12.		e maximum ampere rating for a Siemens general duty ety switch is amperes.					
	a. b.	200 400	c. d.	600 4000			
13.	safet		_	for a Siemens heavy duty Ited pressure switch is			
	a. b.	200 1200	c. d.	2000 4000			
14.		t-circuit current w		witches have a maximum d rating of			
	a. b.	10,000 100,000	c. d.	50,000 200,000			
15.	5. The maximum horsepower of a Siemens 240 VAC head duty switch is HP.						
	a. b.	60 150	c. d.	250 500			
16.	 A Siemens safety switch catalog number beginning w GF3 indicates a safety switch. 						
	a. b. c. d.	general duty, fus general duty, fus general duty, no general duty, no	sible, s sible, th n-fusib	ingle pole nree pole le, single pole			
17.				y switches provide a cord rtable equipment.			
	a. b. c. d.	interlocked rece double throw bolted pressure plug fuse	ptacle				

18.	Siemens VBII 30-200 amp safety switches use a switch action.					
	a. b.	double break knife blade	c. d.	single break triple break		
19.		n selecting a non-fusible or circuit, which of follow ed?				
	a. b.	system voltage full-load amperes	c. d.	fuse class number of poles		
20.		switches are in r of two power sources ther of two loads.		I to connect a load to onnect a power source		
	a. b. c.	Interlock receptacle Plug fuse Bolted pressure Double throw				

quickSTEP Online Courses

quickSTEP online courses are available at http://www.sea.siemens.com/step/default.html.

The quickSTEP training site is divided into three sections: Courses, Downloads, and a Glossary. Online courses include reviews, a final exam, the ability to print a certificate of completion, and the opportunity to register in the Sales & Distributor training database to maintain a record of your accomplishments.

From this site the complete text of all STEP courses can be downloaded in PDF format. These files contain the most recent changes and updates to the STEP courses.

A unique feature of the quickSTEP site is our pictorial glossary. The pictorial glossary can be accessed from anywhere within a quickSTEP course. This enables the student to look up an unfamiliar word without leaving the current work area.

