INSTRUMENT

INSTRUMENT FOR OPERATION

What are the four parameter?

Pressure

Level

Flow

Temperature

What is pressure?

The force acting unit area.

How calculate the pressure?

$$P = \frac{F}{A} = \frac{N}{M^2} = Pa$$

Example: if the f= 50n & $A = 2.5m^2$ find the p=?

Units of pressure

- [Kpa
- I KG/CM2
- BAR
- PSI (pound persquare inch)
- mmH20
- I mmHg
- I inH2O
- inHg
- Use the convert table

Units	kPa	Pa	Bar	Std. Atm.	psi	Kg/cm²	mmH ₂ O	mmHg	inHg	inH ₂ 0
kPa	=1=	1000	0.01	0.0098692	0.145	0.0101972	101.9716	7.50062	0.2953	4.0146
Pa	0.001	=1=	0.00001	0.0000098	0.000145	0.0000101 97	0.1019716	0.007501	0.0002953	0.0040146
Bar	100	100,000	=1=	0.98692	14.5	1,019716	10,197.16	750.062	29.53	401.46
Std. Atm	101.325	101,325	1.01325	=1=	14.696	1.033228	10,332.28	760	29.92	406.78
psi	6.89476	6,894.76	0.06895	0.068046	=1=	0.070307	703.072	51.715	2.036	27.68
Kg/cm²	98.0665	98,066.5	0.980665	0.967841	14.22	=1=	10,000	735.559	28.96	393.70
mmH ₂ 0	0.0098067	9.80665	0.0000981	0.0000967	0.001422	0.0001	=1=	0.0735559	0.002896	0.03937
mmHg	0.1333224	133.3224	0.0013332	0.0013158	0.0193	0.0013595	13.5951	=1=	0.03937	0.53524
inHg	3.3864	3,3864	0.033864	0.03342	0.491	0.03453	345.3155	25.4	=1=	13.5951
inH ₂ O	0.24909	249.09	0.002491	0.00246	0.0361	0.00254	25.4	1.8683	0.0735559	=1=

Type of pressure

- Atmospheric pressure
- Absolute pressure
- Vacuum pressure
- Pressure Gauge
- Differential pressure

To calculate absolute pressure

Abs =
$$Atm + Pg$$
 when $Pg < 14.7 psi$

Abs =
$$Atm - Pg$$
 when $Pg > 14.7 psi$

Sensor & Device

- Manometer
- Pressure gauge
- Differential pressure transmitter

Manometer

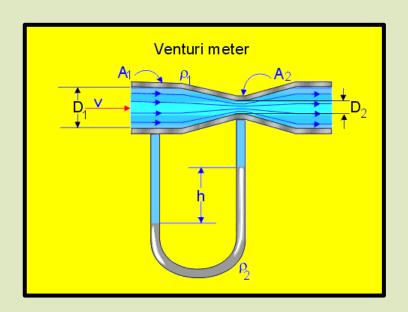
Digital Pressure gauge

Pressure gauge

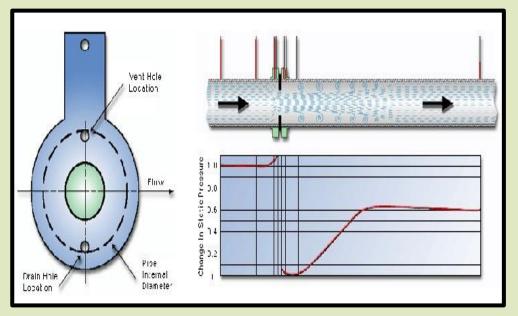
Pressure

Differential pressure transmitter

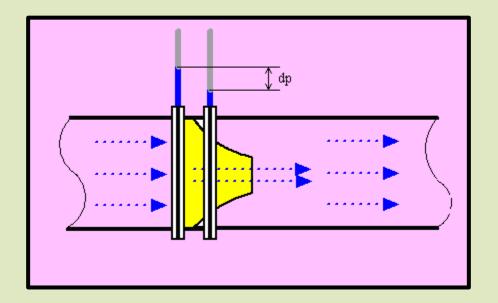
- What is flow?
- I The amount of liquid passes through a system
- How calculate the flow?
- Q = V *A
- I Where flow rate $(Q) = flow velocity (V) \times pipe area (A)$
- $\mathbb{Q}=\mathsf{K}^*\sqrt{h}$


- Units of flow
- Liter/min
- m3/hr
- cut/sec
- Kg/sec
- l tans/hr
- gallon/min

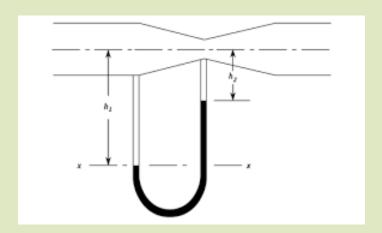
- Flow Measurement
 - a- Primary element
 - b- Secondary

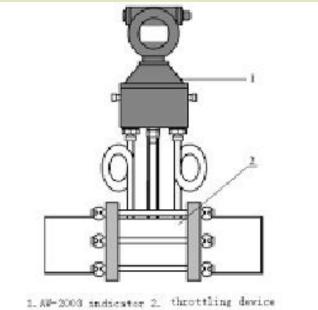

- a Primary element
- Venturi
- Orifice
- Flow nozzle

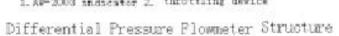
Venturi:


- **The Venture tube has particular advantages:**
- Efficiency they have very low pressure losses
- High accuracy
- Suitability for fluids with suspended solids
- **The disadvantages of the Venture tube are:**
- Cost
- Sze (length)
- Difficulty of installation

- Orifice: The most common element used to create a differential pressure is the orifice plate
- **The Orifice Plate has particular advantages:**
- Low cost
- Small size
- Essay of installation
- **The disadvantages of the Orifice Plate are:**
- Low pressure

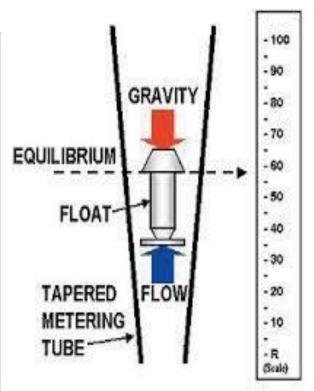

- Flow nozzle: The flow nozzle is more rigid than an orifice plate and will not deform at high temperatures and flow rates.
- The advantages are:
- Inexpensive
- Easily manufactured
- I Simple to install or change because they fit between flanges
- The disadvantages are:
- Unsuitable for flows with suspended solids
- Not as accurate as Venturi tubes
- Have higher pressure losses than Venturi tubes




b- Secondary

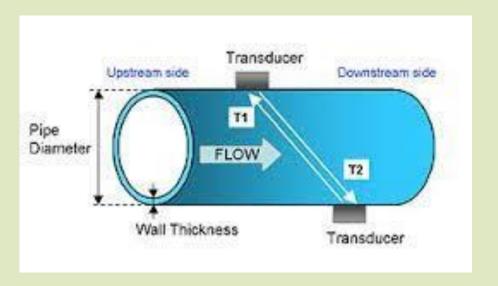
U-tube monometer

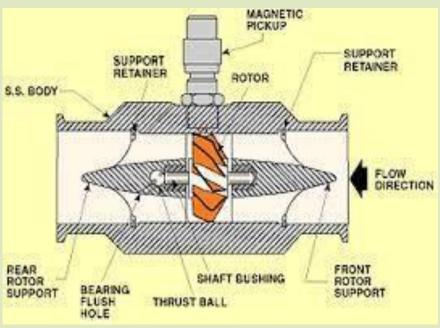
Differential pressure

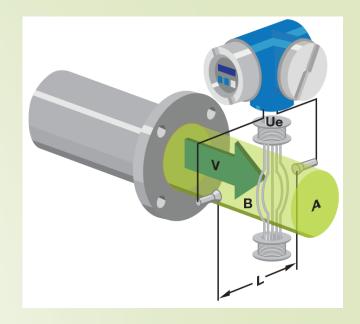


Flow devices:

Rota mater




- Flow devices:
- **Ultrasonic flow mete**



- Flow devices:
- Turbine flow meter

- Flow devices:
- I magnetic flow meter

- What is the level?
- Height of the liquid is called level
- How calculate the level?

h=
$$\frac{\Delta P}{\rho g}$$
 h= high of liquid & ΔP = pressure & ρ = Density of liquid g = Gravity

- Units of level
- 0 mm
- [Cm
- Feet
- meter

- Level types:
- Liquid
- Solid
- Level measurement:
- 1-Direct method
- 2-indirect method

1-Direct method

A-Dip stick

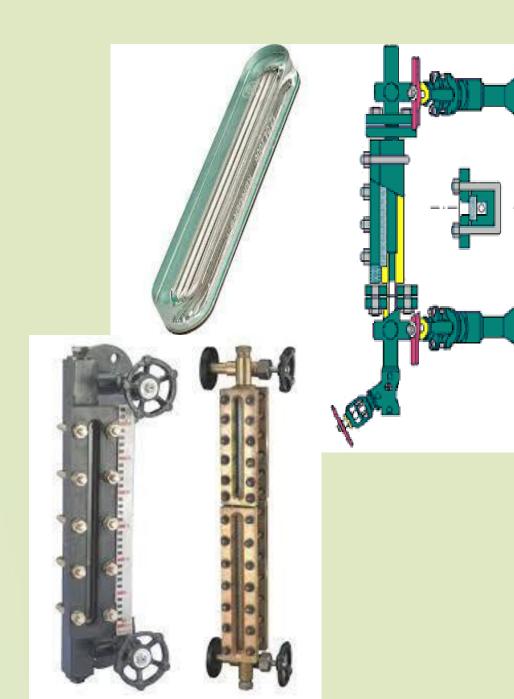
B-Gauge glassesType 1-Tubular glass.

Using in the low pressure

lEasy maintenance

lEasy to broken

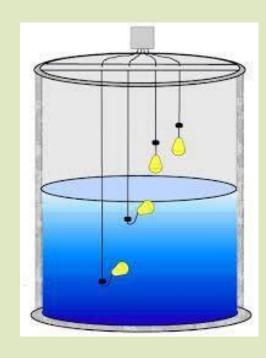
Open tank


IClosed tank

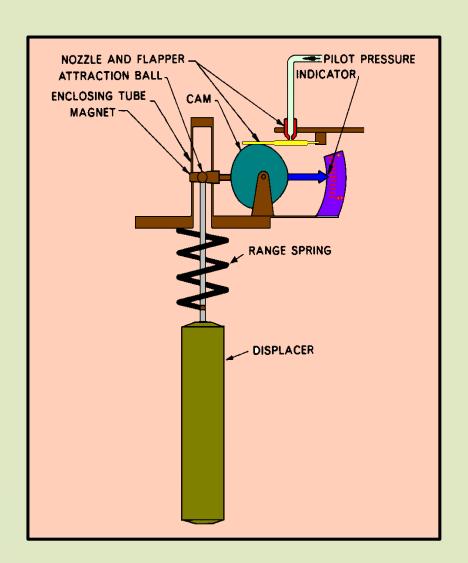
INo severe operation

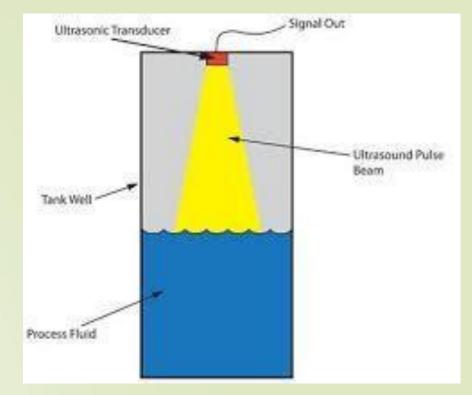
Type 2-Reflex gauge glass.

- Using in the high pressure
- Usually attached with light
- Closed tank
- Severe operation

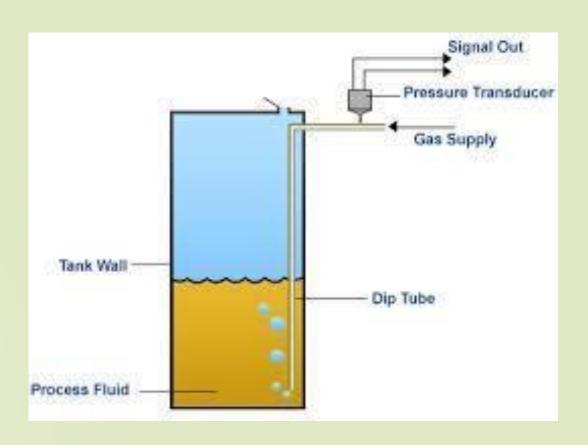


C-Floats

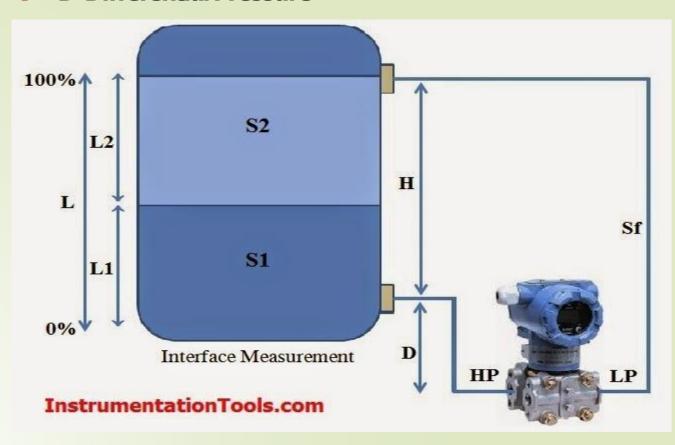




2-indirect method
A-Displacer type



B- Ultra sonic



C-Bubble system

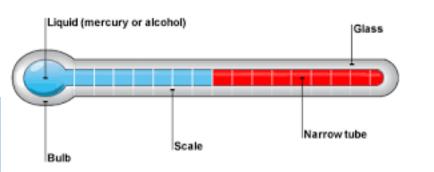
D-Differential Pressure

What is the Temperature?

- It is measurement of hotness or coldness
- Unit of Temperature:

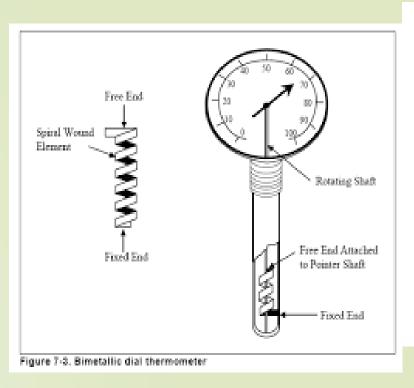
Ex:
$$F = 63.5 C = ?$$
 $C = (63.5 - 32)/1.8 = 17.5 C$

2-Kelvin scale (K=C+273)


3-The Fahrenheit scale (F=1.8*C {+32})

4-Rankine (R=F+460)

TEMPERATURE Device:

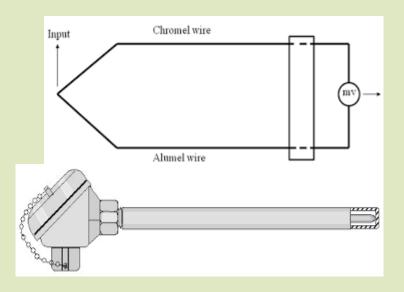

1-Glass thermometers

2-Bimetallic thermometers

3-Filled system thermometer

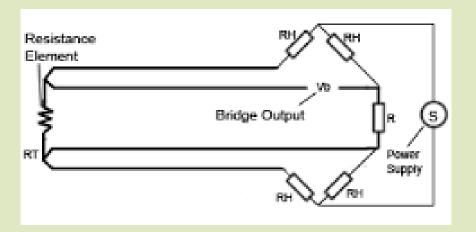
4-Thermocouple Thermometer

Type:


A-Copper-Constantan type T

B-Iron- Constantan type J

C-Nickel-Nickel chromium type E


D-Chrome- Aluminum type K

E-Platinum- Platinum Rhodium types R-S

5-Electrical resistance thermometer

Thank you