Headspace BOD (HBOD): A Rapid and Practical Alternative to the Conventional BOD Test

Bruce Logan, Booki Min, Dave Kohler

The Pennsylvania State University

Jason Brown

University Area Joint Authority WWTP

(email: blogan@psu.edu; www.engr.psu.edu/ce/enve/logan.htm)

Biochemical Oxygen Demand (BOD) test

- Developed in 1870
- Dilution test to protect river water quality
- The 5-day time arbitrarily chosen (based on the time for the Thames River in England to flow from London to the ocean)
- Large imprecision (± 20%)
- Accuracy impossible to verify

Why replace a BOD test?

- Labor intensive
- Requires 5 days to obtain results
- Lacks accuracy, precision and automation present in most modern laboratory procedures
- Does not takes advantages of advances in laboratory equipment since 1900 (except for using a DO probe)

Why replace a BOD test?... continued

- The FUTURE is online respirometry...
- But... online tests don't always match BOD values-- because they are different tests!
- But... many WWTPs cannot afford expensive online systems
- And... you can't have online respirometers everywhere in the plant

The HBOD test can be used today-- it is easy, fast and compares well to BOD₅ and bCOD tests

Contents

- Introduction : Review HBOD test procedure
- Objectives: Use the HBOD probe, HBOD tests at 2 wastewater treatment plants
- Method: How to run an HBOD test
- Results
- Conclusions

INTRODUCTION

- Respirometric BOD (RBOD) test procedures are now included in *Standard Methods* as a proposed method.
- RBOD tests are routinely used in Europe.
- The Headspace BOD (HBOD) test was developed in 1993 (Logan and Wagenseller; Water Env. Res.)
- HBOD a respirometric test (non-dilution RBOD).
- The HBOD test reaches the same value as a BOD₅ test in just 2 or 3 days.

HBOD Tube

HBOD Tube

HBOD Tube

WW: 8 mg/L of DO

HBOD Tube

Start: 8 mg/L of DO

Finish: 1 mg/L of DO

Maximum
HBOD=7 mg/L

If no air is used in the HBOD test, it is just like a BOD test

HBOD Tube

Air serves as a fixed "reservoir of DO"

Air O2 concentration changes with DO

WW: 8 mg/L of DO

HBOD Tube

Air: 400 mg/L of "DO"

WW: 8 mg/L of DO

14 ml (air)

HBOD Test: START

HBOD Tube

Air: 400 mg/L of "DO"

WW: 8 mg/L of DO

HBOD=0 mg/L

14 ml (air)

HBOD Test: FINISH

HBOD Tube

WW: 4 mg/L of DO

HBOD=204 mg/L

O2 in WW is now reduced to ½ original value

HBOD Test: FINISH

Air: 200 mg/L of "DO"

WW: 4 mg/L of DO

HBOD=204 mg/L

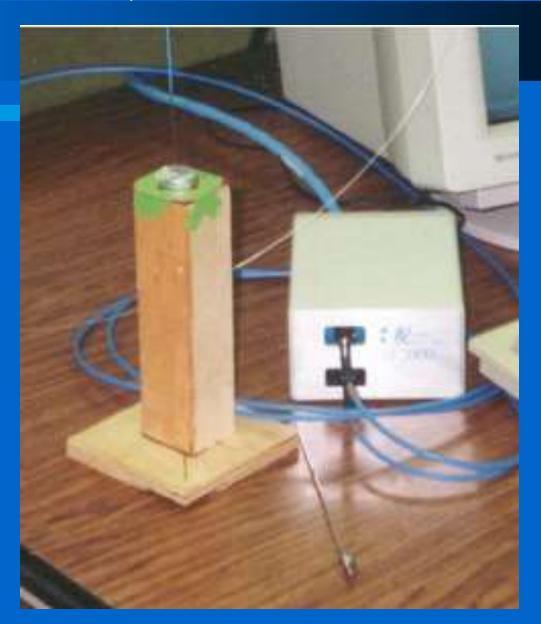
HBOD Tube

O2 is air must also be 1/2 of its starting value

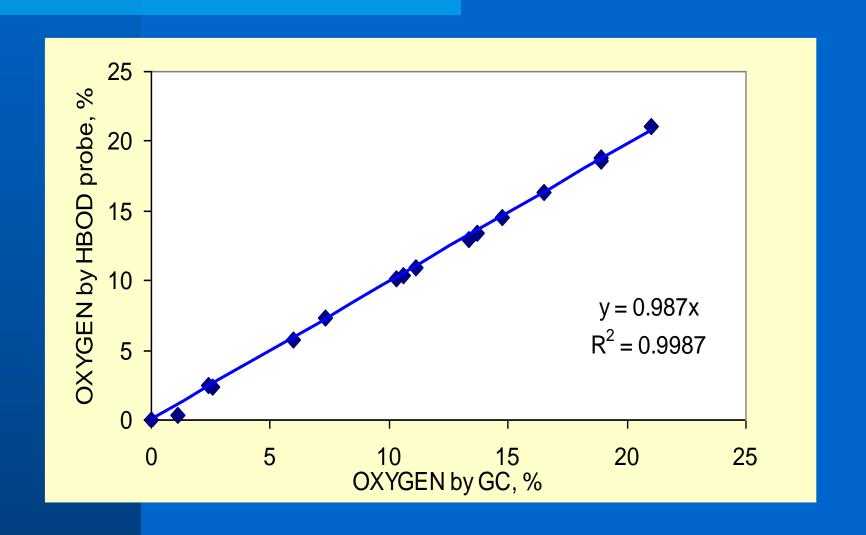
O2 in WW is now reduced to ½ original value

Limitations of the HBOD Test?

 Yes: Needed a gas chromatograph to measure oxygen in the headspace (GC-HBOD test)


 No! Have modified procedures to use a new HBOD probe to provide instantaneous oxygen concentrations.

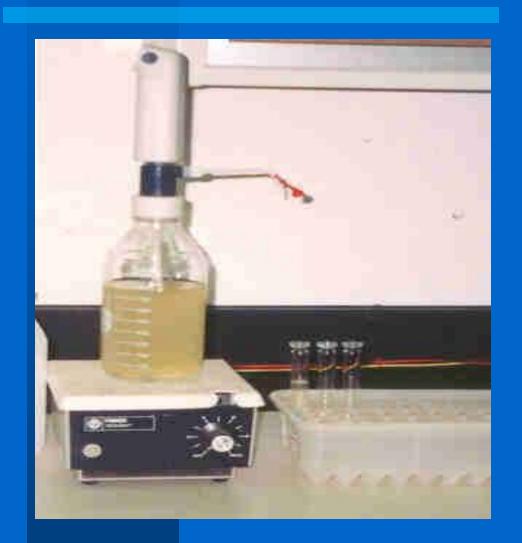
GC: cost about \$6,000



HBOD Probe: \$1,000

System: \$4,000)

The HBOD probe and GC provide identical results.


OBJECTIVES

- Demonstrate that the HBOD probe can be used to measure the concentration of oxygen in HBOD tubes.
- Show that the HBOD test provides more precise estimates of biochemical oxygen demand than the BOD test.
- Present data that show the oxygen demand is exerted faster in an HBOD test (2 or 3 days) versus the 5-day BOD test

METHODS: How to run an HBOD test...

- 1. Dispense the wastewater into the HBOD tube (with using 5 mL digital dispensette) and seal this tube using a rubber stopper and an aluminum crimp top.
- 2. Incubate tubes in the dark on a shaker table
- 3. Measure the concentration of oxygen in headspace in tubes with using an HBOD probe on a completion day of incubation
- 4. Calculate the HBOD values using an HBOD equation.

STEP 1: Dispense

A digital dispensette is used to put wastewater in HBOD tubes

Only 2 sample volumes cover a wide range of HBOD values

Sample Volume (mL) in 28 mL HBOD tube	HBOD Range (mg/L)
23	7 – 50
10	51 – 364

STEP 2: Incubate

A box and a shaker are used for incubation

Step 3: Measure

The HBOD probe is inserted into the tube...

... and the O_2 concentration read from the computer in just a few seconds.

STEP 4: Calculate

$$HBOD_n = (P_o - 0.01p_{o,w} r_o) \left(1 - \frac{O_n}{O_{0,n}}\right) \left[\frac{107.2}{(T_o + 273.15)} \left(\frac{V_T}{V_l} - 1\right) + \frac{DO}{760 - p_{o,w}}\right]$$

 $\mathbf{HBOD_n}$ = Headspace BOD on day n [mg/L].

 $O_{0,n}$ & O_n = Oxygen in sample on day 0 and n analyzed on day n [%].

 V_T & V_l = Volumes of tube. T=total, l= liquid used in tube [mL].

DO = Saturation dissolved oxygen concentration in water at 760 mmHg [mg/L] (from table)

Air data: $p_{o,w}$ = water vapor pressure (from table)

 $r = relative humidity; T_0 = air temperature (From monitor)$

Laboratory data is obtained from a digital barometer

HBOD calculations can be done using an Excel Spreadsheet

HBOD Calculation Sheet			
Barometer information			
Temperature of air on day 0 from temperature gauge		To (°C)	23
Air Pressure on day 0 recorded from barometer		Po (in Hg)	28.82
Relative humidity of lab air on day 0 read from relative humidity gauge		ro (%)	26
Tabulated information			
Vapor pressure of water in air on day 0 (From sheet VapPress).		po,w (mm Hg)	21.07
Dissolved oxygen concentration in water at 1atm at To (From sheet DO-sat)		DO (mg/L)	8.58
Instrument/sample information			
Total volume of empty HBOD tube		VT (mL)	28
Liquid volume of wastewater sample put into HBOD tube		VL (mL)	10
Oxygen concentration of sample on day n	O2 reading 1	tube 1 (%)	12.76
	O2 reading 2	tube 2 (%)	12.71
	O2 reading 3	tube 3 (%)	12.49
	O2 Average	An (% O2)	12.65
Oxygen conentration of empty tube from day 0		An,o (% O2)	20.9

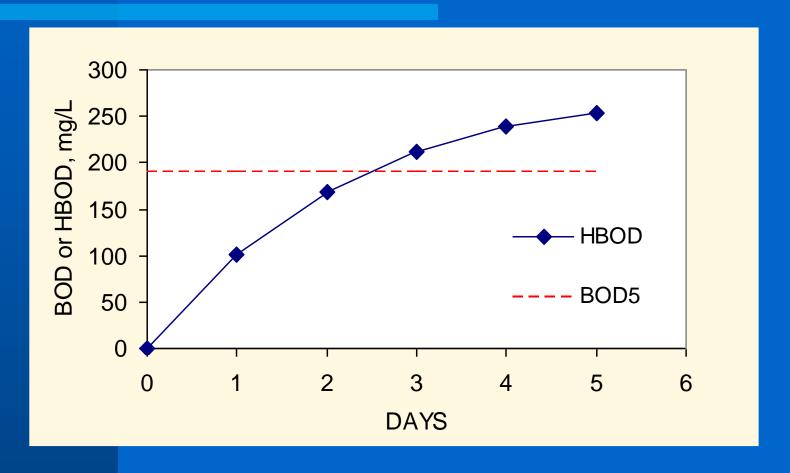
HBOD (mg/L)

Spreadsheet available at: www.engr.psu.edu/ce/enve/hbod/hbod.htm

190

+/-

Predicting the BOD₅

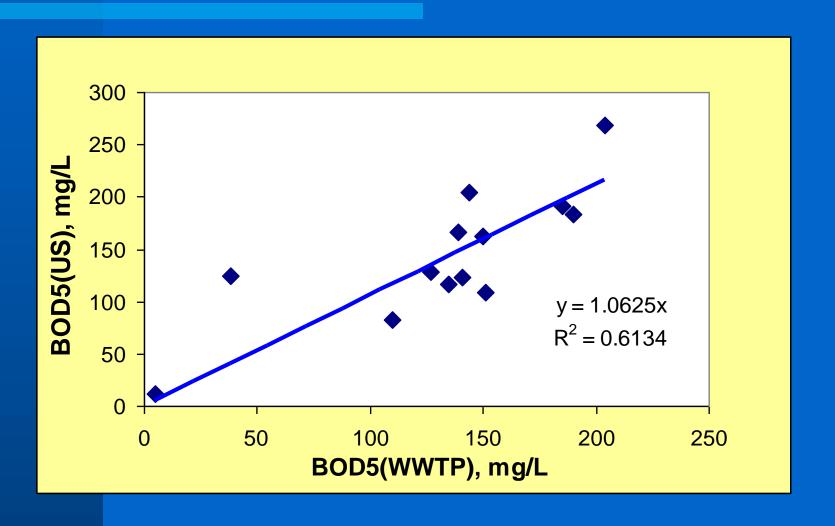

$$BOD_5 = C_n \times HBOD_n$$

C_n = Constant dependent on specific WWTPand day of HBOD

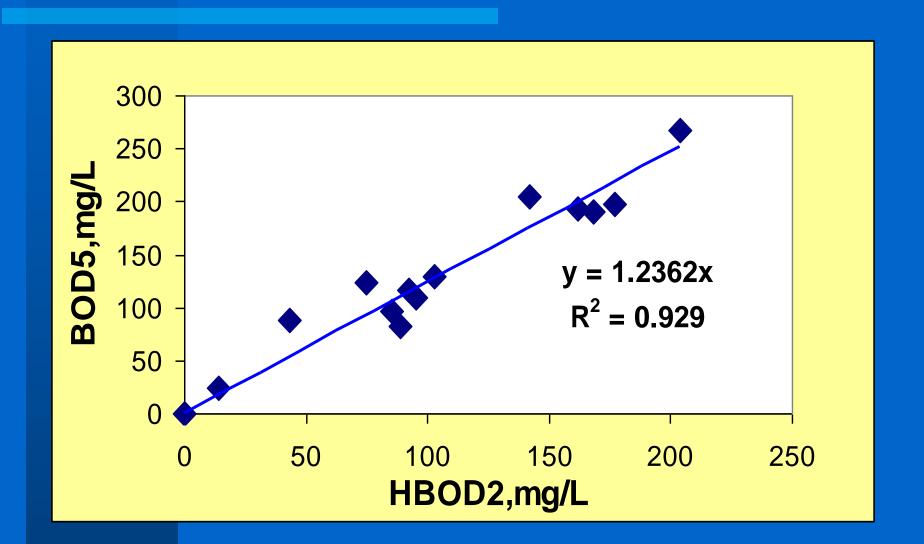
n= day (typically day 2 or 3)

RESULTS

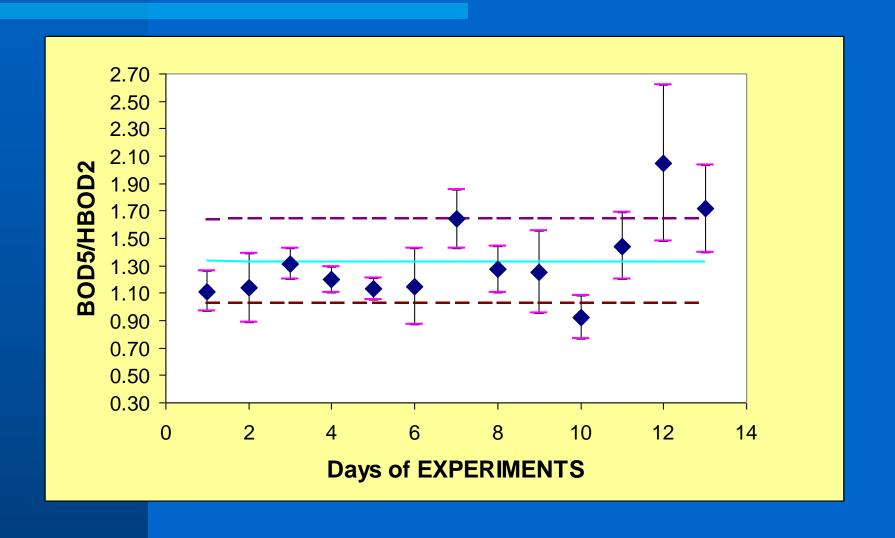
RESULT: The BOD₅ is reached in only 2-3 days in the HBOD test

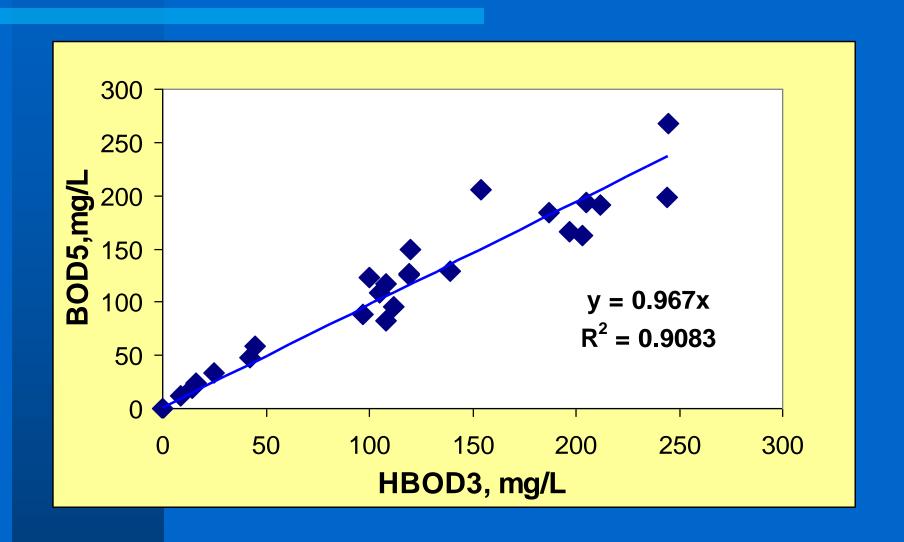

Primary clarifier effluent, Penn State University WWTP

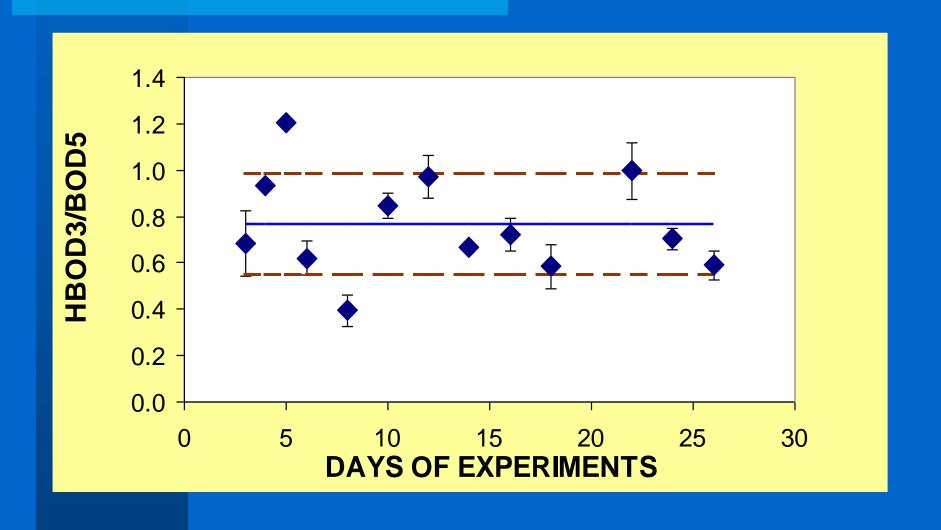
Precision of HBOD and BOD tests

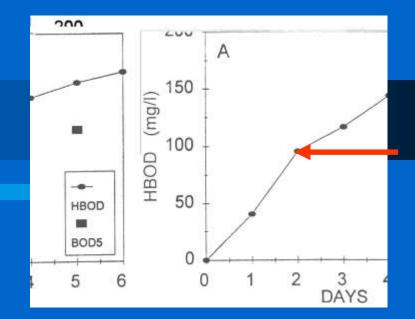

- $BOD_5 = 191 \pm 29 \text{ mg/L}$
- $HBOD_2 = 168 \pm 12 \text{ mg/L}$
- $HBOD_3 = 212 \pm \frac{2}{2} mg/L$

 The smaller ±SD demonstrates the greater precision of the HBOD test

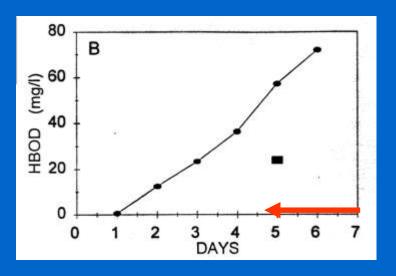

Penn State University WWTP How well do BOD₅ tests compare? WWTP vs PSU


Penn State University WWTP 2-Day Test: $BOD_5 = 1.24 \times HBOD_2$


Penn State University WWTP 2-Day Test: $BOD_5 = 1.33 \times HBOD_2$


Penn State University WWTP 3-Day Test: $BOD_5 = 0.97 \times HBOD_3$

UAJA WWTP 3-Day Test: $BOD_5 = 1.3 \times HBOD_3$



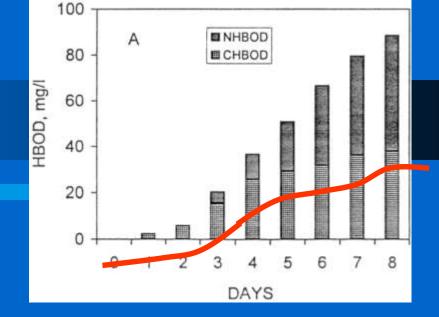
HBOD Tests: Arizona

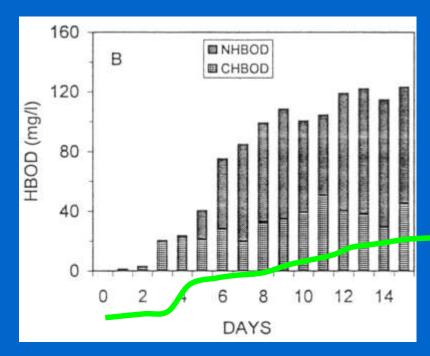
Ina Rd.
Wastewater
Treatment Plant

(Tucson, Arizona)

From: Logan & Patnaik (1998)

Wat. Env. Res.

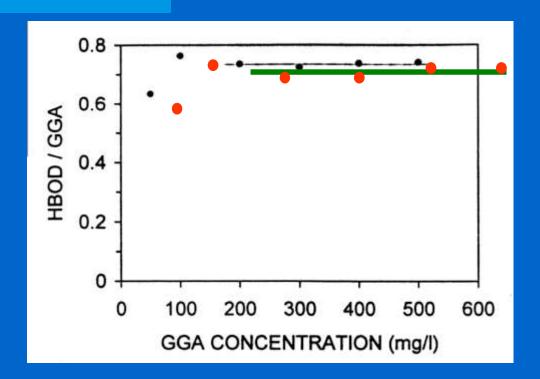

Nitrification


Trickling Filter

(Roger Rd. Wastewater Treatment Plant, Tucson, Arizona)

From: Logan & Patnaik (1998)

Wat. Env. Res.


Calibration: Glucose-Glutamic acid (GGA) test

300 mg/L GGA produces a HBOD₃ of 200 mg/L

Calibration: Glucose-Glutamic acid (GGA) test

The HBOD₅ to GGA ratio is is constant

Summary of advantages of the HBOD₃ test compared to the BOD₅ test

Wastewater samples do not need to be diluted (although they can be).

Fewer HBOD tubes are necessary than BOD bottles

Sample Volume (mL) in 28 mL HBOD tube	HBOD Range (mg/L)
23	7 – 50
10	51 – 364

Sample Volume (mL) in 300 mL BOD bottle	BOD range (mg/L)
90	7 – 27
22	27 – 110
6	100 – 405

2 HBOD
tubes
cover the
same range
as 3 BOD
bottles

HBOD tubes are smaller than BOD bottles

O₂ analysis takes only a few seconds per bottle...

not contact the wastewater, so that it is highly resistant to fouling.

CONCLUSIONS

- The HBOD probe allows an HBOD test to be run very simply and quickly.
- HBOD results are obtained in just 2 or 3 days that are comparable to BOD₅ values.
- HBOD results are more precise BOD₅ results.
- The HBOD test can be used in the wastewater treatment plants in order to evaluate biological treatment processes.

Acknowledgments

- Wilford W. (Bill) Shaw at the Penn State University WWTP.
- David Smith at the UAJA plant.
- Research funding was provided by the Stan and Flora Kappe endowment.
- Most experiments were conducted in the Kappe Laboratories at Penn State University