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Preface to "Remote Sensing of the Aquatic
Environments”

The observation of the aquatic environments represented by inland surface water, seas and
oceans has been traditionally linked to the need for safe navigation and fishing locations. More
recently, there has been a growing demand on monitoring capability due to increasing concerns about
the contaminants produced by anthropogenic activities on the quality of inland and coastal waters.

Remote observations allow us to gather plenty of information about surface temperature, winds,
currents, ocean color, coral reefs, sea and lake ice, suspended solid concentrations, algal blooms, and
other bio-geophysical parameters related to the aquatic environment.

In this context, active and passive remote sensors offer suitable solutions for the synoptic
monitoring of the water surface along with all the properties directly involved. Our aim is to
develop methods and applications to extract detailed environmental information from multisensor
observations.

This book—Remote Sensing of the Aquatic Environments—is focused on the relevant aspects
related to the remote measurement of the bio-geophysical properties of bodies of water and the
methodologies aimed at studying the relevant processes. It includes a collection of research efforts
aimed at improving our capability to monitor inland waters such as lakes and lagoons, water
reservoirs, and coastal areas including estuarine and river delta regions. These water districts
represent the most sensitive regions of our planet where the delicate balance among all the ecological
systems should be preserved.The book is aimed at a wide audience, ranging from graduate students,

university faculty members and scientists to policy makers and managers.

Giacomo De Carolis, Francesca De Santi
Editors

vii
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Abstract: The main objective of this study was to develop empirical models from Landsat 5 TM data to
monitor nutrient (total phosphorus: TP), organic matter (biological oxygen demand: BOD), and algal
chlorophyll (chlorophyll-a: CHL-a). Instead of traditional monitoring techniques, such models could
be substituted for water quality assessment in aquatic systems. A set of models were generated
relating surface reflectance values of four bands of Landsat 5 TM and in-situ data by multiple linear
regression analysis. Radiometric and atmospheric corrections improved the satellite image quality.
A total of 32 compositions of different bands of Landsat 5 TM images were considered to find the
correlation coefficient (r) with in-situ measurement of TP, BOD, and CHL-a levels collected from
five sampling sites in 2001, 2006, and 2010. The results showed that TP, BOD, and CHL-a correlate
well with Landsat 5 TM band reflectance values. TP (r = —0.79) and CHL-a (r = —0.79) showed
the strongest relations with Bl (Blue). In contrast, BOD showed the highest correlation with Bl
(Blue) (r = —0.75) and B1*B3/B4 (Blue*Red /Near-infrared) (r = —0.76). Considering the r values,
significant bands and their compositions were identified and used to generate linear equations.
Such equations for Landsat 5 TM could detect TP, BOD, and CHL-a with accuracies of 67%, 65%,
and 72%, respectively. The developed empirical models were then applied to all study sites on the
Paldang Reservoir to monitor spatio-temporal distributions of TP, BOD, and CHL-a for the month
of September using Landsat 5 TM images of the year 2001, 2006, and 2010. The results showed that
TP, BOD, and CHL-a decreased from 2001 to 2006 and 2010. However, S3 and 54 still have water
quality issues and are influenced by climatic and anthropogenic factors, which could significantly
affect reservoir drinking water quality. Overall, the present study suggested that the Landsat 5 TM
may be appropriate for estimating and monitoring water quality parameters in the reservoir.

Keywords: empirical models; multiple regression; Paldang Reservoir; water quality parameters

1. Introduction

Freshwater reservoirs are significant natural resources within the biosphere that func-
tion as sources of drinking, irrigation and industrial water, tourism attractions, and aquatic
organisms’ habitats [1-3]. These reservoirs face a number of stressors, including land use
change, pollution, intensive farming, climate change, and human activities, causing several
water quality issues [1,4,5]. About fifty percent of the world’s populations live near water
resources, and human activities accelerate aquatic stressors like eutrophication and algal
blooms [4]. Due to rapid urban population growth, industrialization, intensive agricultural
farming, and global climate changes, reservoirs are facing significant challenges, most im-
portant of which are the rise in nutrients, algal blooms, and organic matter pollution [6-8].
This is a global environmental issue and a current research subject [3,9,10].

Paldang Reservoir is one of the main reservoirs in South Korea, formed by the con-
struction of a hydroelectric dam in 1973 [11]. It has been used for various purposes such
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as irrigation, hydroelectric, fishing, recreation, and drinking water [12]. It has been de-
clared a nationally protected resource and provides water for the Seoul metropolitan and
surrounding areas [13]. Approximately half of the Korean population depends on the
Paldang Reservoir for drinking water [14]. Simply put, the water quality of the reservoir
is crucial to the Korean government. However, human activities have risen in the water-
shed, resulting in short-term algal blooms and organic pollution in the reservoir [15,16].
Urbanization, municipal pollutants, livestock farms, intensive farming practices,
domestic and industrial wastewater, and inflowing rivers contribute to the water con-
tamination of the reservoir [17,18]. Henceforth, monitoring the nutrients, organic matter,
and algal chlorophyll concentrations and determining their spatial and temporal dynamics
are essential to managing the reservoir water quality [3].

Traditional monitoring approaches, including in-situ measurements and laboratory
analysis, allowed us to understand and categorize water-quality parameters [1,3,19].
Though this technique yields accurate measurements, it is time-intensive and labori-
ous and may not provide an overview of water quality at a broad spatial scale [20].
Furthermore, current monitoring techniques can not cover the wider spectrum of spa-
tial and temporal analysis which is necessary to resolve aquatic integrity and public health
issues [4]. It is particularly true for large water bodies like Paldang Reservoir, one of
Korea’s largest freshwater sources.

Satellite remote sensing is currently one of the most powerful and most reliable
methods for monitoring and managing water quality [3,21]. Readily accessible remote
sensing data offers cost-effective and less time-intensive methods than in-situ methods
by providing continuous spatial and temporal coverage of environmental processes [1].
This approach delivers a large-scale synoptic range of the systems [19,22]. Spectral satellite
radiance measurement is interrelated to many water quality variables influencing an aquatic
ecosystem’s optical properties [23,24]. Several previous studies have shown that satellite
systems’ brightness data are closely associated with water quality variables [3,4,19-22,24,25].

Miller et al. [26] noted that the “Landsat series provided an approximate annual economic
benefit of 2.19 billion US dollars spread across several study areas for only the USA”. Since 1984,
Landsat 5 has provided a steady stream of data with a moderate spatial resolution (30 m),
multispectral imagery, and a sampling rate of 16 days [4,19,24]. Therefore, these pictures
are appropriate for demonstrating the study of aquatic resources. The moderate spatial
resolution of images allows us to study a small water body, about 8 ha [25]. It indicates
that Landsat Thematic Mapper (TM) sensor can be used extensively to form the empirical
relationships among water quality parameters and spectral reflectance values. The most
common way to determine a relationship among spectral reflectance values and water
quality parameters are through regression analysis. The most critical aspect of running a
regression analysis is choosing a regression model with appropriate independent parame-
ters (single bands, band ratios, and combinations of bands) that yield a high R? value. A
high R? value reveals that the return equation is highly correlated with existing data and
provides a relatively accurate model. However, previous studies demonstrated that the
bands that best predict water quality parameters differ with water conditions and ecosys-
tems. Therefore, empirical models must be individually developed for each variable at
different systems. Researchers used Landsat 5 sensor to determine the spatial and temporal
distribution of water quality parameters throughout the world, including chlorophyll-a
(CHL-a), turbidity, Secchi depth (SD), total suspended solids (TSS), total phosphorus (TP),
organic matter (BOD), electrical conductivity, etc. [4,19,21,22,25,27-30].

This study aimed to develop a method for using Landsat 5 TM data to determine TP,
BOD, and CHL-a concentrations in Paldang Reservoir, Korea. This reservoir was selected
for study due to its status as a nationally protected resource. This research’s primary
objectives were to: (i) determine the relationship among TP, BOD, and CHL-a with TM
bands, band ratios, and combinations of bands and (ii) develop empirical models using
regression analysis for monitoring TP, BOD, and CHL-a. The developed models were also
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used to evaluate the spatio-temporal variations in TP, BOD, and CHL-a among study sites
during 2001, 2006, and 2010.

2. Materials and Methods
2.1. Study Area

The Paldang Reservoir is situated approximately 45 km northeast of Seoul and pro-
vides drinking water for 24 million people [14]. It has an area of 38.2 km? and a volume
of 250 x 106 m3 [11]. The mean and maximum depth of the reservoir is 6.5 m and 25
m, respectively [11]. Five reservoir sampling sites labelled S1-55 were selected for this
study. Sites S1 and S2 were located in the South Han River part of the reservoir. In contrast,
S3, 54, and S5 were situated at the North Han River, Kyoungan Stream, and dam, respec-
tively. The water intake tower for Paldang Reservoir is located at S5 (Figure 1). It receives
water from three different sources, namely the Kyoungan Stream, South and North Han
River, and directly affects the reservoir’s hydrodynamics and water quality [2,11,12,16].
About 95% of the reservoir’s water comes from the North and South Han Rivers, which
have relatively good water quality [11]. In contrast with the two sources, Kyoungan Stream
has a small flow rate and a lower water quality. The drinking water supply tower is located
near Kyoungan Stream’s confluence and this significantly impacts drinking water quality
(Figure 1).
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Figure 1. The map showing the study sites of Paldang Reservoir.

2.2. Methodological Approach

This study solely depends on secondary data. To monitor the water quality parameters
(WQPs: TP, BOD, and CHL-a) of a reservoir, several Landsat 5 TM images with band values
were acquired and processed. Finally, regression analysis was carried out to establish a
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relationship between band values of Landsat images and in-situ measurements of WQPs.
Figure 2 illustrates the methodological approach of this study.

| Secondary Data Collection |

[
! !

Landsat 5 TM images from WQPs data of Paldang
USGS Website Reservoir from South Korean
1 Ministry of Environment
Radiometric and Atmospheric l
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Figure 2. Methodological flow chart of the study.

2.2.1. Acquisition and Processing of Satellite Data

A total of 19 images of Landsat 5 TM (path/row: 116/34 and 115/34) were down-
loaded from the United States Geological Survey (USGS) Website (https:/ /earthexplorer.
usgs.gov/, accessed on 26 April 2021). Seven images from the year 2001 (dated 11 January,
16 March, 17 April, 19 May, 15 September, 27 November, and 13 December), six images
from 2006 (dated 25 January, 17 February, 14 March, 5 August, 13 September, and 18 De-
cember), and six images from 2010 (dated 5 February, 16 March, 24 September, 19 October,
11 November, and 29 December) were selected due to availability of cloud-free images.
To make these raw images more suitable to use, appropriate radiometric and atmospheric
corrections were carried out using the semi-automatic classification plugin (SCP) of QGIS.
To remove the effect of haze, this plugin employs dark object subtraction (DOS) method.
SCP is a widely used plugin for preprocessing satellite images [31,32]. SCP uses the spectral
radiance scaling method to convert the digital number (DN) to top of atmosphere (TOA)
reflectance in two steps [33]. The procedure is described in the following sections. At first,
the spectral radiance at the sensor’s aperture Ly (Wm~2 sr~'um~1) is measured from DN
(Equation (1)) [34]:

Lx =My X Qear + AL 1

where M| = Band-specific multiplicative rescaling factor from Landsat metadata (RA-
DIANCE_MULT_BAND_x, where x is the band number), A; = Band-specific additive

4
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rescaling factor from Landsat metadata (RADIANCE_ADD_BAND_x, where x is the band
number), Q.. = Quantized and calibrated standard product pixel values (DN). After that
DOS, the image-based atmospheric correction is carried out in SCP to calculate land surface
reflectance (Equation (3)) for each pixel by calculating path radiance (Equation (2)):

Ly =My X DN, + Ap — 0.01 X Egyyny X cosfs/ (7t x d?) )

where, L, = path radiance, DN,;;;, = minimum DN value of the scene, d = Earth-Sun distance
in astronomical units, Eg;y) = mean solar exo-atmospheric irradiances, 6s = solar zenith
angle in degrees, which is equal to 8s = 90° — fe where e is the Sun elevation:

p =[x (Ly = Ly) x d*1/(Esuna X cosfs) ®)

where, p = land surface reflectance, L, = spectral radiance at the sensor’s aperture,
L, = path radiance.

2.2.2. Assembling WQPs Data and Associated Band Values

The concentrations of different WQPs (TP, BOD, and CHL-a) of five sample collection
points in Paldang Reservoir were collected from the South Korean Ministry of Environment
for 2001, 2006, and 2010. These measurements are usually collected once a month. The dates
of acquisition of satellite images were near the sampling days. A total of 95-pixel values
for each band associated with these sample points were extracted from processed satellite
images in the ArcGIS platform (Esri Inc., Redlands, CA, USA). For this analysis, four bands
(blue, green, red and near infra-red) of Landsat 5 TM images were selected to extract,
and a total of 32 band compositions were calculated in Microsoft Excel (Microsoft Office,
Redmond, WA, USA).

2.2.3. Development of Multiple Regression Equation between WQPs and Landsat
Band Values

After arranging the data, outliers of the dataset were identified by plotting box-whisker
plots (Supplementary File Figures S1-S3). These box-whisker plots have identified one
outlier for BOD (3.5 mg/L), six for TP (123, 138, 140, 142, 228, 236 ug/L), four for CHL-a
(49.1, 56.3,71.9, 132 ug/L). For developing the empirical models, these outliers were omit-
ted. Pearson’s coefficient of correlation () was calculated to find the strength of association
among the band values and WQPs. To identify the significant band values, a threshold
value of r was considered to be equal to or greater than 0.7, which represents strong cor-
relation [21]. Multiple regression analysis was carried out in an online-based calculator
to generate equations for each WQP. This analysis continued iteration until a significant
p-value was obtained. This online-based calculator consideres all the assumptions of linear
regression analysis (https://www.statskingdom.com/doc_linear_regression.html#multi,
accessed on 26 April 2021). The assumptions are: (i) linearity—there is a linear relation-
ship between the dependent variable, Y and the independent variables, Xi; (ii) residual
normality; (iii) homoscedasticity (homogeneity of variance)—the variance of the residu-
als is constant and does not depend on the independent variables Xi; (iv) variables—the
dependent variable, Y, should be continuous variable while the independent variables,
Xi, should be continuous variables or ordinal variables; (v) multicollinearity—there is no
perfect correlation among two or more independent variables, Xi.

To determine the efficiency of the generated models, root mean squared error (RMSE),
root mean squared log error (RMSLE), mean relative error (MRE) and mean absolute
error (MAE) were computed along with coefficient of determination (r?) and p-values.
The following are the equations of RMSE, RMSLE, MRE and MAE. These equations can be



Remote Sens. 2021, 13, 2256

applied to radiometrically and atmospherically corrected Landsat 5 TM images to predict
specific water properties (TP, BOD and CHL-a):

2
RMSE — | L =00 ; O1) )
2
RMSLE - Vzaogm +1) ~log(0y-+1) -
5
MRE = =19 ‘ ©)

where, P; = predicted values of WQPs, O; = observed values of WQPs, and n = sample size.

2.3. Spatio-Temporal Variation of WQPs

The spatio-temporal variation in WQPs of Paldang Reservoir for the years 2001, 2006,
and 2010 were studied using the generated equations. Landsat 5 TM images of the month of
September of these years were processed in SCP of QGIS, and the area of interest- Paldang
Reservoir was extracted from the images. From their band values, values of WQPs were
computed in Raster Calculator (Esri Inc., USA) and analyzed for the change detection
study.

3. Results
3.1. Reservoir Conditions

The water quality parameters (TP, BOD, and CHL-a) of the Paldang Reservoir showed
significant site variations (Table 1). The mean TP varied from 34.75-92.06 ugL’1 from sites
S1-S5. Site S4 showed the highest TP (92.06 ugL~!) value compared to all sites due to
the reception of wastewater from industry and household activities. Moreover, Site 54 is
highly impacted by the Kyoungan Stream. Niirnberg [35] proposed that TP concentrations
> 30 ugL~! indicate a eutrophic reservoir. Mean TP levels above 30 pgL~! at all sites were
observed in this study. High BOD values suggest that organic matter pollution is linked
to wastewater effluents. The mean BOD ranged from 1.05 to 1.72 mgL~! in the Paldang
Reservoir. Like TP, the highest BOD had been observed in Site S4 (1.72 mgLfl). It is well
known that CHL-a is the primary indicator of eutrophication in the lentic system [5,36].
The mean CHL-a varied from 10.89 to 27.74 ugL.~!. Niirnberg [35] proposed that eutrophic
reservoir should be indicated by CHL-a concentrations greater than 9 pgL.~!. Mean CHL-a
concentrations at five sites were found above 9 pgL~!. Like TP and BOD, the highest CHL-a
was also observed at site S4. Industrial and household wastewater and the Kyoungan
Stream highly affect the water quality of site S4. Eun and Seok [11] and Mamun et al. [2]
found that the water quality of the Kyoungan Stream is in poor condition compared to the
South Han River (sites S1 and S2) and North Han River (Site S3), and this could have a
major effect on the reservoir’s water quality.
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Table 1. Summary statistics of Total Phosphorus (TP), Biological Oxygen Demand (BOD) and
Chlorophyll-a (CHL-a) in Paldang Reservoir.

TP (ug/L) BOD (mg/L) CHL-a (ug/L)
Sites Mean + SD Mean + SD Mean + SD
(Min—Max) (Min—Max) (Min—Max)
50.93 + 29.51 1.15 £ 0.56 13.61 £ 6.16

51 (28-142) (0.4-2) (1.1-49.1)
52.81 £+ 27.35 1.31 £ 0.61 15.37 £ 12.14

52 (29-140) (0.4-2.3) (0.9-37.5
34.75 +22.94 1.05 £ 0.35 10.89 £ 6.83

53 (11-100) (0.4-1.5) (1.2-24.4)
92.06 + 66.66 1.72 £ 0.68 27.74 + 14.37

54 (11-236) (0.8-3.5) (3-132)

43.25 +28.18 1.18 £ 0.37 16.71 £11.52

55 (12-116) (0.7-1.9) (5.3-42.5)

A Pearson-based correlation analysis was used to identify the relationship among
TP, BOD, and CHL-a (p < 0.05; Table 2). The BOD showed positive correlation with TP
(r=0.249) and CHL-a (r = 0.627). The positive correlation between BOD and TP suggests
that nutrients (TP) flow into the Paldang Reservoir along with organic matter (BOD).
The high positive correlation between BOD and CHL-a indicates that autochthonous
organic matter production is primarily resulting from phytoplankton processes. CHL-a
was positively related with TP (r = 0.375), which is the key factor regulating algal growth
in the freshwater lentic system [5,9,10].

Table 2. Pearson correlation among total phosphorus (TP), biological oxygen demand (BOD) and
chlorophyll-a (CHL-a).

Variables r Value P
BOD TP 0.249 0.02
BOD CHL-a 0.627 <0.001
TP CHL-a 0.375 <0.001

3.2. Relations of Band Compositions with TP, BOD, and CHL-a

Values of 32 band compositions and associated TP, BOD, and CHL-a concentrations
were employed to compute correlation (r) values for Landsat 5 TM sensors. The band
compositions and their allied r values are shown in Table 3. Only four bands (blue, green,
red, and near-infrared) provide the visibly displayed water quality parameter spectral
reflectiveness (0.4-0.9 um); that is why we used these four bands to determine TP, BOD,
and CHL-a [20]. TP is a significant factor in deciding eutrophication in freshwater systems.
The TM bands’ correlation with TP ranged from —0.07 (B2/B4) to —0.79 (B1). Particularly,
TP showed the strongest correlation with Bl (r = —0.79). The present findings have
concurred with some previous studies [20]. BOD is the indicator of organic pollution
in the aquatic systems. BOD and TM bands’ correlation varied from —0.15 (B1/B3) to
—0.76 (B1*B3/B4). Like TP, BOD showed the highest correlation with Bl (r = —0.75) and
B1*B3/B4 (r = —0.76). CHL-a is a good indicator of overall algal biomass in the aquatic
systems. The present results showed a dynamic relation between TM bands and CHL-a.
The correlation among TM bands and CHL-a ranged from 0.12 (B2/B3) to —0.79 (B1).
Like TP and BOD, CHL-a showed the highest correlation with B1 (r = —0.79). From the r
values, influential bands and band compositions have been identified to generate empirical
models for TP, BOD, and CHL-a (marked in bold; Table 3).

7



Remote Sens. 2021, 13, 2256

Table 3. Correlation matrix values for different band compositions of Landsat 5 TM with TP, BOD and
CHL-a (B1: Blue, B2: Green, B3: Red, B4: NIR-Near-Infrared, TP: Total Phosphorus, BOD: Biological
Oxygen Demand, CHL-a: Chlorophyll-a, influential bands and band compositions have been (r > 0.7)

marked in bold.
r-Values

Band Composition — 50D CHL-a
Bl —0.79 —0.75 —0.79
B2 —0.76 —0.74 —0.76
B3 —0.74 —0.71 —0.75
B4 —0.68 —0.60 —0.53
B1*B2 —0.70 —0.71 —0.72
B1*B3 —0.68 —0.67 —0.70
B1*B4 —0.65 —0.63 —0.62
B2*B3 —0.66 —0.65 —0.68
B2*B4 —0.63 —0.62 —0.56
B3*B4 —0.61 —0.58 —0.58
B1*B2*B3 —0.58 —0.57 —0.61
B1*B2*B4 —0.57 —0.55 —0.55
B1*B3*B4 —0.55 —0.52 —0.53
B2*B3*B4 —0.54 —0.50 —0.51
B1/B2 —0.42 —0.25 —0.39
B1/B3 —0.20 —0.15 —0.28
B1/B4 —0.28 —0.36 —0.33

B2/B3 0.31 0.18 0.12
B2/B4 —0.07 —0.27 —0.18
B3/B4 —-0.27 —0.41 —0.24
B1*B2/B3 —0.76 —0.73 —0.75
B1*B2/B4 —0.72 —0.74 —0.72
B1*B3/B2 —0.78 —0.73 —0.78
B1*B3/B4 —0.78 —0.76 —0.75
B1*B4/B2 —0.72 —0.61 —0.63
B1*B4/B3 —0.73 —0.63 —0.58
B2*B3/B1 —0.65 —0.64 —0.65
B2*B3/B4 —0.75 —0.74 —0.72
B1*B2*B3/B4 —0.71 —0.71 —0.72
B1*B2*B4/3 —0.67 —0.66 —0.59
B1*B3*B4/2 —0.63 —0.59 —0.60
B2*B3*B4/B1 —0.59 —0.55 —0.51

3.3. Empirical Model Development of TP, BOD, and CHL-a from Landsat 5 TM Data

Variables with high correlation values (1| > 0.70) have only been used to generate the
empirical model for TP, BOD, and CHL-a (Table 4). The analysis was performed in an online-
based calculator until a significant relationship was indicated by the p-value (p < 0.01).
Due to an online-based calculator’s automatic iteration power, it is not easy to control the
inclusion of any specific independent variables. The p-values for the model show that they

8
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have a significant relationship. The developed model using Landsat 5 TM images can detect
TP 67% correctly while it was 65% and 72% for BOD and CHL-a, respectively (Table 4).
The values of RMSE, RMSLE, MRE and MAE also depict the efficiency of developed
models (Table 4). A more efficient TP, BOD, and CHL-a models from Landsat 5 TM can be
developed using more sampling point data [21]. Considering our findings, further studies
should be carried out with satellite sensors data to develop the empirical models of TP,
BOD, and CHL-a. Scatter plots of the observed TP, BOD, and CHL-a data with predicted
TP, BOD, and CHL-a values from the generated regression models are shown in Figure 3.
For TP, the relationship between observed and predicted values displayed a correlation of
0.82 with p < 0.01. In contrast, it was 0.81 and 0.85 for BOD and CHL-a, respectively with
p <0.01.

Table 4. Linear equations for Landsat 5 TM to detect TP, BOD and CHL-a of Paldang Reservoir (B: Blue, G: Green, R:
Red, NIR: Near-Infrared, TP: Total Phosphorus, BOD: Biological Oxygen Demand, CHL-a: Chlorophyll-a, WQPs: Water

Quality Parameters).
Sensor WQPs Equations R2 P RMSE RMSLE MRE MAE
=91.01 — 268.22*B*NIR/G —
TP 347.50*G*R/NIR + 1194.55B*G*R /NIR 0.67 <0.01 30.4 0.072 0.11 3.39
=1.83 — 127.38*B*G + 13.39*B*G/NIR +
Landsat 5 TM BOD 18.50*B*R/G — 36.74*B*R/NIR + 0.65 <0.01 0.08 0.058 0.25 0.23
122.78*B*G*R/NIR
=39.40 + 548.80*G — 778.68*R +
CHL-a 1396.84*B*R — 243.21*B*G/R 0.72 <0.01 49 0.155 0.34 1.41
120 25
L ] ~
~ 100 = ®
S E e
2z 80 = s ®e8
a 8 15 . 2 ‘ ‘ ] ) ®
% 60 ) ® > °e [ ] ®
z A ’.
3 w0 2 4 2 DY AR
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Figure 3. The relationship among observed and predicted TP, BOD and CHL-a for Landsat 5 TM (TP: Total Phosphorus,
BOD: Biological Oxygen Demand, and CHL-a: Chlorophyll-a).
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3.4. Spatial and Temporal Patterns of Water Quality Parameters

The developed empirical models were applied to all study sites on the Paldang Reser-
voir to monitor spatio-temporal distributions of WQPs on 15 September 2001; 13 Septem-
ber 2006, and 24 September 2010, using Landsat 5 TM images (Figures 4-6). Sites S1 and
S2 are influenced by the South Han River, While S3 and S4 are affected by the North Han
River and Kyoungan Stream. The TP concentration varied between 5.82 to 80.60 pugL !
on 15 September 2001. The maximum TP concentrations gradually decreased from 2001
(80.60 pgL1) to 2006 (57.83 gL ') and 2010 (55.32 ugL 1) in the Paldang Reservoir due
to new treatment facilities in the sewage treatment plants and the development of water
quality management strategies in the reservoirs (Figure 4). However, the TP concentrations
were still in a eutrophic state in site S3 and S4 during 2006 and 2010. Like TP, the maxi-
mum BOD concentration also showed decreasing pattern from 2001 (2.28 mgL~!) to 2006
(2.10 mgL~!) and 2010 (2.0 mgL~') (Figure 5). It indicates that the biological effluent
treatment process may efficiently degrade the influent’s degradable organic matter [16].
The highest BOD level was also observed in 54 during 2010 September. Like TP and BOD,
the maximum level of CHL-a was also showed a declining trend from 2001 (35.46 ugL~1)
to 2006 (14.96 ng’l) and 2010 (14.31 ugL’l) (Figure 6). During 2001 September, the entire
reservoir showed a eutrophic state (>9 pgL.~!) based on CHL-a concentration. Although the
water quality is getting better in terms of TP, BOD, and CHL-a from 2001 to 2010, Site S3
and 54 are still facing some problems. The authors suggest that sites S3 and S4 should be
taken under special consideration as 54 highly influences the intake tower water quality.
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Figure 4. Spatial and temporal pattern of total phosphorus (TP) on September 2001, 2006 and 2010.
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Figure 5. Spatial and temporal pattern of biological oxygen demand (BOD) on September 2001, 2006 and 2010.
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4. Discussion

The present study shows that remote sensing technology can be a handy tool to detect
water quality parameters. Landsat data series are useful for monitoring the water quality
of freshwater bodies. Paldang Reservoir has experienced significant water quality changes
due to urbanization, land use change, and intensive agricultural farming [14,15,17]. The ob-
served mean TP and CHL-a concentration at all sites in the Paldang Reservoir showed
eutrophic conditions. This indicates a moderate risk of cyanobacterial exposure in the
reservoir [37]. Previous studies stated that blooms of cyanobacteria are associated with
eutrophic conditions in water bodies [36]. CHL-a is a good predictor of total phytoplankton
biomass and monitoring CHL-a is a direct tool for semiquantitative estimation of cyanobac-
terial biomass in aquatic environments [2]. Previous studies of Paldang Reservoir have
suggested that cyanobacterial blooms occur during the spring season and identified the
following genera: Anabaena, Aphanocapsa, Chroococcus, Coelosphaerium, Dactylococcopsis,
Microcystis, Merismopedia, Phormidium, Oscillatoria, and Pseudoanabaen [2,16,18]. In addition,
TP, BOD, and CHL-a levels at site 5S4 were constantly elevated. The water quality of site
54 is heavily impacted by industrial and domestic wastewater and the Kyoungan Stream.
Eun and Seok [11] and Mamun et al. [2] found that the water quality of the Kyoungan
Stream is in poor condition in comparison to the Southern Han River (Sites S1 and S2) and
Northern Han River (Site S3) based on nutrients, organic matter and algal chlorphyll. It
could have significant effects on the reservoir’s water quality.

Variation in TP, BOD, and CHL-a concentrations of the Paldang Reservoir was promi-
nent during the pre-monsoon, monsoon, and post-monsoon seasons [18]. TP concentrations
were higher during the monsoon period due to intense precipitation, while BOD and CHL-
a level at Paldang Reservoir was highest in the spring period [2,18]. The summer monsoon
significantly influences the nutrient, organic matter, and algal chlorophyll in the Korean
reservoirs [5,16,38]. Organic matter in aquatic systems may come from allochthonous or
autochthonous sources. Allochthonous organic matter enters into the environment during
precipitation events, while algae produce autochthonous organic matter by photosynthe-
sis [18]. It was noticeable that 69% of the total organic matter was allochthonous in the
Paldang Reservoir during monsoon season [18]. Inversely, during winter and spring, a
high load of autochthonous organic matter had observed because of low flow rates and
high water residence time [16]. Previous research on Paldang Reservoir indicated that 73%
of autochthonous organic matter loading happens during the spring [16,18]. The high-level
organic matter during spring corresponds to algae’s maximum production [18]. It suggests
that autochthonous production by algae (CHL-a) is dire to accumulate organic matter in
the reservoir during spring; hence, the threat to the reservoir’s water quality is highest
in spring [18].

The water quality of the Paldang Reservoir varied from site to site and season to season
due to climatic factors and anthropogenic activities. Since climatic conditions are uncon-
trollable, anthropogenic impacts should be kept to a minimum. For that reason, regular
monitoring of water quality parameters is essentially mandatory. Traditional monitoring
approaches are time-intensive, laborious, and cannot provide an overview of water quality at
a broader scale [1,19].

On the other hand, satellite remote sensing is presently one of the most potent and
reliable approaches for monitoring and managing water quality [4,20,21]. This study has
confirmed the applicability of Landsat 5 TM to identify and map the water quality pa-
rameters in the reservoir. The developed empirical models by multiple linear regression
analysis can identify TP 67%, BOD 65%, and CHL-a 72% accurately from Landsat 5 TM im-
ages. As shown in Table 4, blue*near-infrared /green (B1*B4/B2), green*red /near-infrared
(B2*B3/B4), and blue*green*red /near-infrared (B1*B2*B3/B4) bands and band ratios are
the significant predictors for TP concentrations in Paldang Reservoir. Previous studies also
found that three visible bands (blue, green, and red) and NIR bands and their ratios are
suitable for estimating TP concentrations in freshwater systems [4,20]. blue*green (b1*b2),
blue*green/near-infrared(b1*b2/b4), blue*Red /Green (B1*B3/B2), blue*red /near-infrared
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References

(B1*B3/B4), blue*green*red /near-infrared (B1*B2*B3/B4) bands and band ratios are the
significant predictors for BOD concentrations in the reservoir. Quibell [39] reported that
the NIR and red bands ratio were good predictors of CHL-a concentration in waters. Also,
other bands and band ratios are good indicators of CHL-a [40]. The present result indi-
cated that CHL-a was better explained by the green (B2), red (B3), blue*red (B1*B3) and
blue*green/red (B1*B2/B3) bands and band ratios.

5. Conclusions

Nutrient and organic pollution and algal blooms regulate water quality in freshwater
systems. For this reason, it is essential to develop a cost-effective remote sensing moni-
toring tool to estimate the water quality parameters for maintaining an effective water
management system. The present study has successfully established Landsat 5 TM data’s
applicability to detect TP, BOD, and CHL-a for the surface water of Paldang Reservoir
(Korea). The results showed that TP, BOD, and CHL-a are closely related to the Landsat
5 surface reflectance band values. TP (r = —0.79) and CHL-a (r = —0.79) showed the highest
relations with B1 (blue) band. By contrast, BOD showed the highest negative correlation
with Bl (blue) (r = —0.75) and B1*B3/B4 (blue*red /near-infrared) bands (r = —0.76). The de-
veloped empirical models of Landsat 5 TM data can estimate TP, BOD, and CHL-a correctly
by around 67%, 65%, and 72%, respectively, for the reservoir. The results presented here
revealed that the surface water quality of the reservoir varied from site to site. The water
quality of sites S3 and S4 are affected by anthropogenic factors, which significantly impact
reservoir’s water quality. Considering the present findings, we should take a particular
account for site S3 and 54 to maintain the water quality. The present developed models
and methods could be applied to other Korean reservoirs for validation.
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Abstract: In this study, we used convolutional neural networks (CNNs)—which are well-known deep
learning models suitable for image data processing—to estimate the temporal and spatial distribution
of chlorophyll-z in a bay. The training data required the construction of a deep learning model
acquired from the satellite ocean color and hydrodynamic model. Chlorophyll-a, total suspended
sediment (TSS), visibility, and colored dissolved organic matter (CDOM) were extracted from the
satellite ocean color data, and water level, currents, temperature, and salinity were generated
from the hydrodynamic model. We developed CNN Model [—which estimates the concentration
of chlorophyll-a using a 48 x 27 sized overall image—and CNN Model II—which uses a 7 x 7
segmented image. Because the CNN Model II conducts estimation using only data around the
points of interest, the quantity of training data is more than 300 times larger than that of CNN
Model I. Consequently, it was possible to extract and analyze the inherent patterns in the training
data, improving the predictive ability of the deep learning model. The average root mean square error
(RMSE), calculated by applying CNN Model II, was 0.191, and when the prediction was good, the
coefficient of determination (R?) exceeded 0.91. Finally, we performed a sensitivity analysis, which
revealed that CDOM is the most influential variable in estimating the spatiotemporal distribution of
chlorophyll-a.

Keywords: deep learning; convolutional neural network; chlorophyll-g; satellite; hydrodynamic model

1. Introduction

Marine environments experience continuous deterioration owing to the influx of pol-
lutants from rivers and various infrastructure projects including breakwater construction,
dredging, and reclamation. To restore marine environments, numerous mitigation plans
have been established using various prediction and evaluation techniques. Nevertheless,
several limitations still remain: first, the ocean is a complex three-dimensional system that
is difficult to model accurately; second, sea water constituents exhibit dynamic movements
due to external forces such as wind, tides, currents, density, etc.; third, a significant amount
of time and effort is required to observe oceanic trends; and finally, despite significant
developments in marine environment prediction technology, several assumptions and
additional research area information are still required [1-4].

The water quality model has been widely employed in marine environment prediction,
although professional knowledge and experience, various input data, and model validation
procedures are required to utilize it. However, owing to the complex and interconnected
nature of marine environments, major problems such as eutrophication, harmful algal
blooms (HABs), and hypoxia, are difficult to identify and solve. Consequently, consider-
able research has been conducted on the development of efficient and reliable prediction
techniques. Since 2015, deep learning technology that makes predictions using big data
has been widely used in various atmospheric, financial, medical, and scientific fields [5-8].
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Marine research using deep learning technology can be divided into prediction-related
research, classification-related research, and research on methods to correct missing values.
Prediction-related research has been applied to various topics, such as the El Nifio Index,
chlorophyll-a time series, and sea surface temperature [9-11]. Classification-related research
has been conducted to classify marine life using image data. For example, studies have
been conducted to identify the harmful algae that adversely affect marine ecosystems and
to classify coral reefs and monitor aquatic ecosystems [12-14]. However, observations using
sensors can contain a significant amount of missing data. Consequently, various methods
have been developed to estimate the missing data using deep learning techniques [15].

In addition to water quality modeling and deep learning studies, significant research
has also been conducted to evaluate the status of plankton and other environmental factors
related to marine environments using remote sensing. Ocean color sensors have been
used in remote sensing satellites for decades. Those currently in operation include the
Chinese Ocean Color and Temperature Scanner (COCTS) onboard HY-1D; Geostationary
Ocean Color Imager (GOCI) onboard the Communication, Ocean, and Meteorological
Satellite (COMS); Moderate Resolution Imaging Spectroradiometer (MODIS) onboard
Aqua; Multi-Spectral Instrument (MSI) onboard Sentinel-2A and Sentinel-2B; Ocean and
Land Color Instrument (OLCI) onboard Sentinel-3A and Sentinel-3B; Visible Infrared
Imaging Radiometer Suite (VIIRS) onboard Suomi NPP; and Second-Generation Global
Imager (SGLI) onboard GCOM-C [16,17]. Ocean color sensors provide vast amounts of
spatial data that cannot be obtained from in situ measurements, and consequently, various
analyses of spatiotemporal trends are possible. Therefore, extensive research has been
conducted to retrieve marine inherent optical properties from ocean color remote sensing
and verify ocean color data [18-21]. The data obtained from ocean color sensors are
calibrated and verified by comparing them with in situ measurements and the results of
existing ocean color sensors [22,23]. Recently, the measurement of ocean color data products
such as colored dissolved organic matter (CDOM), chlorophyll-2, and total suspended
sediment (TSS) has been improved using various neural network methods [24-26].

Another significant problem is the occurrence of HABs, which induce hypoxia and
kills fish in marine environments. An HAB is caused by complex external environmen-
tal processes and factors such as eutrophication, currents, and salinity gradients [27,28].
Monitoring and predicting the spatiotemporal distribution of chlorophyll-a are vital to
minimize the damage of HABs [29]. A variety of spatial information is required to predict
the spatiotemporal distribution of chlorophyll-a, owing to the complex interaction of vari-
ous physical, chemical, and biological factors. Although CDOM, TSS, and chlorophyll-a
data can be obtained using ocean color sensors, the extraction of physical information such
as currents, velocity, and salinity is limited, and in situ measurements can only provide
some information. The continued development of hydrodynamic models has significantly
improved their prediction ability, providing physical information with a root mean square
error (RMSE) of +£10%, +£10% to £20%, £0.5 °C, and +1 psu for water level, velocity,
temperature, and salinity, respectively [30].

In this study, we aim to develop a tool that can estimate the spatial distribution of
chlorophyll-a using deep learning technology. Satellite ocean color and hydrodynamic
model data are used as the training data for the deep learning model. The CDOM, TSS,
visibility, and chlorophyll-a data recorded on an hourly basis were extracted from a geosta-
tionary satellite. The hydrodynamic model data include temperature, salinity, water level,
and velocity. The developed tool estimates the spatial distribution of chlorophyll-a using
the spatial information of CDOM, TSS, visibility, water level, velocity, temperature, and
salinity. The accuracy and applicability of the developed prediction tool is demonstrated
by comparing the predicted results against the satellite data. As the variables applied to the
prediction of chlorophyll-a contribute both individually and collectively, the contribution
of each variable to the estimation of chlorophyll-a is examined as well.
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2. Material and Methods
2.1. Study Area

The study area is a semi-closed maritime region surrounded by Hadong-gun, Sacheon,
and Namhae-gun in South Korea, and is connected to the sea through the Daebang channel
to the east, the Noryang channel to the west, and the Changsun channel to the south, as
shown in Figure 1. The study area is approximately 19 km long along the north—south
direction, and 13 km long along the east-west direction. The length of the coastline is
approximately 136 km and the bounded area is approximately 180 km?. The average depth
is approximately 3.6 m, the depth of the central area is approximately 10 m, and the deepest
area—in the channels—is approximately 30-40 m. In summer, a large volume of river
water flows into the study area through the channels due to high rainfall. Consequently,
although it is a semi-closed sea area, seawater exchange occurs. Sprayed shellfish farming
is actively carried out in the region, gradually increasing from 230 tons in 2000, to 730 tons
in 2010, and 2410 tons in 2014 [31]. Consequently, sustainable water quality management is
vital in such semi-closed marine environments with active aquaculture.
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Figure 1. Study area in South Korea (Source: Google Earth).

2.2. Satellite Ocean Color

Various satellites with ocean color sensors have been launched from around the
world, and Korea launched COMS in 2010 for ocean observation [32,33]. COMS performs
meteorological and ocean observations and provides communication services. Ocean color
observations are made using the GOCIL The GOCI observes an area of 2500 km x 2500 km,
centered on the Korean Peninsula. The resolution of each grid is 500 m, both in width
and height, as shown in Figure 2. As COMS is a geostationary satellite, the GOCI records
data eight times a day (from 9:00 to 16:00), with images recorded for 30 min every hour.
The primary role of the GOCI is to monitor the marine ecosystems around the Korean
Peninsula, including long- and short-term marine environmental and climatic changes,
coastal and marine environmental monitoring, coastal and marine resource management,
and the generation of marine and fishery information [34,35].
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Figure 2. Spatial information observed by the GOCI http:/ /kosc.kiost.ac.kr/p20/kosc_p21.html
(accessed on 26 May 2020).

The GOCI has six visible bands with band centers of 412 nm (B1), 443 nm (B2), 490 nm
(B3), 555 nm (B4), 660 nm (B5), and 680 nm (B6), and two near-infrared bands with band
centers of 745 nm (B7) and 865 nm (B8). Bands B1-B5 are used to record the water quality
parameters. The main applications of each band are B1 for yellow substances and turbidity;
B2 for chlorophyll absorption maximum; B3 for chlorophyll and other pigments; B4 for
turbidity and suspended sediment; and B5 for baseline of fluorescence signal, chlorophyll,
and suspended sediment [36]. The amount of light recorded by the optical sensor onboard
the satellite is converted to an electronic value and stored in the satellite image. Radiometric
calibration is used to precisely define the relationship between the amount of light and the
electronic value, and geometric correction is performed to correct the positional information
of each pixel in the image. Subsequently, first-order outputs, such as the top-of-atmosphere
radiance, and secondary outputs, such as the remote sensing reflectance, chlorophyll-g,
TSS, and CDOM concentrations, are verified. Various calibration and validation studies
have been performed on the GOCI data to improve its accuracy [35,37-39]. The ocean
data products used herein were obtained from the GOCI using a software GDPS including
atmospheric correction and ocean environment analysis algorithms. The GDPS enables
real-time data processing using a Windows-based GUI The data products obtained from
the GDPS include the water leaving radiance (Lw), normalized water leaving radiance
(nLw), chlorophyll-a, TSS, and CDOM [40].

2.3. Hydrodynamic Model

A hydrodynamic model was used to generate marine physical factors, such as the
currents, water level, salinity, and temperature, in the study area. The Delft 3D model,
which has been applied in several research areas, was used to simulate three-dimensional
hydrodynamics [41-44]. The model domain extended for 58 km along the north—south
direction and 53 km along the east-west direction, to sufficiently cover the study area. The
model grid contained 155 x 245 horizontal cells and, to optimize the computational time,
fine and coarse grids were formed in the study area and open sea area, respectively. A total
of five vertical layers were modeled to replicate the interaction between the vertical layers
and the vertical distribution of salinity and water temperature. Bathymetry for the study
area was obtained from the latest navigational charts and the survey data of the Korea
Hydrographic and Oceanographic Agency (KHOA). As shown in the bathymetry chart in
Figure 3, the bay has a relatively shallow depth and the channels are relatively deep.
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Figure 3. (a) Model grid in the study area; (b) Bathymetry in the study area.

The boundary conditions of the study area must be defined to execute the hydro-
dynamic model. The water levels, salinity, and temperatures observed at different mea-
surement sites (GoSung-JaRan, TongYong3, NamHae3) by the Korea Marine Environment
Management Corporation (KOEM) were set as the sea boundary conditions, and the
monthly average flow rates at GwanGok, BakRyeon, MukGok, GaWa, and SaCheon were
set as the river boundary conditions. Meteorological data, such as the wind direction, wind
speed, air temperature, and relative humidity, measured at the NamHae site of the Korea
Meteorological Administration (KMA), were also used as model input data. The initial
conditions of the water level and velocity were set to zero, and the initial conditions of
temperature and salinity were derived from the measured data at the five KOEM stations
shown in Figure 4. The hydrodynamic model was simulated for a total of five years from
1 January 2015 to 31 December 2019. As the data used in the deep learning model include
the water level, current, salinity and temperature, these data were verified. The water level
was verified using the data observed at the T1 site operated by KHOA, which is located
inside the bay. The current was validated against the data recorded at the PC1 site operated
by KHOA, between 24 July 2015 and 26 August 2015. The salinity and water temperature
were validated against the data measured at the JinJuMan 1 and JinJuMan 2 sites, operated
by KOEM, and the SamCheonPo site, operated by KHOA, as shown in Figure 4.

The water levels in the study area fluctuated by approximately 3 m and were primarily
affected by the tides. The average difference in the water level between the hydrodynamic
model and the observed values was approximately 10 cm, and the absolute error was within
8-10%, with slight differences every year. The currents observed between 24 July 2015
and 26 August 2015 were classified into a U-component—moving east-west—and a V-
component—moving north-south. As shown, the U-component was the dominant current
in the study area. The U-component current flowed as fast as 0.5 m/s and fluctuated based
on the tidal cycle. Although the hydrodynamic model results appear to underestimate the
current patterns, the results are reproduced well. The temperature was below 10 °C during
winter and almost 30 °C during summer, with clearly noticeable seasonal variations. The
water temperature varied between 13 °C and 20 °C during spring and autumn, with the
lowest temperature in February and the highest temperature in August. Considering the
predicted daily temperatures, the hydrodynamic model adequately reproduced the annual
temperature-change pattern, and the average RMSE of the temperature was 0.862 °C. The
salinity was highly influenced by the river flow, i.e., during spells of high rainfall, the
salinity temporarily decreased before increasing to approximately 32-33 psu. The average
RMSE of the salinity was 0.6 psu, as shown in Figure 5.
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Figure 4. Locations of the KMA, KOEM, KHOA, and river monitoring stations in the study area.
(a) Measurement sites used for boundary conditions. (b) Measurement sites used to validate the
hydrodynamic model.

2.4. Data Structure for Deep Learning Model

The satellite data of the study area, which was required to construct the deep learning
model, was provided by the Korea Ocean Satellite Center (KOSC) in the Korea Institute
of Ocean Science and Technology. The data were recorded eight times per day between
9:00 and 16:00, from January 2015 to December 2019. The data obtained included the entire
Korean Peninsula, and the total size of the data was approximately 14 TB. No satellite
data could be extracted when the study area was covered by clouds. The total number
of extracted data was 391 in 2015, 276 in 2016, 266 in 2017, 271 in 2018, and 128 in 2019.
Generally, a large amount of data were recorded during winter, when the weather was
good, and a small amount of data were recorded during summer, owing to the increased
rainfall and typhoons.

The hydrodynamic model results were extracted for the same area as the satellite
measurements, as shown in Figure 6. The hourly salinity, temperature, currents, and water
levels between 2015 and 2019 were converted into a grid format. As the resolution of
the satellite data was 500 m, the data from the area adjacent to the coastline could not be
obtained. Therefore, only the data pertaining to the sea area 500 m away from the coastline
were used to train the deep learning model. Accordingly, the hydrodynamic model results
of the area adjacent to the coastline were also neglected.

2.5. Deep Learning Model Structure

As the satellite and hydrodynamic model data were in the form of a 48 x 27 grid,
they could be treated as image data. Consequently, an image-based deep learning method
was applied herein. Each 48 x 27 grid was referred to as an ‘image,” and each point in
the image was referred to as the ‘data’” or “point’. The satellite chlorophyll-a data were
treated as ground-truth data, as several studies have shown a high correlation between
the ground-truth chlorophyll-a data and satellite chlorophyll-a data. Accordingly, we
constructed a deep learning model to estimate the temporal and spatial distribution of
chlorophyll-a using both the satellite and the hydrodynamic model data. Specifically, the
deep learning model estimated the temporal and spatial distribution of chlorophyll-a at a
given time (t) by integrating the satellite data, such as the CDOM, TSS, and visibility, and
the hydrodynamic model data, such as the currents, water level, temperature, and salinity,
at the same time (t), as illustrated in Figure 7.

22



Remote Sens. 2021, 13, 2003

'S

o

a

s e 3 vl £ b
Moo w o s oo

Water Level(m. D.L)

., S

(a) 01511 201521 201531 201541 201551

201561

201571 201681 201591 2015101 2015111 2015121 201611

1

08

04
0z —A ;
0 ARV
02 ¥
04 —
06 —|
08 —
A
1
08 —

Veloeity(m/s)

04 —]
02

0
02
D 04
06
08
-1

locity(m/s)

Vi

06 —] Calculated

06 Calculated

U-Component Velocity
Observed

V-Component Velocity
Observed

(b) 20157124

20157/27  20157/30 2015872

2015 8/5

2015818 20158/11 20158/14 2015 817 2015820 20158f23 2015 8/26

&

SamCheonPo
Calculated-sur
- . ® Observed

g

s N oW
& 8 B
|

Water Temperature( °C)
3
|

o

o

~
)
~

Jun

[ I
Jul Aug sep Oct Nov Dec Jan
Time(2019)

B
S

TN ERAALL STt s s esssnssnma i annn

5 8 8

Salinity(psu)
3

@

— SamCheonPo
Calculated-sur
. = Observed

o

.
|
.

©

Jan Feb Mar Apr May

(@

Jul Aug Sep Oct Nov Dec Jan
Time(2019)

Figure 5. (a) Temporal variations of water level; (b) Temporal variation of currents; (c) Temporal
variation of salinity; (d) Temporal variation of temperature (points are observations and lines are

model results).

23




Remote Sens. 2021, 13, 2003

Salinity Temperature Velocity Water elevation

35°0°0°N

35°0°0°N

35'0°0°N
35°0°0°N

34°56'0°N

34°56°0°N

34°56°0°N
34°56'0°'N

Unit(ppt) £ Unitec)

Unit(m/s) Unit(m)

34°52'0°'N
34°52'0°N
34°52°0°N

127°56'0°E  128'0°0°E 127°56°0°E 128°0°0°E 127'56'0°'E  128°0°0°E 127°568°0°E 128°0°0°E

CDOM Chlorophy-a TSS Visibility

35°0°0°N

35°0°0°N

35°0°0°N
35°0°0°N

34°56'0°N

34°56'0°N

34°56'0°N
34°56'0°N

Unit(1/m) Unit(m)

- -20
- -10
0

£
o
o
o
3

34'52°0°N

- 10

127°56°0°E 128°0°0°E

127°56'0°E  128°0°0°E 127°56°0°E 128°0'0°E 127°66'0°'E  128°0°0°E
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water levels from the hydrodynamic model, and CDOM, chlorophyll-a, TSS, and visibility from the
satellite ocean color data.
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Figure 7. Construction of the deep learning model for estimating the temporal and spatial distribution
of chlorophyll-a. To utilize spatial information, the input data were organized in a matrix accumulated
over time. The value corresponding to each row and column corresponds to the latitude and longitude
of each data.

A convolutional neural network (CNN) is a well-known deep learning model that is
suitable for image data processing. A CNN model consists of multiple convolutional layers
that extract features from an image and pool the layers through subsampling, leaving
only the important patterns behind. Classification and estimation are performed through
iterative convolutional and pooling operations. We designed two approaches to estimate
chlorophyll-a based on a CNN. The first CNN model, called ‘CNN Model I, estimates
the chlorophyll-a concentration from an image in a 48 x 27 grid format by integrating
a total of seven images—three images from the satellite data, such as the CDOM, TSS,
and visibility, and four images from the hydrodynamic model data, such as the currents,
water level, temperature, and salinity—as shown in Figure 8. Notably, as the image size
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was small, there was no pooling layer. Consequently, the pooling layer for information
compression was ineffective. The second CNN model, called ‘CNN Model II’, predicted
the chlorophyll-a concentration using segmented images.

Additional preprocessing is required to use segmented images as the model input.
For example, in the case of 7 x 7 segmented images, the chlorophyll-a value is estimated
by using segmented images of seven individual input variables. The difference between
CNN Model I and CNN Model II is that the former estimates one chlorophyll-2 image
by integrating the images of seven individual input variable changes, whereas the latter
estimates the chlorophyll-a value by integrating segmented images of seven individual
input variables, as shown in Figure 9. As CNN Model II estimates the chlorophyll-a
value using the data around a point of interest, we believe that it also reflects the local
characteristics well.

EE e TxABx2T =T
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Figure 8. (a) Algorithm of CNN Model I and (b) CNN Model II. CNN Model I uses seven images of
48 x 27 grid size and estimates the chlorophyll-a value in a 48 x 27 grid format. CNN Model II uses
segmented images in a 7 x 7 grid format and estimates the chlorophyll-a value.
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Figure 9. Schematic diagram of the application of segmented images in the CNN Model II; segmented
images are generated by iteratively moving the window cell-by-cell. The CNN Model II estimates a
chlorophyll-a value integrating segmented images of seven individual input variables.

To verify the reliability of the deep learning model, the data were divided into training
data, validation data, and test data, considering the seasonal characteristics over an entire
year. For CNN Model I, 932 images were used for training, 271 images for validation, and
128 images for testing. For CNN Model I, the images in a 48 x 27 grid format were divided
into segmented images with a 7 x 7 grid format. Consequently, the number of images used
for training, validation, and testing increased to 293,580, 85,365, and 40,320, respectively.
As CNN Model II did not have the segmented images required to estimate the values of
three columns and three rows at the edge of each image, the values related to these regions
were not predicted. The quantity of available data varied from one year to another as the
satellite measurements could not be obtained on days with poor weather. In particular, the
quantity of data obtained during summer was relatively small compared to that obtained
during the other seasons owing to increased rainfall and typhoons, as shown in Table 1.

Table 1. Information of training data, validation data, and test data in the CNN Model I and CNN
Model II.

Category Training Data Validation Data Test Data
Period (year) 2015-2017 2018 2019
CNN Model I (# of images) 932 271 128
CNN Model II 293,580 85,365 40,320

(# of segmented images (7 X 7))

3. Results
3.1. CNN Model 1
The RMSE, which is the difference between the predicted chlorophyll-a and the satellite

chlorophyll-a values, was used to evaluate the accuracy of the CNN models designed herein.
The RMSE was calculated as:

RMSE = \/}11 Y (pred(i) — target (i) )? 1)

where pred(i) represents the predicted chlorophyll-a pixel value for of the ith point and
target(i) represents the satellite chlorophyll-a pixel value for the ith point in each image.

CNN Model I was used to estimate the chlorophyll-a value of 128 images recorded
in 2019. In most cases, the RMSE was approximately 0.2-0.6 and the average RMSE was
0.436, as shown in Figure 10. The minimum RMSE was 0.106 and the maximum RMSE was
1.242, which is a significant gap. Therefore, specific analyses were performed for the cases
with RMSE = 0.106, RMSE = 0.506, and RMSE = 1.209, as shown in Figure 11.
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Figure 10. RMSE distribution for 128 images using CNN Model I: histogram with the range of RMSE
values on the X-axis and the number of images on the Y-axis.

In the case with the lowest RMSE (RMSE = 0.106), the model results showed that there
was a slight predictive error in the image, but the overall trend was well estimated. In
the case with the RMSE close to the average value (RMSE = 0.506), the overall change in
chlorophyll-a in the entire image was clearly estimated, but the accuracy of the estima-
tion of the local changes in chlorophyll-a was limited. In the case with the high RMSE
(RMSE = 1.209), the model was unable to estimate the satellite chlorophyll-a value. The
measured values clearly indicate a change in the spatial chlorophyll-a values, whereas the
estimated values tend to converge to the average value at most points. Thus, the model
appeared to have a tendency to approximate the average value as the estimated value when
the training data were insufficient, as shown in Figure 11. Consequently, the coefficient
of determination (R?), which represents how well the model results fit the satellite data,
was applied herein. R2 is represented by a value of 0.0-1.0, where a value of 1.0 indicates
a perfect fit. When the RMSE was relatively low, the R? was around 0.673, and when the
RMSE was high, R? < 0.5. When R? < 0.5, the higher the chlorophyll-a value of the satellite
data, the lower the predictive ability, as shown in Figure 12.

The results of CNN Model I tended to be averaged by assimilating the surrounding
values instead of estimating local changes. As deep learning models such as a CNN
estimate values by analyzing patterns from training data, the prediction patterns could not
be determined from insufficient training data. Therefore, CNN Model I, which was trained
using only 1203 training and validation images, could predict the overall trends but failed
to predict local changes. Notably, if additional training data is provided, the prediction
accuracy of CNN Model I can be improved.

3.2. CNN Model 11

Chlorophyll-a estimation was also performed using CNN Model II, which utilized 300
times more training and validation data than CNN Model I, owing to the use of segmented
images. The RMSE values of CNN Model II were around 0.05-0.8. Most of the RMSE
values were less than or equal to 0.2, with an average of 0.167. Compared to the results
of CNN Model I, the RMSE values of CNN Model I were significantly lower, confirming
the excellent predictive ability of the latter. Notably, RMSE was less than or equal to 0.12
in almost half the total number of predictions. A detailed analysis was performed by
classifying the RMSE values of CNN Model Il into good, average, and bad cases, as shown
in Figure 13.

In the case of a low RMSE value (RMSE = 0.055), the predicted chlorophyll-a values
were almost the same as those of the satellite chlorophyll-a values. Furthermore, the spatial
variations of chlorophyll-a concentration were properly estimated. The case with an RMSE
value close to the average value (RMSE = 0.204) also demonstrated similar results to the
observed values. In particular, the changes in the spatial concentration were estimated accu-
rately. In the case of a high RMSE value (RMSE = 0.775), the model accurately reproduced
the spatial concentration pattern but tended to underestimate the concentration at some
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points. The satellite data exhibited large variations in the concentration between adjacent
points, whereas the deep learning model corrected this drastic change and estimated it
smoothly in space, as shown in Figure 14.

Predicted Chlorophyll-a Data Satellite Chlorophyll-a Data
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Figure 11. Chlorophyll-a results estimated using the CNN Model I: The left section shows the
predicted chlorophyll-a values and the right section shows the satellite chlorophyll-a values cor-
responding to the left section. The RMSE values for the three cases are (a) 0.106, (b) 0.506, and
(c) 1.209, respectively.
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Figure 12. Examples of (a) good R? and (b) bad R? values among the results of the CNN Model I.
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Figure 13. RMSE distribution for 128 images using the CNN Model II: histogram with the range of
RMSE values on the X-axis and the number of images on the Y-axis.

Compared to CNN Model I, CNN Model II has significantly better chlorophyll-a
estimation ability, and the spatial change pattern of chlorophyll-a was successfully esti-
mated in all the model results. Furthermore, the coefficient of determination (R?) improved
significantly. When RMSE = 0.055, R? = 0.91, and when RMSE = 0.775, which suggests a
high degree of error, the overall trend was reproduced well and R? = 0.661, as shown in
Figure 15. Although both models used the same CNN technique, the difference in their
estimation abilities is likely due to the large difference in their respective training data
volumes.
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Figure 14. Chlorophyll-a results estimated using CNN Model II. The left section shows the predicted
chlorophyll-a values and the right section shows the corresponding satellite chlorophyll-a image
values. The corresponding RMSE values are (a) 0.055, (b) 0.204, and (c) 0.775, respectively.
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Figure 15. Examples of (a) good R? and (b) bad R? values among the results of the CNN Model II.
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4. Discussion

Plankton growth is affected by various factors such as water flow, water temperature,
nutrients, and light. The concentration of plankton is relatively high in shallow water
coastal areas and upwelling regions, as they have a rich supply of nutrients. The surface
salinity and temperature of the study area change significantly as high salinity and low
temperature seawater flows through the Daebang channel, located in the northeast. The
satellite data reveals that the seawater flowing in from the Daebang channel contains low
concentrations of chlorophyll-a, resulting in a relatively low chlorophyll-a concentration
in the center of the study area. Moreover, the study area is connected to a river, and large
amounts of river water flow into the study area during the rainy summer season, affecting
the growth of plankton. As the growth of each type of plankton depends on the water
temperature, it is important to predict the seasonal changes in plankton concentration.

The monthly averaged satellite data and model data were compared to determine
whether the prediction model developed herein can adequately estimate the seasonal
changes in plankton concentration. In 2016 and 2018, the chlorophyll-a concentration was
low in January—the winter season—but high during spring and summer. The concentration
decreased again in November, which clearly demonstrates the seasonal fluctuations in
plankton concentration in the study area. The developed model successfully estimated the
seasonal fluctuations in plankton concentration in 2016 and 2018. Notably, although the
seasonal fluctuations in 2019 were relatively small compared to those in 2016 and 2018, the
developed model accurately estimated the small seasonal and local concentration changes,
as shown in Figure 16.

We performed a sensitivity analysis to determine the influence of each input variable
in the model results. To do so, the performance of the model was investigated by only
using individual input variables as training data for the deep learning model. The results
of the sensitivity analysis (Table 2) indicated that CDOM contributes significantly to the
estimation of chlorophyll-a, with an RMSE of 0.231. The visibility, TSS, and temperature
are also relatively important variables, whereas the remaining input variables have a
relatively low contribution to the improvements in model performance. Notably, when all
the input variables, except for CDOM, were integrated, the RMSE increased to 0.330. Thus,
although the individual input variables have a negligible effect on the model performance,
the integration of the input variables has a complementary effect and improves model
prediction. When all the input variables were used, the RMSE was 0.191, which represents
the best model performance.

Predictive studies on plankton concentrations have been conducted for decades using
various water quality models. However, there are numerous challenges and limitations
owing to the complex interactions between water quality parameters, uncertainty of hy-
drodynamic information, and lack of boundary nutrient loadings and validation data. For
example, the results of studies that predicted the level of chlorophyll-z in Chesapeake Bay
by employing a 3D water quality model had a correlation coefficient of less than 0.5 [45,46].
The main objective of this study was to develop a prediction tool that can be used in combi-
nation with existing water quality models, wherein the currents, water level, salinity, and
temperature calculated from the hydrodynamic model were used to predict chlorophyll-a
concentration. As the hydrodynamic model results have an error of only 10-20%, they
can be used as training data for deep learning models [30]. Accordingly, satellite data
such as CDOM, TSS, and visibility, which were validated through various studies, were
used as training data to develop a chlorophyll-a prediction tool. The prediction model
developed herein—CNN Model II—has good accuracy in the estimation of chlorophyll-a
concentration, as evidenced by an R? of 0.66-0.91 and an RMSE of 0.055-0.775. Although
the data used in the model are not in situ measurements, satellite data and hydrodynamic
model data have continuously improved in recent years, and provide spatiotemporal data
that cannot be obtained from in situ measurements. In addition, the developed model can
predict the spatiotemporal chlorophyll-a concentration based on changes in individual
parameters such as an increase in water temperature due to climate change, an increase in
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CDOM due to land development, and an increase in TSS as a result of poor flushing due to
the presence of coastal structures, etc.

Year Category January November

Predicted

2016
(Training Data)

Satellite

Predicted

2018
(Validation Data)

Satellite

Predicted

2019
(Test Data)

Satellite

Figure 16. Monthly averaged spatial distribution of model results and satellite chlorophyll-a images
(CNN Model II).

Table 2. Sensitivity analysis results showing RMSE values corresponding to input variables.

Input Variables RMSE
CDOM 0.231
TSS 0.526
Visibility 0.492
Currents 0.651
Salinity 0.648
Temperature 0.545
Water level 0.653
All except CDOM 0.330
All 0.191

The model results must be compared to real-world measurement data to validate the
performance of the model. However, spatiotemporal chlorophyll-a data cannot be obtained
through in situ measurements. The performance of the chlorophyll algorithms used for
the GOCI radiometric data were evaluated using in situ measurements collected at 491
stations [47]. The evaluation results of the coincident in situ pairs of Rrs and chlorophyll
measurements demonstrated that the mean uncertainty was <35%, with a correlation of
around 0.8. Therefore, assuming that the data from GOCI are close to the real-world values,
the model results were validated by comparing them against the satellite data. To improve
the developed model, it is necessary to conduct a validation study with the measurement
data of the study area and a comparative study with the state-of-the-art methods.
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5. Conclusions

In this study, we developed a deep learning model using a CNN to predict the
spatiotemporal changes in chlorophyll-a in a bay in Korea. The data used to train the deep
learning model were the spatial data of chlorophyll-g, total suspended sediment (TSS),
visibility, and colored dissolved organic matter (CDOM) obtained from the Geostationary
Ocean Color Imager (GOCI) on board COMS, and the water level, currents, temperature,
and salinity calculated by a verified hydrodynamic model. CNN MODEL I, which estimates
chlorophyll-a images in a 48 x 27 grid format, was developed using the same 48 x 27 grid
size of the CDOM, TSS, visibility, water level, currents, temperature, and salinity data. The
RMSE between the satellite image and the predicted image from the model was calculated,
and was between 0.2 and 0.6 in most cases. Although CNN Model I was able to estimate
the overall trend, there were significant differences between the predicted results and the
satellite data in some cases. As the deep learning model improves the predictive ability
of the model by extracting and analyzing the inherent patterns in the training data, if the
training data is insufficient, the predictive ability of the model decreases significantly.

To solve the problem of insufficient data, we designed another deep learning model—
CNN Model II—using segmented images in a 7 x 7 grid format. CNN Model II estimates
target values only using the data around the point of interest and, consequently, the volume
of training data used in CNN Model Il is around 300 times more than that of CNN Model L
Therefore, CNN Model II can extract and analyze inherent patterns in the training data
more accurately. The average RMSE of CNN Model II was 0.191, which is significantly
lower than that of CNN Model I, which was 0.463. Moreover, the spatial concentration of
chlorophyll-a was well estimated by CNN Model 11, thereby proving the efficacy of the
deep learning model.

A sensitivity analysis was performed to determine the influence of each input variable
on the model performance, and CDOM was found to have the most influence on the pre-
diction of chlorophyll-a. The visibility, TSS, and temperature were also relatively important
variables. The input variables with a strong influence on the model performance have
a direct relationship with nutrients, photosynthesis, and temperature, which influence
plankton growth. Therefore, the data-based deep learning model considers the major fac-
tors related to the growth of plankton and makes predictions. Additionally, the predictive
accuracy of the deep learning model was improved if the training data also included the
currents, velocity, and salinity.
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Abstract: Numerous aquaculture ponds are intensively distributed around inland natural lakes and
mixed with cropland, especially in areas with high population density in Asia. Information about the
distribution of aquaculture ponds is essential for monitoring the impact of human activities on inland
lakes. Accurate and efficient mapping of inland aquaculture ponds using high-spatial-resolution
remote-sensing images is a challenging task because aquaculture ponds are mingled with other
land cover types. Considering that aquaculture ponds have intertwining regular embankments
and that these salient features are prominent at different scales, a Row-wise and Column-wise Self-
Attention (RCSA) mechanism that adaptively exploits the identical directional dependency among
pixels is proposed. Then a fully convolutional network (FCN) combined with the RCSA mechanism
(RCSANet) is proposed for large-scale extraction of aquaculture ponds from high-spatial-resolution
remote-sensing imagery. In addition, a fusion strategy is implemented using a water index and the
RCSANet prediction to further improve extraction quality. Experiments on high-spatial-resolution
images using pansharpened multispectral and 2 m panchromatic images show that the proposed
methods gain at least 2—4% overall accuracy over other state-of-the-art methods regardless of regions
and achieve an overall accuracy of 85% at Lake Hong region and 83% at Lake Liangzi region in
aquaculture pond extraction.

Keywords: aquaculture ponds; extraction; inland lake; self-attention

1. Introduction

Aquaculture has become one of the main sources of animal protein and increasingly
contributes to food security for many inland cities with large populations in Asia. Fresh-
water aquaculture products such as fish, crustaceans, and molluscs are supplied from
aquaculture ponds built around natural lakes. Aquaculture in China already accounts for
60% of global production [1]. Aquaculture foods provided by inland aquaculture ponds
have become predominant contributors of aquatic foods in Chinese banquets [2]. Provinces
in the middle and lower reaches of the Yangtze River basin account for more than half
the country’s total freshwater production. In recent years, pond aquaculture has become
predominant and has contributed on average 71 percent to total freshwater production
(China Fishery Statistical Yearbook 2004-2016), maintaining an average growth rate of
5.8 percent per year. The area under pond aquaculture has greatly increased. However,
intensive aquaculture has a severely destructive effect on the environment, including high
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levels of water use, local environmental pollution, and the loss of services provided by the
freshwater ecosystems of natural lakes [3,4].

Remotely sensed imagery has been used as an effective means for global monitoring
of aquaculture ponds in coastal areas [5-7] and nearby inland lakes [8]. An object-based
image analysis (OBIA) method was used on Landsat TM images to extract aquaculture
ponds in coastal areas of south-eastern China [9]. Tran et al. used maximum likelihood
classification on Landsat and SPOT5 images to obtain long-term land-cover and land-use
changes in a delta in Vietnam, where aquaculture ponds were one of the classes [10].
Ottinger et al. used the geometric features of aquaculture ponds for image segmentation
on Sentinel-1 Synthetic Aperture Radar (SAR) images to extract fish ponds in several delta
areas in Asia [5,11]. Zeng et al. used Landsat and Gaofen-1 satellite images to extract
aquaculture ponds around inland lakes using boundary curve features and a Support
Vector Machine (SVM) classifier [8]. In state-of-the-art methods for aquaculture pond
extraction, object-oriented classification is usually integrated with hand-crafted features,
and the spatial resolution of the satellite images commonly used is generally 10 meters or
coarser. However, aquaculture ponds close to inland lakes are mixed with water bodies that
are approximately the same size as these ponds. Accurately mapping aquaculture ponds
using finer spatial resolution (up to a few meters) remote-sensing images and applying a
more generalized approach, rather than manual feature engineering, remains a technical
challenge for inland lake mapping.

Because semantic segmentation can understand images at the pixel level, statistics- and
geometry-based image segmentation methods have been replaced by methods that depend
on Deep Convolutional Neural Networks (DCNNs) [12]. DCNNSs have been recognized by
industry and have become widely used, advancing from LeNet-5’s success in zip encod-
ing recognition in the 1980s to AlexNet’s victory in the 2012 ImageNet competition [13].
Subsequently, a deep CNN architecture proposed by Visual Geometry Group of Oxford
University (VGG) [14], a residual network architecture proposed by He (ResNet) [15]
and other DCNN structures have become the basic learning framework for advanced
feature extraction from visual images. The fully convolutional network (FCN) constitutes
a breakthrough in semantic image segmentation by converting the fully connected layer
in traditional DCNNSs, such as VGG, into a fully convolutional layer, thereby successfully
achieving end-to-end labelling [16]. Badrinarayanan et al. [17] proposed Segnet to achieve
pixel level classification through a deep convolutional encoder-decoder architecture in
which the decoder upsamples the lower-resolution feature maps. Chen et al. proposed the
Deeplab architecture and its revised versions, which introduced atrous convolution and
atrous spatial pyramid pooling (ASPP) models into the deep encoder-decoder architecture
for semantic segmentation [18-20]. Deep learning techniques for semantic segmentation
have been developed for various computer vision tasks such as autonomous vehicles,
medical research and many other applications in recent years [21]. However, implementing
semantic segmentation of deep neural networks on remote-sensing images must over-
come specific problems, including different data sources and scales [22]. For example,
SegNet and ResNet have been efficiently implemented on multi-modal remote-sensing
data using the FuseNet principle [23]. FCN has been used for slum mapping by transfer
learning [24]. FCN was re-designed and used for automatic raft labelling in offshore waters
by a dual-scale structure [25] or a U-Net [26].

Aquaculture ponds are shallow artificial water bodies that commonly have distinctly
man-made shapes for efficient aquaculture production [10]. The ponds around inland lakes
are formed gradually by embankment, partition, and regularization of other land cover
types, such as cropland or natural lake water bodies. Because the shoreline of a natural lake
winds along the surrounding terrain, its boundary shape is generally extremely irregular.
On the other hand, the borders of aquaculture ponds are constructed on the principle of
cost-saving, and straight lines are often used to delimit the boundary in a local area. Hence,
the boundaries of aquaculture ponds have more regular shapes overall. Furthermore, when
the human eye perceives satellite images where aquaculture ponds are densely distributed,
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the aquaculture ponds with their intertwining regular boundaries will be visual attention
areas because human perception commonly pays attention to parts of visual space where
patterns can be acquired, according to neuroscience and cognitive science literature [27].

Attention mechanisms have been extensively used for various visual tasks. The
recurrent attention model is used for object recognition through a recurrent neural network
(RNN) integrated with reinforcement learning to mimic the process of the human visual
system as it recurrently determines the attention region. The attention mechanism on top of
the RNN proposed by the neural machine translation community [28,29], was also adopted
to perform image captioning by assigning different weights to image representations [30].
The self-attention mechanism without the RNN model is exploited in a super-resolution
image generator [31], which is a variant of the TRANSFORMER [32], a cutting-edge deep
neural network for language translation. Furthermore, self-attention mechanisms have
been introduced into scene segmentation for modelling feature dependencies from spatial
and channel dimensions [33]. In remote sensing, attention models have also been used
for object classification in various satellite images. For instance, attention mechanisms are
integrated into multi-scale and feedback strategies of deep neural networks for pixel-wise
classification of very-high-resolution satellite images [34]. The attention model is combined
with a learning layer to capture class-specific feature dependencies [35].

When human beings visually identify densely distributed aquaculture ponds on
remote-sensing images, the intertwining regular embankments around these ponds are
prominent visual attention features. This paper is inspired by this visual attention mecha-
nism used for human interpretation of satellite images. Moreover, the intertwining regular
embankments are a salient feature that is available at different scales. The two motiva-
tions of this study are first to develop a novel attention mechanism that can mimic the
process of the human visual system to recurrently determine the attention region, which is
the intertwining regular embankments of aquaculture ponds, and to evolve multi-scale
visual attention through the encoder-decoder, fully convolutional network architecture
that integrates the attention mechanism with atrous convolutions to better extract aquacul-
ture ponds.

Therefore, the main contributions of the paper can be summarized as follows:

(1) Propose the Row-wise and Column-wise Self-Attention (RCSA) mechanism, which
can work in parallel to capture visual emphasis on salient pixels in the context of rows
and columns from a remote-sensing image.

(2) Propose an improved fully convolutional network based on the RCSA mechanism
that is combined with an ASPP structure for multi-scale attention.

(3) Evaluate the validity of the proposed method on a developed dataset that contains
abundant aquaculture ponds around inland lakes.

2. Materials
2.1. Study Area

Hubei Province, known as the province of thousands of lakes, lies in the middle
reaches of the Yangtze River and has densely distributed lakes. Hubei has a mature
freshwater aquaculture industry with large numbers of aquaculture ponds developed
surrounding natural lakes. As shown in Figure 1, six regions with densely distributed
aquaculture ponds were selected as study areas from three large lakes (Lake Liangzi,
Lake Futou, and Lake Hong) along the Yangtze River because these are typical inland
aquaculture areas in China. Among them, Lake Hong and Lake Liangzi are the two largest
freshwater lakes in Hubei Province. The population in this part of China is dense, and
aquaculture is very developed. Lake Liangzi, and its surroundings, however, have been
relatively well protected since the 1980s. The six selected regions were divided into two
categories: type I and type II. The type I regions, including regions A and B, are used for
testing, whereas type II regions are used for training. Region A is an area of 73.76 km?
close to eastern Lake Hong which is an artificial lake, and region B is an area of 33.92 km?
close to eastern Lake Liangzi, which has been preserved in a state more like a natural lake.
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Figure 1. Location of the study area. The pseudo-colour images (A,B) are pansharpening images using the near infrared,
the red and the green band as red, green and blue. The corresponding labelling image for each is given below.

2.2. Dataset

The Landsat multispectral images were selected because of their long history. The
bands such as the near infrared can be beneficial for extracting water bodies. However,
the spatial resolution of Landsat multispectral data is only 30 m. Panchromatic images
with 2-2.5 m spatial resolutions from the panchromatic and multispectral (PMS) camera of
the GaoFen-1 (GF-1) satellite [36], the panchromatic remote-sensing instrument for stereo
mapping (PRISM) of the ALOS satellite, and the NAD panchromatic sensor of the ZiYuan-3
(ZY-3) satellite [37] were also used to improve recognition and extraction of aquaculture
ponds and natural water bodies. Table 1 lists the images used for the selected study
regions. The Landsat multi-spectral images used in this study were captured in the winter
of 2010-2011 and 2013-2014 and the spring of 2015. High-resolution panchromatic images
were used for fusion with multi-spectral images. The panchromatic images were mainly
selected from the GF-1 satellite and had acquisition dates close to the corresponding OLI
images from Landsat satellite, whereas panchromatic images from the ALOS satellite were
used instead for 2010 TM images from the Landsat satellite. However, when ALOS or GF-1
panchromatic images with similar acquisition dates were still not found, panchromatic
images from the ZY-3 satellite captured in same season as Landsat images from a nearby
year were selected because the ZY-3 satellite was launched in 2012.

Three classes: aquaculture ponds (artificial water surfaces), natural water surfaces
and background (non-water surfaces) were included in the reference dataset (Figure 1),
which was mainly generated by human visual interpretation. Field investigations were
also conducted on some difficult-to-identify features, in cases where aquaculture ponds
were mixed with small natural water surfaces (Figure 2).
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Table 1. Satellite images information for various regions.

Multispectral Images Panchromatic Images
Regions Sensors Spatial Date Sensors Spatial Date

Resolution (m) Resolution (m)
Lake Hong (west, type I region) TM (Landsa 5) 30 2011.01.15 PAN-NAD(ZY-3) 21 2013.01.27
Lake Hong (west, type I region) OLI (Landsat 8) 30 2014.01.23 PMS2(GF-1) 2 2014.01.23
Lake Hong (middle, type I region) TM (Landsat 5) 30 2011.01.15 PAN-NAD(ZY-3) 2.1 2013.01.27
Lake Hong (middle, type I region) OLI (Landsat 8) 30 2014.01.23 PMS2(GF-1) 2 2014.01.23
Lake Futou (south, type I region) OLI (Landsat 8) 30 2015.03.31 PAN-NAD(ZY-3) 2.1 2017.01.22
Lake Liangzi (west, type I region) TM (Landsat 5) 30 2010.11.12 PRISM(ALOS) 2.5 2010.11.06
Lake Liangzi (west, type I region) OLI (Landsat 8) 30 2014.02.01 PMS2(GF-1) 2 2014.01.31
Lake Hong (east, type Il region A) TM (Landsat 5) 30 2011.01.15 PAN-NAD(ZY-3) 21 2013.01.27
Lake Hong (east, type II region A) OLI (Landsat 8) 30 2014.01.23 PMS2(GF-1) 2 2014.01.23
Lake Liangzi (east, type Il region B) TM (Landsat 5) 30 2010.11.12 PRISM(ALOS) 2.5 2010.11.06
Lake Liangzi (east, type Il region B) OLI (Landsat 8) 30 2014.02.01 PMS2(GF-1) 2 2014.01.31

‘3

Figure 2. Field photos of inland aquaculture ponds in Hubei Province, China. Aquaculture ponds are usually equipped

with air pumps. (A) A branch of a natural lake. (B) An aquaculture pond equipped with oxygen pumps. (C) Below is a

small river (natural water body) and above are several aquaculture ponds.

3. Methodology

To better understand the effectiveness of the proposed method for aquaculture pond
segmentation, the methodology will be introduced in three parts: data pre-processing,
the basic model, and a fusion strategy designed to further improve accuracy. In the
preprocessing stage, the multi-spectral image and the corresponding 2 m panchromatic
image were pansharpened. The pansharpened image was then fed into the proposed
network, i.e., RCSANet, for semantic segmentation. The result generated from the network
was finally fused with a water surface extraction image using the water index to further
improve segmentation quality.

3.1. Preprocessing

Multi-spectral satellite images contain more spectral information, especially in the
infrared spectral bands, which is beneficial for aquaculture pond identification, whereas
panchromatic satellite images have higher spatial resolution, which helps to better dis-
tinguish the shape of the aquaculture pond. To use both together, the multi-spectral and
high-spatial-resolution panchromatic images must be pansharpened to obtain images with
both spectral information and higher spatial resolution. First, multi-spectral images were
synthesized by selecting the three bands (green, red, NIR) that are useful for water body
identification. The pixel values were normalized and then mapped to the range (0, 255).
Similarly, the gray values of panchromatic images were also normalized and mapped
to the range of (0, 255). The multi-spectral images were re-projected into the coordinate
system of the corresponding panchromatic images to ensure consistent coordinates. The
multi-spectral and panchromatic images were fused by the GRAM-SCHMIDT method [38],
which is a widely used high-quality pansharpening method providing a fusion of panchro-
matic image and multi-spectral images with any number bands through orthogonalization
of different multi-spectral bands [39].
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3.2. Basic Model
3.2.1. Network Architecture

The deep neural network architecture, depicted in Figure 3a, for semantic segmenta-
tion of aquaculture ponds in the proposed method is based on an FCN framework, that
uses ResNet-101 [15] as the encoder to generate multiple semantic features. The encoding
part produces the feature maps through five convolution layers, including the first con-
volution layer (Convl) followed by a pooling layer, and the other four convolution layers
(Res-1 to Res-4) are all residual subnetworks. The feature maps are abstract representations
of the input image at different levels. Semantic segmentation by the FCN framework
is a dense prediction procedure in that the coarse outputs of the convolution layers are
connected by upsampling to produce pixel-level prediction. In the proposed method, the
RCSA mechanism (introduced in Section 3.2.2) was developed on the coarse outputs at
different levels of abstract representation (detailed in Section 3.2.3). Next, channel attention
blocks (CAB), which were designed to assign different weights to features at different
stages for consistency [40], were used to connect the coarse abstract representations from
the encoder with the upsampling feature at the decoder in the whole dense prediction
procedure. The spatial size of the coarse outputs derived from the different convolution
layers were kept consistent by the upsampling blocks (Figure 3c) to achieve end-to-end
learning through backward propagation. Specifically, to accurately capture aquaculture
ponds and their context information at multiple scales, the ASPP module combined with
the RCSA mechanism (ASPP-RC) forms a branch from Conv1 to the end of the decoder
before a 1 x 1 convolution layer and is integrated with the corresponding feature as a skip
connection. To extract spatial context information at different scales, atrous convolutions
with different rates, followed by the RCSA mechanism, were performed in parallel on the
low-level feature map in the ASPP-RC module. These branches for capturing features at
different scales are connected by weighting each branch in terms of its own importance
(Figure 3b, introduced in Section 3.2.4).

3.2.2. RCSA Mechanism

When human beings use visual perception to understand remote-sensing images con-
taining inland lakes with densely distributed aquaculture ponds, the ponds as a group will
be eye-catching. The attention focuses on the spatial dependencies of aquaculture ponds
and their surroundings. To mimic this human visual mechanism, the proposed model first
establishes inter-pixel contextual dependencies through bidirectional gated recurrent units
(GRUs) [41], which are a powerful variant of RNN, and then the self-attention modules are
used on top of the bidirectional GRUs to establish this visual attention.

The self-attention mechanism is essentially a special case of the attention model. The
unified attention model contains three types of inputs: key, value, and query [42], as
depicted in Figure 4. The key and the value are a pair of data representations. Assume
that there are T pairs < k;,v; > (i € 1,...,T). By evaluating the similarity between a
query g and each key, the model essentially captures the weight coefficient of each key and
then weights the corresponding values to derive their final attention values. The attention
mechanism first scores the similarity between a query and a key pair by the f function:

€ = f(kl/q) @)

Then the original scores ¢; are normalized by a Softmax function to obtain the weight
coefficients:

a; = g(e;)
=softmax(e;)

__eple) ,
Z]‘T:1 exp(e;) ®
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Finally, the context vector c; is evaluated by a weighted sum of the values:
¢t =) av; 3)
i
The attention model can be presented in a unified form

¢t = Attention(K, Q, V) = Softmax(f(K,q))V 4)

The attention model becomes a self-attention mechanism when all inputs, including
the query, the key, and the value, have the same value.
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Figure 3. RCSANet: FCN architecture combined with RCSA mechanism for semantic segmentation of aquaculture ponds:
(a) Network architecture; (b) ASPP-RC module; (c¢) Upsampling block. The input image of the entire deep neural network is
a 256 x 256 pansharpening patch with three spectral channels. Through encoding and decoding, a three-channel matrix for
classification was output through a 1 x 1 convolution layer at the end, and finally a Softmax layer gave a prediction map

with the same size as the input image.
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Figure 4. Attention models.
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The RCSA mechanism takes a feature map, which is the convolutional result from
the previous layer or the input image, as an input x € R"*®*C where &, w, and C are the
number of rows, columns, and channels respectively. The feature map can be spatially
divided into i rows r; € R1*®*C(i € 1...h) or w columns ¢; € R"*1*C(j € 1...w). RCSA
enables the construction of spatial dependencies between pixels within a row or a column
by the self-attention mechanism. Hence, the RCSA mechanism consists of two parallel
branches, column-wise and row-wise self-attention, which are subsequently concatenated
by summation, as shown in detail in Figure 5. In the upper branch, the row-wise self-
attention mechanism first uses the bidirectional GRU model to depict the dependencies
between the pixels in a row of the feature map

ri = BiGRU(r;) ©)

Then the outcome from the GRUs 7/ is fed into the self-attention model by which the
importance of the dependencies between pixels in the row is evaluated. The self-attention
model is a specific variant of the attention model, in which the input query, key, and value
have the same value, as shown in Figure 4b. The r:- are respectively conducted by three
1 x 1 convolution kernels, Wy, Wg,and Wy, so that the query, the key, and the value can be
obtained by Q = Wg * 1/, K = Wk 1,V = Wy x r/, where “*” is the convolution operation.
Then they are substituted into the following Equation (4):

cr =Attention(Wrj, Wori, Wyr})
=Softmax(f(Wxr, Wor:))Wyr; (6)
QKT

where the similarity function f(K, Q) = i and dy is the dimension of the key. The
k

computation for one row can traverse to each row of the feature map. Equivalently, in
the bottom branch, the same operations are performed in parallel on each column of the
feature map. Eventually, the two branches are combined with equal weights.

Self-Attention

EE 5

Figure 5. Attention layer consisting of column-wise and row-wise self-attention models.
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3.2.3. RCSA for Dense Prediction

In semantic segmentation of remote-sensing images, dense prediction must fuse ab-
stract representations of different levels from the encoder to improve pixel-level prediction.
Visual attention on densely distributed aquaculture ponds could be involved in the dense
prediction procedure. Consequently, the outputs of different convolution blocks in the
encoding part are conducted by RCSA and then participate in dense prediction. These
RCSA modules in the lateral connection enhance the features pixel-wise by assigning
different weights to achieve a reasonable optimization of visual attention. In fact, this
optimization takes place in a two-dimensional space made up of row and column vectors.
However, the importance of different band channels must also be emphasized. The CAB
module is directly used to fuse encoder and decoder features through assigning different
weights to channels.

3.2.4. ASPP-RC Module

Atrous convolutions at different rates can enlarge the field of view so that spatial
information at different scales can be extracted. Aquaculture ponds, which are water
bodies surrounded by dikes with regular shapes, are densely distributed close to inland
lakes. These features show visual salience in remote-sensing images. Hence, the RCSA
block is arranged next to atrous convolution to selectively focus attention. After the first
convolution blocks of the encoder, in the ASPP-RC module, the low-level feature map
is executed in parallel by atrous convolutions with different rates combined with RCSA.
Eventually, the branches are connected by:

5
I= Z w;j - bi (7)
i=1

where b; is the feature map produced by the ith branch in which the atrous convolution
and RCSA are conducted in sequence and w; is the weight of the ith branch that evaluates
the importance of different scales. This is unlike the original ASPP structure in which each
branch has the same importance. The importance of each branch is adjusted adaptively in
the proposed ASPP-RC module. All weight parameters are initially defined by a random
vector w?, which can be optimized during backpropagation when training the whole
network. Finally, these weights are normalized using a Softmax function:

w; = softmax(w?) (8)

i
3.3. Fusion Strategy

To further improve the segmentation quality of aquaculture ponds, the normalized
difference water index (NDWI) maps from pansharpening images are fused with the pre-
diction probability matrices from the proposed network to produce the final classification
result (Figure 6). This implementation is called “RCSANet-NDWI”. The classification
probability matrices are produced from the three classes (aquaculture ponds, natural water
surfaces, and background) probability maps after the Softmax layer. Both aquaculture
ponds and natural water surfaces are water bodies surrounding inland lakes. Hence, the
water extraction index, which is a typical representation of the spectral characteristics of a
water body used to distinguish ground features, has been extensively used. The NDWI
maps were used to provide prior knowledge for aquaculture pond extraction. Through
OTSU threshold binary segmentation [43], NDWI maps were divided into water and
non-water parts. The water parts in the NDWI maps were used to refine the three-class
probability matrix described earlier. Assume that the original probability matrix Py and
the refined matrix P are both I X w x c in size, whereas the NDWI map S is h x w in size.
¢ is the channel number, k is the channel ID, and the kth channel represents the kth class.
Hence, k = 1, 2, 3 represent background, water, and aquaculture ponds, respectively. The
fusion operation can be defined as:
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Figure 6. Fusion strategy.
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For the pixel in the i-th row and j-th column of S, if its value is 1 (representing water),
the corresponding background probability (k = 1) in Py is set to 0, and the fused matrix P
is generated. The final classification maps can be obtained using the maximum probability
judgment. The maximum probability judgment is the usual method for mapping the
probability matrix to the final label image: the classification label of this pixel is determined
with maximum probability: /;; = arg }inax( pi.‘j), where probability pi-‘]- is the probability

of a pixel in the i-th row and j-th column from k different sources. With the NDWI, the
interference from the background of the water body extraction is eliminated because the
probability of the non-water part is set to 0.

4. Experiments

This section describes a series of qualitative and quantitative comprehensive evalu-
ations that were conducted using the proposed methods with the dataset introduced in
Section 2.

4.1. Experimental Set-Up

The inputs of the proposed network were 256 x 256 pansharpening patches with three
spectral channels. Table 2 lists the parameters of the convolution kernels, which are basic
operators of different modules in the entire process of the proposed RCSANet. Parameter
rate means that the convolution kernels in different atrous convolution branches of the
ASPP-RC module have different padding and dilation configurations, which are set to 6,
12, and 18, respectively, according to Figure 3b. Validation consisted of two parts:

(1) Evaluating the performance of the proposed methods. The pansharpening images of
the six regions (both type I and type Il in Figure 1) were segmented into image patches
256 x 256 pixels in size. These image slices were randomly divided into training and
test sets, of which 80% (4488 images) made up the training set and 20% (1122 images)
made up the test set. The overall accuracy, user’s accuracy, producer’s accuracy, and
kappa coefficients were used as the main evoluation metrics.

(2) To assess the quality of aquaculture pond extraction and evaluate the generalization
and migration capabilities of RCSANet, four regions (type I) were used as training
data, and the other two regions (type II) were used as test areas. The overall accuracy,
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user’s accuracy, producer’s accuracy, and kappa coefficients were calculated to assess
aquaculture pond extraction accuracy on the 2 m spatial resolution pansharpened
images.

Table 2. Parameters used for the convolution kernels in the various modules in RCSANet.

Module Kernel Size Stride Padding Dilation
Conv 1x1 1 0 1
RCSA 1x1 1 0 1
Upsampling block 1x1 1 0 1
ASPP-RC(Conv) 1x1 1 0 1
ASPP-RC(Atrous conv) 3x3 1 rate rate

In addition, the proposed methods were divided into two versions: RCSANet (without
NDWTI fusion) and RCSANet-NDWI (with NDWI fusion) to verify the role of NDWI fusion.
Three state-of-the-art segmentation methods, including DeeplabV3+ [20], Reseg [44], and
Homogeneous Convolutional Neural Network (HCN) [25] were selected for comparison.
In addition, the performance of SVM was also assessed as a representative of traditional
machine learning methods that directly use each pixel as a feature. DeeplabV3+ is an
FCN method for semantic segmentation with the help of an ASPP module. Reseg is a
hybrid deep network for semantic segmentation. Except for CNN, the bidirectional GRU
is also used in Reseg to capture contextual dependencies. HCN was originally proposed
for automatic raft labelling and is now considered to have potential for aquaculture pond
extraction. HCN was implemented following the settings in [25], and Resnet-101 was
simultaneously used as the encoder in DeeplabV3+, Reseg, and the proposed methods.

In the present experiments, the parameters of the proposed methods were optimized
by minibatch stochastic gradient descent using a momentum algorithm with a batch size
of 2. The learning rate was set to 1072 and decayed with training epoch according to the
“polynomial” strategy. The number of training epochs was configured as 40. The SVM was
implemented with the help of the LIBSVM package[45], and two important factors, C and v,
were determined through a five-fold cross validation grid search. Except for the HCN,
which was operated using TensorFlow 1.9.0, the other deep learning-based algorithms
were implemented in Pytorch 1.1.0. All deep learning methods were implemented on a
single NVIDIA GeForce GTX 1080 GPU.

4.2. Results

The performance of the various semantic segmentation methods in Part 1 of the
experiments is depicted in Table 3. Clearly, the deep learning-based methods perform better
than the traditional SVM algorithm because the latter cannot perceive spatial semantic
information in the image. DeeplabV3+ is a state-of-the-art FCN method that has been
widely used. Resnet-101 was also chosen as the backbone for DeeplabV3+. HCN is a deep
convolutional neural network for automatic raft labelling, and Reseg is a deep recurrent
neural network for semantic segmentation. The classification accuracy of the proposed
methods for natural water surfaces and aquaculture ponds was consistently better than the
other methods. Meanwhile, compared with DeeplabV3+, the overall accuracy in the two
versions of the proposed methods led to an improvement of more than 7% and the Kappa
coefficients of the proposed methods were greater than 0.72, indicating that the proposed
method is significantly better than DeeplabV3+. Moreover, the results also demonstrated
the effect of the proposed fusion strategy because RCSANet-NDWI further surpassed
RCSANet on most metrics.
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Table 3. Performance comparison of different methods for semantic segmentation of aquaculture ponds in Part 1 of the

experiments (%).

Producer’s Accuracy User’s Accuracy
Methods Overall Kappa Natural Aqua- Natural Aqua-
Accuracy (%) Water (%) Culture (%) Water (%) Culture (%)
SVM 26.90 9.71 54.80 15.96 52.43 76.60
Deeplabv3+ 79.16 59.23 90.32 55.26 97.90 93.14

Reseg 84.52 68.23 90.74 71.18 9744 90.31

HCN 74.53 49.86 86.83 48.21 92.71 85.74
RCSANet 86.95 72.83 92.83 74.36 98.13 93.99

RCSANet-NDWI 89.31 77.28 93.28 80.81 98.07 93.57

Figure 7 gives a detailed display of the classification results in Part 1 of the experiment.
Inland water areas contain various natural water bodies as well as aquaculture ponds.
These natural water bodies greatly interfere with the segmentation result for aquaculture
ponds, making pixel-scale classification intricate. Figure 7 shows that the SVM classification
results misclassified many aquaculture ponds as natural water bodies and many natural
water bodies as aquaculture ponds, indicating that the traditional pixel-based method can-
not efficiently distinguish natural water bodies from aquaculture ponds. The segmentation
maps created by DeeplabV3+ look significantly better than those from SVM, but in some
difficult zones where natural water bodies look similar to aquaculture ponds, they are
also trapped by their own performance limitations and misclassified natural water bodies
as aquaculture ponds (area in the 7th row) or aquaculture ponds as natural water bodies
(districts in the 5th row). HCN, which has good performance for raft-culture extraction in
offshore waters, performed poorly on semantic segmentation of inland aquaculture ponds
and serious misclassifications also happened with HCN. Reseg, which combines CNN and
bidirectional GRU, can perform semantic segmentation for aquaculture ponds. However,
the identification of natural water bodies that closely resemble aquaculture ponds around
inland lakes is not as good as with the proposed methods. In Table 3, the overall accuracy of
the Reseg method can reach greater than 80% but its Kappa coefficient is less than 0.7. This
shows that Reseg has established a spatial relationship through the construction of GRU,
which has a certain effect on the segmentation of aquaculture ponds around inland lakes,
but it is not good enough. In the Reseg segmentation map, many objects are stuck together,
and the edges of aquaculture ponds are not well displayed. Among these result maps,
the two versions of the proposed method separated natural water bodies and aquaculture
ponds more satisfactorily than the other methods. The ASPP-RC module of the proposed
method feeds back the details at different scales into the low-level feature map, which
can draw visual attention to the decoding part. This facilitates identification of the thin
edges surrounding the aquaculture ponds in semantic segmentation. Hence, the edges
of aquaculture ponds were clearly identified in most cases, as shown in the results from
RCSANet and RCSANet-NDWI. Finally, note that RCSANet-NDWI further improved the
quality of aquaculture pond extraction compared with RCSANet.

Table 4 provides assessment results for the various algorithms in Part 2 of the exper-
iment and shows the corresponding extraction accuracies of the aquaculture pond and
natural water surface classes in the two experimental areas (regions A and B in Figure 1) by
different sensors. The overall accuracy and Kappa coefficient show that the two versions
of the proposed method (RCSANet and RCSANet-NDWI) both performed better than
the other methods, regardless of sensor or area. Moreover, compared with RCSANet, the
accuracy of RCSANet-NDWI was further improved with the aid of NDWI fusion. In region
A, their overall accuracies in pansharpening images from different sensors were greater
than 85 percent, and the Kappa coefficients were definitely greater than 0.7. These results
were better than those of other deep learning-based methods, not to mention SVM. In
region B, the proposed methods still performed the best. Unlike region A, where the lake is
greatly influenced by residents living nearby, causing the aquaculture ponds to be neatly
and regularly distributed, the aquaculture ponds in region B have a sparser distribution.
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Region B is relatively well protected, and some small natural water bodies, which are
easily confused with aquaculture ponds and interfere with network identification, were
produced when the lake was split for artificial development. Hence, the situations in the
two regions are completely different, which shows the stability of the proposed methods
under various scenarios. The overall accuracies of the proposed methods in pansharpening
images from different regions were close to or greater than 80 percent. In addition, it should
be noted that user accuracy in identifying natural water bodies in almost all methods is
relatively high. This is because natural water bodies tend to be extensive, homogeneous,
self-contained, and distributed in aggregates, a situation that is easier to recognize for the
classifier. Compared with the proposed methods, Reseg and DeeplabV3+ may also obtain
higher user accuracy in some cases. However, because of their limited recognition ability,
they cannot explicitly judge the difference between aquaculture ponds and natural water
bodies (Figure 8).
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Figure 7. Semantic segmentation results for 256 x 256 pixel image patches from test set in Part 1 of the experiment. The
leftmost column gives the sensors or satellites to which the multispectral and panchromatic data of the pansharpened
images belong, and the bottom row lists the different methods by which the semantic segmentation images in the same
column were obtained.
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Table 4. Accuracy evaluation for the two classes, aquaculture ponds and natural water surfaces, in each experimental

area (%).
Producer’s Accuracy User’s Accuracy
Regions Sensors Methods Overall Kappa Natural Aqua- Natural Aqua-
Accuracy (%) Water (%)  Culture (%) Water (%)  Culture (%)
TM+ZY-3 SVM 24.44 5.09 27.55 23.80 53.83 86.72
Deeplabv3+ 81.30 60.93 87.87 64.71 98.25 83.30
Reseg 84.74 66.92 88.97 74.06 97.85 82.52
HCN 77.37 52.85 88.83 48.42 96.73 79.79
RCSANet 86.79 70.83 90.79 76.70 98.25 84.47
Lake Hong (East, RCSANet-NDWI 88.77 74.78 91.08 82.94 98.21 84.42
type [l region 4) OLI+GF-1 SVM 67.60 25.99 38.82 78.75 47.09 82.16
Deeplabv3+ 84.96 69.73 87.60 79.57 96.82 90.01
Reseg 76.47 55.10 78.30 72.75 92.44 83.38
HCN 73.76 48.23 82.90 55.07 88.02 86.79
RCSANet 85.36 69.14 90.57 74.70 93.59 90.38
RCSANet-NDWI 86.61 7143 91.07 77.50 93.61 90.14
TM+ALOS SVM 39.26 14.51 67.37 5.32 86.62 19.22
Deeplabv3+ 74.60 53.48 86.73 50.69 99.25 82.83
Reseg 75.27 54.33 84.94 56.20 97.86 83.28
HCN 67.68 40.23 90.05 23.60 92.51 86.44
RCSANet 79.95 62.01 89.31 61.50 99.56 90.03
Lake Liangzi (East, RCSANet-NDWI 83.85 68.42 89.63 72.45 99.51 89.03
typellregionB) 1 Grg SVM 39.43 329 48.19 758 9443 590
Deeplabv3+ 82.31 55.98 91.45 49.06 98.91 77.99
Reseg 87.97 67.84 93.74 66.96 97.85 85.59
HCN 77.25 43.83 91.80 24.31 97.19 81.96
RCSANet 90.90 75.86 93.00 83.26 99.21 83.97
RCSANet-NDWI 91.71 77.83 93.19 86.31 99.20 83.69

Figure 8 shows the classification results in the two study regions. Extracting aqua-
culture ponds in region B is more difficult than in region A because region B contains
more natural water bodies that are hard to distinguish from aquaculture ponds. The two
versions of the proposed method performed significantly better than the other methods for
aquaculture pond extraction. The proposed methods were predominantly successful in
predicting aquaculture ponds that are divided into regular shapes by embankments, as
well as the natural water bodies in the two regions. In region A, the proposed methods
generally extracted almost all aquaculture ponds compared with the ground truth, whereas
other methods failed, especially in the upper part of the scene. In region B, compared
with Reseg, the proposed methods had lower misclassification rates, and the natural rivers
located at the bottom, which could not be identified by Reseg, were not misclassified as
aquaculture ponds by the proposed methods. Moreover, the shapes of the ponds are best
retained, as shown in the results of the proposed method. The advantage of the proposed
method is the proposed RCSA mechanism for determining salient pixels in a row or col-
umn, which is essentially a description of the pixel-level context. This enables the proposed
method to identify detailed features of the 2 m spatial resolution image, where the dikes
around aquaculture ponds are such pixel-level details. Hence, the aquaculture ponds in
region B were more fully extracted by the proposed RCSANet than by other state-of-the-art
methods, such as DeeplabV3+ and Reseg. On the other hand, fusion using NDWI can
better distinguish water surfaces, including natural water bodies and aquaculture ponds,
from background. In effect, the proposed method with NDWI re-segments the leaked water
surface from the background, which improves the producer’s accuracy of the aquaculture
pond. However, this also entails a phenomenon whereby a small part of the background is
mistakenly classified as water surface.
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Reseg HCN RCSANet RCSANet-NDWI

(a) Type Il region A

RCSANet RCSANet-NDWI

(b) Type Il region B

Figure 8. Semantic segmentation results for aquaculture ponds and natural water bodies by various methods: (a) in region
A, using the pansharpened image with the TM multispectral image captured in January 2011 and the ZY-3 panchromatic
image in January 2013; and (b) in region B, using the pansharpened image with the OLI multispectral image captured in
February 2014 and the GF-1 panchromatic image in January 2014.
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5. Discussion

This study has used a fully convolutional network architecture with row- and column-
wise self-attention to semantically segment aquaculture ponds around inland lakes. Artifi-
cial aquaculture ponds around inland lakes are small, and the dikes between these ponds
are only about 2 m wide. On medium-resolution multispectral images, water pixels are
firstly separated from land, and then water objects are formed based on connectivity. After
that, these water objects are classified as natural water bodies and aquaculture ponds using
geometric characteristics [8]. However, for inland lake area where aquaculture ponds are
intensively distributed with narrow dikes (e.g., Lake Hong), the 15-30 m spatial resolution
of the image limits the capability of the object based method to accurately extract aquacul-
ture ponds. Hence, finer-spatial-resolution images are considered for pond extraction. By
fusing multi-spectral information into panchromatic images from the GF-1, ZY-3 or ALOS
satellites, the spatial resolution of the resultant satellite images can achieve up to 2 meters,
enabling the identification of thin narrow dams. Meanwhile, the multi-spectral capability is
utilized to recognize water. From the segmentation results, the proposed network structure
was shown to be capable of extracting these regular pond boundaries, mainly because
semantic segmentation of the aquaculture ponds benefits from establishing a spatial re-
lationship between pixels in the same direction by the self-attention model. Although
HCN was also an FCN-based method used to automatic raft labeling [25], nevertheless, its
performance for extracting aquaculture ponds around inland lakes are not as effective as
that for labeling raft-culture. Because the spatial context of raft-culture in coastal area is
much simple than that of the inland lake area. In general, through high-spatial-resolution
images that incorporate multi-spectral and panchromatic data, the proposed RCSANet
enables the extraction of large-scale aquaculture ponds around inland lakes where complex
spatial contexts of water surfaces exist. However, it is still challenging for the recognition
of small water bodies in such complex spatial context. The experimental region B was in
the process of recovering aquaculture ponds and farmland as lake area from 2011 to 2014.
Therefore, various aquaculture ponds and natural water bodies are spatially mixed on the
images of pansharpening multispectral and panchromatic data from 2011 and 2014, which
poses great challenges for semantic segmentation of aquaculture ponds. For example,
Figure 9¢,d are images of the same area, which changed significantly between 2011 and
2014. Several small reservoirs were apparent in Figure 9¢, but the profiles of these reservoirs
had changed significantly in Figure 9d, and the left side of this area had been recovered
into a large lake. The segmentation results in Figure 9g,f show that the restored large lake
has been well segmented, but the small reservoirs are easily classified as aquaculture ponds
or missed segmentations.

In the paper, extracting aquaculture ponds is performed on images that pansharpen
multi-spectral data from Landsat satellites and panchromatic data from other satellites in
the same period, and therefore the semantic segmentation might also be affected by the
spectral range of the panchromatic image. Table 5 gives the results of an accuracy analysis
that divided the training data of Part 2 of the experiment into two portions: pansharpened
TM images and pansharpened OLI images. The predicted results of pansharpened TM
images from Region B are based on RSCANet, which was trained by fusing TM images with
panchromatic images from ZY-3 or ALOS satellites. The predicting results of pansharp-
ened OLI images from Region B is based on RSCANet, which was trained by fusing OLI
images with panchromatic images from GF-1 satellites. Table 5 shows that the results of
pansharpened OLI images with panchromatic images from GF-1 satellites are significantly
better than the results of pansharpened TM images with panchromatic images from ZY-3
or ALOS satellites. The spectrum of panchromatic images from GF-1 satellites ranges from
0.45 to 0.90 um, which can completely cover the three NIR, red, and green bands of Landsat
OLI data. However, the spectrum of panchromatic images from ZY-3 or ALOS satellites can
only partly cover the NIR band of the TM sensor. The acquisition time of the TM images
was earlier than 2012, and therefore it is difficult to use a GF-1 panchromatic image for
pansharpened TM images.
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(b)

Figure 9. Influence of multi-year changes on semantic segmentation results for aquaculture ponds. (a,b) are pansharpened
images of the significantly changed area from Region B in 2010 and 2014 respectively. (c,d) are magnified images. (e f) are
labelling images for (c,d). (g,h) are semantic segmentation results for (c,d) using the proposed method.

The RCSANet can extract aquaculture ponds around inland lakes on 2 m satellite
images more accurately than other methods because the involvement of two connection
groups from the encoder to the decoder. The first connection group is the combination of
the RCSA module and the ASPP-RC module, which links Conv1 of encoder part to decoder
part. The second is the RCSA modules, linking Res-1, Res-2, and Res-3 of encoder part to
decoder part. Table 6 indicates that the first connection group of RCSANet achieves an
additional 2.32% overall accuracy gains over RCSANet;, and the second connection group
brings 3.59% overall accuracy gains over RCSANety, i.e., a plain FCN architecture based
on ResNet-101 model. Nevertheless, the connections expend more computing resources
because they involve the non-local self-attention mechanism, which contains many inner-
product operations. Moreover, the RCSANet is an encoder-decoder architecture in which
the gradual upsampling are conducted, requiring more memory and calculation time.
Table 7 shows that the RCSANet consumes more memory and training and prediction time
than Deeplabv3+ and Reseg methods. It is feasible to sacrifice some computing resources to
achieve higher accuracy of aquaculture pond extraction, especially the GPU performance
will increase gradually.
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Table 5. Accuracy comparation of semantic segmentation results for region B by dividing the training data of Part 2 of the experiment into pansharpened TM images and pansharpened

OLI images (%).
Producer’s Accuracy User’s Accuracy
Regions Sensors Methods Training Data Overall Kappa Natural Aqua- Natural Aqua-
Accuracy (%) Water (%) Culture (%) Water (%) Culture (%)
RCSANet . . 79.95 62.01 89.31 61.50 99.56 90.03
All pansharpened images from type I regions
TM+ALOS RCSANet-NDWI 83.85 68.42 89.63 72.45 99.51 89.03
Lake Liangzi East RCSANGNDIWE P S on ALOS oo rom type Lnegione - #14 e an  @m  we  oiw
type II region B) et- rom ZY-3 or satellites, from type I regions . X . . E .
RCSANet All h di f ¢ I regi 90.90 75.86 93.00 83.26 99.21 83.97
RCSANet-NDWI pansharpened images from fype L regions 91.71 77.83 93.19 8631 99.20 83.69
LI+GF-1
OLI+G RCSANet Pansharpened images of fusing OLI images with panchromatic images 88.01 68.78 92.92 70.12 98.96 85.70
RCSANet-NDWI from GF-1 satellites, from type I regions 89.41 72.09 93.14 75.85 98.89 85.93
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Table 6. Accuracy evaluation for RCSANet and its two varants RCSANet; and RCSANet; in Part 1
of the experiments (%). RCSANet; is a RCSANet variant ablating the first connection group and
RCSANet; is the other variant ablating both connection groups.

Methods Overall Accuracy Kappa Coefficient
RCSANet, 81.04 66.15
RCSANet; 84.63 71.59
RCSANet 86.95 72.83

Table 7. Performance evaluation of different deep-learning based methods for semantic segmentation of aquaculture ponds in Part 2 of

the experiments.

Occupied Memory of GPU Prediction Time for Region Occupied Memory of GPU

Methods Training Time (seconds) for Training (MB) B (seconds) for Prediction (MB)
RCSA 60,280 7563 35 1543
HCN 66,000 7709 64 7843
Deeplabv3+ 16,760 3113 12 1417
Reseg 10,640 2343 16 1083

6. Conclusions

This study has implemented a semantic segmentation network on high-spatial-resolution
satellite images for aquaculture pond extraction. A row- and column-wise self-attention
(RCSA) mechanism has been proposed to capture the intertwining regular embankments
of aquaculture ponds in feature maps, and then a fully convolutional network framework
combined with the RCSA mechanism is proposed for semantic segmentation of aquaculture
ponds. The proposed methods have been evaluated on high-spatial-resolution pansharp-
ened images obtained by fusing multi-spectral and panchromatic images in typical regions
with inland lakes and densely distributed aquaculture ponds. Experiments on satellite
images of both a highly developed lake and a reserved lake show that the overall accuracy
of the proposed method is significantly better than those of other methods (3-8% overall
accuracy gains at Lake Liangzi and 1-2% overall accuracy gains at Lake Hong over the
best of other methods). Specifically, from the experimental semantic segmentation results
for large regions, detailed information, such as the embankments of aquaculture ponds,
can be more accurately identified by the proposed method. It can be concluded that the
proposed method is effective for large-scale extraction of aquaculture ponds. In addition,
RCSANet-NDWI further improves the accuracy of the proposed method compared with
RCSANet, indicating the significance of the proposed NDWI fusion strategy. For future
study, the proposed methods can be extended to raft-culture extraction in offshore waters.
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Abstract: Climate change in the European Alps during recent years has led to decreased snow cover
duration as well as increases in the frequency and intensity of summer heat waves. The risk of drought
for alpine wetlands and temporary pools, which rely on water from snowmelt and provide habitat for
specialist plant and amphibian biodiversity, is largely unknown and understudied in this context. Here,
we test and validate a novel application of Sentinel-2 imagery aimed at quantifying seasonal variation in
water surface area in the context of 95 small (median surface area <100 m?) and shallow (median depth of
20 cm) alpine wetlands in the French Alps, using a linear spectral unmixing approach. For three study
years (2016-2018), we used path-analysis to correlate mid-summer water surface area to annual metrics
of snowpack (depth and duration) and spring and summer climate (temperature and precipitation).
We further sought to evaluate potential biotic responses to drought for study years by monitoring the
survival of common frog (Rana temporaria) tadpoles and wetland plant biomass production quantified
using peak Normalized Difference Vegetation Index (NDVI). We found strong agreement between
citizen science-based observations of water surface area and Sentinel-2 based estimates (R? = 0.8-0.9).
Mid-summer watershed snow cover duration and summer temperatures emerged as the most important
factors regulating alpine wetland hydrology, while the effects of summer precipitation, and local and
watershed snow melt-out timing were not significant. We found that a lack of summer snowfields in
2017 combined with a summer heat wave resulted in a significant decrease in mid-summer water surface
area, and led to the drying up of certain wetlands as well as the observed mortality of tadpoles. We did
not observe a negative effect of the 2017 summer on the biomass production of wetland vegetation,
suggesting that wetlands that maintain soil moisture may act as favorable microhabitats for above treeline
vegetation during dry years. Our work introduces a remote sensing-based protocol for monitoring the
surface hydrology of alpine wetland habitats at the regional scale. Given that climate models predict
continued reduction of snow cover in the Alps during the coming years, as well as particularly intense
warming during the summer months, our conclusions underscore the vulnerability of alpine wetlands in
the face of ongoing climate change.

Keywords: French Alps; optical remote sensing; multitemporal; linear spectral unmixing; NDVI; drought;
Rana temporaria; ecohydrology; mountain temporary pools
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1. Introduction

Recent climate warming in the European Alps is currently reshaping alpine landscapes and ecosystems.
Increases in mean temperature in the Alps are amplified with respect to the global average [1] and warming
has accelerated markedly since the 1980s [2]. Rising mean temperatures have been accompanied by
an increase in the frequency and intensity of extreme events, such as summer heat waves, during the
last twenty years [3]. Shifts in air temperature have led to significant reductions in glacier mass and
extent [4,5], as well as a 4-5 week reduction in snow cover duration since the 1970s in the Swiss Alps [6].
Mountain plant species are moving upslope and increasing biomass production in response to climate
warming [7-9], and vegetation belts within the Alps are expected to continue to shift upward in response
to 21st century climate change [10].

Alpine wetlands are situated at the confluence of the aforementioned recent changes in climate,
cryosphere, hydrology, and vegetation. Located between the treeline and snowfields and glaciers,
alpine semipermanent pools and ponds (hereafter referred to more generally as wetlands) are present
throughout most of world’s mountains and are defined as small (1 m? to a few square hectares) and
shallow water bodies characterized by at least the seasonal presence of surface water [11]. The hydrology
of alpine wetlands is understood to be tightly linked to watershed runoff from rain and snowmelt [11].
Predicted decreases in snow cover duration combined with continued glacier retreat are expected to
diminish summer water runoff, particularly during the second half of the 21st century [12], which could
decrease available surface water for alpine wetlands. In the Swiss Alps, recent warming has been
associated with increases in the abundance of generalist thermophilous plant species at the expense of
specialized wetland species [13]. Amphibian populations are known to be declining at the global scale
due to climate change, disease, and habitat degradation [14,15], and amphibian habitat loss has been
documented in mountainous regions throughout Australia, North America, and Central America [16].
Notably, the drying up of wetland pools in Australia has been linked to the local mortality of an endangered
Australian frog species, Pseudophyrne pengilleyi [17]. In light of these examples, studies linking climate,
wetland hydrology, and biodiversity responses in the Alps remain lacking. Improving our knowledge
of the ecohydrological functioning of alpine wetlands is of particular importance in order to inform
wetland biodiversity conservation measures and also from the standpoint of ecosystem services, given that
wetland habitats are known to provide important downstream regulatory services such as aquifer recharge,
flood mitigation, and denitrification [18].

Recent improvements in widely available optical satellite imagery are enabling unprecedented
opportunities for tracking the responses of mountain ecosystems to climate variability and change.
Specifically, the Sentinel-2 satellite mission, launched in 2015, includes an unprecedented combination
of 5 day temporal revisit, 10 m spatial resolution, ten spectral bands ranging from visible to short-wave
infrared, and a free and open access data policy. In mountainous regions, Sentinel-2 has already been
utilized for a number of applications, including for example generating high-resolution snow cover
maps across the Alps and Pyrenees [19], quantifying the effects of snow cover duration on alpine plant
community habitat [20], and improving land cover maps of dwarf Ericaceae shrubs above treeline [21].
We propose that the relatively high spatial, temporal, and spectral resolution of Sentinel-2 could be utilized
to enhance monitoring of the seasonal hydrology of alpine wetlands.

In this study, we focus on alpine pools and ponds characterized by seasonal snow cover and
fluctuating amounts of surface water over the course of the summer season. In contrast to alpine lakes,
biological communities in small alpine water bodies are strongly driven by water availability and
hydroperiod [11,22]. In this context, binary classification approaches based on spectral indices [23],
or object-oriented classification that have previously been used to map large wetlands and water bodies [24],
may be insufficient to map small (e.g., <100 m?) and constantly fluctuating mountain pools. Furthermore,
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high spatial resolution images with pixel size below 25 m?, obtained, for example, using aerial photographs,
specialized satellite platforms such as PLEIADES or SPOT 6/7, or drone imagery, tend to have highly
limited temporal and spectral resolution and can require expensive and time consuming acquisition and
preprocessing protocols [25].

To respond to these methodological challenges, we propose using linear spectral unmixing, which
was originally developed as a method for mapping desert shrublands using Landsat imagery [26].
This approach allows for mapping sub-pixel fractions that correspond to objects that are smaller than the
spatial resolution of available imagery, which, in this case, means smaller than a 100 m? Sentinel-2 pixel.
Based on the assumption that the reflectance values of image pixels are the result of varying mixtures
of components, or endmembers, this technique has been used for numerous applications in plant cover
mapping and forestry (see, e.g., in [27,28]), soil and erosion mapping (see, e.g., in [29]) and more recently
for snow algae detection in Antarctica [30]. We propose multi-temporal spectral unmixing as a potential
approach for quantifying the surface dynamics of wetlands, in terms of snow cover and surface water.

In this paper, we test the use of linear spectral unmixing as a means of quantifying seasonal variation
in the water surface area of small alpine wetlands located in the northern French Alps with respect to field
observations of water surface area. We further utilize available Sentinel-2 imagery to quantify snow cover
duration at the watershed and local wetland scales. For three study years (2016 to 2018), we correlate
interannual variability in meteorological and snow cover parameters to mid-summer water surface area,
in order to identify the most important parameters linked to drought risk. Finally, we assess the potential
of our method for quantifying biotic responses of wetland communities to drought, by monitoring the
development and survival of common frog (Rana temporaria) tadpoles in select sites and by quantifying
wetland vegetation biomass production.

2. Materials and Methods

2.1. Study Area and Fieldwork

This work was carried out in the Chamonix valley in the Mont-Blanc massif and located in the
northern French Alps (Figure 1). Studied sites (N = 95) were identified over the course of two field seasons
carried out between mid-July and mid-August: 20 wetlands were identified in 2010, while an additional
75 wetlands were visited during the summers of 2017 and 2018. We focused on ponds and pools located in
open areas without forest cover above 1800 m a.s.l., and that contained surface water at the time of the field
survey (lakes, rivers, streams, peat bogs, and wetlands characterized by damp soil were excluded from the
analysis). Observed water surface area of target wetlands varied from 3 to 5000 m? with a mean of 511 m?,
with water depth ranging from 3 cm to 3 m with a mean depth of 44 cm. The elevation of studied wetlands
ranged from 1820 to 2600 m a.s.l., with a mean elevation of 2100 m a.s.l.. Sites were distributed across
22 alpine watersheds (Figure 1C). Bedrock varied from limestone in the western portion of the study area,
to schist and limestone for central and northeastern wetlands and granite in the case of the southeastern
most watershed. Many of the watersheds are characterized by persistent snowfields during the summer
months (Figure 1C).

During the summers of 2016, 2017, and 2018 we carried out weekly visits to four wetlands at the
Loriaz site (Figure 1D) to monitor the development of common frog (Rana temporaria) tadpoles. During
each visit, we recorded the presence of frog eggs as well as the number of egg clusters, followed by the
phenological stage attained by the tadpoles (see Figure S1). We also noted local mortality of the tadpole
population, in the case of drought.
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Figure 1. (A) Locator map displaying the study area in the Chamonix valley, France. (B) Photo of a typical
alpine pond habitat in the Mont-Blanc massif. (C) Map of the 22 alpine watersheds (above 1800 m a.s.1.)
and the 95 alpine wetlands considered in this analysis. (D) Inset map showing the locating of four wetlands
visited weekly during the summer months to monitor the phenology of common frog (Rana temporaria)
populations and periodically to survey wetland surface water extent.

2.2. Sentinel-2 Imagery

For this analysis, we relied on multi-spectral images acquired by the Sentinel-2 satellites (2A and 2B),
which jointly provide a 5 day revisit time since March 2017. Available spectral bands range from visible
to shortwave infrared, with 4 bands at 10 m spatial resolution (B2: 490 nm, B3: 560 nm, B4: 665 nm, BS:
842 nm) and 6 bands at 20 m spatial resolution (B5: 705 nm, B6: 740 nm, B7: 783 nm, B8a: 865 nm, B11:
1610 nm, B12: 2190 nm). We downloaded 76 Sentinel-2A and B (hereafter referred to as Sentinel-2) scenes
for the T32TLS tile and for the years 2016, 2017, and 2018 from the French THEIA platform.

Acquired images were preprocessed by the THEIA to level 2A (i.e., orthorectified product in surface
reflectance). Images were corrected for both atmospheric and topographic effects [31,32], which are
particularly important in mountainous areas where slope angle and aspect affects pixel illumination [33].
Level-2A products were provided with cloud and shadow masks, which we applied to all spectral bands.
In total, we analyzed 23 dates in 2016, 25 dates in 2017, and 28 dates in 2018 between the months of
February and November of each year.

2.3. Endmember Selection and Spectral Unmixing

Spectral endmembers were identified using a 50 cm resolution aerial photograph acquired in 2009
covering the study area. We hypothesized that all alpine wetland pixels could be composed of a mixture of
the following endmembers, water, vegetation, rock and bareground, and snow. Given that all sites were
located above the treeline with low-stature vegetation, we considered it unnecessary to include shadow as
a spectral endmember. Using the aerial photographs for reference, we identified between three and four
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visually pure Sentinel-2 pixels for each target endmember class, representing an area of homogenous cover
for at least a 50 x 50 m zone in order to avoid edge effects. We then extracted spectral values for identified
endmember pixels from a Sentinel-2A image acquired on August 3, 2016. We averaged spectral values for
each endmember class and carried out a principal component analysis (PCA) using the ade4 package in R.

Linear spectral unmixing allows for the estimation of sub-pixel fractions of target endmembers
and is suitable for mapping phenomena that vary at finer scales than the spatial resolution of available
imagery [26]. By resolving an ordinary least squares equation, the algorithm estimates the fractional cover
of endmembers resulting in observed spectral values [34]. In Equation (1), p; represents the observed
spectral band values (in this case from the Sentinel-2 reflectance value for a given band and pixel),
F; represents endmember fractions that are equivalent to slope values in the linear model, p;, ; represents the
known reflectance values of target endmembers, and E; represents an error term estimated for each band.
The sum of estimated fractions (3, F;) is constrained to be equal to 1 (Equation (2)). In this configuration,
F; is the only unknown value and can be solved for using the following equations:

pj =) Fi xp;+E; )
i=1
m
Fi=1 )
i=1

where j corresponds to the number spectral bands, i corresponds to a given endmember, and m represents
the the number of endmembers.

For each acquired Sentinel-2 scene, we resampled 20 m bands to 10 m using bilinear interpolation,
and created a stack covering the study area. We extracted Sentinel-2 spectral values for the GPS coordinates
of each wetland using two approaches: (i) a simple method extracting spectral values for the pixel
overlapping the coordinates, and (ii) using a 20 m buffer to extract spectral values in the vicinity of the
target wetland. The resulting tables were defined as spectral libraries, with each column representing one
of the ten Sentinel-2 bands and each row representing a target pixel. We then used the “unmix” function
in the hsdar R package to estimate the fractional cover of endmembers for each pixel and for each date.
Error values and fraction estimates resulting from the simple extract were stored directly for each wetland.
For results of the 20 m buffer, we summed the surface area of each endmember across all pixels and stored
values for each Sentinel-2 scene date. In order to quantify water levels during the critical midsummer
period when drought is most likely, we calculated the mean water surface area for available dates between
July 15 and August 15 (Water surface area; Figure S2).

2.4. Field Validation

In order to validate Sentinel-2 based estimates of water surface area, we carried out field observations
with different volunteer groups for four summer dates between 2016 and 2019. Volunteers included local
elementary school students accompanied by teachers, local adults, visiting university students, and tourists.
Group size ranged from 6 to 15 participants, which were split into at least two groups. In the field, groups
were asked to delimit a 30 X 30 m grid centered on the target wetland and GPS coordinate, composed of
nine smaller 10 m sub-squares (see Figure S3). For each 10 x 10 m square, volunteers conducted visual
estimates of the percent cover of different endmembers (rock and bareground, vegetation, water, and snow).
For each plot, two separate groups observed the central grid cell in order to quantify observer error.
Based on values for the nine grid cells, we calculated mean and total water surface area for each site as
noted by volunteers.
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For target wetlands, we extracted water surface area estimates for the nine nearest Sentinel-2 pixels
centered on the wetland GPS coordinate. Field visits were coordinated so as to occur either the same
day or within 1 day of the passage of one of the Sentinel-2 satellites. We calculated mean and total water
surface area from Sentinel-2 fractional estimates for the nine pixels overlapping the target water body,
and correlated these values with field observations. Given that both field and satellite observations were
subject to errors, we utilized standardized major axis regression in the smatr R-package to assess agreement
between Sentinel-2 and ground-based observations.

2.5. Mapping Snow Cover and Wetland Plant Biomass

For each Sentinel-2 scene, we calculated the Normalized Difference Snow Index (NDSI) and the
Normalized Difference Vegetation Index (NDVI) and the using Equations (3) and (4):

NDSI — (Rgreen — Rswir)

(Rgreen + Rswir) ©)
(Rnir — Rred)

NDVI =
(Rnir + Rred)

(4)
where NIR is the reflectance in the near-infrared band (Band 8), red corresponds reflectance in Band 4,
green corresponds to Band 3, and SWIR is shortwave infrared (Band 11). We applied a 0.4 threshold to
NDSI values to estimate the presence or absence of snow cover for 10 m pixels for each Sentinel-2 scene [35].
For each date, we also calculated the percentage of watersheds covered by snow. We also estimated local
snow melt out date for wetlands based on the following criteria, NDSI < 0.4 and a snow fraction estimate
of 0. Finally, for each year and each wetland, we extracted the maximum value of NDVI between July 15
and August 15 as a proxy of peak biomass and plant photosynthetic activity.

2.6. Meteorological Data and Structural Equation Modeling

We obtained daily meteorological and snowpack data for the last thirty years for 300 m elevation
bands within the Mont-Blanc massif from the Safran-CROCUS atmosphere-snowpack reanalysis, provided
by Météo-France and the Centre d’Etudes de la Neige [36,37]. Data were downloaded from the open
access Aeris portal [38]. Based on our hypotheses, we extracted the following monthly parameters for
each year (1988 to 2018): mean snowpack height for the month of March (March snowpack depth), sum of
growing degree days (>0 °C) for 2 m air temperature in March and April (March-April GDD), sum of
growing degree days (>0 °C) for June and July (June-July GDD), and the sum of rainfall in June and
July (June-July precip.). For study years (2016-2018), we assigned values from the 300 m elevation class
corresponding to each study site. In order to contextualize study years within the last thirty years and
for the 1950 to 2250 m a.s.l. elevation band, we calculated average values and annual anomalies for all
variables over the 1988 to 2018 period.

We derived the following spatial snow cover variables from Sentinel-2 imagery: the date that watershed
snow cover fell below 30%, based on NDSI-based binary snow cover maps (Watershed snowmelt), the
date of local snow melt-out for wetlands (defined by fractional snow cover below 10% for wetland pixels,
Wetland snowmelt) and the average percent snow cover of watersheds between July 15 and August 15
based on NDSI snow cover maps (Summer snowfields).

We utilized a structural equation modeling (SEM) approach to test linear relationships between
meteorological and snowpack parameters and observed midsummer water surface area. As an extension
of path analysis, SEM represents an appropriate statistical framework for modeling multivariate and
hierarchical effects of predictors on target response variables [39,40]. We first standardized values using
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the “decostand” function in the vegan R package, and subsequently verified that pairwise relationships
between variables could be modeled using ordinary least squares linear regressions. We then tested
multiple model pathways, based on the following hypotheses; in all models, we expected midsummer
Water surface area to be correlated with June-July GDD, June-July precip., and with snowpack. In order to
identify which snowpack parameter was the most significant, we tested models using Watershed snowmelt,
Wetland snowmelt, and Summer snowfields as predictors. We also systematically tested models with and
without summer precipitation as a predictor of Water surface area. To test the effects of snowpack depth on
spatial snow cover parameters, we correlated each snowpack parameter with March snowpack depth and
an air temperature variable (April-May GDD for Wetland and Watershed snowmelt, and June-July GDD
in the case of Summer snowfields). We compared models using the following criteria: goodness-of-fit
requiring a x? chi-square p-value greater than 0.05 [41], the Akaike Information Criterion (AIC) value, and
explained variance (R?) of Water surface area.

3. Results

3.1. Spectral Endmember Differentiation and Method Validation

Selected endmembers exhibited distinct spectral signals with respect to Sentinel-2 bands, both in
terms of mean reflectance values (Figure 2A) and multivariate PCA coordinates (Figure 2B). Vegetation
and bareground were the most closely related spectral endmembers, while snow and water exhibited
highly distinctive spectral signatures. Error resulting from spectral unmixing was low (around 0.01%)
across scene dates, with slightly higher errors at the beginning (June) and end (September) of the summer
season, potentially due to persistent snow cover and the variable state of plant canopies during the fall
season compared to the early-August reference used for endmember definition (Figure S2).
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Figure 2. Spectral signatures of target endmembers, identified using 50 cm resolution aerial photographs
and extracted from a Sentinel-2A image on August 3, 2016. (A) Mean reflectance values for spectral
endmembers for the 10 utilized Sentinel-2 bands. (B) Mean PCA coordinates of spectral endmembers,
showing 95% confidence intervals.

Wetlands underwent a characteristic transition from full snow cover during the winter months to a
mixture of water, bareground, and vegetation between snowmelt-out in the spring and snow onset in the
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fall (Figure 3). Water surface area varied over the course of the summer season, which was corroborated by
field observations and visually confirmed using drone imagery (Figure 3). Although localized drought was
apparent immediately surrounding a target wetland in July 2017 (Figure 3A), the utilization of the 20 m
buffer enabled the detection of water within a broader vicinity adjacent to the target wetland (Figure 3).
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Figure 3. Example time series of fractional snow and water cover for a select wetland extracted from
Sentinel-2 imagery in 2017 (A) and 2018 (B). Solid point values are result of fractional estimates resulting from
a simple extract of spectral values for the GPS point. The hollow point in panel (A) indicates the fractional
estimate for a 20 m buffer around the GPS point, which was the method used for all subsequent analysis.
Panels (C,D) show drone images of the targeted wetland in July, 2017, and June, 2018. The red point indicates
the GPS point used for field monitoring and image analysis, the blue rectangle shows the overlapping
Sentinel-2 pixel, and the diameter of the 20 m buffer used to estimate surface water in the vicinity of
target wetlands.

We observed strong agreement between field observations of water surface area and estimates derived
from Sentinel-2 images (Figure 4). We found positive linear relationships with respect to mean water
surface area (Figure 4A, R? = 0.88) and total water surface area (Figure 4B, R? = 0.79) for target wetland
areas. Some systematic error was apparent in the case of mean water surface area, and Sentinel-2 tended
to slightly underestimate water surface area for low quantities of water (<10 m?) with respect to field
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observations (Figure 4A). Although the linear relationship was not as strong compared to mean water
surface area, in the case of total water surface area, the relationship exhibited no systematic error and the
linear trend closely followed the 1:1 reference line (Figure 4B). We observed a mean absolute error (MAE)
of +27 m? for total water surface area over a 900 m?2 area, which corresponded to a 3% error rate. Different
volunteer groups demonstrated strong agreement between visual estimates of endmember ground cover,
including for water (R% =0.76), vegetation (R? = 0.76), and rock and bare ground (R? = 0.80; Figure S4).
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Figure 4. Validation of Sentinel-2 based estimates of water surface area relative to visual ground-based
estimates carried out by volunteers. Values are based on a grid of nine 10 x 10 m pixels centered on the GPS
point of a target wetland (see Figure S1). (A) Mean water surface area observed on the ground compared to
mean water surface area estimated using Sentinel-2, with error bars representing 95% confidence intervals.
(B) Total water surface area observed on the ground compared to total water surface area estimated using
Sentinel-2. The dashed line represents a 1:1 relationship while the solid line represents a line of best fit
using linear standardized major axis regression. Point symbols correspond to do different visit dates in the
field, which were coordinated with the passage of the satellite. MAE = mean absolute error.

3.2. Characterization of Wetland Seasonal Hydrology (2016-2018)

Regardless of the threshold used to identify drought risk, 2017 stood out as the driest summer of the
three-year study period (Figure 5). Summer 2016 was slightly drier than 2018 for thresholds below 60 m?.
Based on the error and uncertainty presented in Figure 4, we identified 25 m? as a potential drought risk
threshold, meaning that we considered wetlands with less than 25 m? of estimated surface water (within
the 20 m buffer zone corresponding to approximately 1300 m?) to be at risk of drought. Based on this
threshold, of the 95 target wetlands, eight were dry in 2017, five were dry in 2016, and only one was dry in
2018 (Figure 5).
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Figure 5. Number of dry wetlands (N = 95) depending on the threshold used to identify drought risk.

Values are based on sum of water surface area within a 20 m buffer around wetlands or approximately a

1300 m?. For monitoring purposes, we propose utilizing a threshold of 25 m? given the uncertainty of the

method presented in Figure 4B.

Regarding the persistence of mid-summer snowfields at the uppermost elevations of watersheds,
in late-July and early-August snow covered 5 to 6% of watersheds in 2016 and 2018 and less than 1%
of watersheds in 2017 (Figure 6). On average, watersheds became snow-free approximately three to
four weeks earlier in 2017 compared to 2016 and 2018 (Figure 7A). In 2017, watersheds dropped below 20%
snow cover on average by late-May, whereas in both 2016 and 2018, watershed snow cover did not decline
rapidly until late-June (Figure 7B).

(B) July 29, 2017 (C) July 29, 2018

» N
<1% snow cover
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e Wetland 2 Alpine watershed

Figure 6. Mid-summer images for (A) 2016, (B) 2017, and (C) 2018 showing the spatial distribution of
persistent snowfields, watershed boundaries, and wetlands for a portion of the study area. Although cirrus
clouds are present in panel (B), masked pixels did not cover snowfield areas.
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Figure 7. (A) Mean percent snow cover for 22 watersheds >1800 m a.s.l. for 2016, 2017, and 2018; the gray
rectangle indicates the July 15 to August 15 period considered for drought-risk. (B) Average water surface
area, applying the 20 m buffer, for alpine wetlands during the July 15 to August 15 period in 2016, 2017,
and 2018; ** denotes a significant difference in water surface area values between 2017 and the other
years according to a Pairwise Wilcoxon signed rank test: 2017 vs. 2016, p-value = 0.001; 2017 vs. 2018,
p-value = 0.004, 2016 vs. 2018, not significant).

The three study years were highly contrasted in terms of March snowpack height and summer
temperature and precipitation for the 1950-2250 m a.s.l. elevation band (Figure S5). With respect to the
30 year reference period, 2016 was close to average in terms of March snowpack depth, June-July GDD
and June-July precipitation (Figure S5). The year 2017, however, was characterized by low snowpack high
summer temperatures and average precipitation, with a 50 cm deficit in snowpack depth in March and
a more than 100 °C surplus in June—July GDD. Last, snowpack depth in 2018 was 1 m above average,
summer precipitation was well below average (—43 mm), and June-July GDD was well above average
(+94 °C; Figure S5). Values extracted for wetlands exhibited the same inter-annual variability in snowpack
and meteorological parameters (Figure S6).

For the July 15 to August 15 critical period, water surface area of target wetlands varied between 0
and 500-700 m? (Figure 6B). The mid-summer water surface area of wetlands was significantly lower in
2017 compared to 2016 and 2018 (Figure 6B), with a median decrease of 40-50 m? of surface water in 2017
(Figure 7B).

3.3. Structural Equation Modeling Results

Only one of the SEM models we tested was statistically acceptable (x> p-value = 0.68, Table S1
Model 1A). This model also exhibited the lowest AIC value (16.76) compared to all other models (Table S1).
Model 1A demonstrated a significant positive effect of March snowpack depth and a significant negative
effect of June—July GDD on the persistence of Summer snowfields, followed by a significant positive effect
of Summer snowfields and a negative effect of June-July GDD on Water surface area (Table S1, Figure 8).
Interestingly, summer precipitation (June-July precip.) was not significantly related to Water surface area
for any of the tested models, with the exception of Model 2B which exhibited a nearly significant negative
relationship (p-value = 0.06, Path coefficient estimate of —0.16). Furthermore, Summer snowfields was
the only measured snowpack parameter to have a significant effect on Water surface area, and local snow
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melt-out date of wetlands and at watershed snowmelt-out were not significant. We also tested for a direct
effect of March snowpack height on Water surface area (results not shown), but did not observe a significant
relationship or an improvement in model performance. Tested models explained between 4% and 11% of
variance in Water surface area. Summary statistics for tested path models are provided in Table S1.
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Figure 8. Structural equation model results for the retained model (Table S1, Model 1A), linking hydrological
(blue) and meteorological (orange) parameters to interannual (2016-2018) variability in the mid-summer
water surface area of wetlands. Line thickness is proportional to the values of path coefficient estimates.
Boxes with dashed outlines indicate variables measured using the Safran-CROCUS atmosphere-snowpack
model, and spatial variables measured using Sentinel-2 satellite imagery.

3.4. Observed Effects of Drought on Tadpole Development and Plant Biomass

In 2017, we observed the drying up of two monitored wetlands at the Loriaz site (Figure 1D) during
a field visit on July 17. A subsequent field visit on August 3, 2017 confirmed the local mortality of frog
tadpoles in these sites. Sentinel-2 estimates confirmed a lack of surface water for the July 17 date (Figure 4).
We did not observe mid-summer drought and associated tadpole mortality for Loriaz sites in either 2016
or 2018. The 2017 drought occurred when tadpoles were in the process of developing from stage 3 to 4,
which typically occurs during the critical drought-risk period from July 15 to August 15 for the Loriaz
wetlands (Figure S7).

We did not observe a significant difference in peak NDVI (NDVI max) for wetland vegetation during
the three years of the study (Figure 9A). Field observations and drone imagery indicated that even dry
wetlands were surrounded by productive and lush vegetation, despite the lack of surface water (Figure 9B).
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We did not observe vegetation with a high degree of senescence during our mid-summer field observations
of Loriaz wetlands in 2017.
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Figure 9. (A) Boxplots of maximum Normalized Difference Vegetation Index (NDVI) values observed for
wetlands during the July 15 to August 15 period for the three study years. (B) Drone photograph of a dried
out wetland in 2017, showing lush vegetation despite the dry conditions.

4. Discussion

Our proposed use of Sentinel-2 imagery enables a novel approach for monitoring the seasonal
hydrology of alpine wetlands and temporary pools, which constitute a ubiquitous and understudied
feature of mountain landscapes with important implications for biodiversity and ecosystem services.
We advocate for use of satellite imagery for automated monitoring of water surface area combined
with field-based observations to quantify the consequences of drought on wetland plant and amphibian
communities. In this paper, we provide examples of biotic responses to drought in terms of tadpole
survival and plant biomass; however, further studies are needed in order to assess the population-level the
effects of more frequent droughts on long-lived amphibian and plant species in a climate change context.

4.1. Methodological Limits & Perspectives

Our application of linear spectral unmixing provides a solution for mapping small and seasonally
variable water bodies in alpine habitats, characterized by surface water extents of less than 100 m?.
Validation of spectral unmixing algorithm results demonstrated strong agreement with ground observations
(Figure 4); however, with a degree of error that highlights certain methodological limitations. First,
target wetlands were generally shallow (with a median water depth of 20 cm) and therefore exhibited
spectral signatures that likely reflected a blend of surface water and underlying rocks, mud, and vegetation.
This phenomenon is visually apparent in Figure 3D. Accordingly, we expect that the slight underestimation
of water surface area for low water levels shown in Figure 4A results from blurred spectral signals in the
case of extremely shallow water. One possible methodological improvement would be to include derived
spectral indices such as the Bare Soil Index [42] in the spectral library used for endmember differentiation
and spectral unmixing. This approach, i.e., including spectral index information in addition to band
reflectance values, proved to be effective for multitemporal spectral unmixing and forest species mapping
in the northeastern United States using NDVI in addition to Landsat 7 and 8 bands [28].

The difficulty of detecting extremely shallow surface water is an important consideration from an
ecohydrological standpoint in the context of temporary alpine pools, given that field observations and
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previous studies indicate that small patches of shallow water between 10 and 15 cm of depth are sufficient
for the growth and development of the common frog [43] as well as considerable zooplankton diversity [22].
Due to this uncertainty, for monitoring purposes we propose using a threshold of 25 m? (quantified within
the 20 m buffer) below which drought is possible but difficult to detect with a high degree of certainty using
our method. Accordingly, we propose that our method is sufficiently sensitive to quantify interannual
variation in water surface area as well as drought risk for alpine wetlands distributed at the regional scale;
however, field observations, potentially combined with higher resolution imagery, remain necessary in
order to confirm the occurrence of drought for target ponds and pools.

We did not test the sensitivity of our results to spectral endmember selection, which is known to
affect fractional cover estimates over time and space [44]. Given that our main target for this analysis
was mapping fractional water cover, we assumed stationarity in the spectral properties of water over
the course of the snow-free season from late spring to early fall. This assumption was supported by the
consistently low residual error resulting from fraction estimates, particularly during the mid-summer
season (Figure S2). Water spectral endmembers were defined in our case by selecting central pixels within
lakes throughout the study area with low sediment concentration, which we consider to be a reproducible
and consistent approach that could be utilized in other temperate mountain study areas. Should our
multitemporal spectral unmixing approach be used for other applications such as mapping plant canopies
or cover, which are influenced by species composition and are known to show highly variable spectral
signals over course of the growing season [21], we recommend careful initial endmember selection using
field spectroscopy as well as iteratively redefining spectral endmembers for each scene date [45].

4.2. Influence of Snowpack and Summer Climate on Wetland Hydrology

We relied on interannual variability in meteorological parameters during three highly contrasted
study years as a means to assess the potential implications of climate change on alpine wetlands in our
study area. The year 2017, which stood out as the driest of the three years considered, exhibited some of
the most important climate changes currently underway in the Alps, including early snowmelt followed by
the occurrence of summer heat waves (Figure S5). Our findings, which highlight an important regulatory
role of snow cover parameters for the hydrology of alpine wetlands, align with results from the Canadian
Rockies reporting that while alpine peat bogs are more resilient to drought due to increased soil water
storage, mineral alpine wetlands and shallow pools with thin soils are likely to be more sensitive to
interannual variability in climate [46]. It is important to point out that occasional drought occurrence
is part of the usual functioning of semi-temporary basins in mountain environments, with wetland
environments ranging along a continuum from permanent basins to temporary basins that dry shortly after
snowmelt-out [11]. Our findings demonstrate that this continuum is sensitive to interannual variability in
snow cover duration and summer temperature, with the implication that climate change could lead to a
general shift toward increasingly dry and temporary alpine wetlands in the years ahead.

While we did not detect a positive effect of summer precipitation on midsummer water surface area,
previous work has established the relevance of this parameter for the hydrology of alpine ponds and
pools [11]. Given that the Chamonix valley is characterized by especially high average precipitation levels
with respect to other alpine regions, it is also possible that summer precipitation has a stronger direct effect
on water levels in drier systems such as the nearby southern French Alps. There may also be threshold
effects, for example a minimum amount of received summer rainfall below which the risk of wetland
drought dramatically increases, as was observed in the case of Australian wetlands during particularly
hot and dry summers [16]. We also expect the effect of summer precipitation to depend in part on other
climate parameters, and hypothesize that summer precipitation may become a critical hydrological input
below certain snowpack levels or above certain temperatures. Last, while we did not test for the effect of
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geologic substrate on wetland hydrology or drought risk due to insufficient sample size across different
bedrock types, we expect that the most important climate parameters may differ for example in limestone
vs. granite watersheds. To address these questions, we recommend extending the remote sensing-based
approach presented here, as well as field monitoring protocols of drought occurrence and amphibian
phenology, at broader spatial scales in order to account for spatial non-stationarity in the relationships
between meteorological parameters and wetland hydrology. Last, we propose that our method could
be extended to estimate not only drought occurrence but also the duration and frequency of dry spells
throughout the summer season.

4.3. Implications of Ongoing Climate Change for Alpine Wetland Habitat and Flora and Fauna

Twenty-first century scenarios of climate change for the European Alps predict ongoing and
accelerating warming in future climate scenarios, including increasingly frequent and intense summer
heat waves [47]. Summer precipitation is also expected to decrease by between 10 and 20% between now
and 2050 in the Chamonix region depending on the scenario [48], suggesting that rainfall may become an
increasingly important limiting factor in our study area in the years ahead. Furthermore, at 1500 m a.s.l.,
snow cover duration in the northern French Alps is expected to decrease with respect to the 19862005
reference period by approximately 3 weeks in 2030 and 4-5 weeks in 2050 [49]. Collectively, and in light
of our findings, these predictions highlight increased drought risk for alpine wetlands in the coming
years with strong implications for associated specialist flora and fauna. In terms of ecosystem services,
reduced surface water and runoff linked to decreased snowpack, reduced summer rainfall and increased
evapotranspiration, particularly in deglaciated watersheds, are projected to reduce summer stream flow
and downstream water availability in alpine watersheds [50].

Our findings confirm the mortality of common frog tadpoles as a biotic response to drought, suggesting
that consecutive years of dry conditions could affect the local viability of amphibian populations dependent
on seasonally present water [22]. While, on the one hand, earlier snowmelt allows more time for tadpole
development and growth in systems that are strongly limited by snow cover duration [51], on the
other hand, reduced water availability associated with a thinner spring snowpack and smaller midsummer
snow patches increases the risk of wetland drought during the summer (Figures 8 and 9). A study
conducted in the Rocky Mountains suggests that wetland habitat diversity and connectivity increases
the resilience of frog populations to interannual climate variability, with shallow ephemeral sites being
more favorable in wet and cold years and deeper and more permanent wetlands being more favorable
to in warm and dry years [52]. Indeed the low R-squared values of our structural equation models
highlight the remarkable habitat heterogeneity and complexity of alpine wetland pools, with highly
variable characteristics despite similar climate conditions. Local characteristics including microtopography,
bedrock, and soil heterogeneity and water runoff networks undoubtedly account for a large portion of
unexplained variance in our model, and this habitat diversity may allow for certain pools to remain viable
despite an overall decrease in water availability. Finally, while we quantified drought risk for wetlands
considered as independent spatial entities, further work should seek to assess the potential effects of
habitat configuration and spatial proximity of wetlands on amphibian survival and population dynamics
in response to climate variability.

Our use of NDVI to quantify interannual responses of wetland plant biomass did not show any
significant differences in plant productivity during the three study years, including for 2017 (Figure 9).
Although additional fieldwork would be necessary to test this hypothesis, our initial observations
(Figure 9B) suggest that soils adjacent to wetlands retain moisture and remain saturated even during
periods of drought, and therefore can provide locally favorable conditions for plant growth when elsewhere
plant growth might be hampered by moisture availability. Accordingly, wetlands could provide important
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refugia for above-treeline vegetation in the warmer and drier years ahead, particularly for subalpine to
low-alpine vegetation, whose growth has been shown to be negatively affected by heat wave summers [53].
More frequent and sustained droughts could also lead to increases in the local abundance of generalist
plant species at the expense of specialist hygrophile vegetation, which was observed in the Swiss Alps
following 10 years of monitoring wetland plant community composition [13]. Given the combined threat
to specialist wetland plant species posed by climate change and competitive exclusion by generalist plants,
we recommend using Sentinel-2 not only for hydrological monitoring of snow cover and surface water,
but also to detect potential changes in both plant biomass and shrub cover [21], in combination with
repeated field surveys of wetland plant diversity.

5. Conclusions

Our work introduces and validates a novel application of multitemporal spectral unmixing, used to
quantify the seasonal hydrology of alpine wetlands in the northern French Alps. We demonstrate that
decreased snowpack and hot summers increase drought risk for alpine wetlands, with strong implications
for the habitat requirements of specialist wetland flora and fauna. Our approach has the potential
to be readily upscaled to systematically monitor above-treeline mountain pools at the regional scale
for the duration of the Sentinel-2 satellite mission. We recommend combining remote sensing-based
monitoring with systematic field observations to further enhance our method and to improve our
understanding of ground-level responses of wetland plant communities and amphibian populations to
ongoing climate changes.
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Abstract: Harmful algal blooms (hereafter HABs) pose significant threats to aquatic health and
environmental safety. Although satellite remote sensing can monitor HABs at a large-scale, it is
always a challenge to achieve both high spatial and high temporal resolution simultaneously with
a single earth observation system (EOS) sensor, which is much needed for aquatic environment
monitoring of inland lakes. This study proposes a multi-source remote sensing-based approach
for HAB monitoring in Chaohu Lake, China, which integrates Terra/Aqua MODIS, Landsat 8 OLI,
and Sentinel-2A /B MSI to attain high temporal and spatial resolution observations. According
to the absorption characteristics and fluorescence peaks of HABs on remote sensing reflectance,
the normalized difference vegetation index (NDVI) algorithm for MODIS, the floating algae index
(FAI) and NDVI combined algorithm for Landsat 8, and the NDVI and chlorophyll reflection peak
intensity index (o)) algorithm for Sentinel-2A /B MSI are used to extract HAB. The accuracies
of the normalized difference vegetation index (NDVI), floating algae index (FAI), and chlorophyll
reflection peak intensity index (o) are 96.1%, 95.6%, and 93.8% with the RMSE values of 4.52, 2.43,
2.58 km?, respectively. The combination of NDVI and p, can effectively avoid misidentification of
water and algae mixed pixels. Results revealed that the HAB in Chaohu Lake breaks out from May
to November; peaks in June, July, and August; and more frequently occurs in the western region.
Analysis of the HAB’s potential driving forces, including environmental and meteorological factors
of temperature, rainfall, sunshine hours, and wind, indicated that higher temperatures and light rain
favored this HAB. Wind is the primary factor in boosting the HAB’s growth, and the variation of
a HAB's surface in two days can reach up to 24.61%. Multi-source remote sensing provides higher
observation frequency and more detailed spatial information on a HAB, particularly the HAB’s
long-short term changes in their area.

Keywords: HAB; multi-source remote sensing; MODIS; Landsat; sentinel; Chaohu Lake

1. Introduction

As a vital freshwater resource, lakes provide essential and diverse habitats and ecosys-
tem functions, and play vital roles in climate regulation, global carbon, nutrient cycles,
thereby contributing to the industrial, agricultural, and food industries around the lakes [1].
However, the aquatic environment has been put at risk by both climate change and an-
thropogenic factors [2,3]. Wastewater discharge, farmland drainage, soil erosion, and
agricultural fertilization are also primary nutrient sources leading to lake eutrophication.
Besides, nitrogen and phosphorus pollution from inefficient sewage treatment systems
and agricultural practices threaten to increase pollution and cause inland lakes” eutrophi-
cation [4]. Lake eutrophication may cause a harmful algal bloom (HAB), which is widely
distributed, adaptable, and destructive [5]. A HAB increases oxygen consumption in the
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water, releases toxins, degrades the water quality, and critically affects drinking water
safety [4]. Comprehensive monitoring of HAB is vital in governing and repairing the lake
environment [6], which has recently attracted more attention from both governments and
the academic community.

Since both the environmental and meteorological factors may influence the breakout
and spread of a HAB, it is important to study how these driving factors affect the HAB
for effective management. Environmental factors, including the nutrients in water from
fertilizer, agricultural nitrogen fixation, grain nitrogen, and feed nitrogen, are the primary
sources of lake eutrophication [7-12], which have certain effects on HAB growth. Iron
is an important component of the nitrate and nitrite reductase system, and its effect on
enhancing the reduction efficiency and transfer rate of nitrate substances by algae is very
observable [13]. Meteorological factors, including temperature, wind speed, precipitation,
sunshine hours, etc., are also vital in HAB breakout. Previous research proved that the
growth of cyanobacteria was directly proportional to the water temperature when greater
than 18 °C, and that the activity of microcystis decreased when the temperature was greater
than 30 °C [2], and HABs mostly occur in summer with proper temperature and sunshine
hours. Variations in rainfall lead to a significant increase in nitrogen, which may lead to a
HAB [14]. However, the influences of these factors on HAB are varied in different lakes,
which requires further research in the region of interest.

It is challenging to capture the HAB dynamics using a conventional field sampling
method due to the significant spatial-temporal variations of HAB [15]. Satellite remote
sensing has been extensively used for monitoring the spatial coverage and temporal trends
of HAB [16]. Many HAB detecting methods, including visual interpretation, supervised
classification [17], single-band threshold [18], the spectral index method [19], and the water
quality inversion method [16] have been developed. The visual interpretation delineates
the HAB distribution using false-color composite satellite images [20], which is high-
precision but low efficiency and is prone to personal misjudgment. The single threshold or
spectral index methods, such as the normalized cyanobacteria index (NDI_CB) for Landsat-
7 ETM+ [21] and FAI for Terra/ Aqua MODIS, apply a single threshold for single or multiple
bands data for HAB detection, which is simple and easy to implement [20,22]. Moreover,
some research uses algal or chlorophyll concentration derived from remote sensing images
to monitor HAB [23]. For example, the HABs were identified using chlorophyll inversion
models on SeaWiFS from 1988 to 2002, on the Korean coast [24]. However, the uncertainties
of these methods depend on regional water properties, sensor selection, and a threshold
determination, which thus requires comprehensive assessments for method selection and
implementation.

Among existing satellite images, Terra/ Aqua MODIS imagery has been preferred for
HAB monitoring due to its high temporal and spectral resolution [25]. However, the capabil-
ities of Terra/ Aqua MODIS are still limited by the low spatial resolution (250/500/1000 m),
making it different to identify HABs in small and medium inland lakes [26]. For example,
the optimal spatial resolution to monitor HAB in the Great Lakes is at most 50 m [27]. The
Landsat TM/ETM+/OLI provides a higher spatial resolution (30 m), but its low revisit
period (16 days) cannot track HAB’s variations over time [22]. Sentinel-2A /B satellites
launched on 23 June 2015 by the European Space Agency have wider spatial coverage and
higher temporal resolution for monitoring of HABs [28]. Therefore, there is a pressing need
for an effective and practical approach to capturing spatio-temporal variability of inland
lake HAB integrating multi-source remote sensing techniques, which involves determining
the appropriate algorithm and threshold for varied satellite sensors, and integration of
HAB results.

Given this background, in this paper, multi-satellite images, including Sentinel-2A,
Landsat 8 OLI, and Terra/Aqua MODIS, are used to monitor the spatial and temporal
variations of HAB in Chaohu Lake, mostly its short-term variations. The proper algorithm
was evaluated and adopted for different satellite sensors, and the accuracy and uncertainty
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were analyzed. Based on HAB results from multi-source data, the variations and driving
forces of HAB in Chaohu Lake for environmental management are discussed.

2. Study Area and Data
2.1. Study Area

Chaohu Lake, located in Hefei City, Anhui Province, is the fifth largest freshwater
lake in China (Figure 1, projection: Gauss—Kruger projection, geographic coordinate
system: World Geodetic System 1984). The tributaries of Chaohu Lake mainly include
the Nanfei River, Shiwuli River, Pai River, Hangbu River, Baishitian River, Zhao River,
Yuxi River, and Shuangqiao River. Chaohu Lake has an inflow of 344.2 million m? and an
outflow of 23 million m?. The center of Chaohu Lake is located at 29°47'-31°16’ north and
115°45'-117°44’ east, with an average water depth of 2.89 m and an average annual lake
temperature of about 20 °C [29]. The terrain around the lake is mostly mountains and hills,
and the Chaohu Lake basin is cultivated mainly by rice, wheat, rape, cotton, and corn. The
agricultural land around the lake makes it easily accumulate nutritive salt in the water,
causing severe non-point source pollution, which caused the lake’s external pollution load,
mainly originating from the northwestern part of the basin [30,31]. Nutrients in farmland
are mainly composed of phosphorus and nitrogen, and the inflow of total phosphorus and
total nitrogen is one of the main reasons for the eutrophication of Chaohu Lake. Chaohu
Lake has become one of the most eutrophic lakes in China [32]. The total phosphorus
concentration was one of the main driving factors affecting Anabaena and microcystins’
spatial and temporal distribution [33,34]. The farming period is from June to November.
The average annual rainfall in Chaohu Lake is 224 mm, which drives the farmland nutrients
to the lake during the farming period [35]. Moreover, the rain stirs up the mud at the
bottom of Chaohu Lake, and large amounts of nutrient salts in the mud turn up, increasing
the concentration of nutrient salts in Chaohu Lake. The total phosphorus content in
Chaohu Lake is 0.131mg/L, and the total nitrogen content is 2.04 mg/L. The nitrogen and
phosphorus ratio of optimum reproduction of the dominant species of HAB in Chaohu
Lake was about 11.8:1 [36]. According to the monitoring data over the years, the ratio of
nitrogen to phosphorus in Chaohu Lake is between 10:1 and 15:1, resulting in an outbreak
situation of non-point source HAB [37]. When algae proliferate and die, they accelerate
the consumption of dissolved oxygen in water, resulting in the death of many aquatic
animals and plants, weakening the purification capacity of water, and causing severe harm
to human health [5]. Therefore, it is essential to monitor the water environment with joint
multi-source remote sensors.
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Figure 1. Location of Chaohu Lake.
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2.2. Remote Sensing Data

A total of 420 images of Terra/Aqua MODIS L-1B data (MODO02) in 2019 were selected
and downloaded from Earthdata’s website (https:/ /search.earthdata.nasa.gov/). Two im-
ages of Landsat 8 OLI (Level 1) were downloaded from the USGS official website of shared
data (https://earthexplorer.usgs.gov/). A total of 16 images of Sentinel-2 MSI satellite data
(L1C) were downloaded from the official website of ESA (https://scihub.copernicus.eu/).
Clear and cloudless images were picked out (see Table 1) and preprocessed, including
re-projection and geometric correction. Figure 2 shows the different cloudless products
distributed in the space in 2019 so one can picture the time lag between the different
satellite acquisitions.

Table 1. Multi-sensor data of the cloudless images of Chaohu Lake in 2019.

2019 Resolution  Revisit Period May June July August September October November
Terra/MODIS 250 m 1 day 4 13 10 16 12 12 12
Aqua/MODIS 250 m 1 day 2 3 3 2 3 5 5
Landsat8 OLI 30 m 16 days 0 0 0 2 0 0 0

Sentinel-2A MSI 20m 10 days 2 1 2 0 2 3 1
Sentinel-2B MSI 20m 10 days 0 1 0 0 0 2 2

Total - - 8 17 13 20 17 19 18
Landsat§ OLI v v
Sentinel-2 MSI A A A A A A A AAA AAAAa A
Aqua/MODIS E] () e o o ® o o ® o0 ooccce o0
Terra/MoDIS -1 I | n [——li=—=] Il EEEIE EFf SN I e Il IEEE L 1 N 1 | |

1 T ] I 4 1 H T £ 1 % 1 ¥ T
01 May 2019 31 May 2019 30 June 2019 30 July 2019 29 August 2019 28 September 2019 28 October 2019 27 November 2019

Date

Figure 2. Annual distribution of cloudless images from multi-sensor data.

2.3. Environmental and Meteorological Data

The meteorological analysis data were obtained from the Meteorological Center of the
National Meteorological Administration (http://www.cma.gov.cn/) (Figure 3). In 2019,
Chaohu Meteorological Station’s maximum sunshine hours, maximum temperature, and
maximum wind speed occurred in May, July, and August, respectively. The variation range
of wind speed was 0.5-6.4 m/s, the maximum number of sunshine hours was 12.9 h, and
the time of direct sunlight was half a day. The average rainfall was 224 mm. The average
maximum temperature was 33.9 °C.
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Figure 3. The variation diagram of rainfall, sunshine hours, average temperature, and precipitation in Chaohu Station in 2019.

3. Methods

Figure 4 is the technical flow chart of this paper, using which the original satellite
data were obtained and preprocessed. The most appropriate algorithms were selected
respectively for Sentinel-2 MSI, Terra/Aqua MODIS, and Landsat 8 OLI to obtain the
distribution map of HAB in Chaohu Lake, and we checked the accuracy of the algorithms
with visual interpretation results. Finally, the formation and distribution of HAB were
analyzed by combining various meteorological factors.

3.1. Data Preprocessing

The preprocessing steps mainly included geometric correction, radiometric calibration,
and atmospheric correction. Landsat-8 OLI and Terra/Aqua MODIS data were prepro-
cessed using ENVI software (ENVI 5.3) to convert DN (digital number) values into TOA
(top of atmosphere reflectance) radiance or reflectance after radiometric calibration, and
then different atmospheric correction models were selected according to different data
sources. The FLAASH atmospheric correction module (Fast Line-of-sight Atmospheric
Analysis of Spectral Hypercubes) was adopted for Landsat 8 OLI, which was based on
the MODTRAN-4 (Moderate Spectral Resolution Atmospheric Transmittance Algorithm
and Computer Model) radiation transmission model, with high accuracy. It can maximally
eliminate the influences of water vapor and aerosol scattering over case Il waters, and has
been successfully used in previous studies from Landsat 8 OLI [38,39]. MODIS images were
atmospherically corrected using the dark-objects method [40—-42]. The procedure was to
select the relatively clean area as a region of interest in the eastern part of Chaohu Lake, and
statistically analyze the pixel brightness value of each band, while using a non-zero pixel
with a suddenly increased brightness value as the dark pixel value. The selected dark pixel
was used as the distance luminance value for atmospheric correction. Sentinel-2A /B origi-
nal L-1C images were mainly processed using SEN2COR (version: Sen2Cor-02.08.00-win64)
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for radiometric calibration and atmospheric correction. SEN2COR is a plug-in released by
the European Space Agency (ESA) specifically for Sentinel-2 atmospheric calibration. The
spectral curve of the image by SEN2COR with atmospheric correction of Sentinel-2 images
is consistent with the trend of the actual spectral curve on the ground [43]. The reflectance
after atmospheric correction was compared with the field spectra of 39 ground objects; R?
was 0.82 and the root mean square error was 0.04 [44], indicating high accuracy. All the
images selected in the experiment were mostly cloudless. Before determining the HAB,
cloud-covered regions of the remote sensing images were made into a cloud mask product
by the single-band threshold method to eliminate the influence of clouds [45].

Satellite data

Terra/ Aqua
MODIS
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MSI
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Figure 4. Technical route flow chart.

3.2. Extraction Algorithm of HAB

Algae in water would cause an absorption peak near the wavelength of 620-630 nm
and a reflection peak at 650 nm, with a sharp increase in reflectance at around 700 nm [46].
High absorption in the red band by vegetation pigments and high reflection in the near-
infrared band have been used for a long time to detect vegetation coverage, and eliminate
some radiation errors. NDVI can reflect the background influence of the vegetation canopy.
Therefore, the NDVI algorithm of MODIS was used for monitoring HAB in Chaohu
Lake [47]. RGB band synthesis of Landsat/OLI B8 (0.85-0.88 um), B4 (0.64-0.67 pm), and B3
(0.53-0.59 um) renders HABs in a reddish color, in strong contrast with the bloom-free dark
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water, making it easy do distinguish bloom and non-bloom areas. Due to the influences
of lake currents and wind, HAB areas generally present as elongated strips [48,49]. The
FAI algorithm can eliminate the impact of the atmosphere by using the combination of
these three bands. Compared with NDVI algorithm easily influenced by the observation
environment, FAI would be suitable for the Landsat images. Unlike MODIS and Landsat §,
Sentinel-2 MSI was equipped with multiple spectral bands and 20 m ground resolution.
Three special bands, B5 (693-713 nm), B6 (733-748 nm), and B7 (773-793 nm), are set
for vegetation monitoring, which is also sensitive for HABs [50,51]. Therefore, the p.p-
NDVI algorithm is used for improving the accuracy of acquiring HAB in Chaohu Lake by
fusing these 5 characteristic bands. Detailed descriptions of these algorithms are included
in Figure 5.
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Figure 5. The interpretation of the algorithm and the results of each algorithm’s reflectivity diagram (a,c,e) are the

reflectances of a harmful algal bloom (HAB) and a nearby non-HAB lake, and (b,d,f) are means and standard deviations of
HAB and non-HAB water lake reflectance. For the two regions of MODIS, Landsat8, and Sentinel-2 150 x 150 image pixels
with 9359 x 9459, 7651 x 7791, and 0980 x 10,980 HAB classification pixels respectively.

3.2.1. Normalized Vegetation Index (NDVI)

Rouse [52] first used Landsat-1 MSS data to propose a NDVI based on the characteristic
that the reflectivity of all vegetation increases dramatically near 700 nm. NDVI can reflect
surface vegetation coverage [53]. Therefore, as the most common method, NDVI has been
widely used in the study of algal extraction [54-56], which can eliminate the influences of
terrain, shadow, and solar elevation angle [57]:

pNIR — pRED

NDVI= NTR + pRED

)

where prep and pnjr represent the reflectances of the red band and near-infrared band.

3.2.2. Floating Algae Index (FAI)

The floating algae index was first proposed by Hu [58]. FAI is defined as a linear
spread of reflectivity in the near-infrared, red, and short-wave infrared regions, and can be
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applied to monitor proliferating algae, such as Ulva or Sargassum spp [59]. The observation
results of this algorithm provide strong robustness. FAI is less affected by atmospheric
environment, observation conditions, and water reflectivity absorption in the near-infrared
band [60]. FAI is often used to identify dense HABs in marine and inland waters [61]. There-
fore, the spectral information of the red band, near-infrared band, and short-wave infrared
band can be used to correct the atmospheric effects [35]. The algorithm is as follows:

Ryig = Rrep + (Rswir — Rrep) X M @)
SWIR — ARED

where Rrep, Rnir, and Rswir represent the reflectances of red, near-infrared, and short-

wave infrared bands respectively; Arep, Anir, and Agwir represent the central wavelengths;

and R'njr is the interpolating reflectance—namely, the reflectivity information of the

infrared band can be obtained by linear interpolation of the red band and the short-wave

infrared band.

The gradient contrast method was used for FAI algorithm to determine the threshold
of HAB. The experimental results showed that FAI < —0.01 and FAI > 0.02 were non-
bloom regions [19]. According to the average threshold value of the gradient diagram,
FAI > —0.002 was finally determined to be the region of HAB.

3.2.3. Chlorophyll Reflection Peak Intensity Algorithm

Algae also contain chlorophyll, like land plants, so when the algae aggregates, the
spectrum shows a vegetation-like characteristic [62,63]. Chlorophyll shows troughs at
420-500 nm (blue and violet light band) and 625 nm, and a small peak value is found
at the central wavelength of the green band [36]. Based on the correlation between al-
gae and chlorophyll concentration, the following model was constructed to identify the
concentration of HAB [37,64]:

Peh1 = p(560) — w 4)

where p(490), p(560), and p(665) correspond to the reflectivity of the blue, green, and
vegetation red edge bands of the Sentinel-2A satellite.

3.3. Accuracy Assessment

To obtain the reference data or “truth data” for accuracy assessment of HAB detection
from different satellite data, the visual interpretation method was used on false-color
images. The verification data of the spatial distribution and area statistics of HAB were
also obtained from the Department of the Ecological Environment of Anhui Province
(http:/ /sthjt.ah.gov.cn/), which have been checked through ground monitoring points,
field investigations, and validation. The root mean square error (RMSE) and relative
error (RE) were used to evaluate the accuracy of the HAB extractions using the NDVI
algorithm. Additionally, the accuracies of different HAB detection methods were assessed
using following indexes [17]:

Correct extraction rate (R) is the percentage of the extracted HAB area over the
true data:

Ar

R =
Atruth

x 100% ®)

Over-extraction rate (W) is the percentage of mixed extracted HAB area over the

true data:
Aw

truth

W =

x 100% (6)
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Omitted extraction rate (M) is the percentage of the unextracted HAB area over the
truth data:

M= -2 100% @)
Atruth
The reference data of HAB were denoted as A.um. The area statistic of HAB extracted
by various extraction methods was designated as A. The overlapping part of A and Auim
was regarded as the correct extracted part, which was denoted as A;. The disjoint part of
A is considered to be the extracted by mistake, which was denoted as Ay. In Ay, the
disjoint part was regarded as the missing part, which was denoted as An,.

4. Results

Visual interpretation was analyzed based on 86 MODIS images and 2 Landsat images;
16 Sentinel-2 images were used to be the verification data to compare the accuracy of each
extraction algorithm (Figure 6).

[ JHAB
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T T |

Kilometers

Figure 6. Spatial distribution of HAB in Chaohu Lake from visual interpretation.: (a) HAB distribution at 10:38 on 2 May, (b)
HAB distribution at 10:26 on 4 May, (c) HAB distribution at 10:35 on 8 May, (d) HAB distribution at 10:45 on 9 May, (e) HAB
distribution at 13:33 on 13 June, (f) HAB distribution at 10:38 on 6 August, (g) HAB distribution at 10:41 on 30 September,
(h) HAB distribution at 10:32 on 3 November.

4.1. Accuracy of HAB Algorithms

Depending on the algorithm selection and analysis in Section 3.2, NDVI was used for
MODIS to extract HAB. The comparison of NDVI and p., values showed that for a low
concentration of HAB, the threshold for p., was 0.05, and the NDVI threshold was 0.24.
For a moderate or high algae concentration, the threshold for p.,; was 0.09, and NDVI was
larger than 0.68. Therefore, a pixel with an NDVI > 0 was first classified as a vegetation
pixel, and then combined with p.,; > 0.05 was judged as belonging to a HAB. NDVI < 0
and pg > 0.03 was an “algal-water” suspension region and also judged as HAB.
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The RMSE was 4.27 km? and RE was 15.9% when compared to HAB products reached
by visual interpretation (Figure 7). For the significance test, p < 0.05, the results showed
that the HAB region observed by satellite was consistent with the visual interpretation.
Residual normal distribution of HAB areas extracted by MODIS and Sentinel-2 was showed
on Figure 8, R? was 0.98 and 0.99 between MODIS, Sentinel-2 and visual interpretation,
respectively. The Sentinel-2 MSI, MODIS, and Landsat 8 OLI randomly selected the day of
the HAB outbreak, and a confusion matrix was used to evaluate the classification accuracy
between the monitoring results and the visual interpretation (Table 2).
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Figure 7. Comparison of HAB extracted by MODIS and visual interpretation.
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Figure 8. Residual normal distribution of HAB areas extracted by MODIS and Sentinel-2: (a) the coefficient of determination
(R?) was 0.98 between MODIS and visual interpretation, and (b) R? was 0.99 between Sentinel-2 and visual interpretation.

88



Remote Sens. 2021, 13, 427

Table 2. The confusion matrix between the extraction results and visual interpretation.

Class HAB Water Cloud Total Accuracy

HAB 78.47 0.02 0.00 0.92 Overall Accuracy =
Sentinel-2 MSI Water 2057 99.76 0.26 97.49 I

a0l Clowd 0o o o573 Tse  (7005160/17,189550) s9smor

Total 100.00 100.00 100.00 100.00 PP =

HAB 95.93 0.01 0.53 1.62 Overall Accuracy =
Landsat 8 OLI Water 4.07 99.99 8.07 97.51 (1,907.160/1.909,950) _Y9; 8539
19 August 2019 Cloud 0.00 0.00 91.40 0.77 ! Ka’ a Cc’)efﬁéient B 0 9'972 ¢

Total 100.00 100.00 100.00 100.00 pp =

HAB 93.86 0.00 18.29 271
Terra/MODIS Water 6.14 100.00 12.98 93.55 Overall Acc9u8r:11§)872—0/(6124/ 6237)
1 August 2019 Cloud 0.00 0.00 68.73 3.74 Kabba Cooffietont = 0.8605

Total 100.00 100.00 100.00 100.00 PP =

NDVI and FAI were combined to detect HAB using Landsat 8 OLI images; NDVI
and p. were combined for Sentinel-2 MSI data. Table 3 shows the accuracy evaluation
results when compared to visual interpretation products, which demonstrated that HAB
extracted by NDVI and FAI has a relatively correct extraction rate of about 95%. The RMSE
of HAB from FAI algorithm was 0.56 km? and RE was 3.9%. However, the NDVI extraction
method was affected by thin cloud or fog, and the cloud shadow was misidentified as a
HAB. Moreover, NDVI method may miss pixels with lower algae concentrations, when
compared with FAIL. By comparing the extraction results on 3 August 2019 and 19 August
2019, the over-extraction areas of the NDVI method due to the mixed pixels and clouds
were found to be 1.46 and 0.18 km?, respectively. A comprehensive comparison shows
that the extraction of HAB by the two methods was consistent, but the FAI method was
better than NDVI at the details. Better results were obtained by combining NDVI with the
chlorophyll reflection peak p, especially for regions with lower concentrations of HAB.
According to this method, the correct extraction rate of the Sentinel-2 data reached 96.01%,
while RMSE and RE were 2.4 km? and 6.2%, respectively.

Table 3. Accuracy for HAB extraction of Landsat 8 OLI, Sentnel-2 MSI, and Terra/Aqua MODIS data.

Extraction Extracted Omission Overestimated Correct Area Missing Over.- Correct Rate
Method Area Area Area (km?) (km?) Rate Extraction (%)
(km?) (km?) (%) Rate (%)
FAI 16.30 0.02 3.31 12.98 0.12% 25.49% 99.88%
3 August NDVI 16.98 0.52 4.49 12.48 3.97% 34.57% 96.03%
2019 Visual 1pter— 13.00
pretation
4 Octob Sentinel 0.55 3.75 13.27 3.99% 27.12% 96.01%
2Ct10 er Visual inter- 13.82
019 pretation ’
MODIS 1.84 18.88 10.21 3.92% 40.16% 96.08%
3 November . .
2019 Visual inter- 47.02
pretation ’

4.2. Monthly Variations of HAB

MODIS images were mainly used to track monthly HAB changes in Chaohu Lake in
2019 with the advantage of its high temporal resolution. The HAB in Chaohu Lake occurs
between May and November (Figure 9). The northwestern part of Chaohu Lake is more
seriously polluted by algae than the eastern, and the area of HAB reaches its maximum in
July. The monthly frequency map is the ratio of the number of outbreaks in each region and
month to the total numbers of the whole lake. The distribution frequency map indicates
the probability of a HAB outbreak in each region of Chaohu Lake. Although HAB breaks
out sometimes in a small region, they often occur in the west of the lake. According to the
frequency distribution of inter-month HAB, it is increased in June and remains high from

89



Remote Sens. 2021, 13, 427

June to November. The highest outbreak frequency occurs in the northwestern part of the
lake in October, and the peak of distribution frequency of Chaohu Lake in the eastern lake
appears in June.
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Figure 9. Spatial distribution of the minimum area, the maximum area, and the frequency of the monthly HAB in Chaohu

Lake: (a,d,g,j,m,p,s) The minimum HAB area of each month from May to November, (b,e,h k n,q,t) The maximum HAB area
of each month from May to November, (¢ f,il,0,r,u) The HAB distribution frequency of each month from May to November.
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The monthly coverage rates for the maximum, minimum, and average HAB area
are shown in Figure 10. Adding up the maximum and the minimum area accounts for
up to 50% of the total monthly HAB area in May, but the maximum HAB area was only
53.69 km?. The average monthly coverage area was less than 20 km?, which was the lowest
in 2019. This indicates that the level of HAB in May was not serious. In contrast, from
June to November, the maximum HAB area accounted for less than 25% to the total HAB
area, and a HAB area exceeding 100 km? was always found in the mid-month. In July, the
maximum area of HAB reached 217 km?, accounting for 28.6% of the Chaohu Lake area,
covering the northwestern and central parts of the lake. In 2019, the minimum HAB area
was 1.625 km?2, which occurred on November 7, accounting for 0.2% of the total lake area.
The average monthly coverage was lower than that in the period of HAB in Chaohu Lake
(June to October). It indicated that the activity of HAB in Chaohu Lake began to decrease
in November.
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Figure 10. The ratios of the monthly maximum, minimum, and average HAB area to the total HAB
area per month (total HAB area: monthly statistics of the area where HAB occurs each time).

4.3. Diurnal Variation of HAB

The spatial-temporal patterns of HABs can be easily affected by hydrology and me-
teorological factors, and thus induce dramatic variation in a short time, which requires
high-frequency monitoring by the integration of a multi-satellite sensor. To reveal the
diurnal variations of HAB in Chaohu Lake, multi-source satellite, including Sentinel-2 MSI,
Landsat 8 OLI, and Terra/Aqua MODIS are integrated, as shown in Figure 11. While HAB
is concentrated and stable, such as on 4 October 2019, the difference of extraction regions
between Sentinel-2 MSI and Terra/MODIS is the smallest. Significant differences were
observed due to the scattered distribution of HAB on June 26. In the surrounding areas
with low algal density, MODIS had a lower spatial resolution; the result may be biased
due to the mixed pixels. Since Terra/MODIS is the morning satellite, it passes through the
equator from north to south at about 10:30 local time, and Aqua/MODIS is the afternoon
satellite and passes through the equator from south to north at about 13:30 local time.
According to the common influence of all factors, the monitored HAB area and distribution
were different at different times of passing the territory. Besides, there will also be weather
effects, such as the possibility of cloud cover in the afternoon compared with the morning
in the study area, which will also have impacts on the extraction and identification of HAB.

The HAB diurnal changes from Landsat 8 and MODIS images on 19 August 2019 have
no significant differences in the area and distribution. The morphology of HAB monitored
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by Terra (Figure 12a) was different from that of Landsat8 (Figure 12b), which may be due
to the low quality (cloud coverage) of Terra/MODIS images on 3 August 2019. HAB region
was disturbed by thin clouds, which could not represent the real distribution pattern at that
time. The reliability of this result was also verified by the distribution diagram of bloom
morphology in an Aqua image (Figure 12a). Compared with the result of Landsat 8 image
(Figure 12d), the Aqua image (Figure 12e) result on August 3 showed a decrease in the
distribution of HAB and a concentration increase in the coverage center. As the Terra image
on August 3 was covered by clouds and fog, Figure 12 does not show the HAB distribution

in the morning.
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Figure 12. Harmful algal blooms from Terra/MODIS (a), Landsat 8 OLI (b,d), and Aqua/MODIS (c,e).

5. Discussion
5.1. Driving Forces of HAB

The driving forces for the breakout of HAB are of great concern for HAB control
and management. Among many factors, the temperature, rainfall, sunshine hours, wind,
radiation, etc., have drawn great attention [1]. Some previous research demonstrated
that the degree of HAB is positively correlated with temperature, sunshine hours, and
global radiation changes, and negatively correlated with precipitation and wind speed [65].
Our results showed similar results on the correlation between the HAB areas and both
temperature and sunshine hours, but the R? was quite low (<0.05). However, increased
temperature promotes the growth of HABs, and colder months may delay the occurrence
of HAB [66]. It can be seen that the maximum and minimum areas of Chaohu Lake HAB in
July were higher than in other months (Figure 13). The maximum, average, and minimum
values of the HAB area in August and September were close. However, the number of
hours of sunshine in September was 77.5 h lower than that in August. The low sunshine
hours made it difficult for algae to reproduce and grow through photosynthesis, which
inhibited the accumulation and explosion of large areas of HAB. However, too much
sunshine will make algae inactive and also inhibit HAB growth. This is consistent with
the conclusions from Zhang’s research demonstrating that under high temperatures and
with many sunshine hours, there will be no large-scale HAB [67,68]. Therefore, appropriate
sunshine hours and temperature can promote the photosynthesis of algae.

The effect of precipitation showed a weak negative correlation with the HAB. The
HAB on rainy days of August 3 and 7 was decreased by 79.3% and 61.3%, respectively,
when compared with the previous days. This may indicate that the rainfall may dilute or
inhibit the occurrence of HABs. HAB was often found on days after scattered rain, such as
on 27 May, 26 August, and 17 October. In contrast, the total precipitation in September was
half of that of August, and the scattered rain provided favorable conditions for the growth
and reproduction of algae. Therefore, the rainfall was the main driving force of the monthly
variations of the HAB from July to September. However, May—June rainfall is the highest
and most frequent, which reduces the temperature of the water surface, and also reduces
the density of algae and the concentrations of nutrients, making the probability of the
occurrence of HABs only slightly increased in June compared with May. Rainfall decreased
in July, the temperature increased, and the occurrence of HAB increased sharply. Therefore,
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the low occurrence of HABs in June was caused by precipitation. Based on the analysis
of previous data, it was found that the period of highest temperature is inconsistent with
the month with the highest probability of HAB, and atmospheric temperature is the main
meteorological factor affecting HAB [69,70]. From mid-July to mid-August, Chaohu Lake’s
temperature in 2019 reached its annual maximum and the average daily sunshine hours
were all over 8 h. However, due to the hysteresis effect [71] of temperature on the response
of HAB in Chaohu Lake, the precipitation mainly occurred from June to mid-July. Much
rain in June transports the nutrients from the catchment area as the non-point source. The
algae in July with the highest maximum area is due to the inflow during June. The effect
of nutrient supply appears with a time lag because the controlling factor is temperature.
Even with a high concentration of nutrients, insufficient temperature regulates blooming.
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Figure 13. Chart of the minimum area, average monthly area, maximum area, average monthly temperature, sunshine
hours, and precipitation of Chaohu Lake HABs.

The impact of wind speed on HAB showed a highly significant, positive correlation
(R? = 0.383, p < 0.01). The wind direction map of Chaohu Lake in 2019 can be seen in
Figure 14. A previous study revealed that when the average wind speed was larger than
3.8 m/s, the wind waves stirred the algal particles, causing them to sink, and reduced
HAB concentration [72,73]. During the study period, only two days of HAB occurred with
average wind speed greater than or equal to 3.8 m/s. The HAB area on August 12 was
4.8 km? (average wind speed of 4 m/s, average temperature of 28 °C), and the next day it
was 113.94 km? (average wind speed of 1.5 m/s, average temperature of 29 °C). The solar
radiation was similar, with sufficient sunshine hours (>9 h), but the HAB area was quite
different. This indicated that the wind stirred up the algae particles so that the algae could
not accumulate and sink, leading to a decrease in the HAB area. Moreover, appropriate
wind speed and wind direction caused the HAB on the surface of Chaohu Lake to move
toward the direction of the wind and accumulate. The results show that wind speed is
an essential factor for the HAB outbreak and spread in Chaohu Lake. Prevailing winds
in summer cause the shore water to converge on the northwest corner. The movement of
water is not conducive to the material exchange on the surface of the flow field, which
makes significant differences in the eutrophication pollution of algae of the whole lake [28].
Therefore, the frequency of HAB is the highest in the northwest of Chaohu Lake. There is
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counter-clockwise circulation in the vicinity of Zhefu River in the eastern Chaohu Lake
and clockwise circulation in the vicinity of Zhao River [28], which brings N, P, and other
nutrients to the northeast of Chaohu Lake and near the middle of the lake, and the nutrients
concentrate, resulting in many of HABs. Chaohu sluice, connecting the southeastern part
of Chaohu Lake with Yuxi River, has a certain influence on the flow field near the eastern
part of Chaohu Lake and plays a favorable role in the exchange of HAB with the outside.
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Figure 14. The wind direction map in Chaohu Lake 2019 (10, 20, 30, etc., indicate the number of days).

The average wind speed on 24 October 2019 was 1.5 m/s, which was less than
the critical value (3.8 m/s) for algae aggregation and movement [74]. Additionally, the
maximum wind speed was 3.8 m/s. As can be seen in the HAB distribution in Chaohu
Lake detected by Terra and Aqua on October 24 (Figure 15a,c), the HAB in the central
part of Chaohu Lake is gradually moving in the east-southeast direction, in line with the
maximum wind speed direction 14 (that is, the west-northwest direction). On 8 November
2019, the maximum wind speed was 2.9 m/s, and the maximum wind speed direction was
3 (that is, a northeasterly). HAB areas in Chaohu Lake were 31.75 and 43.6 km?, respectively,
detected by Terra and Aqua. There was a low average wind speed (2 m/s) on Chaohu Lake
on that day, which caused the algal particles to turn up and accumulate on the surface. The
changes of HAB were also affected by wind waves, leading to the distribution location
moving to the southwest (Figure 15b,d). Therefore, the multi-source remote sensing data
can effectively monitor and reveal the diurnal change and development process of HAB.
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Figure 15. The intraday variations of HAB distribution: (a) Terra/MODIS image of the HAB distribution on 24 October,
(b) Terra/MODIS image of the HAB distribution on 8 Novermber, (¢) Aqua/MODIS image of the HAB distribution on
24 October, (d) Aqua/MODIS image of the HAB distribution on 8 Novermber.

5.2. Advantages of Multi-Source Satellite Remote Sensing

MODIS satellites with moderate spatial resolution have been widely used in mon-
itoring HABs in large water bodies. However, the identification of HABs by moderate
spatial resolution is limited in small inland water bodies or reservoirs and even has a large
accuracy error. Due to the moderate spatial resolution, the boundary of a HAB identified by
MODIS data is fuzzy, and the recognition ability of low-concentration HAB is low, leading
to large uncertainties for monitoring HABs of a small inland lake. Sentinel-2 images, with
a spatial resolution of 20 m, could significantly improve the identification accuracy and
spatial details of HAB. For a concentrated outbreak area (Figure 16h), MODIS satellite has
a relatively good performance in extracting HABs, but its ability to define the boundary of
a HAB’s area is weak. The error extraction rate is 40%, which is relatively high. Therefore,
in the same timeframe, the extraction of HABs by combining multi-source data can verify
and correct the extraction results of moderate-resolution images.
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Figure 16. Comparison of the extraction results among Sentinel-2, Terra/MODIS, and visual interpretation: (a,d,g) Results
of HAB extraction from Visual interpretation, Sentinel-2, Terra/MODIS on October 4, (b,e,h) Results of HAB extraction from
Visual interpretation, Sentinel-2, Terra/MODIS on 3 November, (c,f,i) Results of HAB extraction from Visual interpretation,
Sentinel-2, Terra/MODIS on 23 November.

In addition, remote sensing technology still makes it difficult to meet the require-
ments of high spatial-temporal resolution using a single satellite, especially for HABs with
dramatic variations both spatially and temporally. To achieve both high spatial and high
temporal resolution, multi-source satellite integration is an effective method to monitor
the HABs in Chaohu Lake. Combined use of Terra/Aqua MODIS, Sentinel 2 MSI, and
Landsat 8 OLI could provide more than three times per day monitoring of HAB, which is
more efficient and accurate. For instance, parts of HAB information would be missed if
only one satellite dataset was used; e.g., on 23 November 2019, some areas of HAB on the
eastern part of Chaohu Lake would have been ignored by Terra image. By making full use
of the advantages of multi-source images and monitoring the diurnal or long time scale
changes of HAB in Chaohu Lake, they can learn from each other and make up for their
shortcomings. Compared with single remote sensing data, more objective and accurate
results were obtained.

6. Conclusions

Satellite remote sensing provides great potential to contribute significantly to the need
for monitoring the HABs at a large scale; however, a multi-source remote sensing-based
approach is preferred to achieve high temporal and spatial resolution observations of the
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HABEs, such as the integration of Terra/Aqua MODIS, Landsat 8 OLI, and Sentinel-2A /B
MSI. With the advantage of the high temporal resolution, MODIS data are efficient in
tracking the inter-monthly variations and distributions of HABs. In contrast, the integrated
multi-satellite data provide the possibility to grasp the breakout and spread, especially the
diurnal change of a given HAB, which is more objective and accurate than results from one
single satellite’s monitoring, as shown in the case of the Chaohu Lake. To obtain reliable
HAB monitoring results, it is crucial to determine an appropriate HAB detection method
considering the spectral characteristics of HABs and the band settings of different satellite
sensors, and our study proved that NDVI is suitable for MODIS; NDVI and FAI combined
for Landsat 8 OLL and the NDVI and p, combined for Sentinel-2 MSI data. Besides,
analysis of driving forces of HAB, including environmental and meteorological factors of
temperature, rainfall, sunshine hours, and wind, indicated that higher temperatures and
light rain favored HAB. The wind is the main factor in boosting a HAB’s growth. Multi-
source remote sensing provides higher measurement frequency and more detailed spatial
information on the HAB, particularly the HAB’s long-short term variations. The results
can be used as baseline data to evaluate the lake’s HAB and water quality management in
the future.
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