

MISCELLANEOUS COURSES

DIAGRAMS

TRAINING MANUAL
Course EXP-PR-DI010
Revision 0.1

MISCELLANEOUS COURSES

DIAGRAMS

CONTENTS

1.	OBJECTIVES	4	
2.	DRAWINGS	5	ļ
	2.1. WHAT ARE DIAGRAMS USED FOR?	5	,
	2.2. EXAMPLE	7	,
	2.3. EXERCISES	8	,
3.	THE DIFFERENT TYPES OF DIAGRAMS	9	J
	3.1. BLOCK FLOW DIAGRAM	9	J
	3.2. PLOT PLAN	.10	J
	3.3. PROCESS FLOW DIAGRAM (PFD)	.11	
	3.4. PIPING AND INSTRUMENTATION DIAGRAM (PID or P&ID)		
	3.5. ISOMETRIC DIAGRAM	.13)
	3.6. SAFETY LOGIC DIAGRAM	.14	
	3.7. DATASHEET	.15)
	3.8. EXERCISES	.16	į
4.	CODING PRINCIPLE	.18	,
	4.1. EQUIPMENT	.18	,
	4.1.1. Facility	.18	,
	4.1.2. Equipment class		
	4.1.3. Section number		
	4.1.4. Order number		
	4.1.5. Serial letter	.26	į
	4.2. PIPING		
	4.2.1. Size		
	4.2.2. Fluid symbol		
	4.2.3. Section number		
	4.2.4. Order number		
	4.2.5. Series		
	4.2.6. Effluent classes		
	4.3. INSTRUMENTATION		
	4.3.1. Unit		
	4.3.2. Function coding		
	4.3.3. Section		
	4.3.4. Order number	. •	
	4.3.5. Index	.37	
	4.3.6. Analyser identification		
	4.3.7. Symbols		
	4.4. EXERCISES		
5.	HOW DO WE READ A PID?		
	5.1. LEGENDS AND ABBREVIATIONS		
	5.2. MARGINS	.51	

Training course: EXP-PR-DI010-EN

5.3. EQUIPMENT	52
5.4. EFFLUENT ROUTES	
5.5. INSTRUMENT LOCATIONS	
5.6. CONTROL LOOP	
6. GLOSSARY	
7. FIGURES	58
8. TABLES	59
9. SOLUTIONS TO EXERCISES	60

1. OBJECTIVES

The objective of this course is to allow future operators to understand the theoretical bases required for reading plans and diagrams that he or she will encounter when performing routine tasks on a facility used essentially in the oil industry.

Upon completion of the course, participants should be able to:

- List the different types of plans and diagrams seen by production operators
- Explain the role and function of each of the plans and diagrams
- Identify the symbols used
- Associate each symbol with the corresponding equipment
- Interpret the coding of symbols
- Associate the symbols with the explanatory legends of the diagrams
- Recognise, identify process operation on a diagram
- Follow a path, evolution, transformation of a fluid on a plan/diagram
- Simply, read plans/diagram that will be presented

After having acquired a minimum amount of experience on the site, the course participant/operator should be able to:

Draw the correspondence between a graphic representation and the equipment on the facility.

Identify the equipment on the facility

- Walk-through (physically) a process, identifying the pipes and instruments on the plans/diagrams
- Interpret the numbering/codes of the pipes and instruments

Training course: EXP-PR-DI010-EN

Last revised: 15/05/2007 Page 4 / 67

2. DRAWINGS

2.1. WHAT ARE DIAGRAMS USED FOR?

Aim:

Diagrams are used to represent all or part of a production unit and to make it easier to understand to obtain a general view or details.

Principle:

Symbols are used to represent:

- chemical engineering equipment, valves and fittings, fluid displacement equipment,
- piping,
- measurement, control and safety instruments.

In France, AFNOR (**A**ssociation **F**rançaise de **NOR**malisation – French Standards Organisation) has produced a standard defining the rules for this diagrammatic representation.

Three main types of diagrams have been defined for the different types of diagrams used. Their definitions are given below, in English, as they are based on *International Standard Organisation* (ISO) standards used in all Total sites for uniformity:

- ► The Plot Plan: This document defines the location of equipment on the installations
 - It is also a **Lay-out diagram** which determines the geographic positioning of equipment on a site. It also defines the locations in a horizontal and vertical plane
- ► The **Block Flow Diagram**: which defines the logical progression of the different production phases. It does not use symbols.
- ► The **Process Flow Diagram or PFD**: it is generally produced to define or analyse a process. It provides an overview which is sufficient to understand the system. In this diagram the equipment, which has an equipment legend, is shown by a symbol or represented in a simplified manner.
 - The piping is limited to the main links between the equipment.
 - The control, measurement and regulation equipment is limited to the devices essential to understand the system.
 - For complex installations, the process flow diagram can be broken down into several diagrams to make it easier to read and understand.

Training course: EXP-PR-DI010-EN

Last revised: 15/05/2007 Page 5 / 67

- ▶ Piping and Instrument Diagram (P.I.D.), this document is produced in the project phase, and is a much more complex representation than the PFD, of all of the process lines and vessels and their operating parameters. This is a vital document (the bible!) for the process operator.
- ▶ **Isomeric Drawings**: drawn up when designing an installation (in the study phase) and to understand the routing of the different pipes on a site.

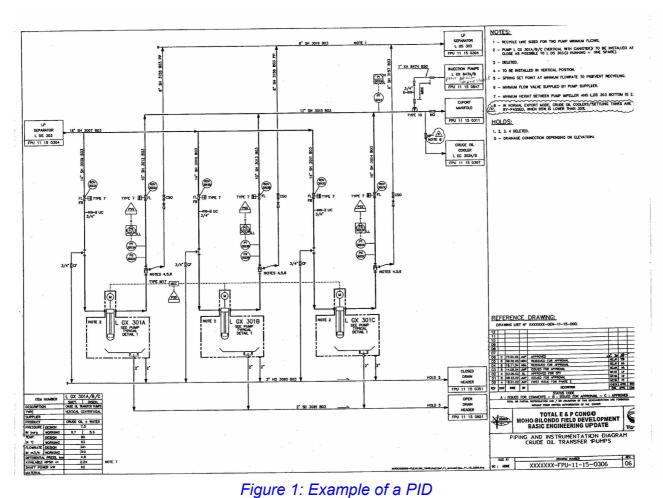
 An isomeric drawing is a document (or folder, a series of plans) showing the pipe routing in three dimensions, in a single figure.
- The detailed diagram or equipment diagram: produced to define the equipment and to provide drawings of the piping and its assembly, they are accompanied by parts lists (Data Sheets).
 The chemical engineering equipment is shown in a simplified manner and the other equipment is represented by symbols.
- ► The **Safety Diagram**: it defines the logical sequence of the different phases in an emergency triggering sequence. It does not use symbolic representation.

It is the representation of shutdown sequences, with their different levels (from zero to four) and the actions of the **Fire & Gas** system Representation:

- ▶ **General symbols**: They define an equipment family. They are used on the PFDs when the exact type of the equipment has not been defined.
- ▶ **Specific symbols**: They specify a type of equipment in each family. They are used on PIDs.
- ▶ **Simplified representation**: It applies to PIDs or PFDs representing chemical engineering equipment. It represents an image of the general aspect of the equipment concerned.

Formats and scales:

- ▶ The PFDs are drawn on paper of standardised width and sufficient length.
- ► The PIDs are drawn on standardised formats and generally limited to A0 (840 x 1188).
- ► The symbols have no scale. In each case, the size of each symbol is chosen to make it easy to read. In PIDs it is sometimes preferable to define a scale to respect the equipment levels and relative positions, where possible.
- In split diagrams, the incoming and outgoing lines of the common pipes must be placed on the same levels so that they can be placed side by side.


Training course: EXP-PR-DI010-EN

Last revised: 15/05/2007 Page 6 / 67

2.2. EXAMPLE

The PID is a typical example of the drawings found on the site. As we will see later, this type of drawing provides a great deal of information about the installation.

Training course: EXP-PR-DI010-EN

2.3. EXERCISES

1.	Diagrams provide a general view or details to make all or part of a production installation easy to understand.
	☐ True
	☐ False
2.	Name several types of diagrams AFNOR has defined. What do they represent?

Last revised: 15/05/2007 Page 8 / 67

3. THE DIFFERENT TYPES OF DIAGRAMS

There are different types of diagrams concerning an installation. However, it is sometimes difficult to find them. This is why we will try to cover all the drawings which may be found on a site, and particularly those which are useful to an operator.

3.1. BLOCK FLOW DIAGRAM

This diagram explains the operating principle of the whole installation in just a few boxes.

The schematic diagram of the N'Kossa site in the Congo is given below.

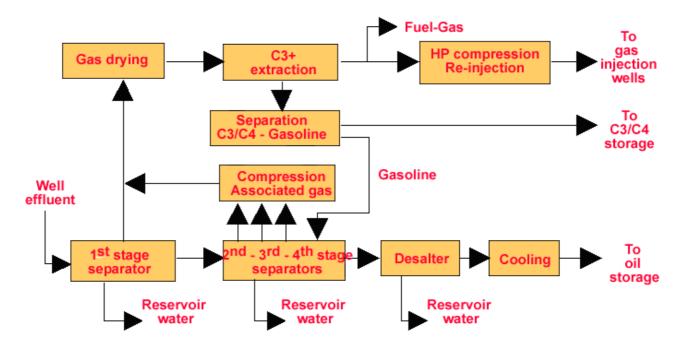


Figure 2: Block flow diagram of the N'Kossa site

Training course: EXP-PR-DI010-EN

Last revised: 15/05/2007 Page 9 / 67

3.2. PLOT PLAN

Plot Plan: This plan defines the layout (location) of the equipment in the installations. The following drawing shows the locations of the three separators and two desalters which are part of the Girassol FPSO treatment system in Angola.

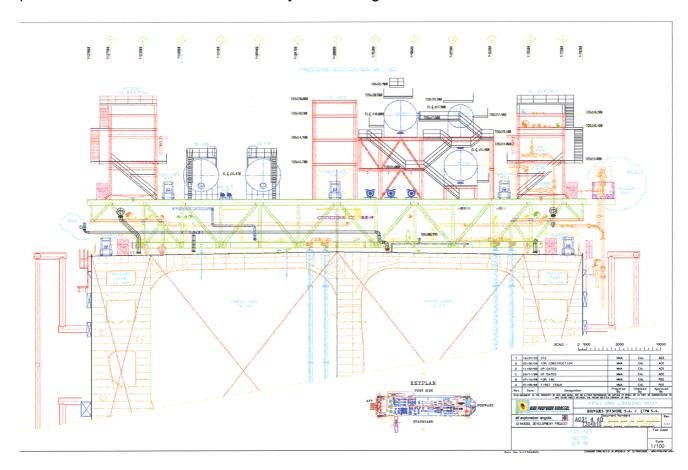


Figure 3: Layout drawing (Plot Plan) of the Girassol separators and desalters

Training course: EXP-PR-DI010-EN

Last revised: 15/05/2007 Page 10 / 67

3.3. PROCESS FLOW DIAGRAM (PFD)

The PFD shows the process logic.

This diagram issued during the project phase shows in a simplified format the main process lines and tanks and their main operating parameters.

These diagrams show the process operating parameters in the following form:

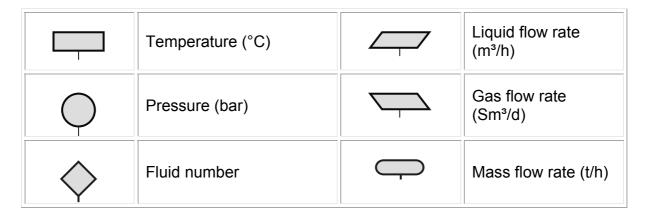


Table 1: Presentation of the operating parameters

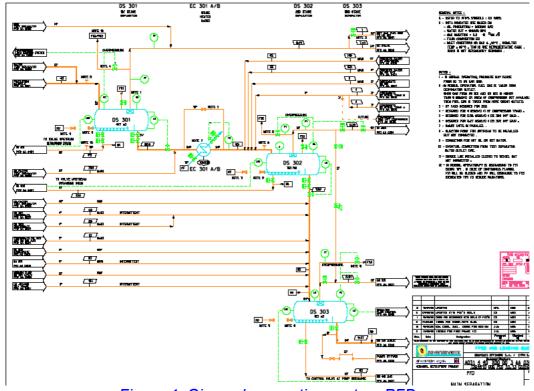


Figure 4: Girassol separation system PFD

Training course: EXP-PR-DI010-EN

Last revised: 15/05/2007 Page 11 / 67

3.4. PIPING AND INSTRUMENTATION DIAGRAM (PID or P&ID)

The Piping and Instrumentation Diagram is issued during the project phase. It shows all the pipelines and tanks and their operating parameters in a much more detailed manner than the PFD.

It shows:

- the fluid flow directions
- the main characteristics of the equipment
- the pipeline numbers
- the equipment identification
- the instrumentation, control systems and safety devices.

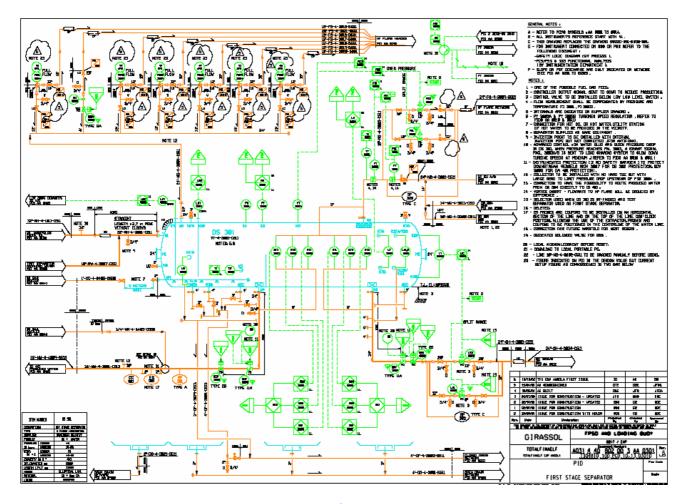


Figure 5: Girassol 1st stage separator PID

Training course: EXP-PR-DI010-EN

Last revised: 15/05/2007 Page 12 / 67

3.5. ISOMETRIC DIAGRAM

This type of diagram gives a three-dimensional representation of the installations (with an indication of the isometric angles, for construction), and in particular:

- ▶ The pipelines
- ▶ The valves
- ▶ The equipment

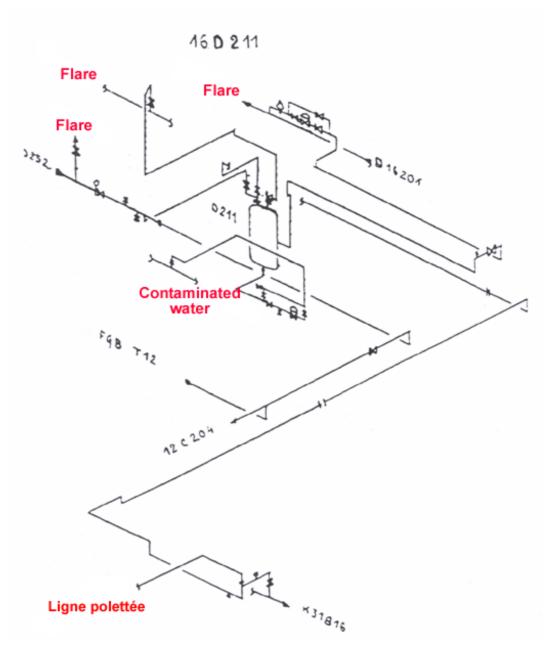


Figure 6: Isometric drawing

Training course: EXP-PR-DI010-EN

Last revised: 15/05/2007 Page 13 / 67

3.6. SAFETY LOGIC DIAGRAM

This diagram show all the safety actions carried out following a process anomaly

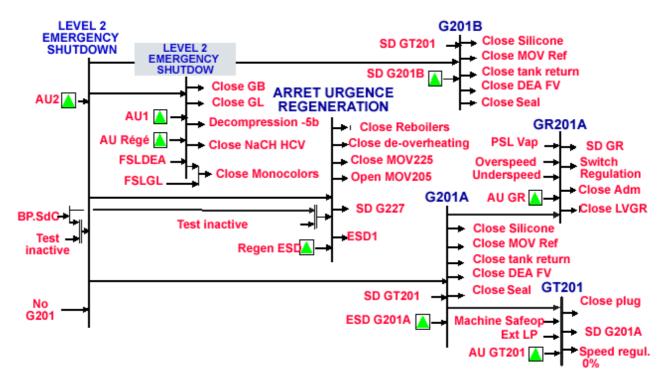


Figure 7: Safety diagram

→	Safety bar	110	From safety logic diagram
→	"OR" function	<u>**19\</u>	To safety logic diagram 115
→	"AND" function	Т	Time delay
→ xxx	Action ON "xxx"		Pulse signal
	Trip from "xxx"		

Table 2: Safety logic diagram symbols

Training course: EXP-PR-DI010-EN

Last revised: 15/05/2007 Page 14 / 67

3.7. DATASHEET

This type of document provides a great deal of information about an item of equipment.

The following example shows the datasheet for a compressor suction scrubber.

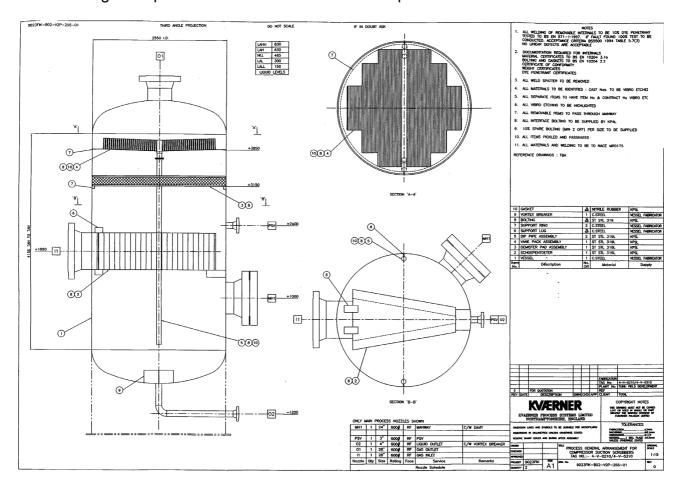


Figure 8: Scrubber datasheet

Training course: EXP-PR-DI010-EN

Last revised: 15/05/2007 Page 15 / 67

3.8. EXERCISES

3.	It explains the installations overall operating principle in a just a few boxes.
	☐ Process Flow Diagram (PFD)
	☐ Block Flow Diagram
	☐ Piping and Instrumentation Diagram (PID)
	☐ Isometric diagram
	☐ Datasheet
	☐ Plot plan (Layout diagram)
4.	It defines the locations of the equipment in the installations.
	☐ Process Flow Diagram (PFD)
	☐ Block Flow diagram
	☐ Piping and Instrumentation Diagram (PID)
	☐ Isometric diagram
	☐ Datasheet
	☐ Plot Plan (Layout diagram)
5.	It allows us to read the process logic. This diagram issued during the project phase shows in a simplified format the main process lines and tanks and their main operating parameters.
	☐ Process Flow Diagram (PFD)
	☐ Block Flow diagram
	☐ Piping and instrumentation diagram (PID)
	☐ Isometric diagram
	☐ Datasheet

Training course: EXP-PR-DI010-EN

Last revised: 15/05/2007 Page 16 / 67

0.	their operating parameters in a much more complex manner than the PFD.
	☐ Process Flow Diagram (PFD)
	☐ Block Flow diagram
	☐ Piping and Instrumentation Diagram (PID)
	☐ Isometric diagram
	□ Datasheet
	☐ Plot Plan (Layout diagram)
7 .	This type of diagram gives a three-dimensional representation of the installations.
	☐ Process Flow Diagram (PFD)
	☐ Block Flow diagram
	☐ Piping and Instrumentation Diagram (PID)
	☐ Isometric diagram
	□ Datasheet
	☐ Plot Plan (Layout diagram)
8.	This type of document provides a great deal of information about the equipment.
	☐ Process Flow Diagram (PFD)
	☐ Block Flow diagram
	☐ Piping and Instrumentation Diagram (PID)
	☐ Isometric diagram
	□ Datasheet
	☐ Plot Plan (Layout diagram)

Last revised: 15/05/2007 Page 17 / 67

4. CODING PRINCIPLE

To correctly understand the identification markings used there is a coding system which defines the equipment, the pipelines and the instrumentation.

These markings will be detailed in the following chapter.

4.1. EQUIPMENT

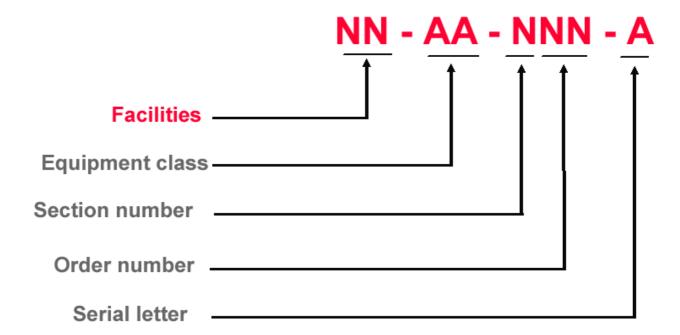


Figure 9: Coding principle - equipment

4.1.1. Facility

It is determined by the project manager.

It can be a letter or a number or both.

Example:

► AMENAM → 40

► COBO → 8F

N 'KOSSA → D

Training course: EXP-PR-DI010-EN

Last revised: 15/05/2007 Page 18 / 67

4.1.2. Equipment class

- A Design Support Supervision
- B Civil works
- **C** Columns and internals
 - **CA** Plate towers or packed towers

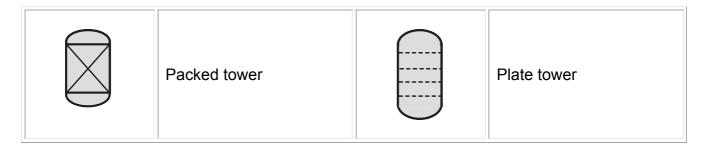


Table 3: Column symbols

- **CY** Column plates and internals
- **D** Pressurised tanks Reactors Separators Scrubbers
 - **DA** Tanks, pressurised spheres, round bottomed storage tanks, drain tanks
 - **DB** Mixed or packed process reactors
 - **DC** Tubular reactors
 - **DD** Lamp reactors
 - **DE** Precoat filters
 - **DF** Fixed bed dryers (excluding the packages)
 - **DG** Pig trap
 - **DS** Separators, scrubbers including internal and external equipment

Training course: EXP-PR-DI010-EN

Last revised: 15/05/2007 Page 19 / 67

Horizontal tank	v v v v -	Diffuser
Vertical tank	<i>33333</i>	Fin package
Scrubber		Demister grille
Pig trap	, M,	Vortex breaker

Table 4: Tank symbols

E Thermal exchange equipment

EA Cooling tower

EB Air cooler / Air-cooled condenser

EC Exchanger, evaporator, reboiler, condenser

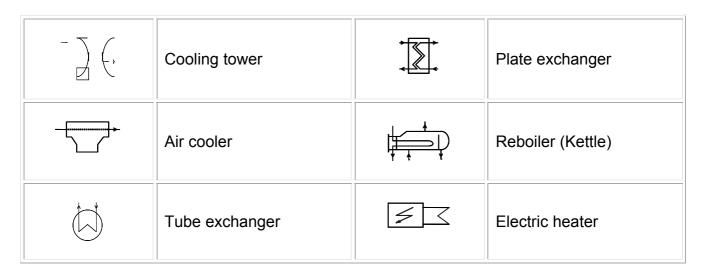


Table 5: Thermal exchange equipment symbols

Training course: EXP-PR-DI010-EN

Last revised: 15/05/2007 Page 20 / 67

- F Thermal equipment: Furnaces Heaters Heating equipment Burners
 - **FA** Furnaces, heater
 - FB Burners, flare tips
 - **FC** Heating equipment, chimneys
 - **FD** Incinerators
- **G** Pumps Drives Ejectors
 - **GA** Pumps
 - GB Injectors, ejectors
 - **GC** Special pumps (gas pump, etc.)

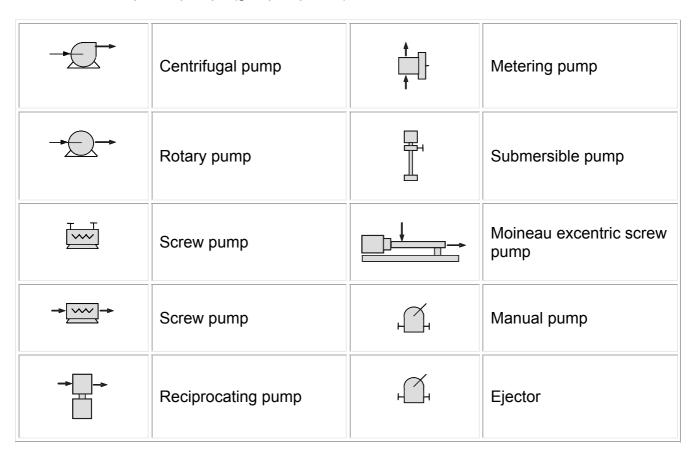


Table 6: Pump, drive and ejector symbols

Last revised: 15/05/2007 Page 21 / 67

- H Boilers Driers Industrial ovens
 - **HA** Boilers
 - **HB** Driers, industrial ovens (excluding air dryers)
- I Various mixing, separation and filtration equipment
 - IA Stirrers, mixers
 - **IB** Crushers, granulators, clod breakers
 - IC Centrifuges
 - **ID** Settling tanks
 - **IE** Extruders, machines for transforming plastics
 - **IF** Filters, sieves
 - **IG** Hydrocyclones, dust separators

Table 7: Various equipment symbols

- J Fixed packaging, handling and weighing equipment
 - **JA** Product packaging and/or weighing equipment
 - **JB** Equipment for handling bulk products or packages
 - **JC** Bulk loading equipment
 - **JD** Fixed handling equipment for dismantling installations: fixed cranes, overhead gantries, monorails, etc.
 - **JE** Machine tools and workshop equipment
 - **JF** Fixed fire-fighting equipment: fire hydrants, sprinkler, nozzles, hose reels, water screens, etc.
 - **JK** Mobile fire-fighting equipment: extinguishers, etc.

Last revised: 15/05/2007 Page 22 / 67

- **K** Compressors Boosters Fans and drives
 - KA Fans, Blowers
 - KB Compressors, boosters, self-driven compressors

	Fan – Blowers	Screw compressor
	Centrifugal compressor	Reciprocating compressor
8	Blade compressor	

Table 8: Compressor, booster and fan symbols

- Pipes Piping accessories Valves and fittings
- M Metal structures
- **N** Instrumentation
- O Protection coatings and refractory products
- **P** Electricity
 - **PA** Electricity generator
 - **PB** Power supply transformer
 - **PC** Rectifier, Inverter
 - **PD** Switchboard
 - **PE** Terminal box for motor
 - **PF** Electrical lines and cables
 - **PG** Auxiliary electrical equipment
 - PH Buried lines

- **PK** Air conditioning, pressurisation of electrical equipment room
- PY Turbogenerator
- **Q** Remote transmission
- **R** Land and developments (infrastructure)
- **S** Buildings
- T Storage tanks Spray tanks Unit tanks
 - **TA** Flat-bottomed storage tank, gasometer (atmospheric pressure, tank)
 - TB Silos
 - TC Sump caissons
 - **TD** FPSO (Floating storage facility)
 - **TE** Ponds, storage pits
- U Compact assembly, package
 - **UA** Large preassembled units mounted on skids or on metal frameworks, such as: separation/drying/adsorption unit, various modules.
 - **UB** Small standard construction assemblies such as: air compressor unit and tank, air dryers, chillers, gas dryers, etc.
 - **UC** Offloading buoys
 - **UD** Various assemblies
- V Initial loads and spare parts
- **W** Equipment for general services

Last revised: 15/05/2007 Page 24 / 67

- X Motors Drive machines for non-specific drives
 - XA Asynchronous motors
 - **XB** Synchronous motors
 - **XC** Various motors

Table 9: Electric motor symbols

- Y Drive engines (Internal combustion engines, turbines)
 - YA Diesel engines
 - YB Petrol engines
 - YC Gas engines
 - YD Gas turbines
 - YE Process expansion turbines
 - YF Steam turbines
 - YG Hydraulic turbines

D	Diesel engine	T-	Gas turbine
GT	Gas engine	ф	Hydraulic motor
	Steam turbine	\$	Pneumatic motor

Table 10: Drive engine and motor symbols

Last revised: 15/05/2007 Page 25 / 67

Z Transmissions

ZA Coupling

ZB Clutch

ZC Reduction unit and variable speed drive

4.1.3. Section number

100	Wells	and	manifolds

200 Low pressure gas

300 Oil treatment and export - drain tank - sump - drains

400 Formation water treatment

500 Gas compression

600 HP gas treatment and distribution

700 Water treatment and injection

800 Chemicals, fuel gas, compressed air

900 Ancillary systems (drinking water, industrial water, steam, etc.)

4.1.4. Order number

Two or three digit number for the chronological identification of equipment of a same type.

4.1.5. Serial letter

One letter for the parallel numbering of equipment of the same type.

Training course: EXP-PR-DI010-EN

Last revised: 15/05/2007 Page 26 / 67

4.2. PIPING

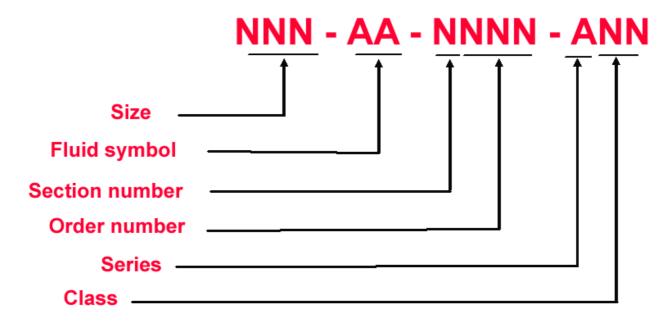


Figure 10: Coding principle - piping

4.2.1. Size

1, 2 or 3 digits for the line diameter in inches (") OR in nominal diameter (ND).

4.2.2. Fluid symbol

AG acid gas

AM methanol

BC butane

BV LP steam (4 bar)

BW distilled water

CD carbon dioxide (CO2)

CG condensate gas

CV steam condensates

CW cooling water

Training course: EXP-PR-DI010-EN

DG sulphur-free gas

EC ethane

FG treated fuel gas

FS flare

FW fire-fighting seawater

GC gasoline cut

GH oily effluent

GN nitrogen

HC oil cut

HD hydrocarbon drain

HS hydrogen sulphide (H2S)

HV HP steam (>40 bar)

HW treated fire-fighting water

IA instrument air

LA Lean amine (DEA)

LC LPG mixture

LE Lean selective amine (MDEA)

LD diethylene glycol (lean)

LT triethylene glycol (lean)

MV MP steam (12-24 bar)

NC raw condensates

NG raw natural gas

NH crude oil

NW formation water

Training course: EXP-PR-DI010-EN

PC propane

PW process water

RG raw fuel gas

SA service air

SG treated gas

WD contaminated water drain

4.2.3. Section number

100 Wells and manifolds200 Low pressure gas

300 Oil treatment and export - drain tank - sump - drains

400 Formation water treatment

500 Gas compression

600 HP gas treatment and distribution

700 Water treatment and injection

800 Chemicals, fuel gas, compressed air

900 Ancillary systems (drinking water, industrial water, steam, etc.)

4.2.4. Order number

Three digit number for chronological pipe identification.

Training course: EXP-PR-DI010-EN

Last revised: 15/05/2007 Page 29 / 67

4.2.5. Series

- B for 150 lbs
- C for 300 lbs
- **D** for 600 lbs
- E for 900 lbs
- **F** for 1,500 lbs
- **G** for 2,500 lbs
- **H** is dedicated to the instrumentation line class
- **J** for 10,000 psi
- **K** for 15,000 psi

4.2.6. Effluent classes

- Low corrosiveness or non-corrosive liquid or gaseous HCs. Air. Nitrogen. Glycol. Methanol. Formation water. Contaminated water drains. Service gas. Drive air
- 52 With liquid or gaseous H2S HC precautions. Formation water
- 53 Steam. Hot water steam condensate
- **54** Fire-fighting seawater
- 55 Distilled water. Freshwater. Drinking water
- Oxygen-free seawater. Decanted formation water. Process water. Wastewater and rainwater drain. Treated fire-fighting water. Cooling water
- 57 Instrument air. Instrument gas
- 58 Bactericide. Oxygen inhibitor. Corrosion inhibitor. Demulslifier. Surfactant. Foam inhibitor. Scale inhibitor
- 59 Heat transfer fluid
- 60 Fuel gas combustible after final filter
- **61** Bleach. Antifouling.

Training course: EXP-PR-DI010-EN

70 Low corrosiveness or non-corrosive liquid or gaseous HCs. Formation water.

 Main pipes		Jacketed or double containment
 Secondary pipes	<u> </u>	Heat insulated pipes
 Future piping routes		Heat insulated equipment

Table 11: Piping symbols

-0-6	Concentric reduction		Drain
D	Сар		Sloping line
P	Screw plug	X%X%	Sloping line
כ	Screw cap		Bird-proof grille
Ľ	Quick connection	CC	Corrosion coupon
	Insulating joint	СР	Corrosion probe
Ħ	Corrosion sleeve	\(\phi \)	Air overpressure / Vacuum tank

Training course: EXP-PR-DI010-EN

Last revised: 15/05/2007 Page 31 / 67

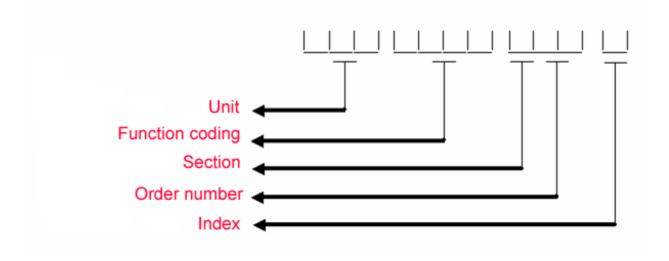
**	Expansion joint		Spectacle blind (open)
-	Hose		Spectacle blind (closed)
Υ	Funnel	0	Spacer
	Noise reduction cartridge		Line blind
	Straightening vane	1	Connection

Table 12: Pipe accessory symbols

M	Gate valve	M	3-way valve
▷ &<	Ball valve	\bowtie	4-way valve
☆	Safety globe valve	₩	4-way choke valve
M	Butterfly valve		Diaphragm valve
-122	Angle valve	→ →	Check (non-return) valve
*	Needle valve	→ ϰ →	Check (non-return) valve with counterweight

Table 13: Valve symbols

Last revised: 15/05/2007 Page 32 / 67



B	Cartridge filter	θ	Pulse damper
	Basket strainer		Calibration pot
Ŋ	Y-type strainer)))))	Silencer
H	T-filter		Flame arrestor
<u>I</u> (\$	Temporary filter (between flanges)	≤	In-line mixer
	Air filter	***	Breather
	Manway, access port		

Table 14: Various accessories symbols

4.3. INSTRUMENTATION

4.3.1. Unit

The unit number is indicated by 2 or 3 digits.

4.3.2. Function coding

The instrument functions are coded by a group of letters as shown in the following table.

The first letter represents the controlled parameter. The following letters indicate the exact function, in the order defined in the table.

	1 st row	2 nd row	3 rd row	4 th row
A	Analysis	Alarm		
В	Burner: flame detector			
С	Conductivity	Regulator		
D	Density	Differential, Ratio Interface		

Training course: EXP-PR-DI010-EN

Last revised: 15/05/2007 Page 34 / 67

E	Electric voltage	Primary element		
F	Flow rate			
G	Gas explosiveness Toxicity	Local indicator		
Н	Manually operated		High	High
I	Electric current	Remote indicator		
J	Power			
K	Programmer			
L	Level	Light	Low	Low
M	User's choice			
N	Fire detection			
0	User's choice	Operator Orifice		
P	Pressure or vacuum			
Q	Quantity	Counter Integrator		
R	Remote control	Recorder		

S	Speed	Safety	
Т	Temperature	Transmitter	
U	Multivariable	Multifunction	
V	Vibration Stepped displacement Accelerometer	Control valve	
W	Weight or force	Thermowell	
X	Unclassified		
Y	User's choice	Function relay Converter	
Z	Position switch Axial position		

Table 15: Instrument function coding

Example:

VSH: Vibration Safety High

4.3.3. Section

List of sections:

100 Wells and manifolds200 Low pressure gas

300 Oil treatment and shipping - drain tank - sump - drains

400 Formation water treatment

500 Gas compression

600 HP gas treatment and distribution

700 Water treatment and injection

Training course: EXP-PR-DI010-EN

Last revised: 15/05/2007 Page 36 / 67

800 Chemicals, fuel gas, compressed air

900 Ancillary systems (drinking water, industrial water, steam, etc.)

4.3.4. Order number

Two-digit number identifying instruments.

4.3.5. Index

Index number where several instruments with the same function belong to a same loop.

Index letter for instruments with the same function on identical production lines installed in parallel.

4.3.6. Analyser identification

AS Sampler

BSW Water-in-oil analyser

C Conductivity

CHL Chlorometer

CHR Chromatograph

CO CO analyser

CO₂ CO₂ analyser

DCO DCO CBO DTO meter

DU Water hardness

H Hydrogen

HC Hydrocarbon

HY Hydrazine meter

M Humidity

O2 Oxygen meter

OP Opacimeter

Training course: EXP-PR-DI010-EN

Last revised: 15/05/2007

PH pH meter

RE Refractometer

SG Density

TU Turbidimeter

V Viscosity

VP Vapour pressure

Example:

Recorded and regulated CO2 analyser

4.3.7. Symbols

	Instrument line		Analogue or logic electronic signal
-11-11-11 -	Pneumatic signal	-0-0-0-	Digital signal
- L - L	Hydraulic signal	-x 	By liquid or gas expansion capillary

Table 16: Instrument link symbol

Training course: EXP-PR-DI010-EN

Last revised: 15/05/2007 Page 38 / 67

	Local instrument	Θ	Instrument on local panel
\ominus	Instrument in Control Room or front of equipment room cubicle		Instrument on rear local panel
$\overline{\bigcirc}$	Instrument in Control Room or on back of equipment room cubicle		

Table 17: Instrument symbols

Process control (accessible to the operator)		Safety process (inaccessible to the operator)
Process control (inaccessible to the operator)		Safety system input
Safety process (accessible to the operator)	<u></u>	Safety system output

Table 18: Symbols for instruments connected to the SNCC

→	Pressure reducing valve with internal pressure tap	- 	Dump valve with internal pressure tap
	Pressure reducing valve with external pressure tap		Dump valve with external pressure tap

Table 19: Self-adjusting equipment symbols

Training course: EXP-PR-DI010-EN

Last revised: 15/05/2007 Page 39 / 67

$\overline{\Box}$	Control valve (manual operation only)	角点	Manually operated diaphragm pneumatic servomotor control valve
	Diaphragm pneumatic servomotor control valve without positioner		Diaphragm pneumatic servomotor control valve with positioner
	On-off valve with piston servomotor or pneumatic or hydraulic cylinder	M	Valve with electric motor
\square	2-way valve solenoid		3-way valve solenoid
	Locally rearmed 2-way valve solenoid		

Table 20: Actuator symbols

-0-	Flow rate indicator	-8-	Turbine
<u> </u>	Rotameter		Electromagnetic
-	Orifice plate between flanges, with taps on flanges		Volumetric meter
	Orifice plate between flanges, with taps on pipes	<u> </u>	Ultrasonic meter

Training course: EXP-PR-DI010-EN

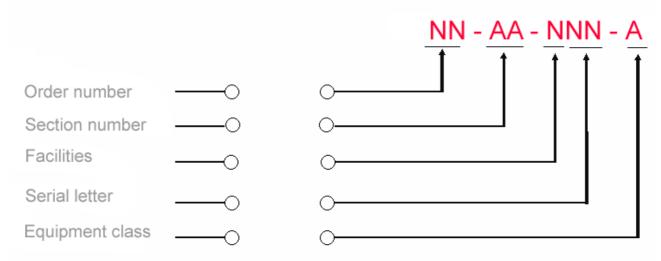
Last revised: 15/05/2007 Page 40 / 67

Orifice holder for quick orifice change	-6-	Mass meter
Venturi	<u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>	Vortex
Pitot or Annubar tube		

Table 21: Fluid measurement symbols

4.4. EXERCISES

9. Find the definition corresponding to the equipment.

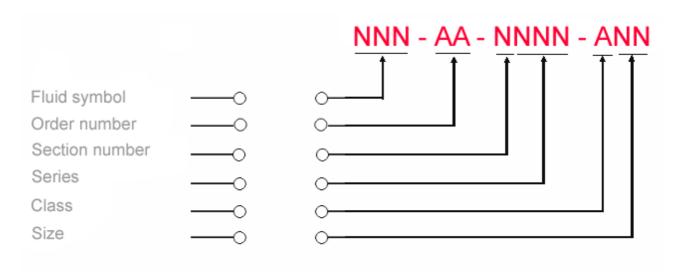

Stirrer	0	\circ	(M)
Centrifugal compressor	0	0	Ī
Electric motor	0	0	7
Packed tower	\circ	0	
Plate tower	\circ	\circ	\Box
Scrubber	\circ	\circ	
Pig trap	\circ	\circ	
Air cooler	\circ	\circ	
Tube exchanger	\circ	\circ	
Centrifugal pump	\circ	\circ	-
Diffuser	0	0	
Plate exchanger	0	0	****
Reboiler (Kettle)	0	0	
Electric heater	\circ	0	7
Submersible pump	\circ	0	
Hydrocyclone	0	0	

Training course: EXP-PR-DI010-EN

Last revised: 15/05/2007

10. Find the correct equipment coding order.

11. Give the section numbers corresponding to these definitions.


100	0	0	Formation water treatment
200	0	0	Water treatment and injection
600	0	0	Wells and manifolds
400	0	0	Gas compression
300	0	0	LP gas
700	0	0	Ancillary networks (drinking water industrial water, steam)
500	0	0	Oil treatment and export - bleed tank - sump - drains
800	0	0	HP gas treatment and distribution
900	0	0	Chemicals, fuel gas, compressed air

12. Find the correct pipe coding order.

Training course: EXP-PR-DI010-EN

Last revised: 15/05/2007 Page 43 / 67

Training course: EXP-PR-DI010-EN

Last revised: 15/05/2007 Page 44 / 67

Cartridge filter	0	\circ $oxdappa$
Basket strainer	0	\circ \blacksquare
Y-type strainer		∘⊬J
T-filter	\Q	° 🖫
Air filter	O	o 🔽
Flame arrester	0	
Manhole	0	
Gate valve	0	○ 💌
Robinet à boisseau s	phérique 🔿	○ >≈<
Ball valve	0	o 🖈
Butterfly valve	•	∘ ⋈
Angle valve	\diamond	∘ ⅓
Needle valve	•	∘ ⋈
3-way valve	•	○ *
Choke valve	0	o 🕦
Check valve	0	⋄┰┰

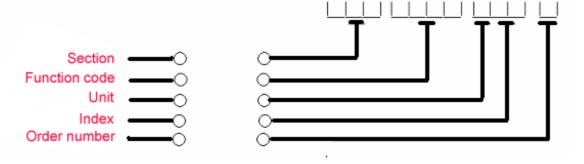
Training course: EXP-PR-DI010-EN

Last revised: 15/05/2007 Page 45 / 67

Main piping	•	
Secondary piping	•	⋄====
Traced piping	0	○ E
Double jacketed piping	0	o ——
Insulated piping	0	\[\bigs_{\text{l}} \]
Spectacle blind (open)	0	◇ Ի√√√Ч
Spectacle blind (closed)	0	
Concentric reduction	0	\[\qqq \q
Funnel	0	Υ
Drain	0	o ——
Screw plug	0	o
Quick connection	0	∘ ⊸⊕
Hose	٥	o J.

Training course: EXP-PR-DI010-EN

Last revised: 15/05/2007 Page 46 / 67


Page 47 / 67

15. Find the definition corresponding to the equipment.

Instrument line	0	٥
Pneumatic signal	•	o
Hydraulic signal	0	o ——
Electronic, analogic or logical signal	0	O -#-#-#
Digital signal	0	○ -o-o-o-
Regulation valve with manual control only	0	$\circ \bowtie$
Pneumatic servomotor regulation valve with membrane and without positionner	0	
Process control (accessible to operator)	0	∘ 🖽 🖯
Process control (not accessible to operator)	0	∘ 🔂 ⊖
Process safety (accessible to operator)	0	\circ \square \ominus
Process safety (not accessible to operator)	0	$\circ \ \boxminus \ \ominus$

16. Find the correct pipe coding order.

Training course: EXP-PR-DI010-EN

Last revised: 15/05/2007

Gate valve with piston servo-drive or motorised pneumatic or hydraulic actuator	•	° 🗏
2-way solenoid valve	0	$\circ \bowtie$
2-way solenoid valve with local reset		o
3-way solenoid valve	\diamond	$\circ \Omega$
Internal pressure tap expansion valve	•	。虽
External pressure tap expansion valve	•	
Positive displaement meter	0	۰ <u>-</u>
		_
Orifice plate between flanges taps on flanges		· 🕸

Training course: EXP-PR-DI010-EN

Last revised: 15/05/2007 Page 48 / 67

5. HOW DO WE READ A PID?

In this chapter we will develop the principle of how to read a PID. The PID is the drawing the most commonly used by the operators.

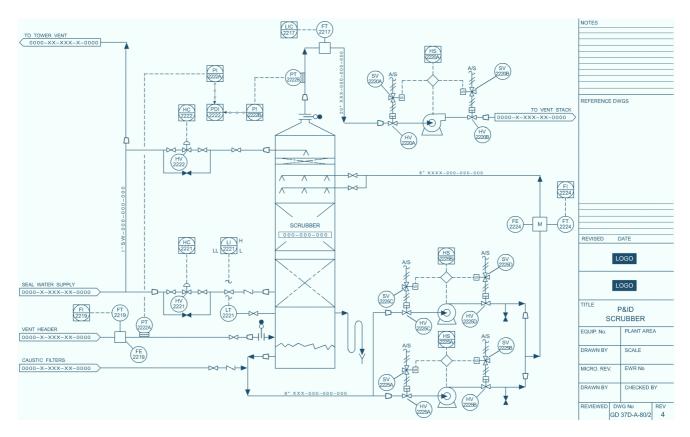


Figure 11: Example of a PID

Training course: EXP-PR-DI010-EN

Last revised: 15/05/2007 Page 49 / 67

5.1. LEGENDS AND ABBREVIATIONS

To interpret the PID, see the legends and abbreviations given with it. As shown below, certain symbols might not be "official" ones, but this happens and in that case, just think, compare and everything will be all right.

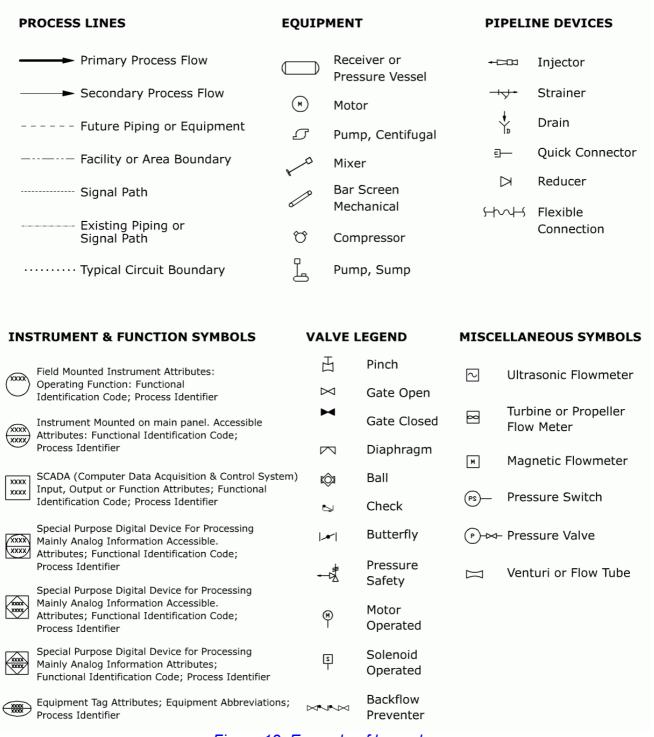


Figure 12: Example of legends

Training course: EXP-PR-DI010-EN

Last revised: 15/05/2007 Page 50 / 67

5.2. MARGINS

The margins of the PID give information on the the PID's history, unique PID number, revision history, descriptions and notes.

The PID number is a unique number which identifies the PID. It is located in the bottom right-hand corner of the margin, along with the title, name of the issuer (engineering firm), revision stamp and revision number (or letter). It is very important to always check you have the latest revision.

The changes made to the PID since the last revision are shown in the revision table in the bottom margin.

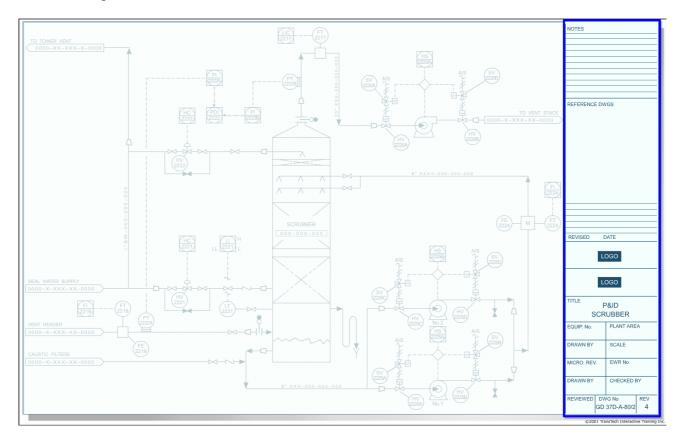


Figure 13: Margins of a PID

Training course: EXP-PR-DI010-EN

Last revised: 15/05/2007 Page 51 / 67

5.3. EQUIPMENT

The main items of equipment required to carry out the treatment process are shown in the PID by an icon representing the equipment in a simplified manner. They are normally identified by their name and equipment number.

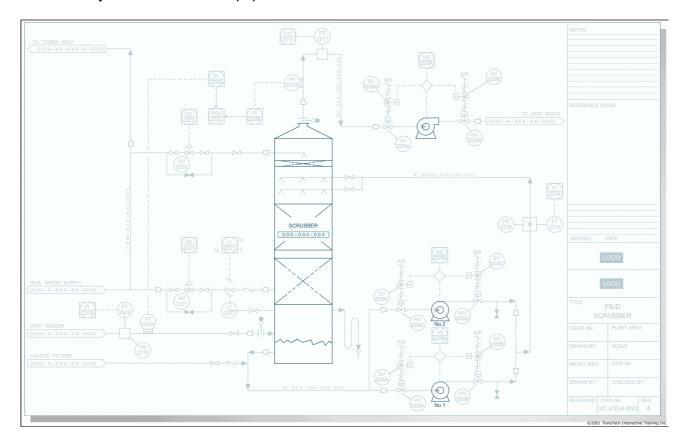


Figure 14: Equipment on a PID

Training course: EXP-PR-DI010-EN

Last revised: 15/05/2007 Page 52 / 67

5.4. EFFLUENT ROUTES

The process flows are indicated by the flowlines. Where possible, the incoming flowline is placed on the left and the outgoing flowline on the right. Labels or title boxes at the ends of the lines provide information on the sources and destinations of the flows.

The flows are routed by normally-open valves. The bodies of these valves are normally not filled, whereas the bodies of the normally-closed valves are filled.

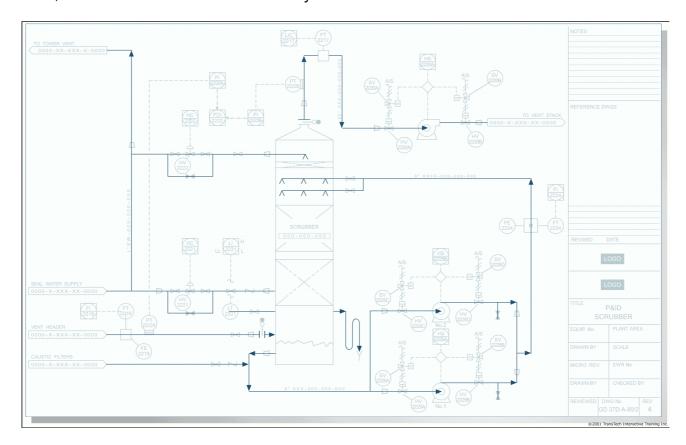


Figure 15: Fluid routes on the PID

Training course: EXP-PR-DI010-EN

Last revised: 15/05/2007 Page 53 / 67

5.5. INSTRUMENT LOCATIONS

The following table shows the typical instrument symbols and the parts accessible and inaccessible to the operator.

The most significant feature of the instrument symbols is the difference in their positions. The operator must know the positions of the main local equipment.

An instrument shown in a circle indicates that the instrument is mounted directly on the equipment.

A circle with a horizontal line through it indicates that the instrument is mounted on a local configuration panel. This panel is installed in an accessible location close to the equipment it operates.

A hexagon with a horizontal line indicates a computer function.

Each instrument designation is given a loop number and identification letters.

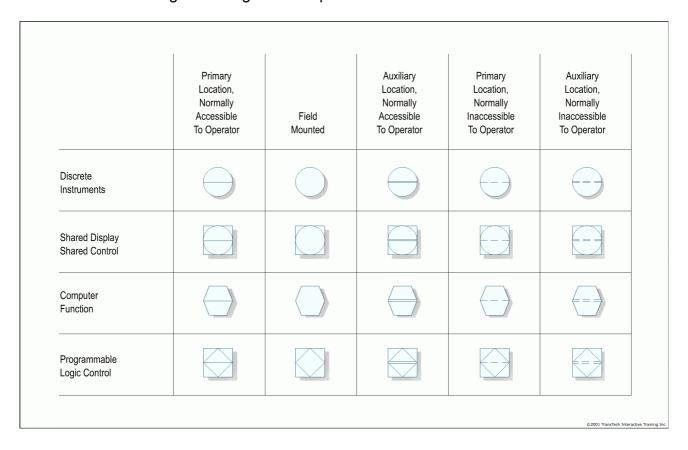


Figure 16: Instrument locations on the PID

Training course: EXP-PR-DI010-EN

Last revised: 15/05/2007 Page 54 / 67

5.6. CONTROL LOOP

The control loops are one of the most important parts of a PID. "Control loop" is a general term for all the elements involved in controlling a process parameter, like tank levels or vapour flows. This includes all the hardware and software associated with this control function.

The hardware components in a control loop are called "instruments". It is important to remember that most control loops can be broken down into three parts:

- the measurement element
- the controller
- the control system

A good understanding of a basic control loop will help you to understand more complicated control loops.

The measurement element produces a signal which represents the process variable being controlled. The commonly used process variables are: coherence, pressure, flow and temperature. The measurement element is connected to a transmitter which sends a signal to the controller. The control signal can take the form of an overhead pneumatic signal, an electric signal (milliamps) or even a remote radio signal, depending on the case.

The controller determines the control adjustments needed. This is done by comparing the measured value to a setpoint (SP), which is the required setting for a process variable. The controller adapts the system until the value of the process variable is equal to the setpoint.

A control system is any process equipment which can be modulated to change a measured parameter. The control system changes the measured variable. Valves are the most common control systems. For the temperature control these valves control the vapour flows, for example.

They can also take the form of switches, pumps, fans, or electric heating devices and other control devices. Motor speed controllers are also control systems.

It is important to remember that the adjustments made to the control point will modify the variable measured.

Each control loop is given a unique number for differentiate it from other control loops.

A control loop may consist of a single element (e.g. a local pressure gauge), or it may have many different elements (e.g. an automatic flow controller).

A control loop may include detectors, transmitters, controllers, converter I/P, valves, etc.

Training course: EXP-PR-DI010-EN

Last revised: 15/05/2007 Page 55 / 67

Page 56 / 67

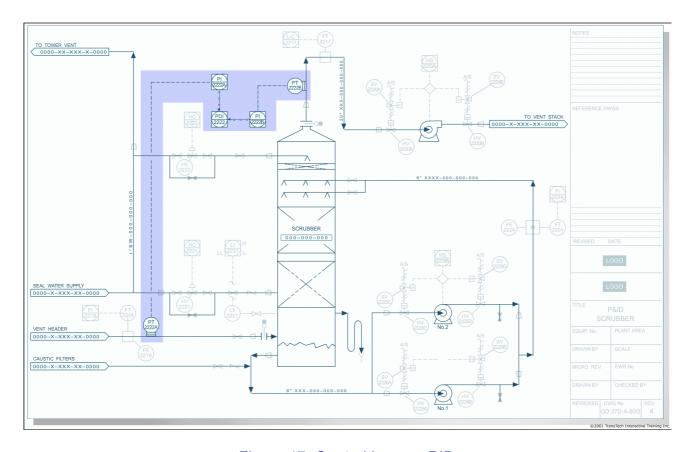


Figure 17: Control loop on PID

The above diagram shows a simple control loop and indicates the site equipment in the process and the controller placed in the DCS.

6. GLOSSARY

Training course: EXP-PR-DI010-EN

Last revised: 15/05/2007 Page 57 / 67

7. FIGURES

Figure 1: Example of a PID	7
Figure 2: Block flow diagram of the N'Kossa site	9
Figure 3: Layout drawing (Plot Plan) of the Girassol separators and desalters	10
Figure 4: Girassol separation system PFD	11
Figure 5: Girassol 1 st stage separator PID	12
Figure 6 : Isometric drawing	13
Figure 7: Safety diagram	14
Figure 8: Scrubber datasheet	15
Figure 9: Coding principle - equipment	18
Figure 10: Coding principle - piping	27
Figure 11: Example of a PID	49
Figure 12: Example of legends	50
Figure 13: Margins of a PID	51
Figure 14: Equipment on a PID	
Figure 15: Fluid routes on the PID	53
Figure 16: Instrument locations on the PID	54
Figure 17: Control loop on PID	56

8. TABLES

Table 1: Presentation of the operating parameters	11
Table 2: Safety logic diagram symbols	14
Table 3: Column symbols	19
Table 4: Tank symbols	20
Table 5: Thermal exchange equipment symbols	20
Table 6: Pump, drive and ejector symbols	0.4
Table 7: Various equipment symbols	22
Table 8: Compressor, booster and fan symbols	
Table 9: Electric motor symbols	
Table 10: Drive engine and motor symbols	
Table 11: Piping symbols	
Table 12: Pipe accessory symbols	
Table 13: Valve symbols	
Table 14: Various accessories symbols	
Table 15: Instrument function coding	
Table 16: Instrument link symbol	
Table 17: Instrument symbols	20
Table 18: Symbols for instruments connected to the SNCC	
Table 19: Self-adjusting equipment symbols	
Table 20: Actuator symbols	40
Table 21: Fluid measurement symbols	_

9. SOLUTIONS TO EXERCISES

1.	Drawings provid	le a general	view or	details to	o make	all or	part of	а	production	1
	installation easy	to understa	and.							

☑ True

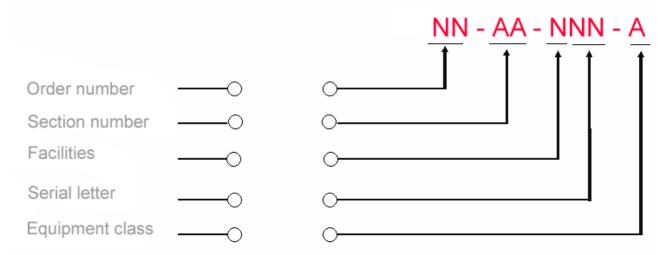
- 2. AFNOR has defined three types of drawings. What are they?
 - Schematic diagram
 - Process flow diagram
 - Piping and instrumentation diagram
- 3. It explains the operating principle of the whole installation in just a few blocks.
 - ☑ Schematic diagram
- 4. It defines the locations of the equipment in the installations.
 - ☑ Layout drawing
- 5. It allows us to read the process logic. This diagram issued during the project phase shows in a simplified format the main process lines and tanks and their main operating parameters.
 - ☑ Process flow diagram (PFD)
- 6. This diagram issued during the project phase shows all the pipelines and tanks and their operating parameters in a much more complex manner than the PFD.
 - ☑ Piping and instrumentation diagram (PID)
- 7. This type of diagram gives a three-dimensional representation of the installations.
 - ☑ Isometric diagram
- 8. This type of document provides a great deal of information about the equipment.

Training course: EXP-PR-DI010-EN

Last revised: 15/05/2007 Page 60 / 67

☑ Datasheet

9. Find the definition corresponding to the equipment.

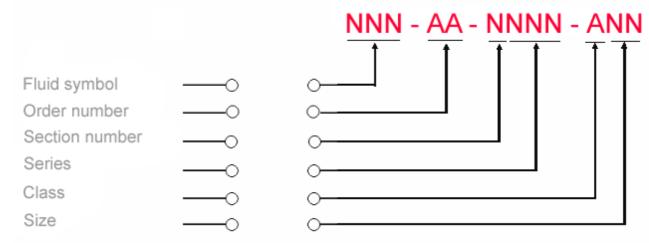

Stirrer	0	0	(M)
Centrifugal compressor	0	0	Ī
Electric motor	0	0	
Packed tower	\circ	0	
Plate tower	0	\circ	\Box
Scrubber	\circ	0	
Pig trap	\circ	0	
Air cooler	\circ	\circ	
Tube exchanger	0	0	
Centrifugal pump	\circ	0	-
Diffuser	\circ	\circ	
Plate exchanger	\circ	\circ	****
Reboiler (Kettle)	\circ	0	
Electric heater	\circ	\circ	73
Submersible pump	\circ	\circ	
Hydrocyclone	0	0	
			$\overline{}$

Training course: EXP-PR-DI010-EN

Last revised: 15/05/2007

10. Find the correct equipment coding order.

11. Give the section numbers corresponding to these definitions.


100 200	-		Traitement d'eau de gisement Traitement et injection d'eau
600			Puits et manifolds
400	0	0	Compression gaz
300	0		Gaz basse pression
700	٥	٥	Réseau annexes (eau potable, eau industrielle, vapeur,)
500	٥	٥	Traitement huile et expédition - cuve de purges - sump – drains
800	0	٥	Traitement et distribution gaz HP
900	•	٥	Produits chimiques, fuel gas, air comprimé

Training course: EXP-PR-DI010-EN

Last revised: 15/05/2007 Page 62 / 67

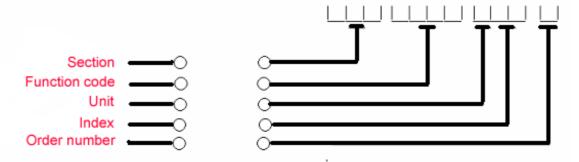
12. Find the correct pipe coding order.

Cartridge filter	0	\circ $oxdapsymbol{ o}$
Basket strainer	0	\circ \blacksquare
Y-type strainer	0	∘⊬
T-filter	0	° 🖫
Air filter	0	۰ <u>\</u>
Flame arrester	0	○ IIIII
Manhole	0	
Gate valve	0	○ 🖂
Robinet à boisseau s	sphérique 🔘	○ ▷≈⊲
Ball valve	0	∘ ⋈
Butterfly valve	0	∘ ⋈
Angle valve	•	⋄↳
Needle valve	•	$^{\circ}\bowtie$
3-way valve	0	ا×ا ه
	~	
Choke valve	0	o 🕦

Training course: EXP-PR-DI010-EN

Last revised: 15/05/2007 Page 64 / 67

Main piping	0	Г
Secondary piping	0	∘ ====
Traced piping	0	O [2
Double jacketed piping	•	o —
Insulated piping	0	o 🖥
Spectacle blind (open)	0	○ PVVV4
Spectacle blind (closed)	O	I
Concentric reduction	0	\[\qqq \q
Funnel	0	o γ
Drain	0	o ——
Screw plug	0	o
Quick connection	0	○ — □ =
Hose	0	o 6


Training course: EXP-PR-DI010-EN

Last revised: 15/05/2007 Page 65 / 67

Instrument line	0	O
Pneumatic signal	0	o
Hydraulic signal	\circ	o ——
Electronic, analogic or logical signal	0	\
Digital signal	0	○
Regulation valve with manual control only	•	$\circ \bowtie$
Pneumatic servomotor regulation valve with membrane and without positionner	•	
Process control (accessible to operator)	•	∘ 🖽 🖯
Process control (not accessible to operator)	0	∘ 🖨 ⊖
Process safety (accessible to operator)	0	$\circ \; \boxminus \; \ominus$
Process safety (not accessible to operator)	•	$\circ oxtimes oxtimes$

16. Find the correct pipe coding order.

Training course: EXP-PR-DI010-EN

Last revised: 15/05/2007 Page 66 / 67

Gate valve with piston servo-drive or motorised pneumatic or hydraulic actuator	•	
2-way solenoid valve	0	\circ \bowtie
2-way solenoid valve with local reset		
3-way solenoid valve	\diamond	$\circ \Omega$
Internal pressure tap expansion valve	O	
External pressure tap expansion valve	0	
Positive displaement meter	\diamond	o
Orifice plate between flanges taps on flanges	•	<
Orifice plate between flanges taps on pipes	^	$^{\wedge}$ Ξ

Training course: EXP-PR-DI010-EN

Last revised: 15/05/2007 Page 67 / 67