RO/NF Process Design

April 2009

SYSTEM DESIGN CONSIDERATIONS

- Permeate capacity and quality
- •Permeate recovery ratio
- Membrane type
- •Average permeate flux rate
- •Size of RO trains and array design
- •pH adjustment for optimum performance
- •Energy Recovery devices

Feedwater and Temperature

											1.
🖥 🛉 Hydra	nautics RO	Projec	tion	Progran	n - [Ana	lysis]				
File Anal	lysis RO De	sign U	F TI	reatment	C	alcula	ition G	iraphs	Help		
Project	Arabian G	ulf SWR	0		C	ode	ARBGL	.F	Feed S	eawater - oper	
pН	8.16		T	urb		0.0			E cond	66243	
Temp	35.0	с 🔻] si	DI 📃		0.0	15min	•	H2S	0.0	2.
Ca	497.1	ppm	-	24	.79	meq			CO3	9.2	
Mg	1598.3	ррт	•	131	.55	meq			HCO3	180.2	
Na	13143.0	ppm	•	571	.43	meq			SO4	3354.4	
К	537.1	ppm	•	13).77	meq			CI	23699.2	3.
NH4	0.0	ррт	•).00	meq			F	1.7	ppm
Ba	0.000	ррт	•		00.	meq			N03	0.3	
Sr	9.500	ppm	•	0).22	meq			В	5.50	ppm
									SiO2	5.2	4.
	Total positiv	е		741	.76	meq		Autob	alance	Total negati	
Calculated	ITDS	43	3041	ppm					Ionic stre	ngth	
CaSO4 sa		25.7	%					BaSO4 s	aturation		
Silica satu	ration		3.3	%					SrSO4 sa	aturation	
Saturation	Index		1.6	Langelie	r	-			Osmotic	pressure	
NITTO DENKO 3											

Complete ion analysis is required. Use maximum concentrations for system sizing Ion charge balance is required, but may not result from provided analysis

Special considerations for **NH4 and alkalinity** Not all water

Print

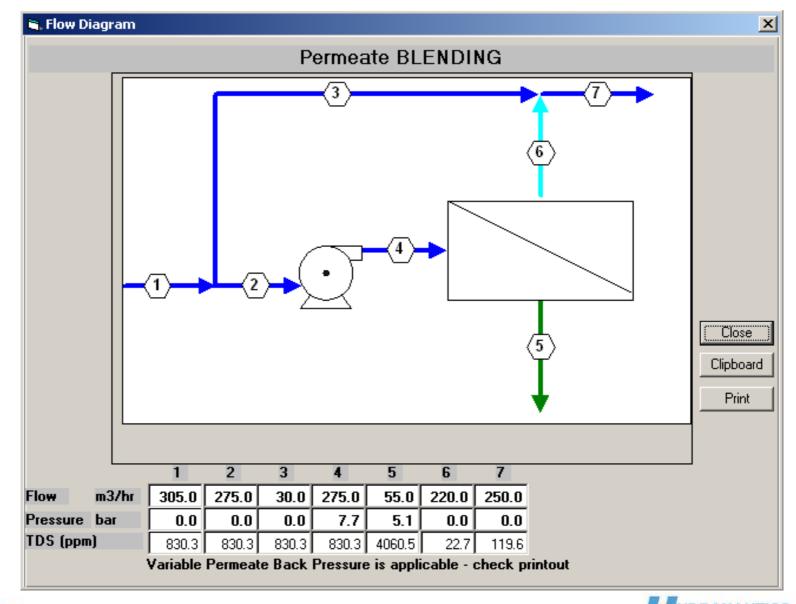
Save

0.855

0.0 %

30.7 %

470.4 psi


constituents are listed

www.membranes.com

Product Water Flow

Hydranautics RO Projection Program - [RO Design]							
File Analysis RODesign UF Treatm	nent Calculation	Graphs H	elp				
Project Arabian Gulf SWR0		ated by	CRB	Date 02/02/07			
	rane age	3.0	years 💌 Chem type				
Temp 35.0 C 🔽 Chem	dosing rate	0.0	ppm 🔽 Chemicon				
Flux decline % per year	7.0	5.0	Feed water type	Seawate entirety of the			
SP increase % per year	10.0	5.0	Permeate blending	product water			
Product recovery, %	40.0	98.0	Concentrate recirc.	S poor of bamb			
Permeate flow m3/d 💌	13000.00	11000.00	11777.78	2. Permeate			
Average flux rate	14.5	34.3	Recirculation flow	combined from			
Feed flow m3/d	32500.0	12222.2	Permeate pressure	U.U bar TY IVariable TY III T			
Concentrate flow m3/d	19500.0	1222.2		1st and full or			
				partial 2nd pass.			
Stage 1	1			3. Permeate plus			
- System Specs				small amount of			
Element type SWC4+							
Elements/vessel 7	-		St				
Vessels 144			Pa	acs 1 Elow diagr			
Permeate Press 0				Recalc Array			
Element type ESPAB	ESPAB	7	-				
Elements/vessel 6	6		St	tages 2			
Vessels 40	20			tages 2 - ass 2 -			
Permeate Press 2	0			Recalc Array AutoDisplay			

Process Flow Diagram – Feed Bypass

💫 ΝΙΤΤΟ DENKO

www.membranes.com

Selecting Your Recovery

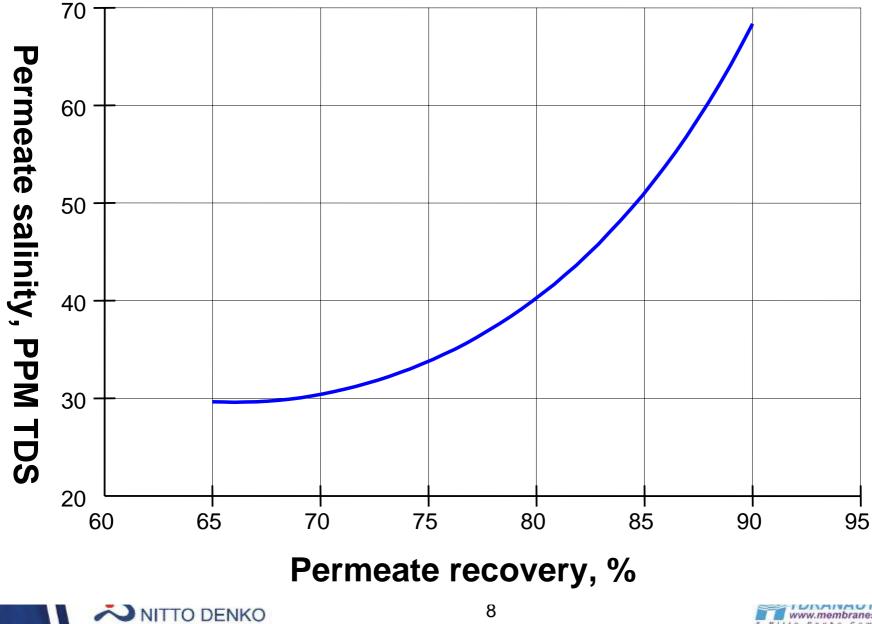
Hydranautics RO Pr	ojection Prog	'am - [RO Desigi	n]				
ile Analysis RODesig	n UF Treatm	ent Calculation	Graphs He	elp			
Project Arabian Gulf 9 pH 8.16 1		Calculati		CRB vears 🔻 Chemi		Date	02/02/07
Temp 35.0		losing rate	3.0 0.0	/	concentra	6 1 -	Higher Recovery lowers
Flux decline % per year]	7.0	5.0	Feed water type	Seaw		pretreatment costs and
SP increase % per year	ĺ	18.0	5.0	Permeate blending			saves raw water
Product recovery, %		40.0	90.0	Concentrate recirc.	×	2.	Limited by scaling
Permeate flow	m3/d 🔻	13000.00	11000.00	11777.78	_	Split Pa	Limited by scaling
Average flux rate	l/m2-hr ▼	14.5	34.3	Recirculation flow			indices
Feed flow	m3/d ▼	32500.0	12222.2	Permeate pressure		3.ar	Limited by Permeate
Concentrate flow	m3/d 💌	19500.0	1222.2				Water Quality
						4.	Limited by feed
	Stage 1	1				- The second sec	
- System Specs	Judge I						pressure and energy
Element type S	WC4+						optimization
Elements/vessel	7				Stages Pass 1	5.	Limited by minimum
Vessels	144						concentrate flow
Permeate Press	0				Re	alc Array	Typical for second pass
Element type	SPAB	ESPAB	7			6.	Typical for second pass
Elements/vessel	6	6	_		Stages		is 85 to 90%.
Vessels	40	20			Pass 2		Concentrate from 2nd
Permeate Press	2	0			Re		reused as feed to the
	Stage 1	Stage 2	1				first pass.

Recovery Limitations: Scaling

Hydranautics (warnings in program)

<u>Satura</u>	tion Limits:
CaSo4	230 %
SrSO4	800 %
BaSO4	6000 %
SiO2	100 %
LSI	<1.8 (Brackish Feed w. Scale Inhibitor)

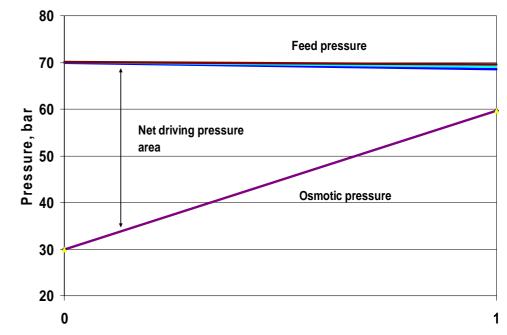
Proprietary Chemicals (software provided by vendors)


	Product A	Product B
CaSO ₄	350%	250%
Sr ₂ SO ₄	3500%	3000%
Ba ₂ SO ₄	10500%	6500%
SiO ₂		240 mg/L
CaCO ₃	L.S.I. 3.0	L.S.I. 2.5
CaF ₂	1300000%	10000%

DENKC

Brackish Water

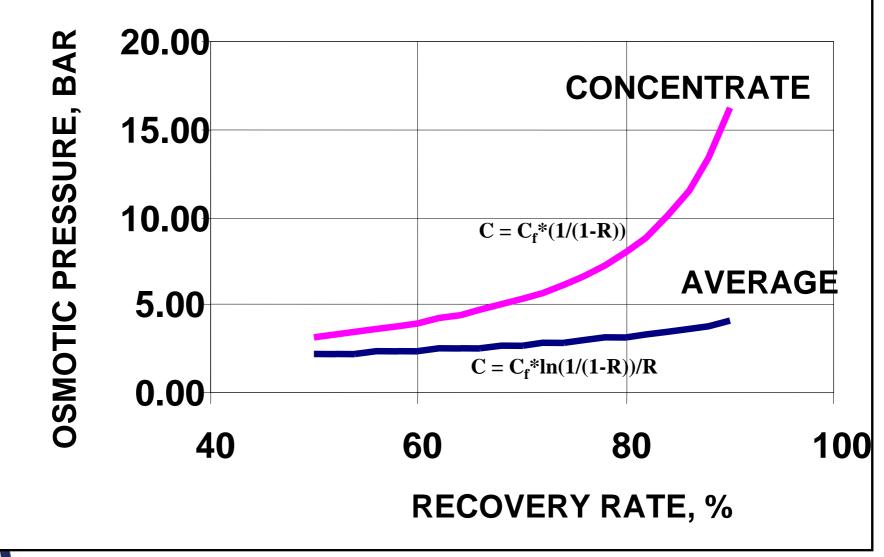
Salinity vs recovery



Net Driving Pressure (NDP)

Mediterranean seawater, 50% recovery

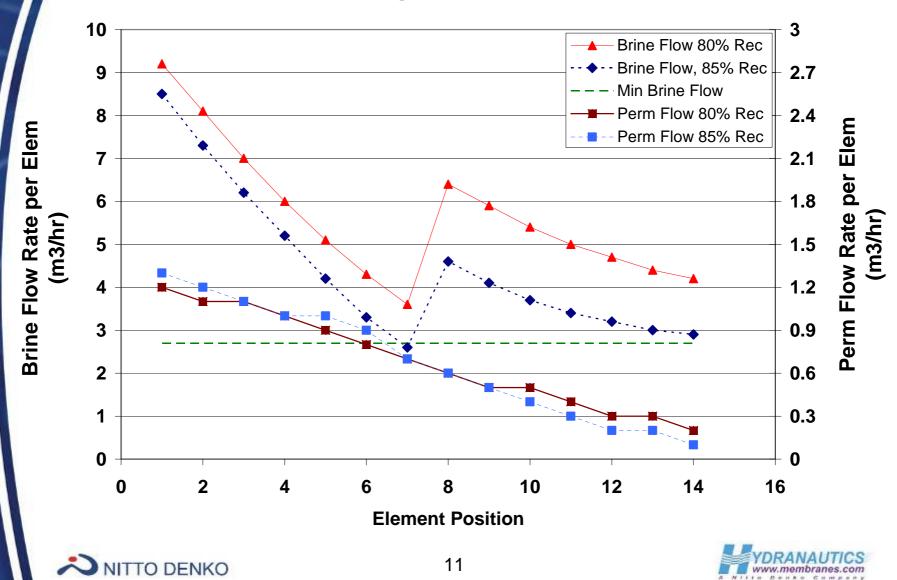
NDP - net driving pressure Driving force of the water transport (flux) through the membrane.



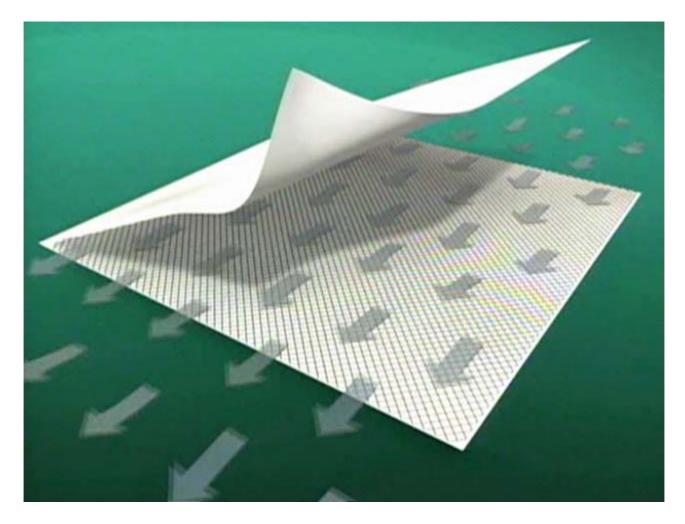
 $NDP = P_{f} - \overline{P}_{os} - P_{p} - 0.5 * P_{h} (+ Permos) Pressure vessel legth$ $P_{f} - applied feed pressure$ $\overline{P}_{os} - osmotic pressure (Avg Fd P_{os} - Perm P_{os})$ $P_{p} - permeate pressure$ $P_{p} - permeate pressure$

P_h - hydraulic pressure drop across **RO** element

NITTO DENKO


EFFECT OF RECOVERY RATE

Effect of Recovery on Brine Flow


Flow per Element, Brackish Water (ESPA2, 2100 mg/I TDS, 32 C, 21.4 lmh)

Selecting Your Flux Rate

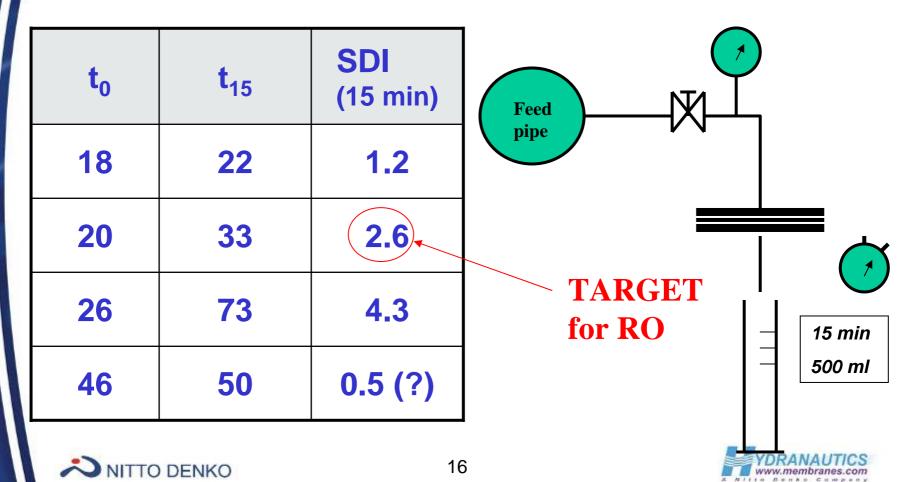
		3						
Hydranautics RO Projection	Program - [RO Design]							
ile Analysis RODesign UF	e Analysis RO Design UF Treatment Calculation Graphs Help							
Project Arabian Gulf SWR0		CRB						
	Calculated by		Date 02/02/07					
	Membrane age 3.0		H2SO4 -					
	Chem dosing rate 0.0		1. Flux rate depends on					
Flux decline % per year	7.0 5.0		feedwater type and					
SP increase % per year	10.0 5.0		emeate throttling					
Product recovery, %	40.0 90.0	Concentrate recirc. 🕱 8	ooster p degree of fouling					
Permeate flow m3/d	▼ 13098.60 11890.00		potential					
Average flux rate I/m2-hr	14.5 34.3		2. Lead element flux is					
Feed flow m3/d	✓ 32500.0 12222.2							
Concentrate flow m3/d	19500.0 1222.2		critical when TOC or					
			particle fouling is likely					
Stage 1	1		3. Hybrid designs, 1 st					
System Specs			Stage Perm Back					
			Bun					
Variation		Stages Pass 1	pressure, booster					
Vessels 144 Permeate Press	_		pumps can be used to					
		Re <mark>ca</mark>	balance flux					
Element type ESPAB	ESPAB							
Elements/vessel 6		Change						
Vessels 40	20	Stages Pass 2						
Permeate Press 2		Deer	La Aurou					
2	-		alc Array					
Stage 1	Stage 2		www.membranes.com					

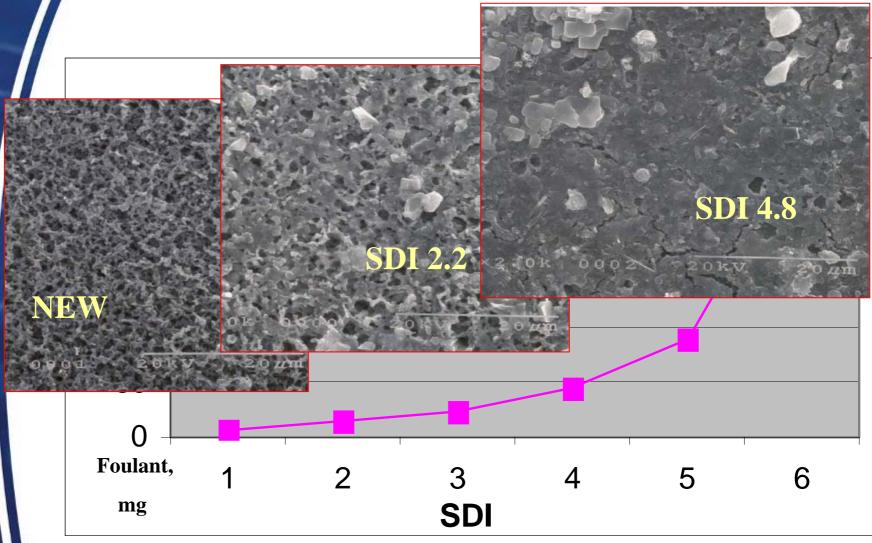
Cross Flow in a Spiral Element Sheet

Cross Flow in A Spiral Wound Element Removes Rejected Material

Expected average raw water quality from well, surface intake and secondary effluent

Quality parameter	Well water	Surface water (seawater)	Secondary effluent
Turbidity, NTU	<0.1	<2	<2
SDI	<2	6-12	6-12
Suspended solids, parts per ml	< 1	< 5	< 20
TOC, ppm	< 3	< 5	< 20
Scaling potential	Low to high	Low	Low (except in presence of high concentration of phosphate)


Particles and bacteria cause rapid fouling of RO membranes



Measurement of Feedwater Quality for SWRO Plants: SDI

Silt Density index : SDI = $100^{(1 - t_0/t_{15})}$

Amount of Foulant vs SDI

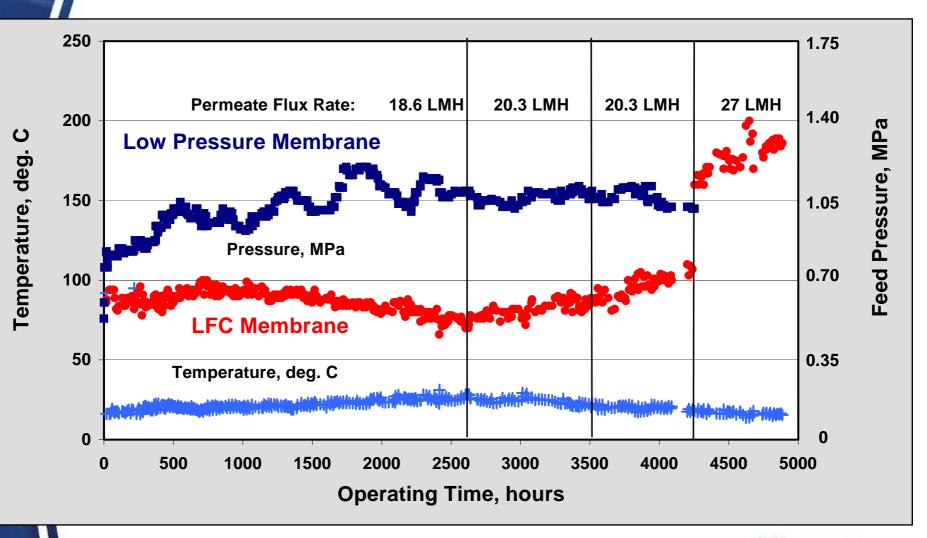
Flux Selection- Brackish, Good Quality

Raw Water source		RO	Brackish	Brackish	Brackish
		Perm	Well	Surface	Surface
Pretreatment type		RO	Not Soft	Conv.	MF/UF
TOC content		Low	Low	Low	Low
Feedwater Parameters					
Recommended Maximum:					
SDI @ 15 minutes	Maximum	1	3	4	2
Turbidity as NTU	Typical	0.1	0.1	0.1	0.1
TOC ppm as C	Typical	2	2	2	2
BOD ppm as O2 (est. as TOC x 2.0)	Maximum	4	4	4	4
COD ppm as O2 (est. as TOC x 3.0)	Maximum	6	6	6	6
Particle Count (2um particles / ml)	Typical	100	100	100	100
System Average Flux (in LMH)	Conservative	30.6	23.8	17	23.8
	Typical	35.7	27.2	20.4	27.2
	Aggressive	40.8	30.6	23.8	30.6
Lead Element Flux (in LMH)	Conservative	49.3	35.7	25.5	30.6
	Typical	51	40.8	30.6	35.7
	Aggressive	59.5	45.9	35.7	40.8

NITTO DENKO

18

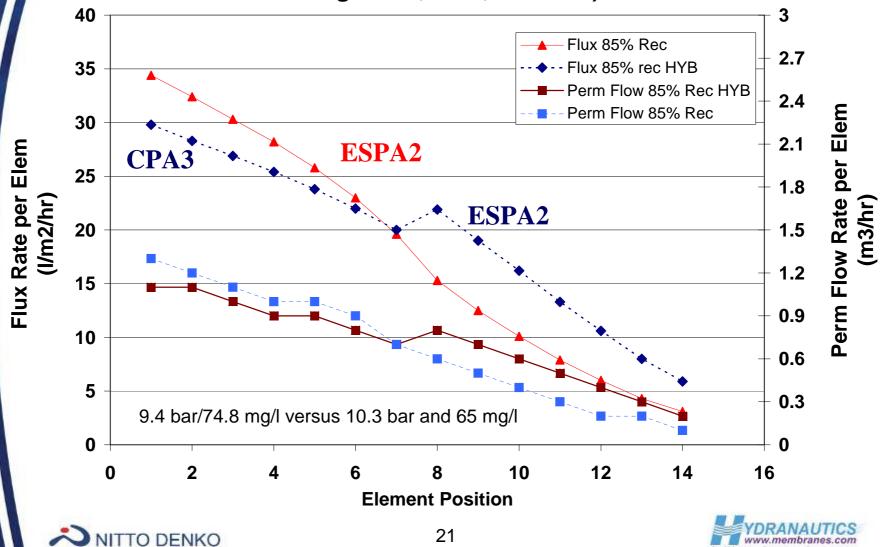
Flux Selection- Brackish, Poor Quality


Raw Water source			Brackish	Brackish	Waste	Waste
			Surface	Surface	Tertiary	Tertiary
Pretreatment type			Conv.	MF/UF	Conv.	MF/UF
TOC content			High	High	High	High
Feedwater Parameters						
Recommended Maximum:						
SDI @ 15 minutes	Maximum		4	2	4	2
Turbidity as NTU	Typical	0	0.1	0.1	0.1	0.1
TOC ppm as C	Typical		5	5	5	5
BOD ppm as O2 (est. as TOC x 2.0)	Maximum	0	10	10	10	10
COD ppm as O2 (est. as TOC x 3.0)	Maximum	0	15	15	15	15
Particle Count (2um particles / ml)	Typical	#	100	100	100	100
System Average Flux (in LMH)	Conservative		17	18.7	11.9	13.6
	Typical		18.7	23.8	17	18.7
	Aggressive		23.8	28.9	20.4	22.1
Lead Element Flux (in LMH)	Conservative		25.5	27.2	18.7	20.4
	Typical		30.6	32.3	25.5	27.2
	Aggressive		35.7	37.4	30.6	32.3

TO DENKO

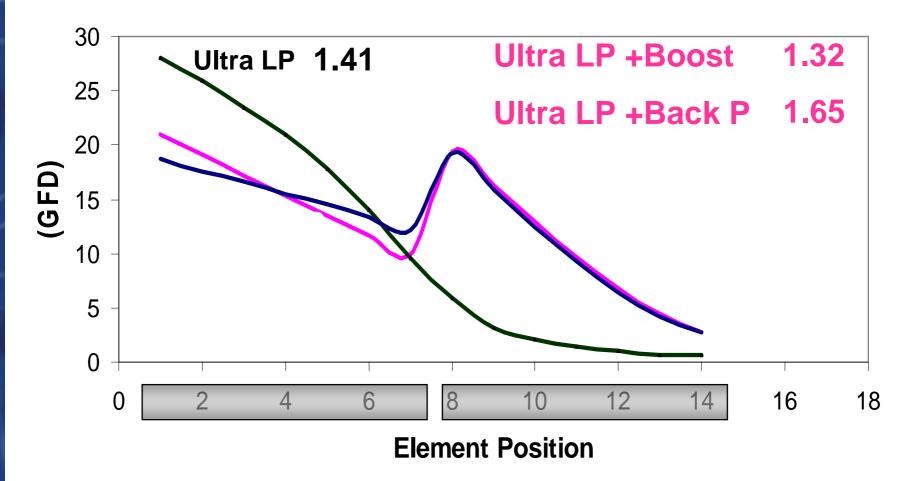
19

Increased Fouling Rate When Design Flux Rates are Exceeded



TTO DENKO

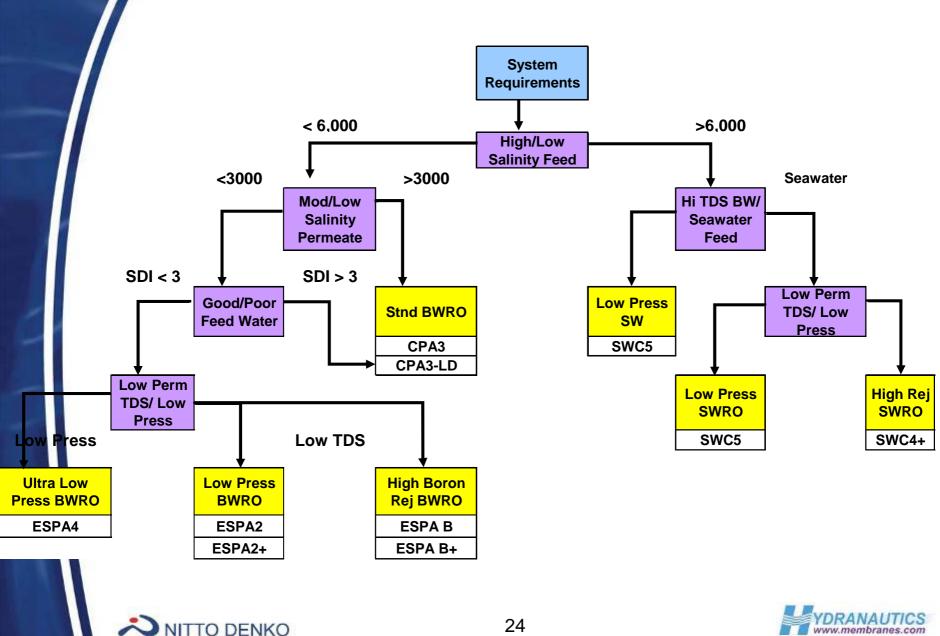
Hybrid Designs Balance Flux


Flux and Flow per Element, Brackish Water (ESPA2 versus CPA3/ESPA2 HYBRID 2100 mg/I TDS, 32 C, 21.4 lmh)

Options to Control Lead Elem Flux

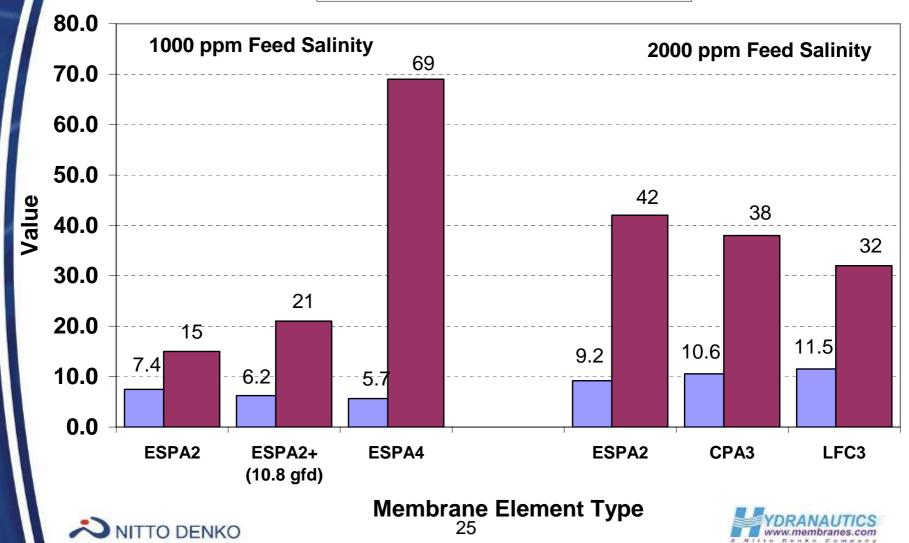
LP 1.84 kWhr / kgal

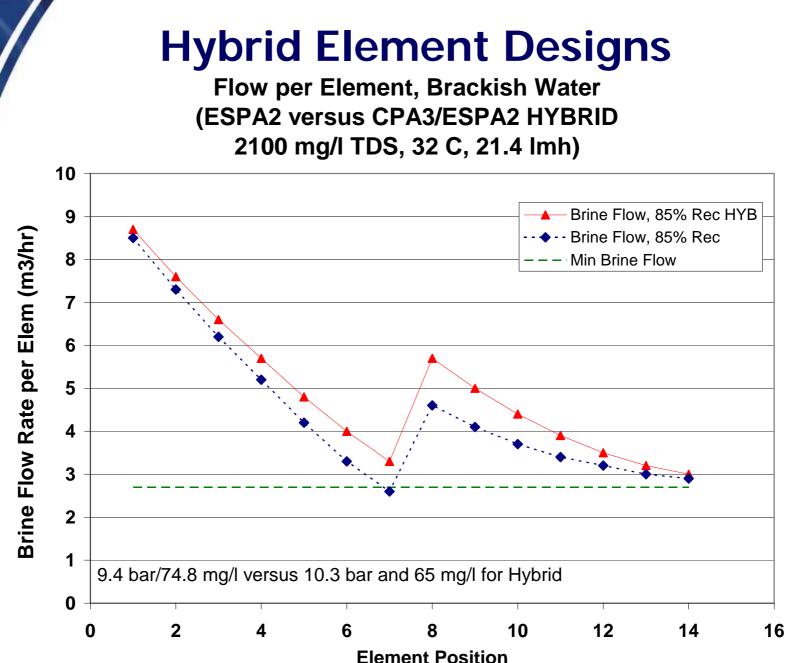
Specific Power Consumption


Selecting Your Membrane

Hydranautics RO Projection Prog	Hydranautics RO Projection Program - [RO Design]								
File Analysis RODesign UF Treatm	: Analysis RO Design UF Treatment Calculation Graphs Help								
0.10 10.00	Calculated by rane age 3,1 dosing rate 0,1	CRB Date 02/02/07 years ▼ Chem type H2SO4 ppm ▼ Chem concentration,% 98 €	/						
Flux decline % per year	7.0 5.0	Feed water type Seawater - open intake	1.	Low pressure					
SP increase % per year	10.0 5.0	Permeate blending 🦳 Permeate throttling 🕅	- 1						
Product recovery, %	40.0 90.0			versus low					
Permeate flow m3/d	13000.00 11000.00								
Average flux rate I/m2-hr	14.5 34.3			permeate TDS					
Feed flow m3/d ▼ Concentrate flow m3/d ▼	32500.0 12222.3								
System Specs Stage 1 System Specs SWC4+ Element type SWC4+ Vessels 144 Permeate Press 0 Element type ESPAB Elements/vessel 6 Vessels 40 Permeate Press 2	19500.0 1222.1	Passes 2 InterPass pump Recalc Array Recalc Array Recalc Array AutoDispl Recalc Array	2.	that meet permeate quality, then optimize for pressure					
Stage 1	∫ Stage 2 _ j								

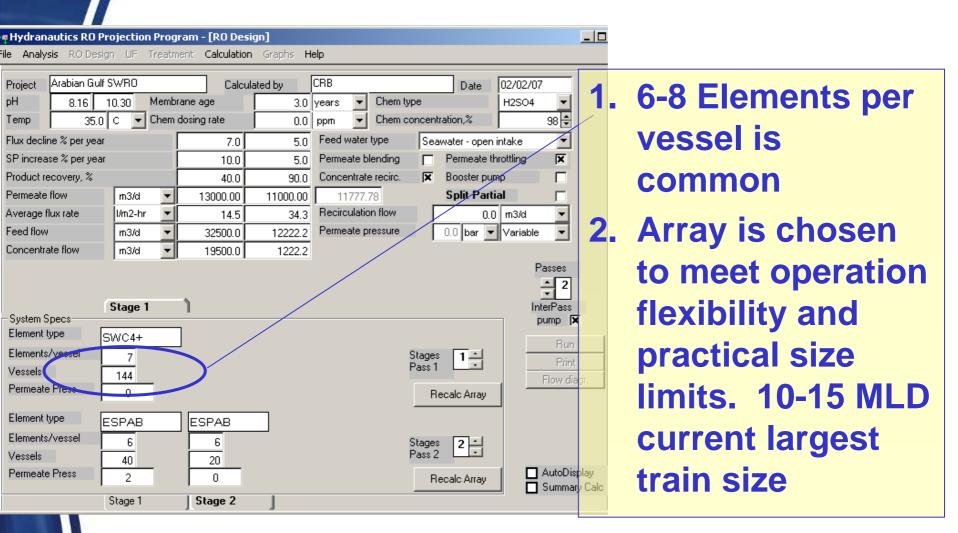
NITTO DENKO


Membrane Selection Logic



Selection of Brackish Water Membranes

Comparative Performance of Hydranautics Products (75% recovery, 25 deg C, 12 gfd flux)


■ Feed Pressure (bar) ■ Permeate TDS (mg/L)

TTO DENKO

Selecting Number of Vessels and Vessel Size

NITTO DENKO

Stages and Passes

Hydranautics RO Projection Program - [RO Design]

- 1. Minimize stages to reduce dP and piping costs
- 2. One pass treatment with high rej membrane more economical than two passes with moderate rejection elements
- 3. More stages and/or passes allow greater system flexibility

IESPAB.

6

40

2

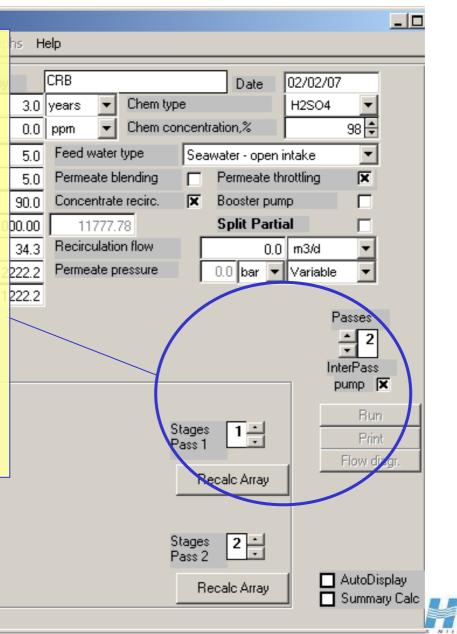
Stage 1

IESPAB

6

20

Ω


Stage 2

Element type

Vessels

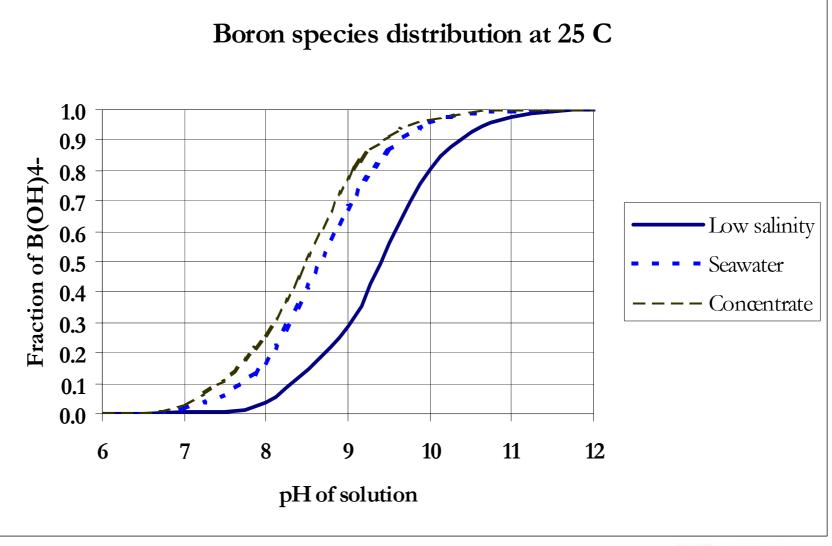
Elements/vessel

Permeate Press

www.membranes.com

Comparison of 1 Pass and 2 Pass Approaches to Same Design

Array, first pass	4:2(7M)	6(7M)
Element type, first pass	ESPA2	SWC3+
Array, second pass	1:1 (5M)	
Element type, second pass	ESPA2	
Feed pressure, first pass, psi	573	776
Interstage booster, first pass, psi	200	
Feed pressure, second pass, psi	214	
Combined recovery rate, %	47.9	47.9
Permeate flow, m3/hr	19.2	19.2
Power consumption, 1 st pass, kWhr	41.4	42.9
Power consumption, 2 nd pass, kWhr	7.9	
Total power consumption, kWhr	49.3	42.9
Power consumption, kWhr/m3	2.57	2.24



pH Adjustment

	To o o										
* *	Hydranautics RO Projection Program - [RO Design]										
e Analysis RODesign UF Treatment Calculation Graphs Help											
Project Arabian Guir SWR8	Calcula	ited by	CRB		Date	02/02/07					
	rane age	3.0	years 🔻 Chem	type	4	12504					
Temp 35.0 C - Chem	dosing rate	0.0	ppm 🔻 Chem	concentratio	1 .	Lower pH to increase					
Flux decline % per vear	7.0	5.0	Feed water type	Seawat	er - open i	solubility of calcium					
SP increase % per year	10.0	5.0	Permeate blending	Pe	rmeate th	carbonate or calcium					
Product recovery, %	40.0	90.0	Concentrate recirc.	💌 Bo	oster pun						
Permeate flow m3/d 💌	13000.00	11000.00	11777.78	S	olit Parti	phosphate					
Average flux rate	14.5	34.3	Recirculation flow		2.0.0	Increase pH to					
Feed flow m3/d 💌	32500.0	12222.2	Permeate pressure	0.0		Moriable -					
Concentrate flow m3/d 💌	19500.0	1222.2				increase rejection of					
						boron and silica					
						rejection					
Stage 1	1					InterPass					
System Specs	7				3.	Incresase pH to					
				C1		increase solubility of					
				Stages Pass 1	1 👬 👘	Print					
Demosta Desca						certain organics and					
				Reca	c Array	silica					
Element type ESPAB	ESPAB										
Elements/vessel 6				Stages	2 -						
Vessels 40	20			Pass 2	-						
Permeate Press 2	0			Reca	lc Array	AutoDisplay					
, Stage 1	Stage 2	1				Summary Calc Summary Calc Summary Calc					

Effect of Feed pH on Boric Acid Dissociation

Conclusions

- Long term experience with RO systems has resulted in optimized performance
- Detailed consideration of all design parameters is necessary to optimize the system performance
- Advances in membrane technology and process design have led to a steady decline in energy consumption and system cost
- Sound operation of RO process should result in 5-8 years of membrane life

THANK YOU