# The effect of Water Quality on Feedlot Performance and Compliance Monitoring

James Meyer



### Research Background

Primary field:

Physiology

Specialist Areas:

Environmental Toxicology
Hazard and Risk Assessments
Endocrine Disruption



#### Main Current Focus

#### • Research:

Development of SA National Risk-based Water Quality Guidelines

Manual for Endocrine Disrupting Chemicals



#### Main Current Focus

#### Additional:

Sentinel monitoring for Community Health (broilers & porcine)

Assessment of water quality treatments

(site-specific & commercial)

Compliance, Monitoring and Enforcement (DWS & DEA)

Wastewater treatment and use



### Research Project Status

- SA National Risk-based Water Quality Guidelines
  - Phase 2: Commenced
  - Irrigation Use current WRC Project
- Manual for Endocrine Disrupting Chemicals
  - Volumes 1 5 Complete
  - WRC Project No: K5/1915: Volume 4: Monitoring and Assessment
  - WRC Project No: K5/1956: Agricultural Chemical Impact



#### **Presentation Outline**

**Standard Approach** 

**Brief Introduction to Water Quality Guidelines** 

**Compliance Monitoring** 

### Water Quality – A B Cs

A Achieve Acceptable Risk Levels

B

Ensure no Process compromises quality

C

**Compare Correct Performance Results!** 

### **Analytical Observations Required**

#### Full Inorganic Chemistry:

Macro elements & Trace elements (ICP-MS)

#### **Physico-Chemical Properties**

COD; Suspended Solids; Ammonia; Surfactants

#### Microbiological Indicator Organisms

TBC; TCC; Faecal coliforms; E. Coli

This Monitoring information is used for both:

Water Quality Assessments

&

**Demonstrating Compliance** 

### You must monitor controlled water use activities:

Water Quality Results thus needed for:

-Source

-Wastewater

-Any relevant water resource receptors

### Wastewater generated or treated complies with the:

GN 665 definition of:

Biodegradable Industrial Wastewater

(CAFO)

You may as per the GN 665:

- Irrigate to land

- Dispose for the purposes of storage

(Section 21 e and 21 g activities)

### Wastewater generated or treated must comply with:

**GN 665 Precautionary Practices** 

WRC Guidelines = Solid & Liquid Fractions

GN 921 = delisted:

Manure, Wastewater, Sewage, Effluent

### Why be concerned about water quality?

### Water Quantity is an obvious prerequisite input.

# Water is the most important nutrient for beef cattle.

### Water Intake and Feed Intake are significantly correlated.

 $R^2 = 0.43 (P < 0.01)$ 

(McDonald 2012)

No shelter provision

 $R^2 = 0.79 (P < 0.01)$ 

(McDonald 2012)

### Maximum Temperature

Best variable to predict WI

(McDonald 2012)

### ADG a function of WI

(Brew et al., 2009)

### Water Feed Ratio = 5.81 l/kg/d in sows – constant for first 60 days of pregnancy

(Kruse et al., 2011)

# Unexplained variation in RFI may be primarily due to thermoregulatory factors....water intake involved

(Arthur & Herd, 2008)

### WI (I/d)

| BW (kg) | <u>T (°C)</u> |    |    |
|---------|---------------|----|----|
|         | <u>10</u>     | 21 | 32 |
| 180     | 16            | 22 | 36 |
| 270     | 25            | 35 | 57 |
| 360     | 30            | 47 | 78 |

### Growing steers 23% more weight gain from well water compared to pond water

(Brew et al., 2009)

### **Physiological reality:**

cattle are in a continual state of dehydration

and not particularly good at handling water deprivation challenges Commercial reality:

Profitability margins.

### **Commercial reality:**

Performance and efficiency can be improved by managing water quality better.

## Water quality does not have to remain a fixed variable.

Mitigating effects and improving water quality are receiving increasingly successful attention in commercial intensive animal production

### **Commercial reality:**

Corporate Liability,

ensuring rights to access of both sufficient water quantity and quality,

and Lawfulness of Water Use

are all increasingly relevant topics.

### **Commercial reality:**

Without Compliance Monitoring

you may not only face significant fines,

but also loose the rights of both access to water use and water of the required quality.

### Why be concerned about water quality?

### **#1: Adverse Effects**

#2: Water Quality Resource Management

**#3: Emerging Topics** 

### **#1: Adverse Health Effects**

Nitrate = potentially fatal methemoglobinemia

### **#1: Adverse Health Effects**

Nitrate = potentially fatal methemoglobinemia

Fluoride = enamel hypoplasia



#### **#1: Adverse Health Effects**

Nitrate = potentially fatal methemoglobinemia

Fluoride = enamel hypoplasia

**Sulphate** = diarrhoea & trace element deficiencies

#### **#1: Adverse Health Effects**

Nitrate = potentially fatal methemoglobinemia

Fluoride = enamel hypoplasia

Sulphate = diarrhoea & trace element deficiencies

TDS = lowered water and feed intakes

#### Classic

toxicological approach

has revealed abundant evidence of clearly defined

cause and effect relationships

between

Exposure and Adverse Health Effects.

Table 2. Water Quality Guidelines for Livestock<sup>1</sup>

| ltem                        | Maximum<br>Recommended<br>Limit (ppm) | Item       | Maximum<br>Recommended<br>Limit (ppm) |
|-----------------------------|---------------------------------------|------------|---------------------------------------|
| Major ions                  |                                       | Cobalt     | 1.00                                  |
| Calcium                     | 1000                                  | Copper     | 5.00                                  |
| Nitrate + nitrite           | 100                                   | Fluoride   | 2.00                                  |
| Nitrite alone               | 10                                    | Iron       |                                       |
| Sulphate                    | 1000                                  | Lead       | 0.10                                  |
| TDS                         | 3000                                  | Manganese  |                                       |
| Heavy metals and trace ions |                                       | Mercury    | 0.003                                 |
| Aluminium                   | 5.00                                  | Molybdenum | 0.50                                  |
| Arsenic                     | 0.50                                  | Nickel     | 1.00                                  |
| Beryllium                   | 0.10                                  | Selenium   | 0.05                                  |
| Boron                       | 5.00                                  | Uranium    | 0.02                                  |
| Cadium                      | 0.02                                  | Vanadium   | 0.10                                  |
| Chromium                    | 1.00                                  | Zinc       | 50.00                                 |

#### **However:**

**Adverse Health Effects** 

are not the only

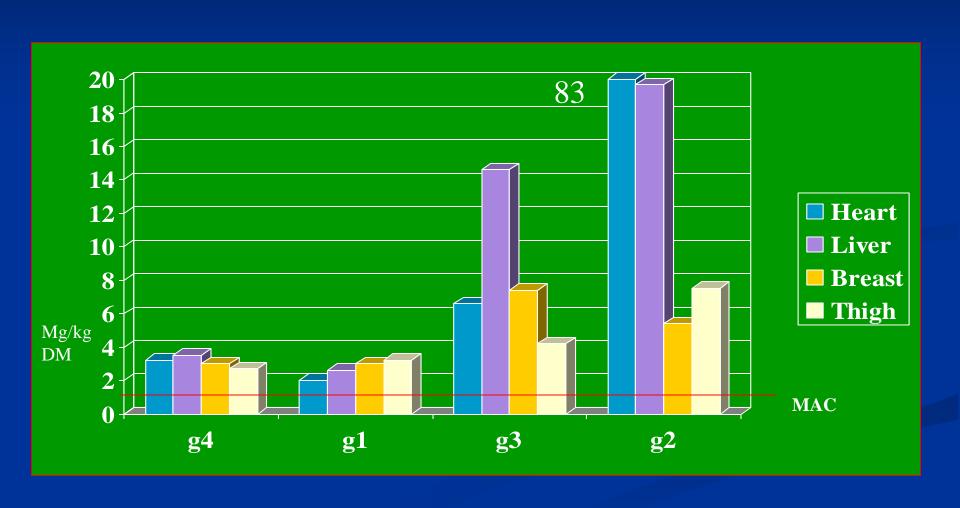
Type of Effects

that occur.

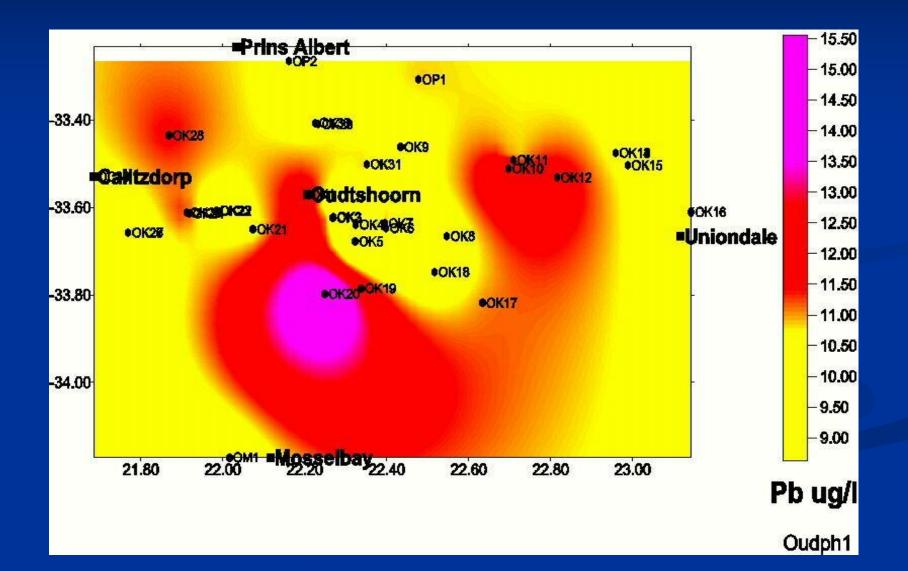
# Confined Animal Feeding Operations: Palatability



**Palatability** 


**Product Quality** 

**Palatability** 


**Product Quality:** 

- export requirements
- consumer health concerns

# Lead observed in poultry tissues obtained from PPU – Limpopo Province



# Subclinical: Product quality Export Requirements (MAC)



Palatability Product Quality

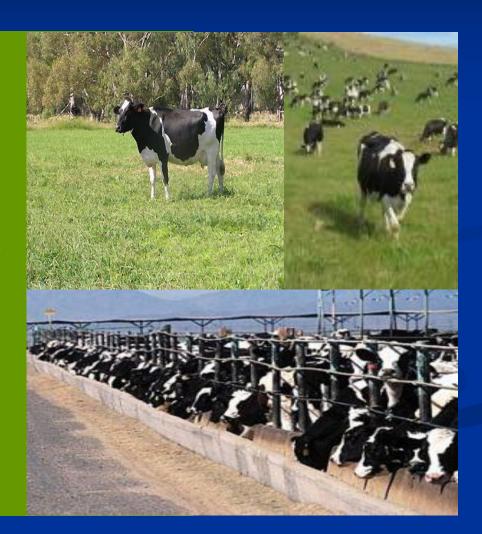
Water Distribution System



Palatability
Product Quality
Water Distribution System

**Environmental** 

"Runoff from feedlots causes pollution issues in receiving water resource environments"


Ammonia, Potassium, Nitrate, Phosphate, trace metals...

(Rahman et al., 2013)

### RSA - WRC K5/1686/1

Downstream water samples collected 2007/8 = positive:

- Reporter gene assays:Recombinant Yeast Oestrogen screen assay
- Competitive OestrogenReceptor binding assay:hER



### Types of Effects:

Referred to as

Norms

Used to Assess

the

Fitness for Use

**Fundamentally:** 

Central Point of Departure

relates to the

water quality constituent

# Managing Water Quality

Can I detect the substance?

Does the substance detected demonstrate toxicity?

Is the context of exposure capable of being hazardous?

Is the risk high or low?

What are the costs of mitigation or treatment?

What are the legal considerations that apply?

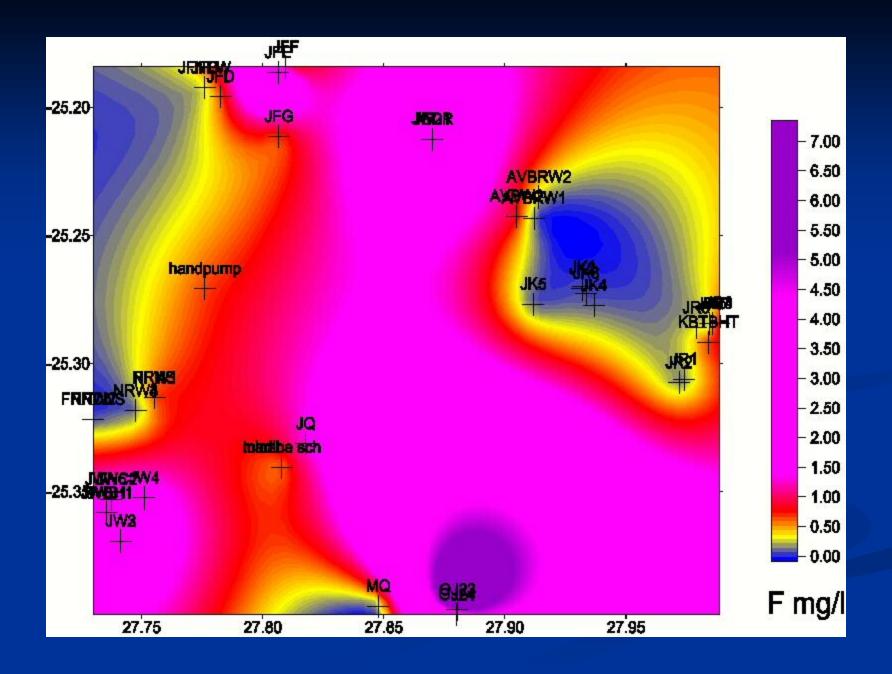
#### **FUNDAMENTAL APPROACH - EIA**

Sources, Pathways, Receptors

Management



# Environmental Toxicology


- Toxicology terms:
  - Toxicity = qualitative
  - Hazard = qualitative and quantitative
  - Risk = expected frequency of AE (not necessarily AHE)
- Potentially Hazardous Constituent
- Constituent of Concern

# RSA situation – NDA Survey of groundwater (n = 507)

| <u>WQC</u> | Median (mg/L) | Guideline (mg/L) | Maximum (mg/L)) |
|------------|---------------|------------------|-----------------|
| As         | 0.02          | 0.01             | 1.056           |
| Br         | 0.216         | 0.01             | 18.426          |
| F          | 1.7           | 0.7              | 16.69           |
| Pb         | 0.035         | 0.01             | 5.411           |
| NO3        | 115           | 44               | 1503            |
| Se         | 0.036         | 0.02             | 3.069           |
| V          | 0.545         | 0.1              | 0.86            |
| Cr         | 0.33          | 0.05             | 0.667           |

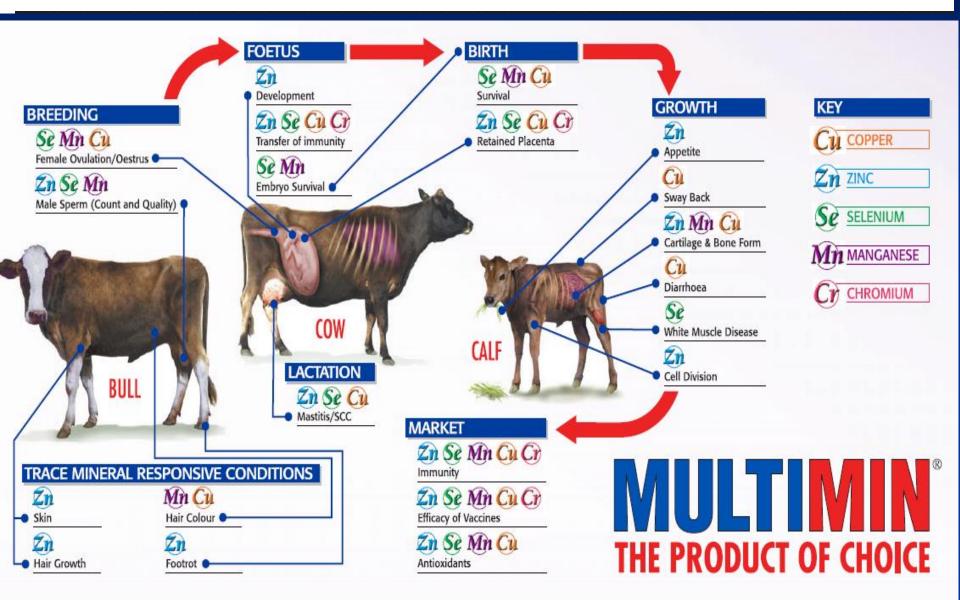
# RSA situation – NDA Survey of groundwater (n = 507)

| WQC Median (mg/ | <u>/L) Guideline (mg</u> | <u>g/L) Maximum (mg/L))</u> |
|-----------------|--------------------------|-----------------------------|
| As 0.02         | 0.01                     | 1.056                       |
| Br 0.216        | 0.01                     | 18.426                      |
| F 1.7           | 0.7                      | 16.69                       |
| Pb 0.035        | 0.01                     | 5.411                       |
| NO3 115         | 44                       | 1503                        |
| Se 0.036        | 0.02                     | 3.069                       |
| V 0.545         | 0.1                      | 0.86                        |
| Cr 0.33         | 0.05                     | 0.667                       |



# Managing Water Quality

Remember, you can


Manipulate

Water Quality

And

Mitigate Adverse Effects

# TRACE MINERALS IN THE LIFE CYCLE



# Multimin

■ Enhance the trace mineral dependant functions in the production cycle of feedlot cattle.

■ It is important that Multimin should not be considered as an alternative to oral supplementation programs (in feed), but as a complementary route to improve immune function and production.

## <u>Norm = Health</u> Water Quality Guideline Ranges:

Fluoride (mg/L):  

$$0 - 0.7 = Ideal$$
  
 $>0.7 - 1.0 = Good$   
 $1.0 - 1.5 = Marginal$   
 $1.5 - 3.5 = Poor$   
 $>3.5 = Completely Unacceptable$ 

## <u>Norm = Health</u> Water Quality Guideline Ranges:

```
Nitrate (mg/L):

0-26 = Ideal


>26-44 = Good

44-89 = Marginal

89-177 = Poor

>177 = Completely Unacceptable
```

#### **Beef Cattle**



## Perspective 1:

Nitrate Toxic Effects

#### Perspective 1:

Nitrite Toxic Effects

Take note of the complexities regarding the ability to adapt to nitrate exposure

This is a function of nitrate – nitrite – ammonia rumen pathways.



Nitrate Toxic Effects

Recognised Endocrine Disrupting Chemical



Fluoride Toxic Effects



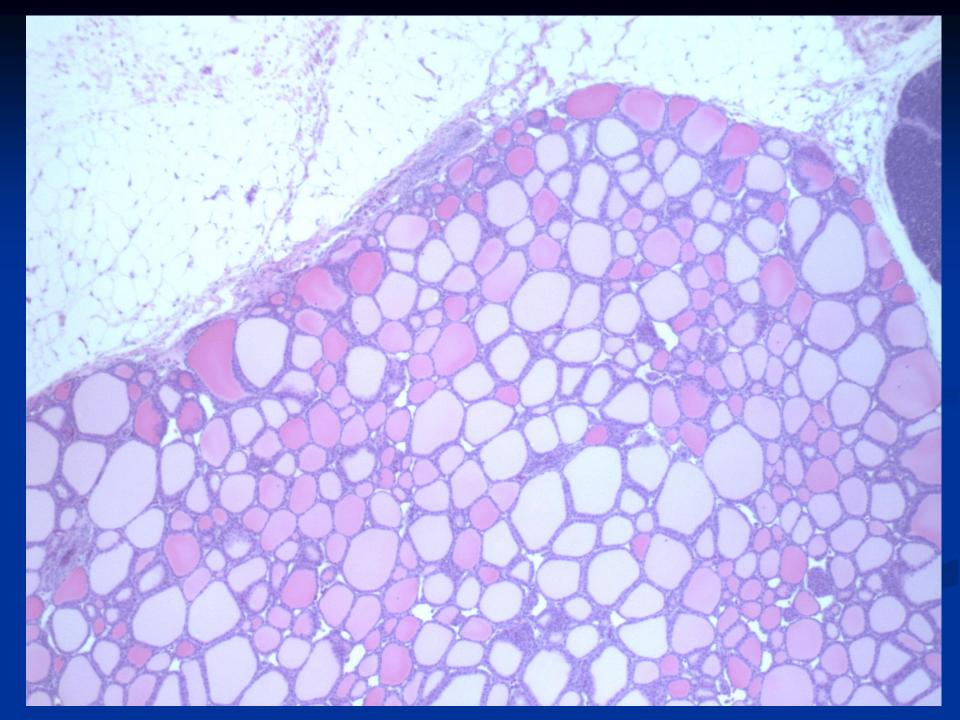
Recognised Endocrine Disrupting Chemical

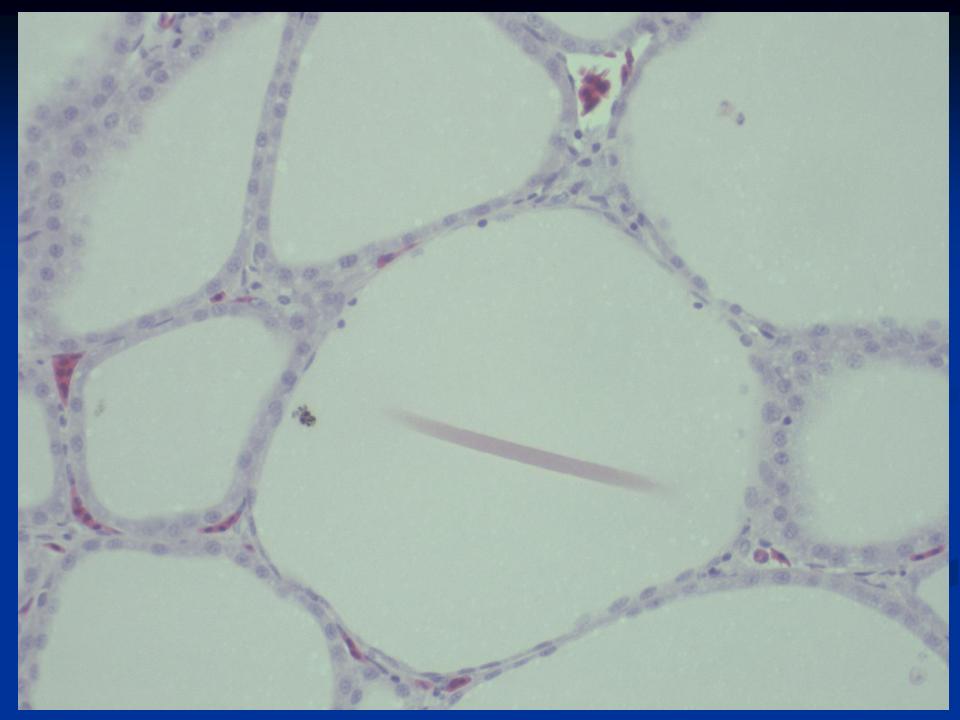
#### To Summarise:

Toxic (Reference Doses)
Carcinogenicity (Slope Factors)
Endocrine Disruption (Bioassays)

#### EDC – current review

- "Low doses are the most pertinent when exposure occurs to developing organisms. In some cases, these organisms normally have no exposure to some hormones — and exposure to tiny amounts of an endocrine disruptor changes the way these organisms will develop and potentially predispose them to develop a disease later in life.
- ..and it is possible that exceedingly small exposures could lead to endocrine problems later in life."


**Wexler, JA** (Endocrinologist at Washington Hospital Center, Washington, D.C.)




#### **Bromide Perspective**

Broiler Sentinel Results: Plasma T4 (thyroxine) nmol/L

|              | <u>A</u>         | В       | <u> </u>          |
|--------------|------------------|---------|-------------------|
| median       | 3.04             | 4.945   | 9.855             |
| sd           | (1.696)          | (1.625) | (4.09)            |
| P<0.05       | a                | a       | b                 |
|              |                  |         |                   |
| Ref 35 days: | Ross 308 =       |         | $10.89 \pm 0.849$ |
|              | Non-commercial = |         | $8.906 \pm 1.081$ |
| Ref 1day:    | Ross 308 =       |         | $5.933 \pm 0.785$ |
|              | Non-commercial = |         | $5.997 \pm 0.123$ |
|              |                  |         |                   |







#### **Bromide Perspective**

Broiler Sentinel Results: Plasma T4 (thyroxine) nmol/L

|           | <u>A</u> | В       | <u>C</u> |
|-----------|----------|---------|----------|
| median    | 3.04     | 4.945   | 9.855    |
| sd        | (1.696)  | (1.625) | (4.09)   |
| P<0.05    | a        | a       | Ь        |
|           |          |         |          |
|           |          |         |          |
| Br (mg/L) | 0.393    | 4.234   | 0.016    |

Not all Norms are fully understood yet.

Increasing evidence suggests the effects of EDCs are subclinical and significant.

Increased awareness for Induced Deficiencies due to EDCs is recognised.

A precautionary approach is advocated.

**Different Water Users** 

are generally present

in the same Catchment.

Must therefore cater for different

Water Quality Requirements

to ensure Constitutional and other legal rights.

#### Thus:

**Controlled Water Use Activities** 

may not

adversely impact on the

Water Resource.

Do more than just assist the

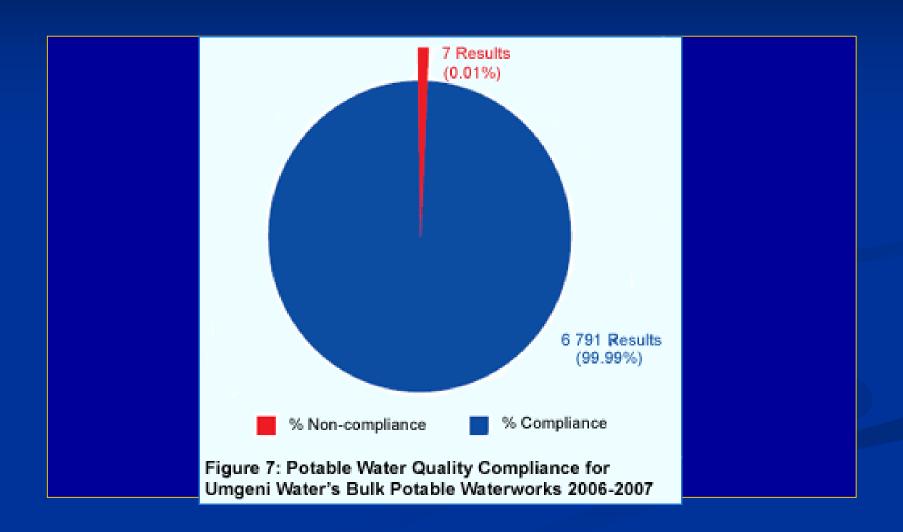
User

to assess fitness for use.

Are also used to


regulate and manage

water quantity and quality.


Why not Standards?

Why do they differ so much between countries?

### SANS 241: (2011)



#### **SANS 241**



#### Why the discrepancies between guidelines?

#### Different constituents and acceptable limits due to:

Failure to adequately describe exposure!

Different water chemistry relevant.

Different treatment processes & capabilities.

| TDS<br>(mg/L) | Interpretation                                      | <u>Action</u>                     |
|---------------|-----------------------------------------------------|-----------------------------------|
| 2000 – 3000   | Generally Safe. May reduce performance.             | Monitor. Caution For Hot Weather. |
| 3000 -5000    | Marginal. May reduce performance May reduce health. | Test for Sulphides Monitor.       |

| TDS (mg/L)  | Interpretation                                                      | <u>Action</u>         |
|-------------|---------------------------------------------------------------------|-----------------------|
| <1000       | No serious burden                                                   | -                     |
| 1000 - 2000 | Temporary diarrhoea.                                                | -                     |
| 3000 -5000  | Should be safe.  But, may very possibly cause of initially refused. | -<br>diarrhoea and be |

SO4 Interpretation

(mg/L)

<500 Safe

500 - 1500 Trace mineral availability may be reduced.

May decrease performance in confined animals.

Hot weather a risk factor.

SO4 Interpretation

(mg/L)

<1000 No serious burden.

1000 - 2000 Associated with neurological impairment.

Diarrhoea may occur.

May reduce trace mineral status.

Linking a

concentration

to an

effect

is not as simple as it may seem.

#### **Example:**

Fluoride: >0.7 mg/L can result in:

enamel hypoplasia & skeletal fluorosis

#### Water Quality Guideline Ranges:

**Example: Domestic Use** 

```
Fluoride (mg/L):

0 - 0.7

>0.7 -1.0

1.0 - 1.5

1.5 - 3.5

>3.5
```

#### Water Quality Guideline Ranges:

```
Fluoride (mg/L):

0 - 0.7 = Ideal

>0.7 - 1.0 = Good

1.0 - 1.5 = Marginal

1.5 - 3.5 = Poor

>3.5 = Completely Unacceptable
```

#### Water Quality Guideline Ranges:

**Example: Domestic Use** 

```
Fluoride (mg/L):

0-0.7 = NAE

>0.7 -1.0 = AE Unlikely

1.0-1.5 = Marginal Risk to Sensitive UG

1.5-3.5 = Significant AE in most UG

>3.5 = Completely Unacceptable
```

#### Target Water Quality Guideline Range?

Fluoride (mg/L):

0 - 0.7 = Ideal

#### Target Water Quality Guideline Range?

Fluoride (mg/L):

>0.7 - 1.0 = Good

#### Target Water Quality Guideline Range?

Fluoride (mg/L):

1.0 - 1.5 = Marginal

# The VALUE chosen as an Upper Limit may actually have more to do with

analytical detection

and

treatment efficacy

than effects on

feedlot performance

#### **Interpretation of Analytical Result**

F = 2 mg/l

#### <u>Interpretation of Analytical Result</u>

F = 2 mg/l

Fluoride is a chronic cumulative toxin.

#### Interpretation of Analytical Result

F = 2 mg/l

Essentiality has also been demonstrated.

#### <u>Interpretation of Analytical Result</u>

F = 2 mg/l

Adverse effects are a function of multiple variables.

#### Assessment

AHE =

f (Conc. \* Dose ingestion) \* risk factors

#### Assessment

AHE =

f (Conc. \* Dose ingestion) \* risk factors

# WI (l/d)

| BW (kg) | <u>T (°C)</u> |    |    |
|---------|---------------|----|----|
|         | <u>10</u>     | 21 | 32 |
| 180     | 16            | 22 | 36 |
| 270     | 25            | 35 | 57 |
| 360     | 30            | 47 | 78 |

The damage is caused to ameloblasts and odontoblasts during developmental stages.

Erupted teeth are not affected.

Duration of exposure is critical. Sensitive User Group relevant?

# Fluoride at 2 mg/l for Feedlot Cattle is unlikely to

result in significant adverse health effects

but remains a

potentially hazardous chemical constituent.

#### Potentially hazardous chemical constituent

due to

intake variation

and

not yet fully described

endocrine disrupting effects

Thus, the correct assessment must take into account site-specific factors.

Failing to do this dictates that a more conservative approach will be followed.

As most of our water resources may not fully comply with the NAE ranges, the development of Risk-based Water Quality Guidelines is acknowledged as essential to sustainable and realistic water resource management in South Africa.

# Managing Water Quality

Guidelines are only the first step.

Site-specific multidisciplinary approaches are required to:

- manage potential hazards
  - mitigate adverse effects

#### #2: Water Quality Resource Management:

Defined Quality Requirements for Catchment Users (RWQO).

Different Users require
Different Water Quality Constituent Criteria
to be met.

#### Wastewater:

Recent changes to schedules:

NWA – GN 665 NEM:WA – GN 921

Take note of the required Section 21 compliance conditions!

#### **Wastewater:**

A Waste Management Licence (WML – DEA) is no longer the required legal condition.

Compliance with the NWA Section 21 activities is required.

#### Wastewater:

Compliance is required for both wastewater generated and final disposal quality.

#### **Wastewater Compliance:**

This includes surface runoff and treatment outputs (e.g. liquid fraction)

#### **Wastewater Compliance:**

Treatment methods

do not remove
the compliance requirements!

#### Background: NWA - Relevant Sections

- Entitlement to Use
- Pollution Prevention
- •Use of Water:
  - Water Use
  - Permissible Use
  - Transfer of Use
- Existing Lawful Water Uses:
  - Verification of water uses
- Controlled Activities
- Financial Provisions & Offenses



#### #3: Emerging topics

Carcinogenic effects have been comprehensively described for various constituents and DBPs.

Endocrine Disrupting Effects a key topic internationally (water treatment & inherent).

#### **Examples:**

Disinfection byproducts from Chlorination and other disinfection processes.

#### DISINFECTION – Chlorine Dioxide

#### **Chemistry:**

$$ClO_2$$
  $\longrightarrow$   $ClO_2^- + ClO_3^- + Cl^-$ 

Chlorine dioxide ——— chlorite + chloride

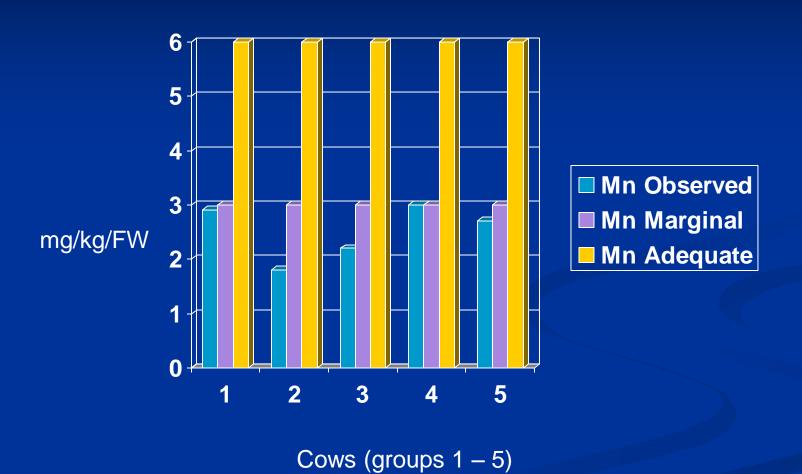
1 mg/L

0.7 mg/L chlorite

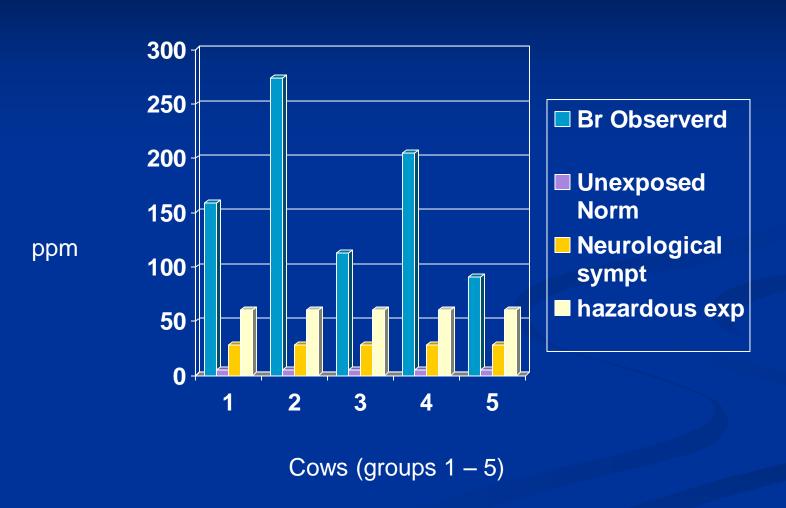
1 mg/L\_\_\_\_ 1 mg/L\_\_\_\_

< 0.3 mg/L chlorate

< 0.1 mg/L chloride


# **Examples:**

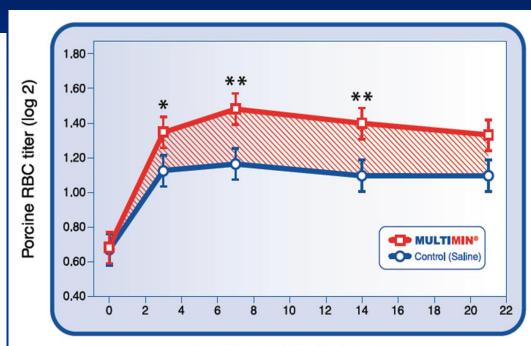
Naturally occurring geochemical anomalies resulting in EDC effects.


### **Examples:**

Environmental impacts leading to a "cocktail" of exposures.

#### Liver results -Mn




#### Whole Blood results -Br



# UNIVERSITY OF FLORIDA STUDY DATA STUDY 2

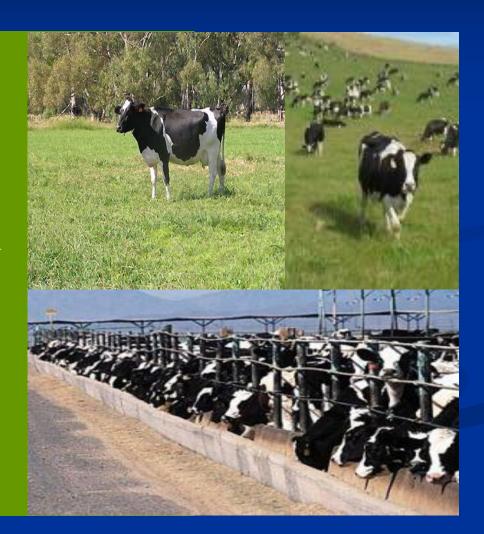
#### **STUDY RESULTS**

- Average daily gain was greater (P=0.06) for MULTIMIN® treated heifers.
   (0.69 vs 0.57 lb/d)
- Heifers treated with MULTIMIN® had more PRBC neutralizing antibody titers on day 3, 7, and 14 following challenge compared to control heifers.
- Liver concentrations of Se were greater (P < 0.01) in MULTIMIN® versus control heifers.



Day following PRBC injection

Porcine red blood cell (PRBC) neutralizing antibody titers measured on d 0, 3, 7, 14, and 21 relative to PRBC injection.  $P \le *0.10$  and \*\*0.05.


#### THE BOTTOM LINE

MULTIMIN may increase bodyweight gain, humoral immune response and trace mineral status of growing heifers.

### RSA - WRC K5/1686/1

Downstream water samples collected 2007/8 = positive:

- Reporter gene assays:Recombinant Yeast Oestrogenscreen assay
- Competitive OestrogenReceptor binding assay:hER







### **Challenges**

Example#1: Restriction#4 (WRC TT 262/06).

May not dispose of wastewater within 200 m of borehole or surface water.

This effectively implies no application of wastewater from feedlot effluent within the prescribed buffer zone.



### **Challenges**

#### Example # 2:

Even if a GA or Licence has been obtained, the new conditions for renewal and compliance may be contravened and they can be revoked.



### **DWS: Monthly Monitoring**

Is a legal compliance requirement (Sect 21):

Remains a producers best defense to argue for:

- continued use
- possible expansion
- action against other polluters
- lower monitoring frequency



#### **DWS: Monthly Monitoring**

#### AND!

Provides the information needed to Assess fitness for use and thus manage water quality.



# TOPICS - sampling



# Laboratory Specifications (acidify ICP-MS!)



# Point of Use considerations



Table 2. Water Quality Guidelines for Livestock<sup>1</sup>

| ltem              | Maximum<br>Recommended<br>Limit (ppm) | Item       | Maximum<br>Recommended<br>Limit (ppm) |
|-------------------|---------------------------------------|------------|---------------------------------------|
| Major ions        |                                       | Cobalt     | 1.00                                  |
| Calcium           | 1000                                  | Copper     | 5.00                                  |
| Nitrate + nitrite | 100                                   | Fluoride   | 2.00                                  |
| Nitrite alone     | 10                                    | Iron       |                                       |
| Sulphate          | 1000                                  | Lead       | 0.10                                  |
| TDS               | 3000                                  | Manganese  |                                       |
| Heavy metals and  | l trace ions                          | Mercury    | 0.003                                 |
| Aluminium         | 5.00                                  | Molybdenum | 0.50                                  |
| Arsenic           | 0.50                                  | Nickel     | 1.00                                  |
| Beryllium         | 0.10                                  | Selenium   | 0.05                                  |
| Boron             | 5.00                                  | Uranium    | 0.02                                  |
| Cadium            | 0.02                                  | Vanadium   | 0.10                                  |
| Chromium          | 1.00                                  | Zinc       | 50.00                                 |

#### **INTERNATIONAL GUIDELINES:**

#### Trace elements:

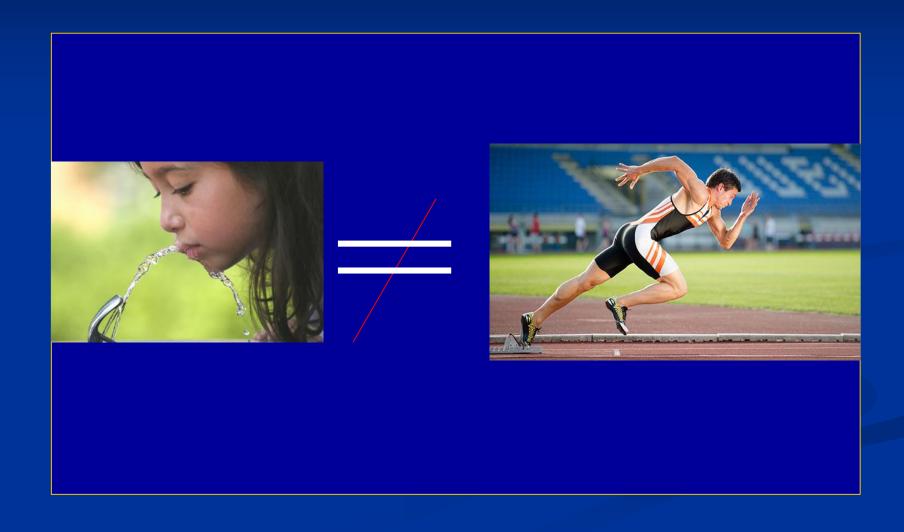
| Co | Li         | Se           |
|----|------------|--------------|
| Br | As         | Zn           |
| Sr | Ni         | Mo           |
| Mn | Cr         | $\mathbf{V}$ |
| Ti | В          | Be           |
| Cu | Ba         | Bi           |
| Pb | <b>T</b> 1 | Hg           |
| Pt | Rb         | La           |
| U  | Cs         | I            |
| Te | Sb         | Sn           |
| Cd | W          | Fe           |



# Assessment: Starting Point?

Diagnostic?

Legal compliance?


Proactive management?

#### Water Quality Treatment PURPOSE?

# Are you trying to be SAFE? Who is the customer?



# Drinking Water or Fluid & Electrolyte Maintenance?



# The Way Forward

Confined Animal Feeding Operations – already attracting attention from Authorities.





### The Way Forward

It is prudent to ensure that from a Legal Compliance Perspective addressing use and wastewater, that a good impression is created.



#### **PROCESS Summary:**

**Assess Inherent Water Quality** 

**Evaluate any Water Treatment Process** 

Look for meaningful ways to improve

Take note of the NWA Section 21 Activities relevant (ensure compliance with WUL / GA)

#### Observations

• "...due to the vague nature of the clinical signs of V toxicity and the lack of definitive tools for diagnosing this disease it is very difficult to conclusively prove that an animal is suffering from V toxicity.."

(Gummow, 2005)

### **Key Challenges**

A change in mindset from "health" and "safety" to "performance" is needed.