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Section 1. Introduction 

 Despite major advances in the performance of available membrane materials, we 

are still facing the problems of concentration polarisation (CP) and/or fouling, especially 

in pressure driven membrane filtration processes. Both, CP and fouling depend on 

numerous factors such as the interactions of the membrane material and components in 

the feed, the module geometry, and device operating conditions, such as the 

transmembrane pressure drop distribution across the module, the cross-flow velocity, 

and / or the imposed filtrate flow rate, i.e. flux. The boundary layer (BD), in which CP 

occurs, is very thin, on the order of magnitude of micrometers. It is a challenge to disrupt 

it and enhance mass transfer [1]. 

 CP and fouling can be partially overcome by operating the process as cross-flow 

(tangential flow) filtration in which the flow directions of the feed/retentate and 

permeate are arranged perpendicular to each other. The retentate flows parallel to the 

membrane surface, reducing the thickness of the boundary layer. The fouling extent 

decreases with an increase of the cross-flow velocity due to the increase in the local 

shear stress. To observe the effect of BL disruption very high cross-flow velocities are 

needed, e.g., 5 - 10 m s-1. Nevertheless, fouling still occurs and the high cross-flow 

velocity leads to high pressure drop through the module. In turn, this leads to uneven 

transmembrane pressure across the membrane length as well as increased energy 

consumption. 

 An elegant approach to improve hydrodynamic conditions in the membrane 

module without significantly increasing energy consumption and investment costs is to 

insert static turbulence promoters in the membrane module. Even though turbulence 

can also be promoted using dynamic means; here we will focus on static promoters. 

These have several advantages:  they use only energy of the moving fluid, there are no 

moving parts so there are no additional maintenance costs and, can be inserted into 

existing systems.  

 The main role of static turbulence promoters is to disrupt the BL near the 

membrane surface so to reduce concentration polarization and prevent or minimize 

fouling. In this case, the concept of BL disruption relies not only on the increased local 

velocity nearby the membrane wall, but also on the changes in the flow field appearing 

as secondary flows. To generate secondary flow fields, it is necessary that the turbulence 

promoter has a certain geometry. For example, the use of a simple rod baffle or smooth 

plate inserted in a tubular membrane will increase the cross-flow velocity, accelerating 
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the fluid, but it will not cause any secondary flow. In contrast, vortices can be generated 

using spacers that are curly or helically shaped. Since spacer geometry also greatly 

influences the pressure drop, it is necessary to choose and optimize the geometry in a 

way that provides the best compromise between the flux and energy consumption.  

 There are two basic concepts of turbulence promotion used in membrane 

modules: turbulence promoters (TP-s) in tubular modules and membrane spacers which 

primarily keep membranes apart but also introduce secondary flow patterns and local 

turbulence. The role of TP-s used in tubular membrane systems is primarily to improve 

hydrodynamic conditions in the membrane channel. So any kind of baffle which can be 

inserted in the membrane channel can be used for that purpose. Spacers were 

introduced to separate membrane sheets, usually in flat sheet and spiral wound 

membrane modules, and simultaneously to improve hydrodynamics in the channels. 

Wide varieties of geometries have been studied in both concepts so it is very difficult to 

make classification based solely on geometry. Among plenty of published papers, mainly 

dealing with broad application of spacers, we have chosen to present those studying 

innovative geometries. Influence of geometry is evaluated either (a) by the magnitude of 

the flux improvement and energy consumption or, (b) characterisation of hydrodynamic 

conditions and flow pattern development.    

 Geometries of TP-s used in tubular membranes include smooth rods, helical 

screw-thread, spiral wire, conical inserts, twisted tapes (Fig. 1a), KM KenicsTM and blade 

static mixers (Fig. 1b). Modifications of geometrical characteristics includes change of 

length element shape, alternation of its orientation, and changes in the ratio of the 

element length to diameter ratio.  More details on the TP in tubular membranes used 

mainly in the MF and UF processes can be found in the paper of Popovic et al. [2]. The 

most frequently used turbulence promoter has been KM KenicsTM mixer which has 

alternating helical geometry. But, the alternation significantly enlarges pressure drop, so 

the KM mixer can be energetically less effective compared to some other more simple 

geometries such are twisted tapes [3]. Nevertheless, all TP kinds are more efficient than 

the conventional operation from the point of view of both the flux increase and energy 

consumption. 
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Figure 1. Twisted tape (TT) and blade type turbulence promoters for tubular membrane 

[2, 3]. 

 

Applications of spacers are manifold: mostly they are used in spiral-wound membrane 

modules for water and wastewater treatment membrane processes. The spacer acts 

both as a mechanical support for the channel geometry and as a turbulence promoter for 

the disruption of BL. Studies focus on optimizing spacer configuration, either 

experimentally or theoretically, with the aim to improve hydrodynamic conditions and 

extend the operating time of the membrane module. Methods of optimizing spacer 

configurations reported in the literature include varying the characteristic angle toward 

the feed direction of the spacer, the diameter, shape and spacing of filaments in a spacer, 

and multi-layer arrangement [4]. There exist two basic types of spacers: net and woven 

spacers. Recently, novel spacers having a multilayer structure (sandwich of spacers 

containing a bigger spacer in the middle with two thin outside spacers) or spacers 

having alternating helical elements (Fig. 2) have been developed [5-7]. Furthermore, 

spacers integrated into a membrane have been studied in the process of electro-dialysis 

[8]. Possible disadvantages of spacers' application can be low effectiveness in the case of 

systems with significant biofouling, e.g., in water treatment [9,10]. In the cases of CP or 

surface fouling caused by macromolecules, particles or ions, spacers are proven to work 

effectively. Once fouled, spacers can be cleaned: a recent paper discusses the high 

efficiency of bubble nucleation on spacers [11]. 
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Fig. 2. (a) Double-helix form twisted filament, (b)single layer of twisted elements, and 

(c) two-layer spacer [7]. 

 

Even though the benefits of BL disruption and mass transfer enhancement outweigh the 

disadvantage of increased pressure loss, energy consumption should be always carefully 

considered. While the increase of flux can range up to 700%, energy consumption (per 

volume of permeate produced) can be reduced up to 80% compared to the conventional 

operation without any type of TP [3].  So far in the Journal of Membrane Science more 

than 100 papers have been published dealing with application of spacers and turbulence 

promoter in a sense of improved membrane process, mass transfer and hydrodynamic 

conditions. Review papers on the subject of turbulence promotion in membrane 

modules are very scarce. In the Journal of Membrane Science only one review paper on 

the subject of spacers in the spiral wound modules has been published ten years ago 

[12]. This Virtual Special Issue highlights contemporary achievements in the field of 

intensification of membrane processes by application of static turbulence promoters, 

both spacers for flat sheet and spiral wound modules and, turbulence promoters for 

tubular membrane modules.  
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Section 5. Concluding remarks 
 
 Intensification of membrane processes by application of turbulence promoters 
plays significant role in the sustainability of membrane technologies and has attracted 
attention in recent years. Studies are mainly focused on the mitigation of membrane 
fouling expressed over the flux improvement and energy consumption, the optimisation 
of promoter's geometry, simulation and modelling of hydrodynamic conditions.  
Breakthroughs in novel spacers and turbulence promoters design are expected in the 
near future. They are related to the 3D prototyping technologies and computation fluid 
dynamics (CFD) software development. CFD software development will facilitate and 
shorten the time of design of the optimal geometry by simulations and modelling of 
hydrodynamics and mass transfer in the module. Improvement of 3D printing 
technologies will assure the production of various geometries of turbulence promoters, 
their integration in a membrane module so production of systems with a high optimal 
efficiency. 


