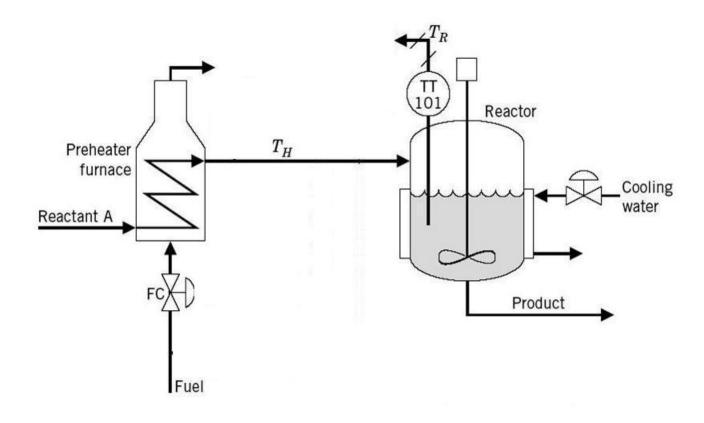
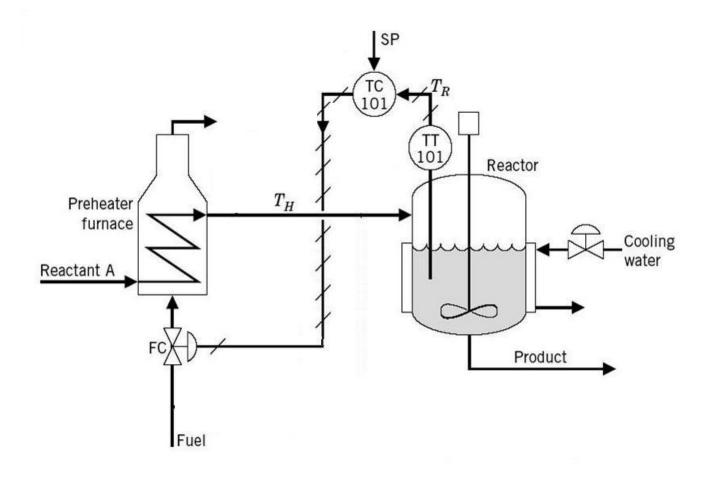
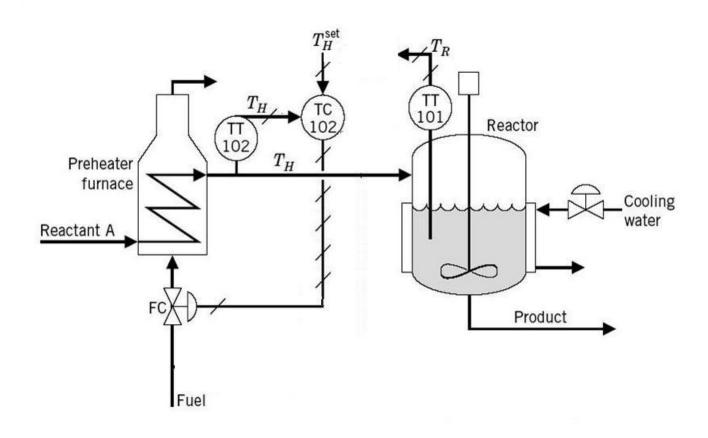
Enhanced PID Control: Cascade Control

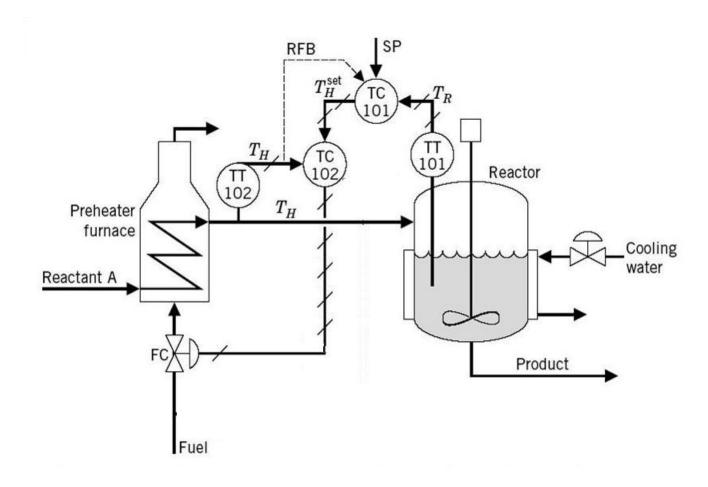

Cheng-Liang Chen PSE

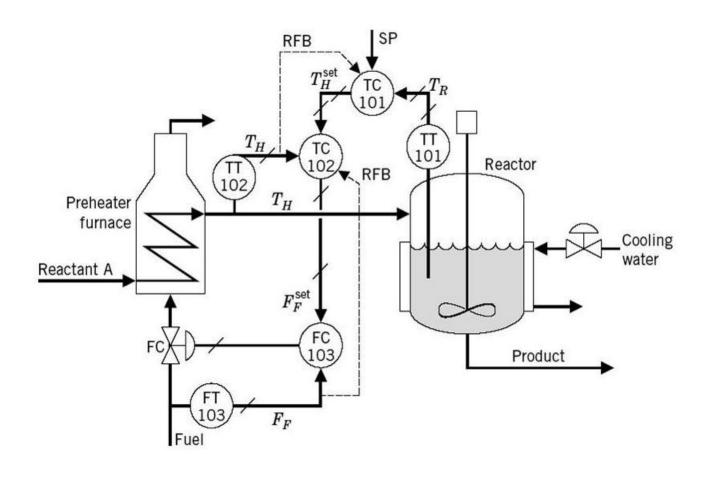
Department of Chemical Engineering National TAIWAN University


Enhanced PID Control: Cascade Control

- > What is Cascade Control?
- ➤ Motivation of using CC Control
 Simple feedback ← CC Control
- ➤ Major advantages of using **CC** Control
- > When to Use CC Control
- > Selection of **CC** Controller modes
- > Tuning of **CC** Controllers
- > Applications


A Preheater/Reactor Process The Control Target


A Preheater/Reactor Process Simple Feedback Control


A Preheater/Reactor Process Another Feedback Control

A Preheater/Reactor Process Two-Level Cascade Control

A Preheater/Reactor Process Three-Level Cascade Control

A Preheater/Reactor Process Response of Feedback and 2-L Cascade

 -25^{o} C change in feed temperature to heater

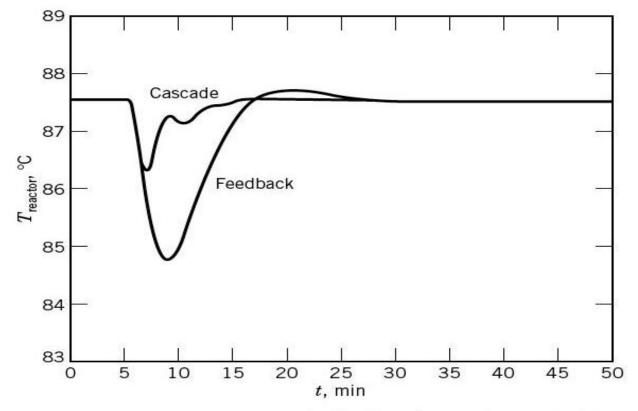


Figure 9-1.3 Response of feedback and cascade control to a -25° C change in feed temperature to heater.

A Preheater/Reactor Process Stability Considerations

> Process transfer functions:

$$K_V = 3 \ {
m gpm}/\%{
m CO}$$
 $au_V = 0.2 \ {
m min}$ $K_1 = 1 \ {
m C/gpm}$ $au_1 = 3 \ {
m min}$ $K_3 = 0.8 \ {
m C/C}$ $au_2 = 1 \ {
m min}$ $au_4 = 4 \ {
m min}$ $au_5 = 1 \ {
m min}$ $K_{T_1} = 0.5 \ \%{
m TO/C}$ $K_{T_2} = 0.5 \ \%{
m TO/C}$

Simple Feedback:

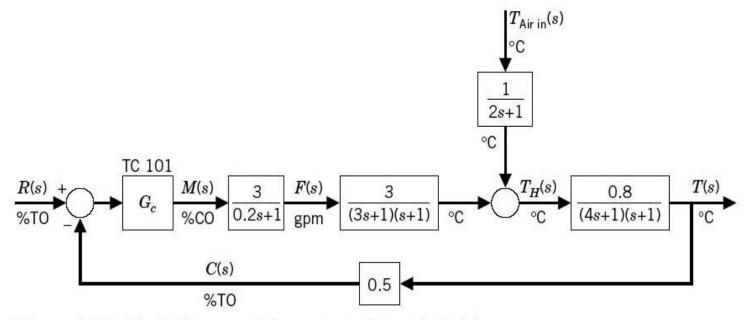


Figure 9-2.1 Block diagram of the process shown in 9-1.1.

Char. Eq.:
$$1 + \frac{1.2G_{c1}}{(0.2s+1)(3s+1)(s+1)(s+1)(s+1)} = 0$$

 $\Rightarrow K_{cu} = 4.33 \, \frac{\% \text{CO}}{\% \text{TO}}, \quad \omega_u = 0.507 \, \frac{\text{rad}}{\text{min}}$

2-L Cascade:

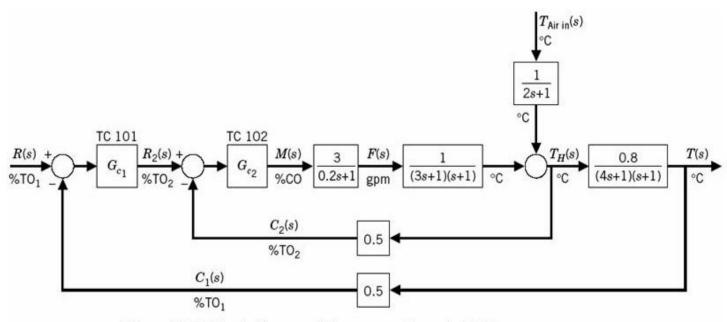


Figure 9-2.2 Block diagram of the process shown in 9-1.2.

Inner:
$$1 + \frac{1.5G_{c2}}{(0.2s+1)(3s+1)(s+1)} = 0$$

 $\Rightarrow K_{cu_2} = 17.06 \frac{\% \text{CO}_2}{\% \text{TO}_2} \Rightarrow K_{c_2} = 0.5K_{cu_2} = 8.53 \frac{\% \text{CO}_2}{\% \text{TO}_2}$

> Summary: ultimate data for FB and cascade controls

Simple FB:
$$K_{cu_1} = 4.33 \ \% \text{CO}/\% \text{TO}$$
 $\omega_u = 0.507 \ 1/\text{min}$

Cascade: $K_{cu_2} = 17.06 \ \% \text{CO}/\% \text{TO}$
 $\Rightarrow K_{C_2} = 8.53 \ \% \text{CO}/\% \text{TO}$
 $\Rightarrow K_{cu_1} = 7.2 \ \% \text{CO}/\% \text{TO}$
 $\omega_u = 1.54 \ 1/\text{min}$

Conclusion:

Cascade makes overall loop more stable and faster responding (TO: Transmitter Output CO: Controller Output)

Major Advantages of Using CC Control

- Any disturbances that affect slave variable are detected and compensated by slave controller BEFORE they affect primary variable
- Controllability of outside loop is improved because inside loop speeds up response between valve and slave variable
- Nonlinearities of process in inner loop are handled by that loop and removed from the more important outer loop

When to Use CC Control

- > When the **three advantages** result in significant improvement in control performance
- ➤ Use **CC** control only when inner loop responding **faster** than outer loop

> NOTE:

CC control requires additional sensor and controller

Remarks of Using CC Control

> If inner loop is NOT faster than outer loop:

- Disturbances into inner loop will not be eliminated fast enough to avoid affecting primary variable
- Speeding up of inner loop would decrease controllability of overall loop because:
 - Ratio of dead time to time constant would increase
 - Nonlinearities would become a part of slower loop
- Sensor of the inner loop should be fast and reliable

Integral mode of master controller will compensate for errors in measurement of slave variable

- ⇒ repeatability is more important than accuracy for inner loop sensor
- CC control would NOT be able to improve performance of loops when:
 - These loops are already very controllable
 - These loops do not need tight control (averaging level control)

Selection of Cascade Controller Modes Master Controller

- Master controller has the same function as single feedback controller
- > Selection of modes for master controller should follow the same guidelines for single controller

Proportional Mode in Slave Controller

- \triangleright Slave controller must have proportional mode, act on error signal
- \succ Slave controller should follow setpoint changes as quickly as possible with a small overshoot and decay ratio
- Slave controller should transmit changes in master controller output (slave setpoint) to final control element at least as fast as if it is not there
- > Slave controller should transmit changes in its setpoint to its output as quickly as possible and amplify them
- \triangleright P control mode: $K_c \ge 1$ if stability permits it
 - ⇒ Changes in master controller output result in higher immediate changes in final control element than when a single feedback loop is used
 - \Rightarrow Faster response of master loop

Integral Mode in Slave Controller

- > Adding I mode results in a reduction of proportional gain
- I mode is not needed in slave controller to eliminate offset (I mode of master controller can adjust setpoint of slave controller to compensate for offset)
- > IF slave loop is fast and subject to large disturbances
 - ⇒ Offset in slave controller would require corrective action by master controller
 - ⇒ A deviation of primary CV from its setpoint
- ➤ A fast-acting I mode on slave controller would eliminate the need for corrective action from master controller
- > Integral mode should not be used in these slave loops:
 - Gain is limited by stability
 - Disturbances into inner loop do not cause large offsets in secondary CV

Derivative Mode in Slave Controller

- > Slave controller does not require derivative mode when inner loop is fast and very controllable
- > D mode in slave controller is usually not suggested:
 - \Rightarrow PID + PID \Rightarrow too many tuning variables
 - Undesirable to put two derivative units in series
- Derivative of slave controller should act on process variable instead of error
- Derivative unit could be used to compensate for sensor lag or loop dead time
- > Use derivative unit to allow for a higher slave controller gain with less overshoot and low decay ratio

Tuning of Cascade Controllers General Guidelines

- > Tuning cascade control system: from inside out
 - Tune innermost loop first, then the loop around it
 - Inner loop is part of the process for the outer loop
- ➤ A loop must be tuned tighter and faster than the loop around it Otherwise, setpoint of slave loop would vary more than its measured variable ⇒ poorer control of master variable
- ightharpoonup Slave variable should follow its setpoint as quickly as possible with little overshoot (5%) and oscillations
 - $\Rightarrow 1/4$ decay ratio response is not recommended (overshoot: 50%)
 - ⇒ Use IAE tunings for set point changes
- Master loop can be tuned to follow any desired performance criterion

Tuning of Cascade Controllers Slave Flow Loop

- > Flow is the innermost loop in most cascade control system
- > Flow controller in a cascade system must be tuned tight
- > A PI controller can be used:
 - ightharpoonup With a gain greater than 1.0
 - With integral time set equal to time constant of valve actuator

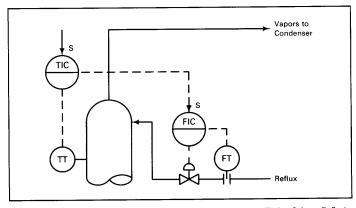


Fig. 7-3. Flow as the Slave Variable in a Cascade Control Scheme (Distillation Column Reflux).

Tuning of Cascade Controllers Slave Temperature Loop

- > Difficulties with using temperature as slave variable:
 - Sensor lag
 - Possibility of reset windup
- > Use derivative mode to compensate for sensor lag:
 - Derivative time equal to sensor time constant
 - Derivative unit act on measured variable to prevent connection of two D units in series

Tuning of Cascade Controllers Slave Temperature Loop: Example CC Control on Jacketed Chemical Reactor

➤ If TIC1 cascades FIC: cooling flow could compensate only for variations in coolant header pressure

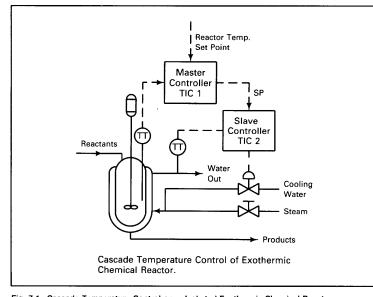


Fig. 7-1. Cascade Temperature Control on a Jacketed Exothermic Chemical Reactor.

- ➤ If TIC1 cascades TIC2:
 - Temperature could compensate for changes in both coolant header pressure and temperature
 - It closes a loop around the jacket
 - ⇒ reducing effective time constant
 - ⇒ making reactor temperature control loop more controllable

Tuning of Cascade Controllers Slave Pressure Loop

- Pressure can be measured easily, fast, and reliably
 - \Rightarrow a good slave variable
- TIC cascades PIC: pressure controls steam condensing temperature

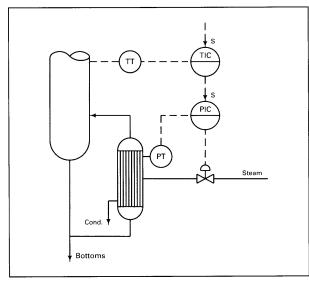


Fig. 7-4. Pressure as the Slave Variable in a Cascade Control Scheme (Distillation Colum

> Pressure might move out of transmitter range and get out of control

Computer Cascade Control

- ➤ Inner loop is usually processed at a higher frequency slave controller has time to respond to a setpoint change from master controller before next change takes place
- > Bumpless (smooth) transfer from manual to automatic:
 - Initializing master controller output to measured slave variable when switch from M to A

Control of H_2/N_2 Ratio in Ammonia Synthesis

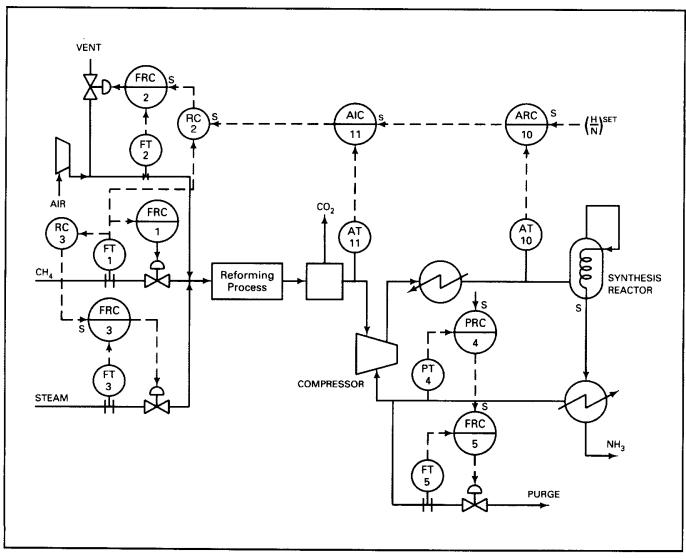


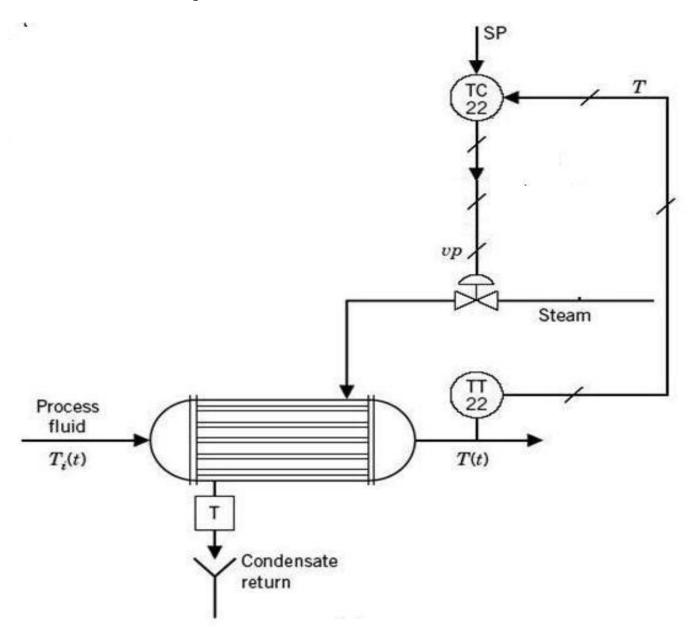
Fig. 7-5. Cascade Control of Reactor Inlet Composition and Pressure in the Ammonia Synthesis Loop.

Control of H_2/N_2 Ratio in Ammonia Synthesis Process Description

- ightharpoonup Air, natural gas (CH_4) , steam are mixed in reforming furnace $(CH_4+2H_2O\longrightarrow CO_2+4H_2)$
- ightharpoonup Removing CO_2 , feeding mixture of H_2 and N_2 to synthesis loop compressor
- $>\sim 15\%$ of H_2 and N_2 mixture is converted to NH_3
 - ⇒ flow of synthesis loop is about six to seven times the flow of fresh feed
- ➤ High recycle-to-fresh ratio
 - ⇒ long time constant for synthesis loop (short for reforming)

Control of H_2/N_2 Ratio in Ammonia Synthesis **Control Algorithm**

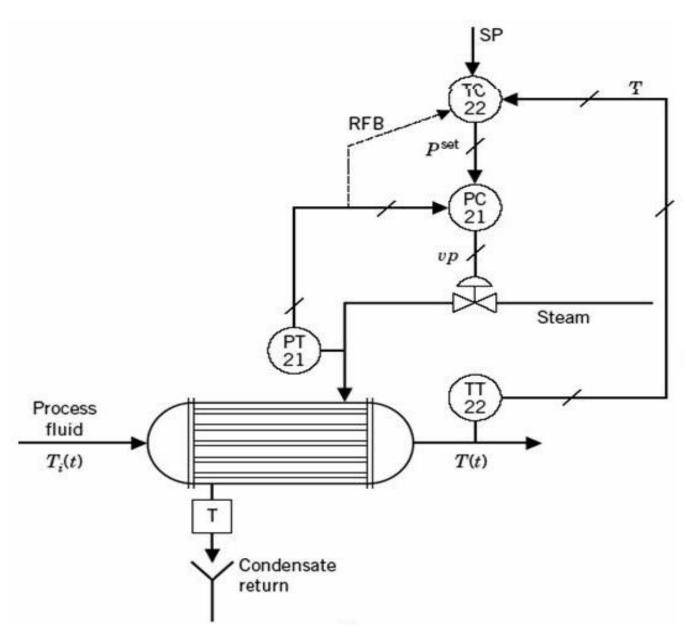
Control objective:


to keep H/N ratio at its optimal value (~ 2.85)

- > Master controller (ARC10) receives composition at reactor inlet from an accurate analyzer AT10
- > ARC10 adjusts set point on slave controller AIC11
- > AIC11 receives composition of fresh feed from a fast and inexpensive analyzer **AT11**
 - (say, thermal conductivity detector)
- > AIC11 adjusts ratio of air to natural gas
- > Ratio controller (RC2) adjusts setpoint of air flow controller (FRC2)
- > Pressure controller (PRC4) cascade purge flow controller (FRC5) to eliminate accumulation of inert gases and excess nitrogen

Control of H_2/N_2 Ratio in Ammonia Synthesis Remarks

- > Slave measurement need not be accurate but must be fast
- > Errors in slave measurement are corrected by integral mode of master controller
- > Measurement of master controller can be slow but must be accurate
- Disturbances in reforming process are handled quickly by slave controller before they have a chance to affect the primary controlled variable
- > Analog pressure controller:
 - Large process time constant (one hour)
 - ⇒ Swinging purge flow all over its range
 - \Rightarrow Operate on manual!
- > Digital pressure controller:
 - $5~{
 m min}$ sampling time, $45~{
 m min}$ integral time is able to maintain pressure at its optimum setpoint


Example: A Heat Exchanger Simple Feedback Control

Example: A Heat Exchanger Cascade Control (I)

Example: A Heat Exchanger Cascade Control (II)

Example: A Jacketed ReactorCascade Temperature Control

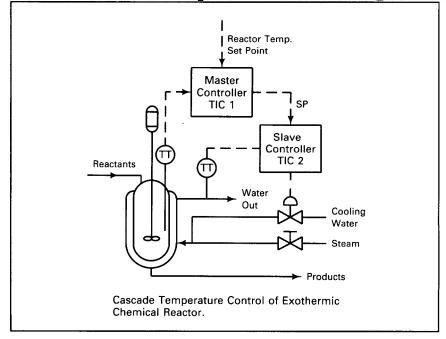


Fig. 7-1. Cascade Temperature Control on a Jacketed Exothermic Chemical Reactor.

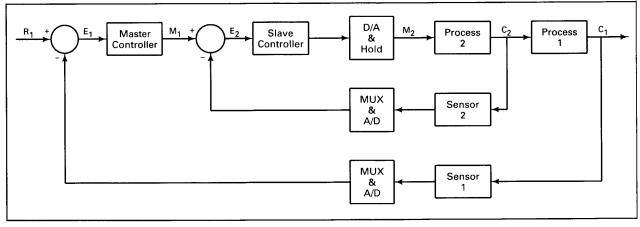


Fig. 7-2. Block Diagram of Cascade Control System.

Example: Multilevel Cascade Control Four Level Cascade Control for A Distillation Tower

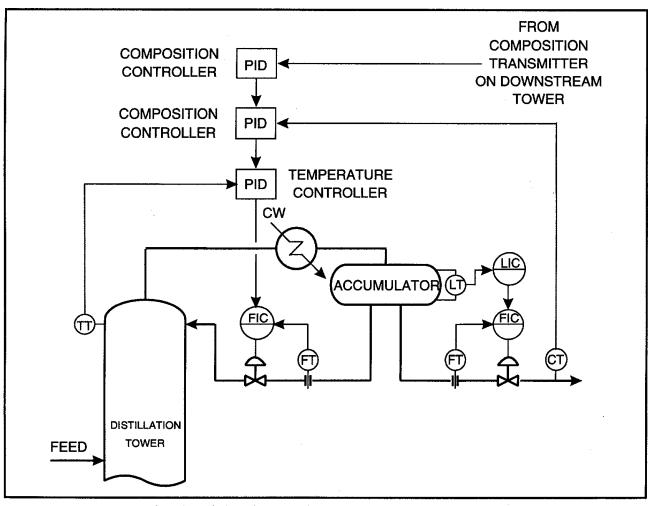
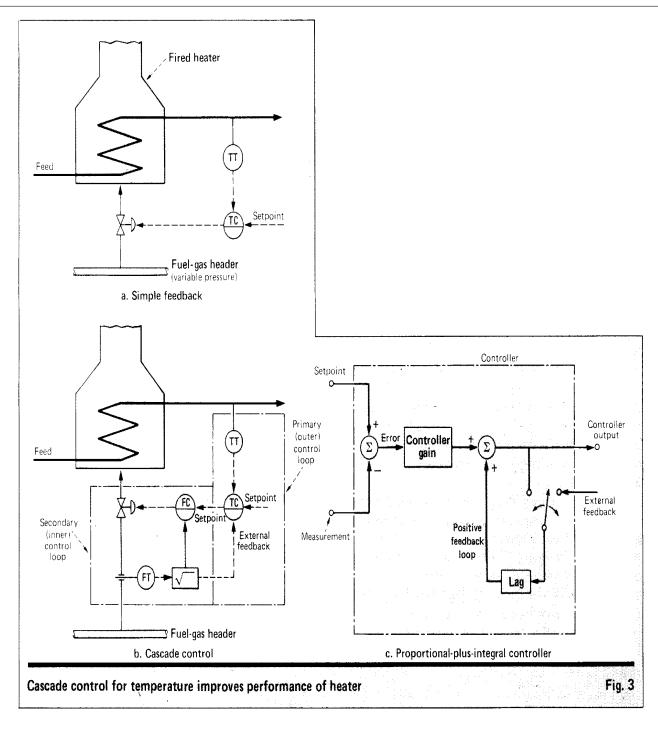


Figure 12-6: Example of Multilevel Cascade Control.

Example: A Heater

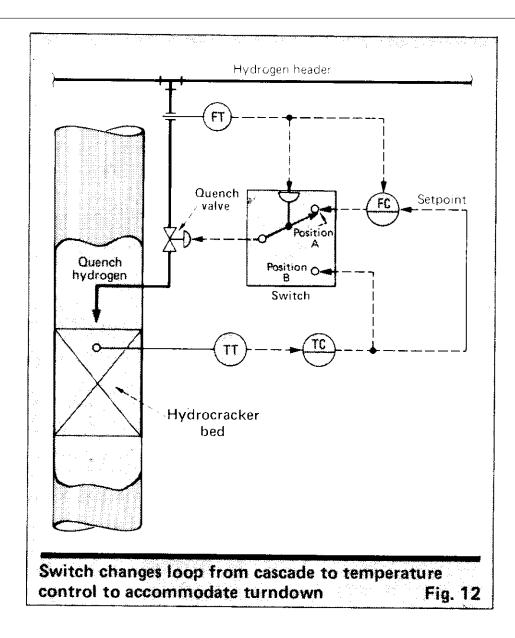
> Simple Feedback:

changes in fuel-gas header pressure (load disturbance)


 \Rightarrow change in fuel-gas flow \Rightarrow temperature upset

> Cascade Control:

- Load disturbances is eliminated by an additional measurement for fuel-gas flow and a fuel-gas FC
- TC manipulates setpoint of the fuel-gas FC


➤ Why external reset feedback ?

- If inner FC is placed in manual
 - ⇒ TC could no longer manipulate fuel-gas flow
 - ⇒ sustained error in TC
 - ⇒ TC saturated if integral action exists
- Integral saturation is prevented by feeding back fuel-gas flow measurement to TC

Example: Switching Scheme on A CC Loop Switching Between Cascade and Single Loops

- ➤ Maintaining hydrogen-bed inlet temperature by manipulating hydrogen quench-valve position
- > Valves are connected to a hydrogen header
 - \Rightarrow manipulation of one hydrogen valve will influence all other hydrogen flows
 - \Rightarrow Cascade Control
- > Useful turndown of flow transmitter is limited
 - ⇒ bypass FC at low hydrogen flows
- > When FC is bypassed, it must track valve position to prevent a bump when being switched back into service
- > Use two TC tunings for two conditions

