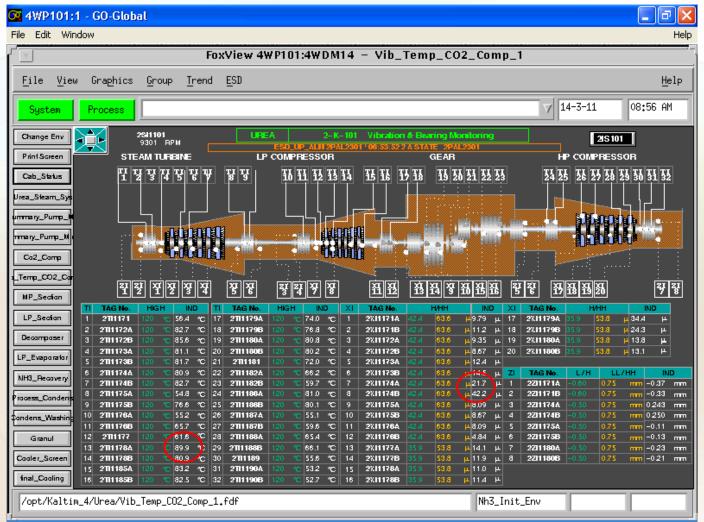


Bearing Maintenance

Working Efficiently and Accurately

Do step bearing Maintenance:

- Operating condition data
- Disassembly Bearing
- Inspection parts/ component, Measurement
 (Repair, change parts/ component or Reused)
- Reassembly
- Report/ Records



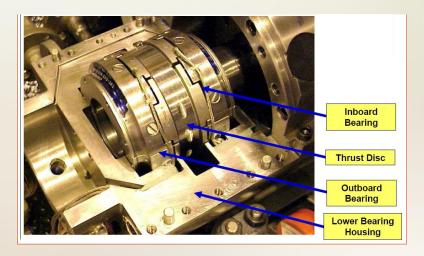
Operating Condition Data

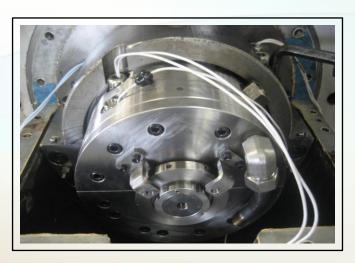
Before to dismantle bearings, knowing data during the operation. they include: temperature and viberasi Bearing.

Operating Condition Data

Disassembly Bearing

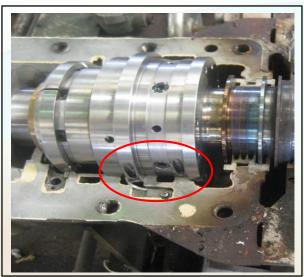
Remove cable bearing and probe viberasi (instrumentation)

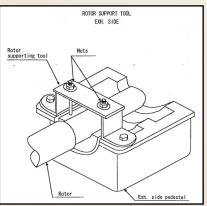

Disassembly Bearing


 Remove hub coupling and chek axial floating clearance

Remove cover / housing bearing

Disassembly Bearing


Remove cable pad journal and thrust bearing

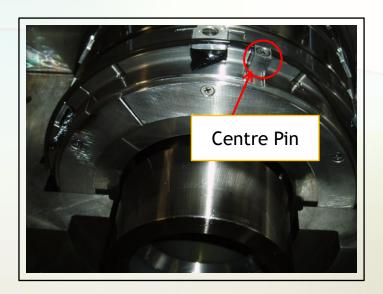


Contact roller bearing Maintenance

Disassembly Bearing

- Remove half journal bearing unit
 - > Lift rotor about 0.20 mm by special tool
 - > Turn bearing half position (until ellen bolt can be)

Disassembly Bearing

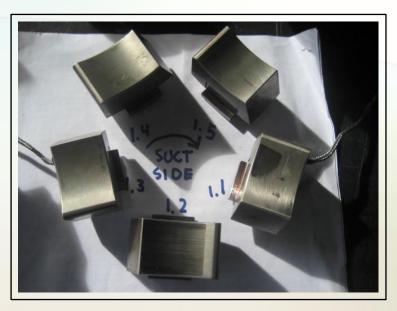


Remove half thrust pad bearing unit and make sure centre pin in into position.

Disassembly Bearing

- **Take out pad thrust bearing.**
 - > be sure position Active and Inactive pad

Disassembly Bearing



- **❖** Take out pad journal bearing.
 - > don't mistake position of pad journal bearing

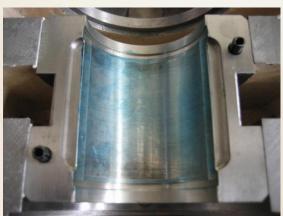
Inspection and measurement

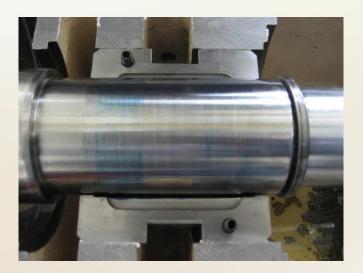
- Clean pads journal and thrust bearing
 - > take mark every pads

Inspection and measurement

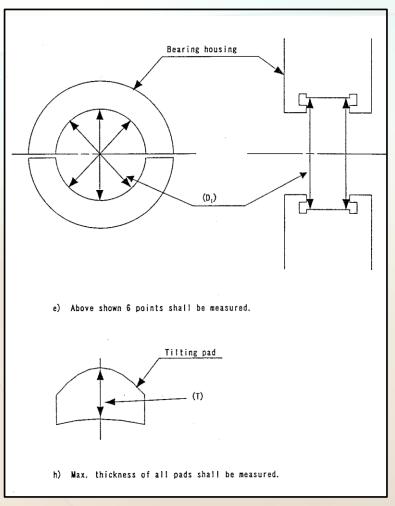
Pr. pdd

❖ Penetrant test





Inspection and measurement


Penetrant test and blue contact surface

Inspection and measurement

❖ Measurement Radial clearance:

- > Housing
- > Pads
- > Shaft diameter

Inspection and measurement

2. Journal bearing

(1) Measurement procedure (please refer to Fig. "B")

- a. Remove top half of bearing housing and then remove the rotor in accordance with the rotor lifting procedure.
- b. Remove the pads from bearing housing.
- c. Clean the surface of the pads and rotor journal and inner surface of bearing housing.
- d. Assemble the top and bottom bearing housing and tigthen the fixing bolts.
- e. Six(6) points of the inner diameter of bearing housing shall be measured. (D11, D12....., D16) (see Fig. "B")
- f. Confirm above Dil,....,DI6 are within allowable value.
- g. Adopt mean value of above D11,...,D16 as inner diameter of bearing housing.

D1=(D11+D12+....+D16)/6

- h. Measure the maximum thickness of all 5 pads (T1,...,T5). Confirm all of them are within allowable value. (see Fig. "B")
- j. Adopt mean value of T1,....,T5 as a thickness of pads (T). T=(T1+T2+....+T5)/5
- k. Measure the outer diameter of rotor journal (D).
- Total clearance of bearing is determined by using the following formula.
 Total clearance C=(D1-2T)-D

CLEARANCE TABLE OF BEARINGS (UNIT = mm)

Bearing	Housing inner diameter (DI)	Thickness of pads (T)	Total clearance (C)
Gov. side Design	φ180 +0.07	30 -0.01	0.22 ~0.29
···	+0.05	-0.03	
Max. allow.	-	-	0.435
Exh. side Design	φ180 +0.07	30 -0.01	0.22 -0.29
	+0.05	-0.03	
Max. allow.	-	-	0.435

Measurement Radial clearance:

ID Bearing housing - { (2 X AVG Pad thickness) + OD shaft

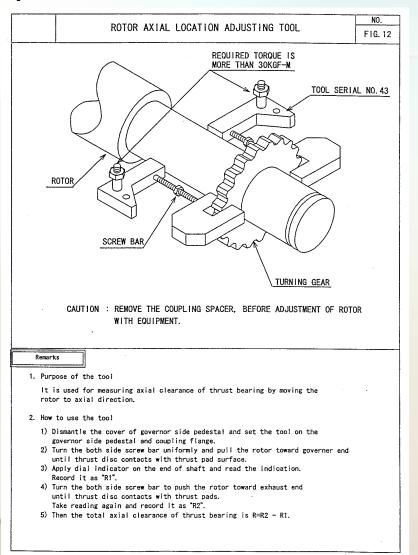
2. Journal bearing

(1) Measurement procedure (please refer to Fig. "B")

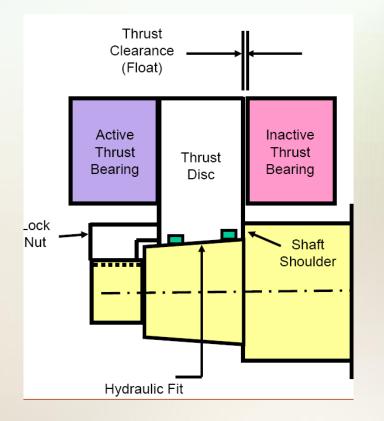
- a. Remove top half of bearing housing and then remove the rotor in accordance with the rotor lifting procedure.
- b. Remove the pads from bearing housing.
- c. Clean the surface of the pads and rotor journal and inner surface of bearing housing.
- d. Assemble the top and bottom bearing housing and tigthen the fixing boits.
- e. Six(6) points of the inner diameter of bearing housing shall be measured. (D11, D12....., D16) (see Fig. "B")
- f. Confirm above Dil,....,DI6 are within allowable value.
- g. Adopt mean value of above DI1,...,DI6 as inner diameter of bearing housing.

D!=(D!1+D!2+....+D!6)/6

- h. Measure the maximum thickness of all 5 pads (T1,...,T5).


 Confirm all of them are within allowable value. (see Fig. "B")
- j. Adopt mean value of T1,..., T5 as a thickness of pads (T). T=(T1+T2+...+T5)/5
- k. Measure the outer diameter of rotor journal (D).
- 1. Total clearance of bearing is determined by using the following formula. Total clearance C=(D1-2T)-D

CLEARANCE TABLE OF BEARINGS (UNIT = mm)


Bearing	Housing inner diameter (DI)	Thickness of pads (T)	Total clearance (C)
Gov. side Design	φ 180 +0.07 +0.05	30 -0.01 -0.03	0.22 -0.29
Max. allow.	-	_	0.435
Exh. side Design	φ 180 +0.07 +0.05	30 -0.01 -0.03	0.22 -0.29
Max. allow.	_	_	0.435

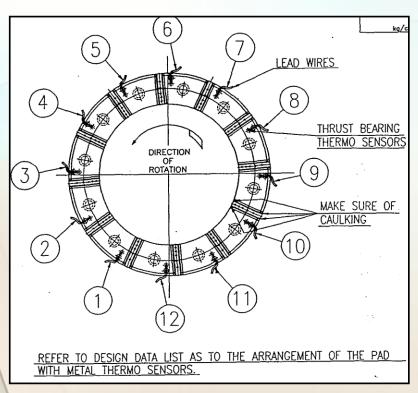
Inspection and measurement

Measurement Thrust clearance:

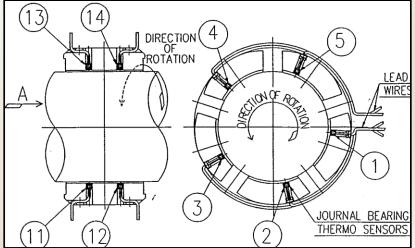
Remarks

1. Purpose of the tool

It is used for measuring axial clearance of thrust bearing by moving the rotor to axial direction.


2. How to use the too!

- 1) Dismantle the cover of governor side pedestal and set the tool on the governor side pedestal and coupling flange.
- 2) Turn the both side screw bar uniformly and pull the rotor toward governor end until thrust disc contacts with thrust pad surface.
- 3) Apply dial indicator on the end of shaft and read the indication. Record it as "R1".
- 4) Turn the both side screw bar to push the rotor toward exhaust end until thrust disc contacts with thrust pads.


 Take reading again and record it as "R2".
- 5) Then the total axial clearance of thrust bearing is R=R2 R1.

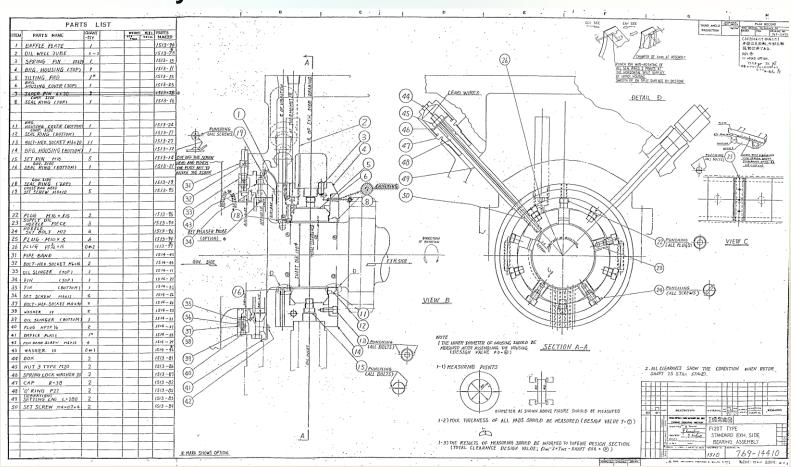
Inspection and measurement

❖ Measurement Thermo sensor

Reassembly

Reassembly Journal Bearing

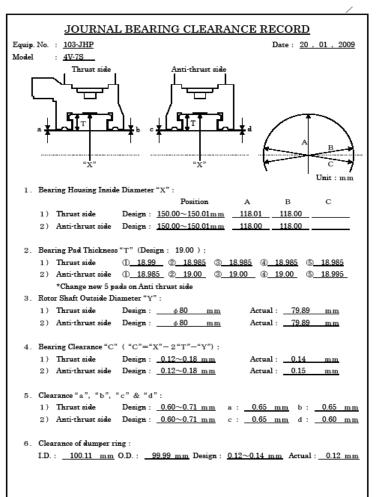
- Clean all part of Journal bearing and shaft area.
- On both suction and discharge assemble Journal bearing. Place
 housing lower half and upper half on a flat area and insert pads into
 housing and secure them by set bolt.
- Fit in lower half bearing assembly on shaft, apply clean oil on the surface and lift shaft about 0.20 mm than push in lower half bearing assembly be carefully cable pad bearing damage.
- Apply clean oil on the shaft and Fit in upper half bearing assembly, instal pin and ellen bolt between lower and upper half bearing assembly, then lightly tighten them.
- Lift shaft about 0.20 mm then turn of unit bearing assembly confirm that mark between Pin and Cover bearing.
- After Journal bearing completely assembled make sure that Rotor turn smoothly and chek cable thermo sensor good condition.


Assembly

Reassembly Thrust Bearing

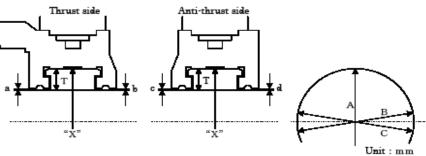
- Clean all part of Thrust bearing, shaft area and Thrust dish.
- On both Active and Inactive assemble Thrust bearing. Place housing lower half and upper half on a flat area and insert pads into housing and secure them by set bolt.
- Fit in lower Active and Inactive half bearing assembly on shaft, apply clean on the surface pads and Thrust disc then push the rotor to beside until bearing assembly fit in shaft, be carefully cable pad bearing damage.
- Fit in upper Active and Inactive half bearing assembled on shaft and insert ellen bolt / set bolt then lightly tighten them.
- Turn thrust bearing assembled and confirm mark, make sure Pin stay in that position (centre with cover bearing)
- Install cover bearing and chek floating axial clearance.

Reassembly


Report / Record

		INSPECTION METHOD		RESULT		
PARTS NAME	INSPECTION ITEMS			ACCEPTE D	REPLACE D	REMARKS
Thrust bearing	Clearance	OMeasure	ORecord	0	0	
(Active side)	Surface contact(Scratch, Trace, Seizing, Melting etc.)	OVisual	ORecord	0	0	
	Abration, Crack	OVisualOP/	ΓORecord	0	0	
	Fretting corrosion on back surface	OVisual	ORecord	0	0	
	Rust, Corrosion	OVisual	ORecord	0	0	
	Thickness of shoe	OMeasure	ORecord	0	0	
(Inactive side)	Surface contact(Scratch, Trace, Seizing, Melting etc.)	OVisual	ORecord	0	0	
	Abration, Crack	OVisualOP/	ΓORecord	0	0	
	Fretting corrosion on back surface	OVisual	ORecord	0	0	
	Rust, Corrosion	OVisual	ORecord	0	0	
	Thickness of shoe	OMeasure	ORecord	0	0	
Journal bearing	Surface contact(Scratch, Trace, Seizing, Melting etc.)	OVisual	ORecord	0	0	
	Abration, Crack	OVisualOP/	ΓORecord	0	0	
	Fretting corrosion on back surface	OVisual	ORecord	0	0	
	Rust, Corrosion	OVisual	ORecord	0	0	
	Pad thickness	OMeasure	ORecord	0	0	Pad type only
	Crush amount	OMeasure	ORecord	0	0	Sleeve type only
	Clearance	OMeasure	ORecord	0	0	
Bearing housing	Deformation and defect on surface	OVisual		0	0	
	Fitness of housing (To casing)	OVisual OMeasure	ORecord	0	0	
	Rust, Corrosion	OVisual	ORecord	0	0	
Bearing temperature detector	Short circuit, Insulation fault	OVisual OC	rmmeter	0	0	

Report / Record


Sheet No. (C)

JOURNAL BEARING CLEARANCE RECORD

Equip. No. : 103-JHP

Date: 20 . 01 . 2009

Model : <u>4V-7S</u>

Bearing Housing Inside Diameter "X":

Position

В

С

1) Thrust side

Design: 150.00~150.01mm 118.01

3.01 118.00

118.00 118.00

2. Bearing Pad Thickness "T" (Design: 19.00):

Anti-thrust side Design: <u>150.00~150.01mm</u>

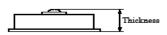
- 1) Thrust side ① 18.99 ② 18.985 ③ 18.985 ④ 18.985 ⑤ 18.985
- 2) Anti-thrust side ① 18.985 ② 19.00 ③ 19.00 ④ 19.00 ⑤ 18.995

 *Change new 5 pads on Anti thrust side
- 3. Rotor Shaft Outside Diameter "Y":
 - 1) Thrust side Design: <u>φ80 mm</u> Actual: <u>79.89 mm</u>
 - 2) Anti-thrust side Design: <u>680 mm</u> Actual: <u>79.89 mr</u>
- 4. Bearing Clearance "C" ("C"="X"-2"T"-"Y") :
 - 1) Thrust side Design: <u>0.12~0.18 mm</u> Actual: <u>0.14 mm</u> 2) Anti-thrust side Design: <u>0.12~0.18 mm</u> Actual: <u>0.15 mm</u>
- Clearance "a", "b", "c" & "d":
 - 1) Thrust side Design: <u>0.60~0.71 mm</u> a: <u>0.65 mm</u> b: <u>0.65 mm</u>
 - 2) Anti-thrust side Design: <u>0.60~0.71 mm</u> c: <u>0.65 mm</u> d: <u>0.60 mm</u>
- Clearance of dumper ring :
 - I.D. : 100.11 mm O.D. : 99.99 mm Design : 0.12~0.14 mm Actual : 0.12 mm

Report / Record

THRUST SHOE THICKNESS RECORD

Equip. No. : 103-JHP Date: 21 , 01 , 2009


Model : <u>4V-7S</u>

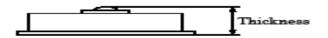
1. Active side thrust bearing shoe:

Thickness

		Unit: mm
No.	Last overhaul ()	This time O/H
1		25.36
2		25.36
3		25.36
4		25.36
5		25.35
6		25.36

2. Inactive side thrust bearing shoe:

		Unit: mm
No.	Last overhaul ()	This time O/H
1		25.37
2		25.37
3		25.37
4		25.365
5		25.37
6		25.37


Sheet No. (C)

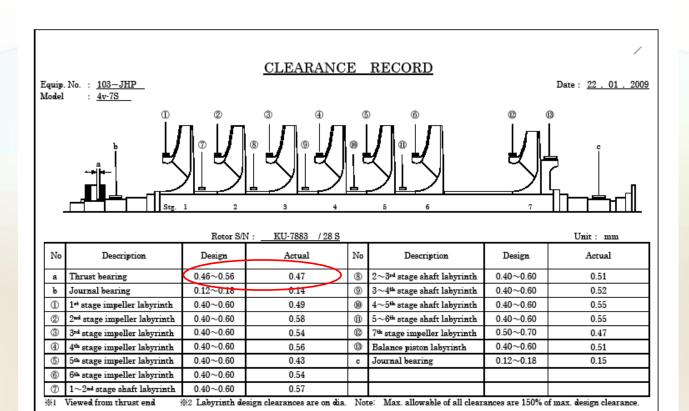
THRUST SHOE THICKNESS RECORD

Equip. No. : 103-JHP Date: 21 . 01 . 2009

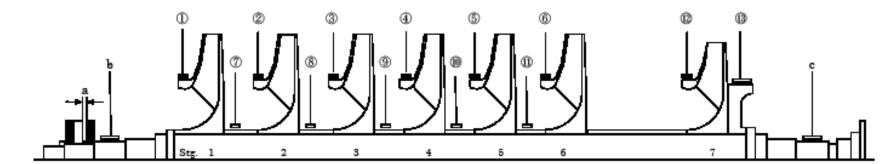
Model : <u>4V-7S</u>

1. Active side thrust bearing shoe:

	Unit: mm
Last overhaul ()	This time O/H
	25.36
	25.36
	25.36
	25.36
	25.35
	25.36
	Last overhaul ()


2. Inactive side thrust bearing shoe:

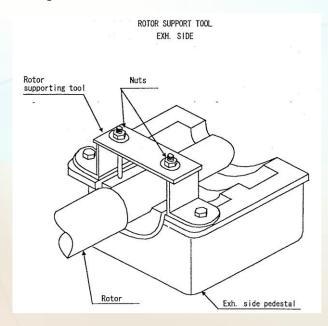
		Unit: mm
No.	Last overhaul ()	This time O/H
1		25.37
2		25.37
3		25.37
4		25.365
5		25.37
6		25.37



Report / Record

CLEARANCE RECORD

Equip. No. : 103-JHP Date : 22 . 01 . 2009


Rotor S/N: Unit: mm KU-7883 / 28 S Description Description Νo Design Actual Νo Design Actual Thrust bearing $0.46 \sim 0.56$ $2\sim3^{\rm rd}$ stage shaft labyrinth $0.40 \sim 0.60$ 0.51 0.47Journal bearing $0.12 \sim 0.18$ 0.14 $3\sim4^{th}$ stage shaft labyrinth $0.40 \sim 0.60$ 0.52 1st stage impeller labyrinth $0.40 \sim 0.60$ 0.49 4~5th stage shaft labyrinth $0.40 \sim 0.60$ 0.55 2nd stage impeller labyrinth $0.40 \sim 0.60$ 0.58 $5\sim6^{th}$ stage shaft labyrinth $0.40 \sim 0.60$ 0.55 $0.40 \sim 0.60$ $0.50 \sim 0.70$ 3rd stage impeller labyrinth 0.547th stage impeller labyrinth 0.47 $0.40 \sim 0.60$ $0.40 \sim 0.60$ 4th stage impeller labyrinth 0.56 Balance piston labyrinth 0.51 5th stage impeller labyrinth $0.40 \sim 0.60$ 0.43 Journal bearing $0.12 \sim 0.18$ 0.15 6th stage impeller labyrinth $0.40 \sim 0.60$ 0.541~2nd stage shaft labyrinth $0.40 \sim 0.60$ 0.57

Model

: 4v-7S

Inspection and measurement

2. Journal bearing

(1) Measurement procedure (please refer to Fig. "B")

- Remove top half of bearing housing and then remove the rotor in accordance with the rotor lifting procedure.
- b. Remove the pads from bearing housing.
- c. Clean the surface of the pads and rotor journal and inner surface of bearing housing.
- d. Assemble the top and bottom bearing housing and tigthen the fixing boits.
- e. Six(6) points of the inner diameter of bearing housing shall be measured. (D11, D12....., D16) (see Fig. "B")
- f. Confirm above Dil,....,DI6 are within allowable value.
- g. Adopt mean value of above DI1,...,DI6 as inner diameter of bearing housing.

D1=(D11+D12+....+D16)/6

- h. Measure the maximum thickness of all 5 pads (T1,....,T5).

 Confirm all of them are within allowable value. (see Fig. "B")
- j. Adopt mean value of T1,....,T5 as a thickness of pads (T). $T = (T1 + T2 + \ldots + T5)/5$
- k. Measure the outer diameter of rotor journal (D).
- Total clearance of bearing is determined by using the following formula.
 Total clearance C=(D1-2T)-D

CLEARANCE TABLE OF BEARINGS (UNIT = mm)

Bearing	Housing inner diameter (DI)	Thickness of pads (T)	Total clearance (C)
Gov. side Design	φ180 +0.07	30 -0.01	0.22 -0.29
	+0.05	-0.03	
Max. allow.	-	-	0.435
Exh. side Design	φ 180 +0.07	30 -0.01	0.22 -0.29
	+0.05	-0.03	
Max. allow.	-	-	0.435

Thank you - Terimakasih