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Objectives
• Understand multidimensionality and time dependence of heat transfer, 

and the conditions under which a heat transfer problem can be 
approximated as being one-dimensional.

• Obtain the differential equation of heat conduction in various 
coordinate systems, and simplify it for steady one-dimensional case.

• Identify the thermal conditions on surfaces, and express them 
mathematically as boundary and initial conditions.

• Solve one-dimensional heat conduction problems and obtain the 
temperature distributions within a medium and the heat flux.

• Analyze one-dimensional heat conduction in solids that involve heat 
generation.

• Evaluate heat conduction in solids with temperature-dependent 
thermal conductivity.
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INTRODUCTION
• Although heat transfer and temperature are closely related, they are of a 

different nature.
• Temperature has only magnitude. It is a scalar quantity.
• Heat transfer has direction as well as magnitude. It is a vector quantity.
• We work with a coordinate system and indicate direction with plus or minus 

signs. 
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• The driving force for any form of heat transfer is the temperature 
difference.

• The larger the temperature difference, the larger the rate of heat 
transfer.

• Three prime coordinate systems:
 rectangular T(x, y, z, t)
 cylindrical T(r, φ, z, t)
 spherical T(r, φ, θ, t).
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• Steady implies no change 
with time at any point within 
the medium

• Transient implies variation 
with time or time 
dependence

• In the special case of 
variation with time but not 
with position, the
temperature of the medium 
changes uniformly with 
time. Such heat transfer
systems are called lumped 
systems.

Steady versus Transient Heat Transfer
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Multidimensional Heat Transfer
• Heat transfer problems are also classified as being:

 one-dimensional
 two dimensional
 three-dimensional

• In the most general case, heat transfer through a medium is three-
dimensional.  However, some problems can be classified as two- or 
one-dimensional depending on the relative magnitudes of heat 
transfer rates in different directions and the level of accuracy desired.

• One-dimensional if the temperature in the medium varies in one
direction only and thus heat is transferred in one direction, and the
variation of temperature and thus heat transfer in other directions are
negligible or zero.

• Two-dimensional if the temperature in a medium, in some cases,
varies mainly in two primary directions, and the variation of
temperature in the third direction (and thus heat transfer in that
direction) is negligible.
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• The rate of heat conduction through a medium in a specified direction
(say, in the x-direction) is expressed by Fourier’s law of heat
conduction for one-dimensional heat conduction as:

Heat is conducted in the direction 
of decreasing temperature, and 
thus the temperature gradient is 
negative when heat is conducted 
in the positive x -direction.
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• The heat flux vector at a point P on 
the surface of the figure must be 
perpendicular to the surface, and it 
must point in the direction of 
decreasing temperature

• If n is the normal of the  isothermal 
surface at point P, the rate of heat 
conduction at that point can be 
expressed by Fourier’s law as
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Heat 
Generation

• Examples:
 electrical energy being converted to heat at a rate of I2R,
 fuel elements of nuclear reactors,
 exothermic chemical reactions.

• Heat generation is a volumetric phenomenon.
• The rate of heat generation units : W/m3 or Btu/h·ft3.
• The rate of heat generation in a medium may vary with time as well as 

position within the medium.  
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ONE-DIMENSIONAL HEAT CONDUCTION 
EQUATION
Consider heat conduction through a large plane wall such as the wall of a
house, the glass of a single pane window, the metal plate at the bottom of 
a pressing iron, a cast-iron steam pipe, a cylindrical nuclear fuel element, 
an electrical resistance wire, the wall of a spherical container, or a 
spherical metal ball that is being quenched or tempered. 

Heat conduction in these and many other geometries can be 
approximated as being one-dimensional since heat conduction through 
these geometries is dominant in one direction and negligible in other 
directions. 

Next we develop the onedimensional heat conduction equation in 
rectangular, cylindrical, and spherical coordinates.
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(2-6)

Heat Conduction 
Equation in a Large 
Plane Wall
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Heat 
Conduction 
Equation in a 
Long Cylinder
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Heat Conduction Equation 
in a Sphere
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Combined One-Dimensional Heat Conduction 
Equation

An examination of the one-dimensional transient heat conduction 
equations for the plane wall, cylinder, and sphere reveals that all 
three equations can be expressed in a compact form as

n = 0 for a plane wall
n = 1 for a cylinder 
n = 2 for a sphere 

In the case of a plane wall, it is customary to replace the variable 
r by x. 
This equation can be simplified for steady-state or no heat 
generation cases as described before.
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GENERAL HEAT CONDUCTION EQUATION
In the last section we considered one-dimensional heat conduction 
and assumed heat conduction in other directions to be negligible. 
Most heat transfer problems encountered in practice can be 
approximated as being one-dimensional, and we mostly deal with 
such problems in this text. 
However, this is not always the case, and sometimes we need to 
consider heat transfer in other directions as well. 
In such cases heat conduction is said to be multidimensional, and 
in this section we develop the governing differential equation in 
such systems in rectangular, cylindrical, and spherical coordinate 
systems.
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Rectangular Coordinates
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Cylindrical Coordinates
Relations between the coordinates of a point in rectangular 
and cylindrical coordinate systems:
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Spherical Coordinates
Relations between the coordinates of a point in rectangular 
and spherical coordinate systems:
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BOUNDARY AND INITIAL CONDITIONS
The description of a heat transfer problem in a medium is not complete without a full 
description of the thermal conditions at the bounding surfaces of the medium. 

Boundary conditions: The mathematical expressions of the thermal conditions at the 
boundaries.

The temperature at any 
point on the wall at a 
specified time depends 
on the condition of the 
geometry at the
beginning of the heat 
conduction process. 
Such a condition, which 
is usually specified at 
time t = 0, is called the 
initial condition, which 
is a mathematical
expression for the 
temperature distribution 
of the medium initially.
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• Specified Temperature Boundary Condition
• Specified Heat Flux Boundary Condition
• Convection Boundary Condition
• Radiation Boundary Condition
• Interface Boundary Conditions
• Generalized Boundary Conditions

Boundary Conditions
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1 Specified Temperature Boundary Condition
The temperature of an exposed surface 
can usually be measured directly and
easily. 
Therefore, one of the easiest ways to 
specify the thermal conditions on a surface 
is to specify the temperature. 
For one-dimensional heat transfer through 
a plane wall of thickness L, for example, 
the specified temperature boundary 
conditions can be expressed as

where T1 and T2 are the specified 
temperatures at surfaces at x = 0 and 
x = L, respectively. 
The specified temperatures can be 
constant, which is the case for steady 
heat conduction, or may vary with time.
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2 Specified Heat Flux Boundary Condition

For a plate of thickness L subjected to heat 
flux of 50 W/m2 into the medium from both 
sides, for example, the specified heat flux 
boundary conditions can be expressed as

The heat flux in the positive x-direction anywhere in the 
medium, including the boundaries, can be expressed by
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Special Case: Insulated Boundary

A well-insulated surface can be modeled 
as a surface with a specified heat flux of 
zero. Then the boundary condition on a 
perfectly insulated surface (at x = 0, for 
example) can be expressed as

On an insulated surface, the first 
derivative of temperature with respect
to the space variable (the temperature 
gradient) in the direction normal to the 
insulated surface is zero.
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Another Special Case: Thermal Symmetry
Some heat transfer problems possess thermal 
symmetry as a result of the symmetry in imposed 
thermal conditions. 
For example, the two surfaces of a large hot plate 
of thickness L suspended vertically in air is 
subjected to the same thermal conditions, and thus 
the temperature distribution in one half of the plate 
is the same as that in the other half. 
That is, the heat transfer problem in this plate 
possesses thermal symmetry about the center 
plane at x = L/2. 
Therefore, the center plane can be viewed as an 
insulated surface, and the thermal condition at this 
plane of symmetry can be expressed as

which resembles the insulation or zero heat 
flux boundary condition.
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3 Convection Boundary Condition
For one-dimensional heat transfer in the x-direction 
in a plate of thickness L, the convection boundary 
conditions on both surfaces:
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4 Radiation Boundary Condition

For one-dimensional heat transfer in the 
x-direction in a plate of thickness L, the
radiation boundary conditions on both 
surfaces can be expressed as

Radiation boundary condition on a surface:



32

5 Interface Boundary Conditions
The boundary conditions at an interface 
are based on the requirements that
(1) two bodies in contact must have the 
same temperature at the area of contact
and 
(2) an interface (which is a surface) 
cannot store any energy, and thus the 
heat flux on the two sides of an interface 
must be the same. 
The boundary conditions at the interface 
of two bodies A and B in perfect contact at 
x = x0 can be expressed as
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6 Generalized Boundary Conditions

In general, however, a surface may involve convection, 
radiation, and specified heat flux simultaneously. 
The boundary condition in such cases is again obtained
from a surface energy balance, expressed as
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SOLUTION OF STEADY ONE-DIMENSIONAL
HEAT CONDUCTION PROBLEMS

In this section we will solve a wide range of heat 
conduction problems in rectangular, cylindrical, 
and spherical geometries. 
We will limit our attention to problems that result 
in ordinary differential equations such as the 
steady one-dimensional heat conduction 
problems. We will also assume constant thermal 
conductivity.
The solution procedure for solving heat 
conduction problems can be summarized as
(1) formulate the problem by obtaining the 
applicable differential equation in its simplest 
form and specifying the boundary conditions, 
(2) Obtain the general solution of the differential 
equation, and 
(3) apply the boundary conditions and determine 
the arbitrary constants in the general solution.
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HEAT GENERATION IN A SOLID
Many practical heat transfer applications 
involve the conversion of some form of energy 
into thermal energy in the medium. 
Such mediums are said to involve internal heat 
generation, which manifests itself as a rise in 
temperature throughout the medium. 
Some examples of heat generation are
- resistance heating in wires, 
- exothermic chemical reactions in a solid, and 
- nuclear reactions in nuclear fuel rods 
where electrical, chemical, and nuclear 
energies are converted to heat, respectively.
Heat generation in an electrical wire of outer 
radius ro and length L can be expressed as
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The quantities of major interest in a medium with 
heat generation are the surface temperature Ts
and the maximum temperature Tmax that occurs 
in the medium in steady operation. 
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VARIABLE THERMAL CONDUCTIVITY, k(T)
When the variation of thermal conductivity with 
temperature in a specified temperature interval is 
large, it may be necessary to account for this
variation to minimize the error.
When the variation of thermal conductivity with 
temperature k(T) is known, the average value of 
the thermal conductivity in the temperature range 
between T1 and T2 can be determined from
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β temperature coefficient 
of thermal conductivity.

The average value of thermal conductivity 
in the temperature range T1 to T2 in this
case can be determined from

The average thermal conductivity in this 
case is equal to the thermal conductivity 
value at the average temperature.

The variation in thermal conductivity of a material with 
temperature in the temperature range of interest can often be 
approximated as a linear function and expressed as
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Summary
• Introduction

 Steady versus Transient Heat Transfer
 Multidimensional Heat Transfer
 Heat Generation

• One-Dimensional Heat Conduction Equation 
 Heat Conduction Equation in a Large Plane Wall
 Heat Conduction Equation in a Long Cylinder
 Heat Conduction Equation in a Sphere
 Combined One-Dimensional Heat Conduction Equation

• General Heat Conduction Equation
 Rectangular Coordinates
 Cylindrical Coordinates
 Spherical Coordinates

• Boundary and Initial Conditions 
• Solution of Steady One-Dimensional Heat Conduction Problems
• Heat Generation in a Solid 
• Variable Thermal Conductivity k (T )


	Chapter 2�HEAT CONDUCTION EQUATION
	Objectives
	INTRODUCTION
	Slide Number 4
	Slide Number 5
	Multidimensional Heat Transfer
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Heat Generation
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Summary

