
Uncertainty in Wastewater Treatment Design and Operation aims to facilitate the 
transition of the wastewater profession to the probabilistic use of simulators with 
the associated benefits of being better able to take advantage of opportunities and 
manage risk.

There is a paradigm shift taking place in the design and operation of treatment 
plants in the water industry. The market is currently in transition to use modelling 
and simulation while still using conventional heuristic guidelines (safety factors). 
Key reasons for transition include: wastewater treatment simulation software 
advancements; stricter effluent requirements that cannot be designed for using 
traditional approaches, and increased pressure for more efficient designs (including 
energy efficiency, greenhouse gas emission control).

There is increasing consensus among wastewater professionals that the performance 
of plants and the predictive power of their models (degree of uncertainty) is a 
critical component of plant design and operation. However, models and simulators 
used by designers and operators do not incorporate methods for the evaluation 
of uncertainty associated with each design. Thus, engineers often combine safety 
factors with simulation results in an arbitrary way based on designer ‘experience’. 
Furthermore, there is not an accepted methodology (outside modelling) that 
translates uncertainty to assumed opportunity or risk and how it is distributed among 
consultants/contractors and owners.

Uncertainty in Wastewater Treatment Design and Operation documents how 
uncertainty, opportunity and risk are currently handled in the wastewater treatment 
practice by consultants, utilities and regulators. The book provides a useful set of 
terms and definitions relating to uncertainty and promotes an understanding of the 
issues and terms involved. It identifies the sources of uncertainty in different project 
phases and presents a critical review of the available methods. Real-world examples 
are selected to illustrate where and when sources of uncertainty are introduced 
and how models are implemented and used in design projects and in operational 
optimisation. Uncertainty in Wastewater Treatment Design and Operation defines 
the developments required to provide improved procedures and tools to implement 
uncertainty and risk evaluations in projects. It is a vital reference for utilities, regulators, 
consultants, and trained management dealing with certainty, opportunity and risk in 
wastewater treatment.
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Preface

ABOUT THE IWA DESIGN AND OPERATIONAL UNCERTAINTY
TASK GROUP

The International Water Association (IWA) Design and Operations Uncertainty Task Group (DOUT) was
formed to develop methodologies that enable the explicit evaluation of variability and uncertainty in model-
based design of water resource recovery facilities (WRRF), and model-based analysis of plant operations.

An overview of uncertainty in the treatment plant modelling context was discussed at a workshop (in
Mont-Sainte-Anne, Canada) during the 1st IWA/WEF (Water Environment Federation) Wastewater
Treatment Modelling seminar (WWTmod2008). This workshop identified knowledge gaps and the
requirements for the development of the needed methodologies. Following the workshop, the Task
Group established the following set of objectives and set-up several working groups to advance these goals:

• Document how uncertainty and risk are currently handled in wastewater treatment practice by
consultants, utilities and regulators.

• Propose a set of terms and definitions relating to uncertainty to be used by wastewater professionals.
• Propose a comprehensive list of the sources of uncertainty for typical project phases and contract
delivery mechanisms.

• Document and evaluate existing methods for assessing and evaluating uncertainty in wastewater
treatment.

• Identify gaps and inefficiencies in current knowledge and practice related to uncertainty.
• Incorporate uncertainty evaluation methodology knowledge from other fields.
• Present examples of methods already available that can be used to deal with uncertainty and variability.

© IWA Publishing 2021. Uncertainty in Wastewater Treatment Design and Operation: Addressing Current Practices and Future Directions
Editor(s): Evangelia Belia, Lorenzo Benedetti, Bruce Johnson, Sudhir Murthy, Marc Neumann, Peter Vanrolleghem and Stefan Weijers
doi: 10.2166/9781780401034_xv
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The working groups were composed of professionals from consulting, utilities, software companies and
academia. From its inception the intention was one of co-production, further facilitated through a large
number of workshops and working meetings held during national and international conferences. The
findings obtained through this process form the cornerstone of this Scientific and Technical Report (STR).

MISSION STATEMENT
The goal of the Task Group was to develop methods for integrating uncertainty analysis into wastewater
treatment process simulators in order to facilitate a shift from deterministic (one answer) to probabilistic
analysis (likelihood of outcome) of treatment plant design and operation. Such a transition will lead to
better management and quantification of the risks/benefits of a specific design or operational strategy.
This in turn will provide utilities with more effective, efficient facilities and increase the socio-economic
benefits of resource recovery.

In pursuit of these objectives, this STR reviews the state of the art in dealing with uncertainty and
variability in wastewater engineering, as well as novel methods and approaches recently developed in
academia. The STR examines the feasibility of these novel methods for use in the wastewater sector.

SCOPE
The work presented in the STR, focuses on the entire wastewater treatment plant from influent to effluent.
Links to the urban catchment (upstream of the wastewater treatment plant) are also discussed because
uncertainties associated with expected developments in the catchment have impacts at the planning stage
of plant design. Links to the receiving water body (downstream of the wastewater treatment plant) are
also discussed as uncertainties in effluent standards imposed by regulators impact plant design and
operation.

Much of the work presented in this STR focuses on biological treatment in the liquid stream as this is one
of the principal drivers for initiating this paradigm change in design methodology. However, it is important
to note that the methodologies presented are model-independent and applicable to any unit process (e.g.,
primary settling tank, anaerobic digester, etc.), including external factors, or even within an all-
encompassing plant-wide modelling approach.

The Task Group hopes that the concepts and methods presented in this STR will contribute to a more
systematic and transparent way of managing uncertainty in WRRF design and operations, which in turn
will lead to more cost-effective solutions.

Evangelia Belia, Canada
Lorenzo Benedetti, Croatia

Bruce Johnson, USA
Sudhir Murthy, USA

Marc Neumann, Spain
Peter Vanrolleghem, Canada
Stefan Weijers, Netherlands
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Introduction to the Scientific and
Technical Report

MOTIVATION AND PROBLEM STATEMENT
Over the past 30 years, mathematical models (usually included in simulators) have been displacing the use of
heuristic-based (‘rules-of-thumb’) guidelines for designing water resources recovery facilities (WRRF).
Models unify our knowledge about the treatment processes into a single package that is capable of
generating comprehensive portraits of how a design will perform. In addition to their value in WRRF
design, these models are increasingly being used to evaluate the effect of proposed modifications to plant
operations and control, aimed at improving plant performance. Key reasons for the transition to
model-aided design and operations include:

• Models allow for more realistic representation of the complexities introduced by hydraulic regime,
reactor configuration and variation in operating modes.

• Models can simulate plant performance under dynamic conditions.
• Models enable the designer to analyse and isolate the impact that individual unit operations have on

the performance of the treatment train as a whole.
• Models facilitate the examination of effluent quality sensitivity to specific design assumptions.
• Models allow the designer to efficiently screen alternative designs for those that best meet specific

environmental goals such as energy efficiency or minimization of greenhouse emissions.
• Models streamline performance comparison of alternative plant designs by facilitating

direct comparisons.
• Models can simulate effluent quality response to transient conditions such as wet weather induced

influent loadings and operating strategy.
• Models address the growing consensus amongst wastewater professionals that the quality of

performance prediction is a critical component of design and operation.
• Wastewater simulation software is a knowledge capture/communication tool that is constantly being

updated to simulate new treatment technologies as they gain acceptance and to improve the simulation
of existing processes as their behaviour becomes better understood.

A goal of any treatment plant design project is to provide a facility that can be operated reliably to meet
specific treatment objectives at minimal cost. Many alternative designs with varying cost structures,
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performance and risk profiles might be considered to meet the defined objectives. The designer is tasked
with the responsibility of finding an acceptable balance between cost, risk and benefit.

Identifying this balance is hampered by the lack of available protocols for explicit risk and benefit
assessment. Traditional design methodologies are based upon guidelines and heuristics that have
survived the test of time. However, in their application, the complexities of the treatment process are
simplified. For example, the variability in plant flow and influent wastewater load is typically addressed
through the use of peaking factors. Uncertainty in the coefficients that determine process efficiency is
accounted for through the application of safety factors. Judicious choice of these factors provides for a
margin of safety that is supposed to ensure adequate performance.

Process model-based design, in addition to the benefits listed earlier, allows the design engineer to
incorporate much more information into the design process and in turn to support a more informative
assessment of risk and benefits. The reality though is that under current practice, when engineers are
interested in evaluating the robustness of a design, they will often overlay a safety factor approach
onto the simulation results to accomplish this. In the absence of a prescribed procedure, each engineer
will do this in a way that reflects his/her own experiences and prejudices, resulting in some level
of arbitrariness.

This need not be. The power and sophistication of existing treatment plant simulators, combined with the
wider availability of real-time data and advancements in statistical and data analysis methods, creates
opportunities for quantifying treatment plant performance under a wide range of operating conditions.
With properly defined protocols, performance profiles can be generated that enable formulation of
probabilistic statements (likelihood) regarding various types of failure. Risk/benefit/cost analyses of
multiple design alternatives to support identification of the optimal design can be generated. This can be
done with a high level of transparency so that each stakeholder can be better informed of the trade-offs
they are asked to accept. This is the long-term goal whose exploration is being initiated with this
Scientific and Technical Report (STR).

The primary focus of the STR is to develop a comprehensive, workable, and well documented
framework for addressing uncertainty and integrating it into WRRF design and operations
optimizations. This includes defining what is meant by uncertainty, identifying where uncertainty
arises in a project, how uncertainty fits into predicting the long-term performance of a design, how
uncertainty influences the attitudes and thus the decision-making process of various stakeholders,
methods that are currently available for addressing uncertainty, and methods that are needed but
have yet to be developed.

This STR is envisioned as a reference for utilities, regulators and consultants dealing with uncertainty,
opportunity and risk in wastewater treatment. The technical details covered in the STR are fleshed out
within a comprehensive and holistic framework. This holistic view extends the discussion beyond those
uncertainties directly associated with the application of treatment plant models into other areas that
influence the final design. This is done in recognition that the chosen design is shaped by inputs from
many different stakeholders, and in acknowledgement that uncertainty arises at many stages of project
development and execution. These non-model associated uncertainties are important components of the
overall uncertainty that influence project risk.

To clarify this last point, consider that the stakeholders in a project might include the public in general,
interest or advocacy groups, facility owners, facility operators, facility users, regulators, planners, engineers,
designers and contractors. Each comes to the table with different concepts of project objectives and different
perceptions and appetites for risk. To illustrate the need for a holistic approach and the complexities of risk in
infrastructure projects, consider the example in Box 0.1.

Uncertainty in Wastewater Treatment Design and Operationxx
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STRUCTURE OF THE REPORT
This STR is divided into four sections as shown in Figure 0.1 below. Section I, ‘System understanding’,
opens with a general discussion of risk, variability and uncertainty, and identifies how they may
influence decisions made at various stages of a project (Chapter 1). This section continues with an
assessment of how uncertainty is currently handled in practice (Chapter 2). Reading through Chapter 2 –

Current practice, the reader should become aware of the fact that the selection of safety factors and
conservative design flow and load values are the most prevalent methods used by engineers currently to
account for uncertainty and variability. The section concludes with the benefits of incorporating

BOX 0.1 UNCERTAINTY – THE BIGGER PICTURE

An engineer is designing a facility that must meet a defined set of effluent limit guidelines. She may
receive certain prescriptive criteria for the design from others. She can apply one of the available
treatment plant simulators that will enable her to determine the critical aspects of the configuration
and sizing of the treatment tanks. She works up a design and then by doing some sensitivity
analysis, determines an envelope of conditions under which the design is expected to meet
treatment objectives. In doing the sensitivity analysis, she might incorporate some knowledge she
has pertaining to statistical uncertainty in some of the model parameters. She might then do some
statistical analysis to determine the probability that conditions outside her envelope will be
experienced. Based on the findings, she might develop various iterations on the design until she
finds a suitable risk profile. The magnitude of that risk is a function of the variability in the key
constituents in the wastewater and the uncertainty of various stoichiometric and kinetic parameters
in the simulation software being used.

Now the engineer might have received information for the design basis from a planner. The planner
may have focused on current and future land use to make forecasts of flows to the plant. He may have
decided that the facility should be designed to handle the flows expected 40 years into the future, at
which time he expects the catchment to reach maximum flow. To reach this conclusion, the planner
may be applying models that are specific to his discipline. He also faces a different set of
uncertainties which also contribute to the risk of the project. Whatever the planner determines may
simply end up as a specification to which the design engineer must respond, but without any
explanation of the attached risks and uncertainties. As a result, embedded into the design are risks
unknown to the engineer.

The regulator is charged with setting effluent limitations. In setting limitations, he is guided by the
beneficial uses designated for the receiving stream, the water quality objectives necessary to protect
those uses and the waste load allocations that follow from those objectives. The regulatory authority
might have its own set of models to consult when considering this problem. And these models come
with their own unique sources of uncertainty. Then there is the possibility that in the future, the public
demands a change in the beneficial uses, or perhaps a future ecological study determines that the
assimilative capacity of the receiving is less than originally thought. This might result in a reduction
of a waste load allocation with a concomitant lowering of the effluent limitations. How does one
consider this regulator risk?

Finally, there are risks that arise out of the contract delivery methods (e.g., has the owner bid the
design and construction phases separately or as a package?). Contract delivery methods allocate
project risks in different ways and this will have different impacts at various stages of project
development.

Introduction to the Scientific and Technical Report xxi
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uncertainty analysis in plant design through the use of simulators (Chapter 3). After reading Chapter 3 the
reader will have learned about the major sources of uncertainty and variability, how they can be classified in
a modelling framework, how practical it is to separate variability from uncertainty and the design parameters
that are not amenable to this separation.

Supporting Section I are Appendices A and E. Appendix A includes additional terms and definitions
relevant to uncertainty. Appendix E includes examples of engineering practices across selected parts of
the world.

Section II, ‘Tested and transferable methods’, focuses on available methods that allow professionals to
manage and evaluate quantifiable uncertainty in explicit ways. It introduces the reader to concepts and
methods which are found in the literature and assesses their feasibility for widespread use in wastewater
engineering (Chapter 4). A comprehensive up-to-date literature list has been included in Appendix
C. Methods developed in other fields and an assessment of their potential for transfer to the wastewater
sector can be found in Appendix D.

Section III, ‘DOUT framework’, presents a proposed methodology for combining models, statistics and
design guidelines for plant design (Chapter 5). The methodology is applied to the case studies presented in
Chapter 6. Chapters 5 and 6 focus on two types of uncertainties: quantifiable and scenario uncertainties.
Details on the theory behind the methods described as well as further reading materials, can be found in
Appendix B.

The final section, ‘Broader view and way forward’, presents a broader view of the factors influencing
engineering decisions (Chapter 7). Chapter 7 discusses the relevance of the contractual environment, the
role of the stakeholders and the type of project, and how these play a far greater role in shaping the final
outcome of an infrastructure project than is widely acknowledged. Chapter 8 examines possible future
ways of dealing with uncertainty and exposes existing challenges, as well as methods available that can
already be used by the profession to deal with issues of variability and uncertainty.

Figure 0.1 The content flow of the STR.

Uncertainty in Wastewater Treatment Design and Operationxxii
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Chapter 1

Key concepts of the STR

1.1 INTRODUCTION
This chapter introduces the key concepts of uncertainty analysis which are discussed in this Scientific and
Technical Report (STR). Understanding these concepts is a necessary first step in the pursuit of the goal of
integrating uncertainty into model-based assessments of water resource recovery facilities (WRRF) design
and operations for the purpose of quantifying risk.

The chapter opens with the definition of risk and uncertainty. Uncertainty is a particularly problematic
term as it is often used interchangeably with risk, reliability and other similar terms. In addition, these
terms may have other meanings in uncertainty evaluations conducted in other disciplines (additional
definitions of concepts and terms relevant to the topics covered in this STR can be found in Appendix
A). This section also includes how uncertainty has been classified by the scientific community and
makes an important distinction between uncertainty and variability.

The chapter closes with a summary of the way uncertainty and variability can be evaluated with the use of
models and statistical methods.

1.2 RISK
Risk can be defined as the exposure to events that if realised, result in some sort of loss. Identifying and
quantifying – when possible – potential risks is a starting point for risk assessment. Risk, from a
traditional engineering perspective, can be quantified as the probability of a specific failure occurring
multiplied by the cost of the resulting damage. Therefore, risk quantification has two components:
assessment of the probability that the risk will actually manifest, and determination of the associated
cost. Certain risks are more amenable to quantification than others. Conversely, other risks can only be
assessed qualitatively, for example, by stating that the probability is likely of unlikely, or that the cost of
failure is low, medium or high.

© IWA Publishing 2021. Uncertainty in Wastewater Treatment Design and Operation: Addressing Current Practices and Future Directions
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Major types of risk in wastewater treatment projects include (Talebizadeh, 2015):

• Non-compliance;
• Loss of reputation;
• Financial loss;
• Not winning a contract or contract annulment.

Such events are called hazards and their expected frequency of occurrence is usually quantified by a
probability. Probabilities describe the expected likelihood of occurrence of an event. It answers the
question: is it ‘likely’ or ‘unlikely’ that the event will happen? Risk is then calculated as the product of
the probability of failure and the cost of failure.

Uncertainty assessment and propagation are the methods with which we quantify probabilities and
thus, risk.

1.3 UNCERTAINTY
Uncertainty can be defined as the degree of inability to determine or predict the exact behaviour of a system
or process both now and in the future.

1.3.1 Classification of uncertainty
Uncertainty arises at many points in engineering projects. Although, this has long been recognised,
development of a framework for incorporating uncertainty analysis into model-based decision support in
wastewater treatment has lagged.

Researchers haveclassifieduncertainty into categories dependingon themethods and tools used toquantify
or characterise it, in order to provide a common ground for communication between project participants
(Refsgaard et al., 2007; Walker et al., 2003). A widely used approach defines three dimensions/categories
of uncertainty: nature, location and level. These dimensions are discussed below in greater detail.

1.3.1.1 Nature of uncertainty
The nature of uncertainty refers to whether the uncertainty can be reduced with measurements or further
research (e.g., due to experimental uncertainty in the determination of kinetic parameters) or whether it is
due to the inherent variability of a system and cannot be reduced with any further research (e.g.,
frequency of observed events such as heavy rainfall or toxic spills) (see Section 1.3.2).

1.3.1.2 Level of uncertainty
The level of uncertainty is an expression of the scale of uncertainty associated with an identified risk. Based
on Walker et al. (2003), the Task Group settled on four levels of uncertainty that define a spectrum ranging
from complete determinism to indeterminacy (Figure 1.1):

BOX 1.1 RISK

Risk= [Probability of failure] * [Cost of failure]

To quantify risk the probability of a hazard must be calculated.

This is achieved by assessing uncertainty.

Uncertainty in Wastewater Treatment Design and Operation2
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Quantifiable uncertainty can be quantified and described with statistical methods. The random error in
a measurement by a sensor, or in the triplicate analysis of a COD (chemical oxygen demand) sample are two
examples of quantifiable uncertainty. Quantifiable uncertainty would also include the error in estimating a
population mean from a set of samples.

Scenario uncertainty is uncertainty associated with the use of scenarios to examine possible outcomes
that may develop in the future. Scenarios do not forecast what will happen in the future. Instead, they assess
what might happen. Realistic assumptions about relationships and/or driving forces within the model can be
established. It is not possible, however, to derive the probabilities of the scenarios taking place. Scenario
uncertainty can be presented as the range of discrete outcomes from a scenario analysis.

Recognised ignorance is the state where the existence of uncertainty is recognised, but the uncertainty
does not lend itself to quantification, nor to study by means of scenario analysis. In this situation, the
mechanisms and functional relationships of the phenomena impacted by uncertainty are too poorly
understood to enable any useful analysis beyond recognising that there is uncertainty, but it cannot
be characterised.

Total ignorance is defined as the state where those involved are not aware of uncertainty. It is unknown
what is unknown.

Figure 1.1 depicts these four levels of uncertainty lying between determinism and indeterminism.

1.3.1.3 Location of uncertainty
The location of uncertainty refers to the instance where uncertainty manifests itself in the modelling process.
Walker et al. (2003) suggested five generic locations: context uncertainty, model uncertainty, input
uncertainty, parameter uncertainty and model output uncertainty. Walker’s conceptualisation of these
uncertainties is elaborated upon below.

• Context uncertainty: Context refers to the economic, political, social and technical conditions and
circumstances that influence the model boundaries and frame the issues that the model is to
address. Context uncertainty also relates to the suitability of a model for its intended purpose.

• Model uncertainty: All models involve simplifications of the system under study. Model structure
uncertainty refers to uncertainty as to whether the model is an adequate representation of the real
system it represents. In addition, errors can arise when implementing a model into a simulator.
This is associated with the translation of the model into a program code and its execution on a
computer and also includes uncertainty due to software errors.

DETERMINISM
quantifiable
uncertainty scenario

uncertainty recognized 
ignorance total

ignorance
INDETERMINACY

Figure 1.1 Level of uncertainty (after Walker et al., 2003).
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• Input uncertainty: Input uncertainty is comprised of two sub-categories, system data uncertainty and
external driving force uncertainty. Data uncertainty include uncertainty in, for example, the flow and
concentrations to be input to a model for the purpose of projecting plant behaviour under some future
condition. External driving force uncertainty relates to uncertainty associated with changes in
conditions that are outside the model boundaries. For example, land-use policies in the catchment
to a treatment plant might change and open the catchment to more rapid development. The
knock-on effects from thiswould result in a change in flow andwastewater characteristics for the plant.

• Parameter uncertainty: Treatment plant models include many kinetic and stoichiometric
parameters. The values of many of these parameters are known only approximately. Parameter
uncertainty is associated with the lack of knowledge regarding the true value of these parameters
as well as the different techniques used for the selection of parameter values during model calibration.

• Model output uncertainty: Model output uncertainty is the accumulated uncertainty caused by all
the uncertainties in all the above locations as propagated through the model.

The Task Group chose to modify the Walker et al. (2003) framework. Context uncertainty is placed outside
of the scope of uncertainties that are to be considered in this STR for model-based decision making. ‘Source’
of uncertainty is used instead of ‘location’ of uncertainty. The Task Group has chosen to organise the sources
of uncertainty as follows:

• Inputs (includes experimental error);
• Model structure;
• Numerics (software implementation issues);
• Model output.

Section 1.4 provides more details on the classification that the Task Group has chosen to implement.
Chapter 5 provides details on how to apply this framework to a wastewater project.

1.3.2 Separating variability and uncertainty
As discussed by Kelly and Campbell (2000), the EPA risk guidance and policy document (US EPA, 1997)
and the report by the National Academy of Sciences titled Science and Judgment in Risk Assessment (NRC,
1994) call for separating variability and uncertainty in risk assessments.

There is an important difference between variability and uncertainty (and which quantities should be
considered variable, uncertain or both). Although both can be described mathematically in the same way,
for example by using density functions (Figure 1.2), they are very different in nature (Table 1.1). The
Task Group has selected the definitions included in Box 1.2, in order to clarify the confusion often seen
in the literature.

In this STR, uncertainty which is classified as irreducible (also aleatoric uncertainty), is designated
as variability whereas uncertainty classified as reducible (also epistemic uncertainty), will be referred to
simply as uncertainty.

1.3.3 Sources of variability and uncertainty
The WERF (Water Environment Research Foundation) study: ‘Evaluating the Performance of Nutrient
Removal Treatment Processes’ (Bott & Parker, 2011) highlighted that plant performance variability
depends on site-specific conditions: ‘Local conditions impact the performance achieved on average and
in terms of statistical variability. These factors include process design, climate impacts, wet weather flow
influences, attributes of the service area, variation in influent flows and loadings, presence or absence of

Uncertainty in Wastewater Treatment Design and Operation4
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industrial contributions, whether solids processing is accomplished on the same site, sustained or interrupted
supplies of chemicals, construction impacts, mechanical failures, the difficulty in operating the process, the
ability to automate the controls of a process, the closeness of operation to design flows and loadings and
others’.

The study examined plant data and identified specific factors that can be classified as external and linked
to the ‘environment’ or internal and linked to the ‘system’. The environment was detailed as the (past and
future) inputs to the treatment plant as well as the responses of the receiving water body to the outputs of the
treatment plant. The system was the WRRF.

Table 1.1 Distinction between variability and uncertainty.

Uncertainty Variability

Origin Lack of knowledge ‘Real spread’ of values (in time or space)

Reducibility Partly reducible by further investigation Irreducible

Representation Probability distributions, density function Time series, frequency distributions,
density function

Example Triplicate analysis of a COD sample,
substrate hydrolysis rate

Influent COD (e.g., daily loads of one year)

Random variable X

f(x)

a

P(X � a)

Figure 1.2 A density function can be used to represent either uncertainty or variability.

BOX 1.2 VARIABILITY VS. UNCERTAINTY

Variability: is defined as the ‘real spread’ of values (in time or space) of a well-specified (statistical)
population (Example: observed daily average COD load in the influent of a specific treatment plant
over 5 years). The spread of these values is not reducible by further knowledge acquisition.
Variability is a property of the population, not of the state of knowledge (Kelly & Campbell, 2000).
Uncertainty: results from a lack of knowledge. Parameter uncertainty is the uncertainty about the
appropriate values for model parameters (e.g., half-saturation constants, hydrolysis rates). Model
structure uncertainty pertains to the adequacy of the model equations and the model resolution in
view of the modelling objective. Unlike variability, uncertainty is partly reducible: for example, further
measurements or deeper investigations into the relevant processes might increase knowledge.

Key concepts of the STR 5
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Examples of sources of variability and uncertainty originating from the environment are:

• Climate effects, energy use (resulting in operating strategy changes) and collection system/sewer
characteristics;

• Wastewater characteristics (flows, loads, temperature, alkalinity, pH, fractionation);
• Growth or loss within the collection area (growth rate, changes in inflow and infiltration, changes in

industry);
• Discharge permits.

Examples of sources of variability and uncertainty originating from the system are:

• Biological: microbial growth behaviour, especially at low concentrations;
• Physical: effect of unit operations configurations on removal efficiencies, alpha value (in aeration);
• Physical: non-ideal process behaviour (transport phenomena in aeration systems, non-ideal mixing

affecting plant performance, approximation of plug flow hydraulics by using continuous stirred
tank reactors (CSTRs) in series);

• Physical−chemical: for example, precipitation stoichiometry and kinetics;
• Biological-colloid chemical: effect of load and composition variations/peaks on sludge composition

and floc structure and subsequent effect on sludge sedimentation;
• Unexpected control system behaviour;
• Mechanical failure;
• Operational problems.

1.3.4 Uncertainty analysis approaches
The role that a professional plays within a project influences where she will direct her focus on questions
involving variability and uncertainty and the approach to uncertainty analysis that she will prefer. A project
manager, who will oversee all aspects of project execution, might want to know how uncertainty affects the
critical decisions affecting project development. A risk manager may hone in on uncertainties related to the
type of contract and its influence on the risk to the various stakeholders. An engineer may break the project
down to its various phases and then move to identify the sources of uncertainty within each phase. A
scientist might focus on uncertainties in the data and the mathematical model that will inform the facility
design. Tables 1.2−1.4 present three possible (not mutually exclusive) ways of addressing uncertainty (i–iii).

(i) Through project phases (Table 1.2);
(ii) Through modelling project steps (Table 1.3);
(iii) Using a systems analysis framework (Table 1.4).

Table 1.2 Examples of sources of uncertainty through infrastructure project phases (type i).

Phase Example

Regulatory Future effluent limits

Planning Design horizon, design load

Preliminary design Configuration type, critical growth rate, yield

Detailed design Number of pumps, aerator layout

Construction Unexpected geotechnical issues

Commissioning Stability of processes

Operations Toxic spills, foaming and bulking, sludge settling

Uncertainty in Wastewater Treatment Design and Operation6
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Researchers are typically more familiar with type (iii) structuring of uncertainty within a systems analysis
framework whereas practitioners will normally be at ease with type (i) structure. Type (ii) can be interpreted
as a combination of (i) and (iii) and reflects the decisions typically taken by the modeller (see also Rieger
et al., 2013). It is important to note that a modelling project could be implemented for any of the engineering
project phases (see Chapter 5).

As the STR has the objective to facilitate the transfer of methods from research to practice, it is helpful to
structure the sources of uncertainty within a framework which practitioners can easily relate to. Therefore,
the first two approaches are emphasised.

Chapters 2−6 discuss the use of models for the evaluation of variability, quantifiable (statistically)
uncertainty and scenario uncertainty.

1.4 INCORPORATING VARIABILITY AND UNCERTAINTYANALYSIS
IN MODELS
Mathematical models (such as the IWA Activated Sludge Models (Henze et al., 2000)) coupled with
statistical methods can assist practitioners in assessing variability and quantifiable uncertainty during
plant design and operation. This section focuses specifically on uncertainties associated with the
application of process models. Models can be used in any one of the project phases discussed in Table 1.2.

1.4.1 Variability and uncertainty in model steps
Rieger et al. (2013) in developing standards for Good Modelling Practice, defined a five-step model
development protocol. Uncertainties that arise at each step are shown in Figure 1.3 and discussed in the
following sections.

Table 1.4 Examples of sources of uncertainty in a systems analysis framework (type iii).

Phase Example

Aggregation/sampling error Point measurements of rainfall

Measurement error Random, systematic, gross errors

Input uncertainty Catchment behaviour

Parameter uncertainty Kinetic, mass-transfer related

Model structure Monod vs. Haldane kinetics

Numerical Insufficient numeric resolution

Table 1.3 Examples of sources of uncertainty across the steps of a modelling project (type ii).

Phase Example

Project definition System boundary, required prediction accuracy

Data collection Representativeness of historical data

Plant model-setup Choice of biological model

Calibration/validation Model parameter values

Simulation Choice of scenarios, uncertainty propagation settings

Key concepts of the STR 7
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Project definition involves identifying the goals of the modelling project and setting the criteria for
predictive accuracy. Based on the engineering project phase the pertinent sources of uncertainty will be
identified in this stage.

Uncertainties associated with the project definition will differ depending on the project phase for which
the modelling exercise is conducted (see Table 1.2 for project phase). For example, greater model accuracy
will be demanded if the model is built to support detailed design rather than preliminary design. Also, at later
project phases, more information will have been acquired and this will tend to reduce uncertainty.

Data collection and reconciliation is performed to improve data quality by removing noise and other
artefacts in the data. This is necessary as raw data collected for the model will normally contain errors,
outliers and gaps. Data gaps may be filled in using interpolation or other methods.

Uncertainties associated with data collection and reconciliation include questions as to whether the data
are suitable for the intended model application. For example, the data might contain so many gaps that filling
those gaps results in an undesirable skew.

Plant model set-up, also known as structure identification, refers to the identification/selection of an
appropriate model structure. The definition of model structure includes reactor design (e.g., fixed-bed
reactor vs. suspended growth) and reactor configurations (e.g., anoxic and aerobic zones, plug flow vs.
CSTR) and biokinetic model selection (e.g., ASM or Monod/inhibition terms).

Uncertainty about the exact reactor and plant configurations (e.g., dimensions), and the true reaction
mechanisms, results in a model structure which is subject to error, known as model structure uncertainty.

Calibration or parameter optimisation of a model consists of the adjustment of its numeric parameters,
for example, kinetic parameters, to fit observed data. The purpose of calibration is to obtain a model that
better reflects observations made under a specific set of conditions (operation).

Validation of a model consists of the evaluation of the model performance on observed data by
comparing the simulation results of a calibrated model to an independent set of observations.

Uncertainty in the data (e.g., measurement errors) can result in model parameter values that are different
from their true values.

Simulation and result interpretation relates to the application of a model to evaluate process
performance (e.g., effluent ammonia concentrations are simulated). Once a model is finalised, it is often
used to generate predictions of plant performance (based on currently available information) under some
future condition to assess whether design and operation objectives will be met.

All the uncertainties encountered during model development will propagate through the model leading to
model output uncertainty. As defined previously, model output uncertainty is the difference between the

Id
en

tif
y

un
ce

rta
in

ty

Id
en

tif
y

m
od

el
 

pr
ed

ic
tio

n
ac

cu
ra

cy

Ev
al

ua
te

m
od

el
 

pr
ed

ic
tio

n
ac

cu
ra

cy

Ev
al

ua
te

un
ce

rta
in

ty

Modelling project stepsModelling project steps

Project 
definition

Data 
collection and 
reconcilliation

Model set-up Calibration 
and validation

Simulation 
and result

interpretation

Figure 1.3 Modelling project steps and sources of uncertainty.
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predicted values and the response of the real plant when operated under the conditions reflected in the model
inputs. The more closely the model represents the real plant process and the more representative the input
data, the better the model predictions and the less uncertainty.

The steps described above apply to projects where models are used for existing plants, where influent and
plant data are available. In green field design situations where data are often not available, the data collection
and reconciliation step and the calibration and validation steps are omitted. Data from nearby plants or
similar catchments and default model parameter values can be used. However, regardless of the
application, the uncertainties described above still exist. Chapter 5 discusses in more detail the
uncertainty-related tasks that need to be considered at each stage of a wastewater treatment modelling
project.

1.4.2 Sources of variability and uncertainty in models
1.4.2.1 Model input variability
Input variability results from the variable pattern exhibited by an input variable to the model (e.g., variable
rainfall in a catchment). This input variability when propagated through the model, will cause variability in
predicted plant performance (Figure 1.4).

1.4.2.2 Model input uncertainty
Input uncertainty is a result of, for example, observation or analytical error and results from the variability of
repeated measurements. Another source of input uncertainty is a result of filling in data gaps by interpolation
or other methods. Data filling introduces varying errors which propagate through the model and affect the
uncertainty of the model output.

1.4.2.3 Model structure uncertainty
Model structure uncertainty can be defined as uncertainty inmodel predictions originating from assumptions
and simplifications made in the structure of the mathematical model. A mathematical model is always a
simplified representation of reality. This leads to some degree of uncertainty in the model output
predictions, originating from the process detail or rigour that is missing in the model. Uncertainties with
the model structure are often associated but not limited to the following model selections:

• Influent fractionation model;
• Biological and chemical model;
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• Hydraulic model;
• Aeration system model;
• Clarifier model;
• Models of sensors, actuators and equipment in plant operations;
• Interfaces between models.

Figure 1.5 includes a schematic depiction of the sources of model structure uncertainty for an example
activated sludge plant that includes aeration tanks and final clarifiers. The sources have been sub-divided
based on their spatial description (hydraulics) and the conversion process description (influent, biological
or settling model).

It should be noted that in whole plant models plant configuration simplifications also introduce model
structure uncertainty.

1.4.2.4 Model parameter uncertainty
Treatment plant models contain many parameters that must be assigned values prior to model execution.
Lack of knowledge regarding the best parameter value for a given system is an example of model
parameter uncertainty. This is especially true for new processes that have not been properly characterised
through multiple model development efforts. Examples of parameters without scientific consensus
include parameters in models for nitrous oxide production, de-ammonification and the use of alternate
substrates for denitrification.

Parameters that introduce uncertainty in biological process models are typically divided into kinetic
(rates) and stoichiometric (coefficients). An example of a stoichiometric parameter is yield while,
examples of kinetic parameters include bacterial growth, decay and hydrolysis rates as well as their
associated half saturation constants. Rate parameters become important when the associated substrate or
electron acceptor becomes ‘growth limiting’ and half saturation coefficients are critical for process
sizing. Stoichiometric parameters are important for determining how a mass of reactant is distributed
amongst one or more products for any given transformation. A very important set of parameters that
introduce uncertainty are the parameters and ratios included in the influent fractionation models.

INFLUENT ASU SST

PROCESSES Fractionation Biology

Aeration

Chemistry

Settling

Biology

HYDRAULICS � Dynamics
� Flow split

� Mixing
� Aeration

� Inlet mixing

Figure 1.5 Schematic overview of the sources of uncertainty for an exampleWRRFmodel. The blocs indicate
sources related to the influent model, the activated sludge unit (ASU) model and the secondary sedimentation
tank (SST) model.
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Some parameters are known with greater confidence (lower uncertainty) than others. For example, the
yield of ordinary heterotrophic bacteria (OHO) on readily biodegradable (fermentable) substrate (SB)
growing aerobically is well characterised. A value in the range 0.60–0.67 g of OHO COD per gram of
SB consumed has been found to work well in modelling projects. However, uncertainty in the value of
yield might be important when alternative substrates such as methanol, ethanol or glycerol are used for
denitrification as these have not been as widely researched. As yield relates the consumption of carbon
to electron acceptor consumption any uncertainty in the alternative substrate yield estimate could
significantly affect the modelled economics of using one of these substrates for denitrification.

Whereas the standard yield is well established, the values of other standard parameters are not well
known at all. For example, when modelling hydrolysis, the conversion of particulate biodegradable COD
to SB, plays an important role in the prediction of the process behaviour for systems that have a very
short SRT or for processes that largely metabolise particulate substrates (aerobic and anaerobic
digestion). Because conditions are never constant developing experiments to accurately estimate the
hydrolysis rate under all possible conditions is essentially impossible which can introduce considerable
uncertainty in the model predictions when this process is critical to the model output.

This section has illustrated the variability in parameter knowledge using a couple of simple examples,
but the reader is reminded that models have hundreds of parameters and each has a different level of
uncertainty and each of these parameters has a different impact on the model predictions. This realisation
leads to the conclusion that it is important to carefully consider the level of uncertainty in each parameter
and ultimately understand the impact that that uncertainty may or may not have on the model output.

1.4.2.5 Numerical uncertainty
Process model simulation is carried out in a number of consecutive steps. First, the real process is described
by a mathematical model (a process model using ordinary or partial differential equation (ODE or PDE)).
This is then approximated by a simulation model (numerical method) to be implemented in a computer
(Bürger et al., 2011). In a third step, the simulation model needs to be implemented in a software
platform. The lumped uncertainty coming from approximating the mathematical model by a simulation
model and its implementation is called numerical uncertainty. Each of the steps includes errors and
approximations resulting in numerical uncertainty. As discussed by Claeys et al. (2010), no automatic
tool exists to quantify this uncertainty.

The main sources of numerical uncertainty (Figure 1.6) can be classified as either numerical,
implementation uncertainty, coding uncertainty, solver suitability, solver coding uncertainty and machine
uncertainty (based on Claeys et al., 2010).

The only source of uncertainty a model user can influence directly is the choice of solver and its accuracy
settings (solver suitability). Claeys et al. (2010) show that this source of numerical uncertainty (caused by

Numerical uncertainty

Source of 
uncertainty

Solver coding 
uncertainty

Machine 
uncertainty

Numerical 
implementation 
uncertainty

Coding 
uncertainty

Solver 
suitability

Type of 
modeller

Software 
developer

Software 
developer

Model 
implemeter

Model 
implemeter

Model 
implemeter
Model user

Figure 1.6 Overview of the different sources of numerical uncertainty and modeller type that can influence
this uncertainty (based on Claeys et al., 2010).
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the incorrect application of the solvers) can be more important than parameter uncertainty. As there are no
analytical solutions for most (if not all) of the ordinary differential equations (ODEs) and partial differential
equations (PDEs) used in wastewater treatment modelling, numerical methods are used to approximate the
solution for these models.

The solver coding uncertainty and machine uncertainty can only be prevented by the software
developers. Since the model is implemented in a computer and computers have a finite precision floating
point arithmetic, any computation involves rounding errors. So, machine uncertainty is caused by the
rounding errors and can become very important in iterative processes such as numerical integration.

Numerical implementation uncertainty and coding uncertainty are sources of numerical uncertainty that
are introduced when a mathematical model is implemented in a software platform (Hauduc et al., 2010).
This implementation is executed in two steps, the translation of the model into a simulation model and
the actual coding work. In both steps, conceptual and technical errors, leading to uncertainty, can be
introduced.

1.4.2.6 Model output uncertainty
As discussed earlier, model output uncertainty is the accumulated uncertainty caused by all the uncertainties
in all the above locations as propagated through the model. Model output uncertainty can be defined as
epistemic (reducible) uncertainty and it relates to the differences between the true values of the output
quantities and the values predicted by the model. Quantification of model output uncertainty serves as
qualification and acceptance of the models used; whose outputs inform a model-based decision-making
process.

1.4.3 Evaluation methods
Monte Carlo simulation, expert knowledge with fuzzy logic and optimisation are among the most widely
used methods for exploring the combined effects of how the various sources of uncertainty propagate
through the model and affect model output. The project phases where these methods can be used are
listed in Table 1.5. The methods are critically reviewed in Chapter 4 and additional technical details have
been included in Appendix B.

Table 1.5 Methods used for model uncertainty analysis.

Phase The Most Used Methods Main Applications

Planning Monte Carlo
Expert knowledge and fuzzy logic
Scenario analysis

Output requirements
Technology selection
Scenario analysis

Preliminary design Monte Carlo and mixed optimisation methods Performance evaluation
Plant dimensioning
Control system selection

Detailed design Monte Carlo combined with:
(i) CFD, (ii) optimisation

Exact dimensions
Control system design

Operations Monte Carlo Process analysis
Optimisation
Control
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Monte Carlo analysis is the dominant method used to evaluate quantifiable (epistemic) uncertainty and
can be applied across all stages of design. In the early stages of design, when there are many degrees of
freedom and more uncertainty, Monte Carlo and scenario analysis are the preferred techniques. As the
design process progresses (and the degrees of freedom are reduced), Monte Carlo is still the dominant
technique, but it is sometimes coupled with mixed optimisation-based techniques (GA, NLP, Pareto
frontiers).

Expert knowledge and fuzzy logic have also been used, but mostly for technology selection and
scenario analysis.

Optimisation methods are typically used in preliminary and detailed design to develop exact dimensions
or during operational assessment to develop control settings and process optimisation.

Chapter 4 reviews the uncertainty analysis methods described in the literature in the field of wastewater.
Appendix D discusses pertinent methods from other fields.

1.5 SUMMARY
This chapter presented the important concepts necessary to acquire baseline understanding of the
classification of uncertainty and how it relates to process modelling. The key points from this chapter
can be summarised as follows:

Uncertainty mainly stems from imperfect or unknown information (lack of knowledge) and can be
reduced by more research. Uncertainty can be classified as quantifiable or unquantifiable based on
whether statistical methods and models can be used to evaluate it.

In this STR, uncertainty which is classified as irreducible (also aleatoric uncertainty), is designated as
variability. Variability is the ‘real spread’ of values (in time or space) of a measurable quantity.

In this STR, uncertainty classified as reducible (also epistemic uncertainty), will be referred to simply
as uncertainty.

Quantifiable (statistical) uncertainty in reference to the value of a parameter or quantity can be described
with a probability density function.
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Chapter 2

Uncertainty in wastewater
treatment – current practice

2.1 INTRODUCTION
The wastewater treatment industry has evolved towards increasingly sophisticated, capital-intensive
engineered systems. Decisions on plant design and operation often depend on the estimation of risk. As
discussed in Chapter 1, risk is intrinsically related to uncertainty. By reducing, where possible,
uncertainty, the probability of failure can be more accurately assessed and in turn optimal designs can be
proposed. To understand risk, we must therefore explore uncertainty.

This chapter covers how risk and uncertainty are currently handled in engineering practice and focuses on
the risk of non-compliance. The approaches described in the following sections will be familiar to engineers
across the world, however, the chapter focuses on current practice in North America. Examples of design
practices in other jurisdictions have been included in Appendix D.

2.2 GENERAL APPROACHES FOR ADDRESSING UNCERTAINTY
IN WASTEWATER TREATMENT
2.2.1 Design guidelines
2.2.1.1 Overview
Uncertainty and risk of non-compliance is frequently handled in wastewater treatment practice through the
use of design guidelines. Historically, process design criteria have been based on regulatory requirements,
industry-accepted design standards or state-specific regulations (industry standards, adapted to specific state
conditions with additional requirements). Some examples of these design standards include:

• Theory, Design and Operation of Nutrient Removal Activated Sludge Processes (Ekama et al., 1984);
• Water Environment Federation Manual of Practice 8 (WEF MOP-8, 2017);
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• Wastewater Engineering: Treatment and Resource Recovery 5th Edition (Metcalf & Eddy Inc. et al.,
2013);

• Great Lakes Upper Mississippi River Board, Recommended Standards for Wastewater Treatment
Facilities (Ten State Standards) (GLUMRB, 2014);

• ATV Guidelines (ATV, 2000);
• USEPA Nitrogen Control Manual (USEPA, 1993);
• USEPA Phosphorus Removal Design Manual (USEPA, 1987a);
• Biological Wastewater Treatment (Grady et al., 2011);
• WERF/CRTC Methodologies for Evaluating Secondary Clarifier Performance (Wahlberg, 2004);
• Virginia’s Sewage Collection and Treatment Regulations (Virginia DEQ, 2008);
• Biological Nutrient Removal (BNR) Operation in Wastewater Treatment Plants (WEF MOP 29,

2005).

Design guideline documents typically provide design targets such as surface overflow rates for average and
peak hour flows. These standards tend to address risk by using relatively conservative design criteria and
forcing the designer/engineer to look at multiple scenarios. What these design criteria generally do not do,
is address plant-specific conditions or provide methods for determining design flows and loads that are
both ‘real’ and statistically rigorous. Frequently, how the criteria are to be applied is open to interpretation
from the designer/engineer and/or regulator. For instance, often these standards do not directly address
covariance (correlation) of flows and loads, the interaction between unit processes, or reliability. None of
the guidance documents provide specific criteria for managing risk in process design, however using the
design standards generally results in a conservative design with relatively low probability of failure.

Because the criteria are frequently open to interpretation, engineers tend to evaluate several scenarios that
include combinations of critical design parameters. This approach can result in conservative and expensive
designs without necessarily providing a worthwhile benefit (Doby, 2004). Russell (2019) states that most
municipal wastewater treatment plants are 30−50% overdesigned based on municipal codes and, after
safety factors are used by consultants, can be overdesigned by 100% or more (Box 2.1).

2.2.1.2 Design criteria
In certain jurisdictions, permit writers need to review engineering design reports and contract documents
during the permit application process in order to issue construction permits.

For example, in the USA, the listing of specific design criteria for unit processes varies depending on the
State. Texas and Virginia, for example, provide design requirements as part of state law for various methods
of activated sludge treatment, clarification, and biosolids treatment. The risk for the permit writer is
mitigated because the state law mandates criteria that does not leave room for interpretation. Other states,
such as Florida, do not list specific design criteria for unit processes in State Code. In this case, the
permit writer is dependent on the guidance from other documents such as the Ten States Standards
(GLUMRB, 2014) for reviewing design criteria. In Florida, as design criteria are not mandated in the
Florida Administrative Code (Fla. Admin. Code, 2013), it is the responsibility of the engineer-of-record
signing and sealing the engineering report and/or contract documents to address risk in the design. In
this case, risk is shifted from the regulator to the engineer-of record.

2.2.1.3 Safety factors
Historically, safety factors have been the most common approach for mitigating risk for multiple reasons.
With early wastewater treatment plants design, safety factors could easily be used to account for a great deal
of uncertainty in all of the factors that control process performance.
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Lawrence and McCarty (1970) derived a formula for the minimum sludge age to avoid washout. The
safety factor was defined as the ratio of the design sludge age to the minimum sludge age (Lawrence,
1971a; Lawrence & McCarty, 1970). German design standards (ATV, 2000) recommend safety factors
for determining the aerobic sludge age for nitrification and nitrification/denitrification facilities.

Box 2.1 shows how multiple safety factors may work together to affect the target design concentration.

As our knowledge of the wastewater treatment process has progressed, more sophisticated methods
for design (such as modelling) have evolved which give practitioners the means to evaluate reducing
safety factors. Models can also be used in combination with safety factors to reduce the number of
scenarios that need to be analysed or modelled. For instance, a model can be run for a maximum
month condition, with safety factors that are built in to account for daily or diurnal fluctuations in
flows and loads.

BOX 2.1 COMPOUNDING OF SAFETY FACTORS

In wastewater treatment infrastructure, safety can be introduced in various ways. A regulator can
introduce safety by lowering the discharge permit limit. Similarly, a design engineer can choose to
design for an effluent target concentration lower than the permit. Figure 2.1 shows how multiple
safety factors may work together to affect the target design concentration. The development of the
effluent permit in the regulatory stage includes safety factors to reduce the probability of negatively
impacting the ecosystem whereas the WRRF planning and design stages introduce safety to
increase the probability of not surpassing this permit. As a result, compounding of safety factors occurs.
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Figure 2.1 Multiple safety factors introduced at different locations reduce the target design effluent
concentration.
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2.2.1.4 Reliability and redundancy standards
Reliability and redundancy standards are used to reduce the risk of failure due to individual unit processes
being out of service either due to mechanical failure or maintenance. Guidelines where available are, by
necessity, somewhat vague because they must deal with a wide range of conditions. The real degree of
reliability and redundancy is developed by the designer/engineer in conjunction with the owner. These
requirements are often difficult to specify as they often rely on the relationships between the equipment
at various locations within a facility.

Design guidelines for adding redundant or backup components to a system design have been developed
to ensure that critical components retain redundant configurations in the event of failure (Palmer et al.,
2003). A definition of redundancy and its links to uncertainty and reliability can be found in Appendix A.

In North America, redundant design practices began with fault-tolerant requirements under the directive
of water quality regulatory compliance and safety (USEPA, 2000). The justification for including redundant
equipment in treatment facilities began with the need to continuously operate treatment processes during
equipment failure and while performing preventative maintenance that required equipment to be taken
out of service. This assured that a treatment facility’s continuous treatment operations would meet
federal and state regulatory requirements that protect the environment and public health and safety.

The U.S. Environmental Protection Agency (EPA) and several states have developed standards for
equipment redundancy considerations. These standards tend to address risk by using relatively
conservative design criteria. Typical redundancy requirements for treatment facility’s unit processes are
presented in Table 2.1. A comprehensive list of federal and state redundancy requirements for U.S. and
Canada are presented by Palmer et al. (2003).

2.2.1.5 Development of tight contract documents
Well-developed plans and specifications that have been reviewed and approved by the owner should
decrease risk during construction. Development of these items will prevent errors and/or omissions and
will also minimise loopholes for change orders in the event the design intent is not clear. Consideration
should be given to both the appropriate equipment manufacturers and the selection of proper materials
for construction. Change order mitigation can be addressed by providing flexibility in the bid form to
include allowances for unforeseen conditions in the field.

Well-developed drawings and specifications provide the means to develop a recommended sequence of
construction and a list of construction constraints which will keep the facility operating in a manner that
ensures adequate treatment during construction and start-up. Sequencing provides the designer/engineer
with an estimate of project duration in the event that liquidated damages are included as part of the
contract. Finally, well-developed plans and specifications provide an accurate construction cost estimate.
This estimate will be used by the owner for financing the project.

2.2.1.6 Staffing and monitoring
In certain jurisdictions, under conditions where there may be concern over meeting effluent permit limits,
regulators have the flexibility to require additional staffing and/or monitoring known as ‘reasonable
assurance’. The addition of staff or the requirement for additional monitoring offsets risk and uncertainty
that the permit writer may believe is evident during review of the engineering reports and/or contract
documents during the permit application process.
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Table 2.1 Example of regulatory redundancy/reliability requirements for wastewater treatment facilities.

Unit Process USEPA (1974) Great Lakes Upper Mississippi
River Board (Ten State Standards)
(2014)

Mechanically
cleaned screens

One backup screen Minimum of two screens, with
capability to treat design flow with one
unit out of service

Pumping systems One backup pump for each system
performing the same function

One backup pump for each system
performing the same function

Grit removal Not specified Minimum of two units with ability to
bypass. No redundant tankage
required

Primary
sedimentation
basins

Must be able to process 50% of plant
flow with one (largest) unit out of
service

Requires multiple units capable
of independent operation for
plants with flows higher than 0.1
MGD, but no redundant unit required

Secondary
sedimentation
basins

Must have 75% of rated capacity with
one (largest) unit of service

Requires multiple units capable
of independent operation for
plants with flows higher than 0.1
MGD, but no redundant unit required

Activated sludge –

Aeration basins
Must have at least two basins for
processing full plant flow. No standby
tankage required

Must have at least two parallel basins.

Activated sludge –

Aeration blowers
Must have sufficient capacity to meet
oxygen demands with largest blower
out of service

Must have sufficient capacity to meet
oxygen demands with largest blower
out of service

Activated sludge –

Air diffusers
Air diffusion system must be designed
so that largest section can be isolated
without measurably impacting oxygen
transfer capability

Plants with less than four
independent aeration basins shall be
designed with removable diffusers
that can be serviced without draining
the tank

Ultraviolet
disinfection

Must be able to process 50% of plant
flow with one (largest) unit out of
service

Must have a minimum of two lamp
banks per channel to facilitate
cleaning or service while maintaining
capacity

Aerobic and
anaerobic digestion

At least two tanks required, but no
standby tank required

Requires multiple units or alternative
method of sludge
processing/disposal, but no standby
tank required

Sludge dewatering
equipment

Centrifuges require backup unit, which
can be uninstalled. No other
redundancy listed for alternative
dewatering systems

Not specified

N/A: Not specified
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2.2.2 Statistical methodologies
Although there are many federal and state guidelines providing statistical methodologies for calculating the
risks associated with wastewater effluent or potential pollution sources on the environment, there is little
guidance for applying statistical methods to the wastewater process design itself.

In process design, various statistical methods are used to calculate design flows and loads. Design criteria
from most of the standard texts dictate that ‘maximum month’ or ‘peak’ flows or loads be used. These are
usually defined using a period of 5−10 years and are usually selected by calculating a percentile based on
several years of data. Rigorous statistical methods are not typically applied to data screening or sample
size collection.

Frequently, flows are analysed in more detail than loads, simply because there is often more data to work
with. Multivariate regression analysis can be used to estimate collection system response to rainfall and soil
conditions. This enables estimates of flow based on long-term rainfall event data as well as estimates of soil
conditions based on time of year, frequency of serial rainfall events, and temperature.

2.2.3 Scenario analysis
An established method of accounting for variability and uncertainty is to run a steady state or dynamic model
under several conditions. This one at a time type of scenario analysis tries to capture how the plant will
operate under multiple conditions including conditions such as:

• High and low temperatures;
• High and low flows or loads;
• Seasonal permitting requirements; and
• Combinations of units in or out of service.

Additionally, in the preliminary design stage, multiple scenarios may need to be addressed that account for:

• Multiple population growth scenarios; and
• Multiple future permitting requirements.

The designer/engineer may choose to analyse the effect of other uncertainties that affect the design such as
kinetic variables or wastewater characteristics that have not been well defined. The number of scenarios
analysed is usually limited by the budget for planning and design and typically is focused on the most
realistic or critical scenarios.

2.2.4 Mathematical modelling
The use of models to support the decision-making process has become common practice. The results
obtained from modelling efforts must, however, be used judiciously, given the fact that plant design and
operation remain vulnerable to imperfect data and to imperfect predictability of the system behaviour.
When implementing models for design, the engineer must select plant-specific inputs to the model
including detailed wastewater characteristics and biokinetic parameters. The operational envelope of the
model-based design under evaluation can be tested by varying the values of the model parameters and
influent characteristics.

With the development of sophisticated whole plant computer models, the standard design criteria can be
challenged if the designer/engineer can convince regulators that the models reasonably predict plant
performance. This will require detailed wastewater characterisation and/or pilot testing. In such a case,
the engineer’s and the regulator’s judgement are generally used to determine the acceptable risk of
applying modified criteria.
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Model application for design typically requires that the designer/engineer identifies the most critical
inputs and the most appropriate values for those inputs. The less critical model inputs can be fixed at a
default value set by a knowledgeable model developer. The designer/engineer must select an appropriate
methodology for determining flows, loads, and other model inputs that when combined do not result in
an overly conservative design or a critically under-designed system. The designer/engineer must also be
able to communicate the level of risk of critical design decisions to decision makers.

As computer processing power and speed has increased, interest in using Monte Carlo techniques has
also increased. The Monte Carlo approach is attractive to treatment process design for several reasons
including:

• The number of variables that can affect a design is high;
• The Monte Carlo method can account for covariance between variables;
• Sophisticated whole plant simulators are available that account for the interaction of multiple

processes;
• Different unit processes may be affected in opposite ways by certain assumptions and theMonte Carlo

method can test many assumption combinations;
• The Monte Carlo method enables the determination of peak, average, and minimum design

requirements; and
• The Monte Carlo method enables the use of computing power to analyse multiple scenarios.

In academia, sophisticated statistical analyses are sometimes used for model calibration and process design.
However, most of these methodologies have not been used outside of academia because they require
significant compute resources, detailed data needs, as well as time and expertise to complete the analyses.

Chapter 3 discusses in detail the potential of incorporating mathematical models and statistical
techniques for process design.

2.3 ADDRESSING SPECIFIC SOURCES OF UNCERTAINTYAND
VARIABILITY IN CURRENT DESIGN PRACTICE
Even though not explicitly stated, design guidelines identify areas of uncertainty – in this STR called
sources of uncertainty or variability (for definitions see Chapter 1, Box 1.2) – and assign safety factors
to each one. The objective is to determine which of these sources of uncertainty are most important, and
which have the biggest role in the decisions that need to be taken. As the project progresses and
decisions are made, fewer sources of uncertainty need to be considered and the degrees of freedom in the
design process are reduced.

2.3.1 Addressing sources of variability and uncertainty in flow and load
determination
2.3.1.1 Use of historical information to develop design flows and loads
Good design practice is to use historical information as a component of the design basis for the facility. This
includes actual facility data (e.g., raw influent flow and concentration data), population growth and
projections, current and future zoning of the service area, past, present, and future capital improvement
projects (e.g., infiltration and inflow improvements). For new facilities, data collected in nearby plants or
in plants situated in similar catchments can be used.

Population growth projections are generally looked at in several different ways including, historical
straight-line projections, traffic analysis zoning, and census projections. The evaluations are
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independently evaluated to determine future growth for flow projections. As with any analysis, the use of
multiple data sets reduces the uncertainty in the evaluation. In most cases, the risk and uncertainty at this
level is generally accepted by the owning entity.

Zoning changes and capital improvement projects in the service area can significantly impact the flow
and characteristics of the wastewater conveyed to the treatment facility. Standard design practice is to
consult the owning entity on future plans for the service area and to address changes expected during the
planning life of the treatment facility during the preliminary design. This is typically done by adjusting
historical facility data to account for these changes. In most cases, the risk and uncertainty regarding
zoning changes is accepted by the owner.

Engineers will typically use peaking factors to account for the variability in flows and wastewater
concentrations. These peaking factors can be developed by evaluation of historical data from flow meters
or from empirical equations such as those provided in the 2014 edition of Ten States Standards
(GLUMRB, 2014) that relate population to the hourly flow peaking factor.

Flow peaking factors are used to verify that facilities will perform at peak flow conditions as well as to
confirm loading rates on unit processes such as clarifiers and tertiary filters. Mass loading peaking factors are
commonly used to ensure performance and permit compliance.

It is the designer/engineer’s responsibility to assign risks to the various peaking factors to size
components such as bioreactor volumes, oxygen-delivery systems, clarifiers and filter surface area
requirements, as well as chemical feed system requirements.

Risk and uncertainty in the use of facility data are associated with sample collection and analysis.
Verifying the data quality procedures followed by the owning entity will reduce the uncertainty of the
data sets. The designer/engineer further mitigates risk and uncertainty by evaluating the data and, for
example, removing outliers. After the historic data set is modified, the design basis is modified further
for the other factors described below. This is, of course, limited only to facilities already in service.

2.3.1.2 Use of per capita flows and loads
For existing facilities, the use of industry accepted per capita flows and loads, supplemented with population
projections, can provide verification for facility design criteria. Significant discrepancies found in this
verification step can warn of insufficient conservatism in the design. The designer/engineer needs to
examine the cause of the discrepancy and should re-evaluate the design criteria if the discrepancies
cannot be explained by a change in the service area or future capital improvements.

2.3.1.3 Screening of influent wastewater data
Analysis of the historical data is used to understand the influent wastewater characterisation. The designer
will be more certain in his/her design if he/she is certain that the available influent data represent the true
wastewater characteristics. Data evaluation techniques include data plotting, screening, flow- and mass
balances, correlations, and the calculation of peak flow and mass loading factors. The specific methods
used to evaluate the data vary widely as there is currently no commonly accepted best practice to do
this evaluation.

2.3.1.4 Wastewater characteristics when data are not available
If wastewater characterisation data are not available, designers must make assumptions regarding the
wastewater characteristics and loading patterns. These assumptions are often based on a combination of
published information, information from surrounding facilities, and engineering judgement. The design
then normally includes some safety factors because of the larger degree of uncertainty.
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Wastewater characterisation also changes over time introducing uncertainty to the future plant
performance. These changes can be attributed to the gain (or loss) of population, water consumption
patterns, and industry. Wastewater characteristic changes should be estimated during design, especially
when considering nutrient removal.

2.3.2 Addressing sources of uncertainty in unit process design
The following sections focus on how current practice addresses uncertainty in the design of unit processes.
The continuous activated sludge system is used as an example.

2.3.2.1 Selection of design aerobic solids retention time
Perhaps the most common example of addressing uncertainty and variability inWRRF design practice today
is the use of a safety factor when determining the aerobic solids retention time (SRT) for a nitrifying system.
There are many variables related to both influent wastewater quality as well as operations that determine the
system SRT needed to assure sufficient ammonia removal. These include parameters related to the growth
rate of autotrophic organisms such as temperature and pH along with operational parameters such as the
dissolved oxygen concentration and the ammonia concentration in the bioreactor. Other operational
parameters, such as clarifier performance (solids leaving the plant) as well as waste activated sludge
quantities, also impact SRT.

For example, in the ATV-DVWK-A 131 (2000) guidelines, the equation used for the calculation of
the SRT includes a safety factor which takes into account: (a) potential variations of the maximum
growth rate caused by certain substances in the wastewater, short-term variations and/or pH shifts, and
(b) the variations of ammonium load. The guidelines suggest that the safety factor should be in the range
of 1.4−1.8 (lower safety factors for higher population equivalents). Similar safety factors are included in
most guidelines such as Metcalf and Eddy (Metcalf & Eddy Inc. et al., 2014) and WRC (Ekama et al.,
1984) among others.

Due to the variability and uncertainty in both bacterial growth and plant operations, safety factors are
used to ensure that washout of autotrophic organisms does not occur. The designer/engineer may also
employ the use of a longer SRT to ensure that a target effluent ammonia concentration is met although
increasing SRT does mitigate risks associated with nitrifier washout and high effluent ammonia
concentrations, it does present additional challenges. Long SRT systems can be prone to filamentous
bulking as well as high capital and operating costs, as a result of requiring more oxygen and larger
tank volumes.

2.3.2.2 Selection of design sludge volume index
State-point analysis is commonly used to determine the horizontal surface area needed for secondary
clarifiers and to determine underflow rates. Uncertainty in state point analysis outputs stems from
uncertainty in the gravity flux curve and the Vesilind parameters. Additional limitations of the state-point
analysis can be found in Henze et al. (2008).

Uncertainty relating to solids settling in secondary clarifiers typically results in a design sludge volume
index (SVI) that is rather high. In order to mitigate the risk caused by the uncertainty of varying SVIs and
operating conditions, the secondary clarifier is typically evaluated using multiple state-point analyses at
varying design conditions to determine the performance of the clarifier under those different conditions
(Henze et al., 2008).

Empirical relationships between SVI and initial settling velocity (ISV) have been developed to be able to
generate solids-flux curves based on SVI andmixed liquor suspended solids concentrations (Daigger, 1995).
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This helps the designer/engineer to quickly evaluate clarifier conditions without knowing facility specifics.
To mitigate the risk associated with these empirical relationships, column testing can be performed using the
facility’s mixed liquor to develop the solids-flux curve for that individual system, but allowances will still be
needed for varying conditions.

The WRC guidelines (Ekama et al., 1984) include an explicit safety factor that is used to multiply the
estimated area of the secondary settling tank. The area of the secondary clarifier is estimated as a
function of peak wet weather flow, mixed liquor suspended solids concentration, the recycle ratio, and
SSVI3.5 using an empirical equation that has been derived based on flux settling parameters measured at
30 plants in the UK. The calculated area is then multiplied by a safety factor of 1.25.

2.3.2.3 Selection of design denitrification rates
Uncertainty relating to the denitrification rate in nitrogen removal facilities is a function of several items:
temperature, pH, dissolved oxygen carry-over from aerated zones, use of light aeration in anoxic zones
to maintain solids in suspension, availability of readily biodegradable (fermentable) COD (SB) in the
anoxic zone feed and hydrolysis of particulate biodegradable COD (XB) to SB. The designer/engineer
can account for variations in temperature by determining minimum temperature requirements and sizing
the reactor accordingly. Alkalinity balances can be performed to determine if pH is impacted and, if
needed, alkalinity feed systems can be added. The impact of dissolved oxygen can be accounted for
during design by providing tapered aeration, real-time aeration control and/or de-oxygenation zones for
mixed liquor internal recycles.

Uncertainty relating to the denitrification rate in nitrogen removal facilities is typically handled by the
appropriate sizing of the anoxic zone. For example, in the ATV-DVWK-A 131E (2000) design
guidelines, the size of the anoxic tanks has to satisfy the recommended ratio of the anoxic to total
volume of the bioreactor. Ratios of less than 0.2 or greater than 0.5 are not recommended.

In the WRC guidelines, the anoxic tank volume is derived from the aerated section volume. The volume
of the aerated sections of the bioreactor is calculated as a function of SRT and the maximum specific growth
rate of the nitrifying organisms. The recommended values for the un-aerated to the total bioreactor volume
are presented graphically and indicate that the ratio should not be larger than 60%.

Historically, the equations used for the sizing of the anoxic zones have been proven to be conservative,
alleviating the risk involved in meeting effluent total nitrogen concentrations. In the event that the design
engineers feel that the risk has not been adequately addressed, they often choose to add tertiary treatment.

Variations in readily biodegradable COD (SB) in the influent wastewater cannot be mitigated by the
designer/engineer or operations staff. The uncertainty in this parameter is exacerbated by the fact that
most treatment facilities do not perform SB measurements, which require either respirometry or a
combination of physical chemical analyses (Choubert et al., 2013; Melcer et al., 2003). This component
of the influent waste stream is vital for both biological phosphorus removal and denitrification.

The uncertainty related to SB for denitrifying systems is generally accounted for in two ways. The
designer/engineer might rely on either empirical equations (or use an uncalibrated process model) to
calculate a denitrification rate, or might use a value of the hydraulic retention time based on a rule of
thumb to directly calculate anoxic volume.

Several empirical equations and curves have been developed to determine denitrification rates for pre-
and post-anoxic zones. The most prevalent equation for pre-anoxic zone sizing was published by
Burdick et al. (1982), which relates the F/M ratio to the denitrification rate.

In addition to empirical relationships, the size of the anoxic zones is frequently determined with
a simulator.
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2.3.2.4 Selection of dissolved oxygen concentration in bioreactors
Designers typically will select design dissolved oxygen concentrations for varying design conditions
(average day, maximum day, etc.) to ensure that there is adequate oxygen available for oxidation of
carbonaceous and nitrogenous matter. Historically, activated sludge plants have been designed to operate
at a dissolved oxygen (DO) concentration of 2 mg/L as a means to account for uncertainty in aeration
demand due to variability in wastewater strength and temperature.

2.3.2.5 Selection of design oxygen transfer efficiency
The designer/engineer often assumes several key parameters that have large impacts on the sizing of air
delivery systems in wastewater treatment. These include the alpha value, diffuser fouling factor, the
standard oxygen transfer efficiency (SOTE) for diffused air systems and the standard aeration efficiency
(SAE) for mechanical surface aeration systems.

Alpha values are typically prescribed in industry-accepted literature based on themethod of aeration being
employed. Field testing can also be done to determine this number. The standard oxygen transfer efficiency is
the percentage of the oxygen transferred into themixed liquor from the overall amount of oxygen delivered at
standard conditions. This number varies based on the diffused air method used, as well as the depth of the
diffusers. The standard aeration efficiency (measured in kg/kw-hr or lb/hp-hr) is generally provided by
the surface aerator manufacturer, and is often found to be unrealistic in actual applications. These values
have been scrutinised over the years and found to be overly aggressive. Field testing done by third parties
has indicated SAE values lower than the typical claims of the manufacturer.

The oversizing of air systems can be problematic from both a capital investment standpoint as well as
from an operational standpoint. Providing too much air will impact the biology of the mixed liquor
potentially causing poor settling. For facilities employing nutrient removal, high dissolved oxygen
concentrations in recycle flows can impact the performance of fermentation and anoxic zones.

These risks are typically addressed by sizing air systems with adequate turndown through the use of
multiple units and/or use of variable frequency drives to ensure that sufficient air is provided at both the
minimum and maximum design condition. Automatic control systems to control the speed on blowers
can also be employed to ensure that the proper amount of oxygen is provided to the system. Risk can
further be mitigated through field oxygen transfer testing to determine actual field transfer conditions.

2.3.3 Addressing uncertainty via effluent permit selection
The following sections discuss how uncertainty in WRRF performance can be taken into account by
selecting more conservative effluent permits both as a permit writer as well as a design engineer. To
illustrate the point, an example for the USA legal framework has been included.

2.3.3.1 Effluent limits
In the United States, the Environmental Protection Agency (USEPA) Clean Water Act (USEPA, 1987b)
requires that any point source discharge to a navigable water body be permitted through the USEPA or a
State with delegated authority under the National Pollution Discharge Elimination System (NPDES)
programme. The Clean Water Act specifies limitations using ‘best available current technology’ to issue
technology-based effluent limits.

Permitting authorities are required to add more stringent water-quality-based standards for impaired
waters. The total maximum daily load (TMDL) programme was instituted as part of the Clean Water Act
to identify and determine point and non-point source reductions to impaired water bodies with the intent
that the water met the applicable designated uses.
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The Florida Administrative Code (Fla. Admin. Code, 2013) explicitly lists effluent limits for discharge to
ocean outfall, deep well injection, reclaimed water, and for surface and groundwater discharges that do not
have water-quality-based standards. This removes all issues of dealing with risk and uncertainty from the
wastewater permit writer.

The requirement for water-quality-based standards indicates that the surface water is impaired and has an
approved TMDL. The TMDL is developed through water quality modelling done by those other than the
wastewater permit writer. The data used in the water quality modelling is either real or generated by the
water quality modeller (water quality modellers use only a margin of safety factor to account for
uncertainty). When multiple discharges occur within a discharge segment the permit writer must consider
the waste load allocation (WLA). Non-points and natural sources are included as a load allocation (LA).
The modeller uses the following formula to develop a TDML for a specific parameter; TDML=
WLA+ LA+MOS. Stakeholders (those contributing to the impaired water body) can provide public
input and data to assist in the development of the TMDL.

Once the TMDL is established and approved by the USEPA, the wastewater permit writer incorporates it
into the permit. The wastewater or stormwater permit writer does not take on any risk in issuing this
numerical limit as it has been established and approved by others. When multiple discharges occur within
a discharge segment the permit writer must consider theWLAas it was utilized during themodelling process.

2.3.3.2 Selection of effluent design criteria
Facility design is based upon meeting a numerical effluent limit in order to meet a permit requirement.

The designer/engineer normally employs a lower target effluent concentration in the process design, as
compared to the permit limit, to account for uncertainty. For high rate (non-nitrifying) facilities requiring
only BOD and TSS removal, assuming lower BOD and TSS values in the effluent do not significantly
impact facility sizing if guidelines, such as selection of SRT to washout nitrifiers and clarifier loading
rates, are followed.

Larger impacts are common where nutrient removal is required and the designer/engineer accounts for
uncertainty by utilizing a design effluent ammonia, nitrate, or total phosphorus value lower than the effluent
limit. Modelling with Monod kinetics has shown that lower substrate concentrations decrease the growth
rate of the organism. For nitrifying bacteria, use of a lower than required substrate concentration will
result in a larger bioreactor. This relationship is not linear and, therefore, a slightly modified effluent
target concentration can significantly impact a modelled growth rate and bioreactor size.

Risk mitigation options depend on the effluent compliance period of the facility. For example, if the plant
has a very low phosphorus limit over a short averaging period (e.g., 7-day average or monthly average),
significant risk mitigation methods may be warranted to address the issue of even a ‘small’ excursion
causing a permit violation.

Risks over meeting total phosphorus limits are sometimes mitigated by the designer/engineer using a
lower effluent total phosphorus value, which often requires the use of increased metal salts during
operation. This may ensure compliance with effluent phosphorus limits at the cost of additional
operational costs for the metal salt, a significant increase in solids production, and potentially detrimental
effects on the pH in the process.

2.3.4 Summary of uncertainty analysis methods in current practice
Table 2.2 summarises the methods used in practice during design to address key sources of uncertainty and
variability. Most of the engineering decisions are made during this phase and thus it is important to be able to
quantify the associated uncertainty.

Uncertainty in Wastewater Treatment Design and Operation26

Downloaded from http://iwaponline.com/ebooks/book-pdf/1117949/wio9781780401034.pdf
by guest
on 19 January 2023



Table 2.2 Summary of methods used in practice to address key sources of uncertainty and variability.

Source of Uncertainty Uncertainty or Variability Risk How Practice Addresses
Risk

Influent flows and mass
loads

Rate of increase of flow and
concentration
Peak flow and loading events
Correlation between flow and
load
Variability of historical flows
and loads
Data accuracy

Underestimating flows and
loads
Overestimating flows and
loads
Ignoring correlations or lack of
correlations between flows,
loads temperature, and
discharge requirements.
Changes in flows and loads
due to changes in population
or service area make-up

Use of historical information to
determine population growth
rates and peaking factors
Verification of historical data by
using per capita mass loads
and flows
Screening of data and
omission of outliers
Use of flow and load peaking
factors for design of hydraulic
elements and unit processes

Characterisation of the
wastewater components

Consistency of fractionation
over project planning period
Lack of long-term historical
data to measure COD
fractionation

Overestimation of nutrient
removal and/or sludge
quantity
Underestimation of nutrient
removal and/or sludge
quantity

Sensitivity analysis
Practical checks of process
models vs. traditional design
criteria

Aerobic SRT pH and DO control
Variability and correlation of
pH, temperature
Nitrification rate
Plant operations

Washout of autotrophic
organisms
Effluent ammonia
concentrations exceeded
Bulking sludge

Washout SRT safety factor

Design SVI Plant upsets
Plant operations

Poor settling mixed liquor
Clarifier failure

Use of selectors
Clarifier safety factors
Percentile evaluation on
historical SVI

(Continued)
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Table 2.2 Summary of methods used in practice to address key sources of uncertainty and variability (Continued ).

Source of Uncertainty Uncertainty or Variability Risk How Practice Addresses
Risk

Nutrient Uptake rate Variability of pH, DO,
temperature in wastewater
Abundance of readily
biodegradable organic matter
in wastewater

Exceeding permit
requirements
Oversizing of anoxic zones
which can result in phosphorus
release in bio-P systems

Sizing reactor for permit
condition requirements
Use of empirical equations for
anoxic zone sizing for facilities
not employing bio-P
Addition of supplemental
carbon source
Addition of post-denitrification
capabilities
Process simulation

Process air system
design

Design condition (max
day/max week)
Oxygen inputs upstream of
system (cascades)

Inadequate air at high demand
conditions
Overdesign at low
flow/start-up conditions
Affects nitrifier growth rate
Affects system microbiology
(filamentous organisms)

Provide equipment available to
meet peak demand
Have flexibility to turndown
oxygen delivered
Dissolved oxygen control via
instrumentation

Effluent design criteria
related to the effluent
permitting requirements

Accuracy of water quality
models predicting receiving
water quality.
Variations in receiving water
quality and flow
Seasonal permit limits
Accuracy in models in
predicting effluent quality
Future changes in regulations
Facility operations

Permit compliance Use of lower design effluent
limits as compared to permit
requirements
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2.4 IMPLICATIONS OF CURRENT PRACTICE ON DEGREES OF FREEDOM
IN ENGINEERING DECISIONS
Depending on jurisdiction, design approaches can vary from highly prescriptive to very open, resulting in
varying degrees of freedom in the decision-making process.

The use of strict industry standards in design (similar to strictly following a recipe in a cookbook)
automatically reduces the degrees of freedom in the decision-making process. If one assumes that
decisions on loads and effluent requirements have been taken and the industry standard is to be strictly
followed, then the design becomes an automatic procedure that does not require any decision making.
This approach ‘buries’ uncertainty, which is not seen by the stakeholders, and normally increases project
costs significantly.

In most cases though, even when industry standards are purported, engineering judgment is still required
and parameters that differ from the default values might be used by the designer (industry standard is used as
a guideline). In this case, the designer/engineer will need to select values for the design inputs such as safety
factors for nitrification or a sludge volume index to mitigate his/her risk.

When no industry standard is purported, and the engineer is free to choose the design methodology, the
degrees of freedom increase dramatically and by extension so do the sources of uncertainty to be considered.
In this case, the engineer is able to make decisions on the selection of a guideline or a process model as well
as the values for all of the design inputs.

It is evident that in the first case (strict adherence to a guideline), no competition in the design can arise
and both the design engineer and the owner are legally protected in case of failure by having followed a
pre-selected state-of-the-art procedure. However, in this case there is little possibility to seek out
opportunities and to look for optimised or competitive solutions. Also, the choice of technologies and
configurations will be restricted which may lead to non-optimal solutions. At the other extreme, in
case 3, the encountered uncertainties may give rise to both a risk of failure as well as opportunities
that arise from competition. It could be argued that the industry is moving from case 2 to case 3
where the consortium needs to cover for risk of failure but is also able to reap the benefits from
innovative ideas. In case 3, the need for structured appraisal of sources of uncertainty and variability
gains importance.

2.5 SUMMARY
Risk discussed in this chapter is associated with uncertainty in the design process. Uncertainty during the
design process results in (usually) the selection of conservative assumptions for the basis of design. This
uncertainty is addressed through the use of statistical methods that discard outliers in data, the use of
safety and peaking factors in design, the use of effluent criteria that are lower than permit standards, and
generally accepted methods for determining nutrient uptake rates and oxygen requirements. Each of
these decisions impact both the operational flexibility of the facility and the construction and
operational costs.

Ultimately, designers/engineers, owners, contractors, and regulators, need to understand the interactions
between making conservative assumptions in design and the impacts of those assumptions on the project
lifecycle cost. The cost of providing conservative water quality standards, coupled with the safety factors
used during the design process, will most likely not cause a linear increase in project cost but rather an
exponential increase depending on the conservatism used for major design decisions. Future work that
could determine the overall ‘conservatism’ contained in a facility arising from all decisions taken from
the creation of water quality standards all the way through to process design would be very valuable.
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Chapter 3

Incorporating uncertainty analysis
into model-based decision making –
opportunities and challenges

3.1 INTRODUCTION
There is increasing consensus among water reclamation professionals that the predictive power of models is
a critical component of plant design and operation. However, models and simulators used by designers and
operators are yet to systematically incorporate methods for the evaluation of the uncertainty associated with
design and operations. Such approaches have the opportunity to assess the upset resilience of individual
processed and the system as a whole.

This chapter presents a general discussion on the implications of uncertainty when using process models
for design and optimisation of treatment plants. The discussion highlights both the potential opportunities
for explicit accounting of uncertainty as well as open questions that need to be dealt with before such
approaches can be integrated into daily design practice.

3.2 INCORPORATION OF SAFETY IN CURRENT MODEL-ASSISTED
DESIGN
Common practice for the design of a treatment plant is to use design guidelines. In some cases, the
designer/engineer will then run a steady state or dynamic simulation with a process-based biokinetic
model and if the predicted effluent concentration is (well) below the effluent requirements, then the
design will be judged as appropriate.

In some cases, when a model is directly used to obtain a design, uncertainty and variability are accounted
for in several ways as discussed in Chapter 2:

• Use of a higher influent load than the design load;
• Design to more stringent effluent requirements (e.g., to 70% of the effluent limit concentration);
• Choice of conservative values for process parameters (e.g., reduced maximum growth rates, increased

sludge volume index);
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• Increase of obtained design variables (e.g., multiply a resulting design volume with a safety factor
of 1.5);

• A combination of the above.

An alternative would be to use a model-assisted approach where the designer/engineer tries to directly
quantify the uncertainty associated with the different model factors (parameters and inputs). Uncertainty
propagation can then be used to quantify how the plant performance predicted by the model is affected.
Design variables (such as tank volume) can then be iteratively modified until the probability of
compliance reaches a specific value, for example, 95% or 99%. This probability ties into the resilience of
the process and the overall treatment system.

3.3 OPPORTUNITIES OF EXPLICITLY CONSIDERING UNCERTAINTYAND
VARIABILITY
One can view the use of safety factors in a design guideline as an implicit way of dealing with uncertainty.
By adding a margin of safety, various sources of uncertainty are accounted for simultaneously. The
advantage of this approach lies in its simplicity. Historically developed safety factor approaches have
withstood the test of time and are often widely accepted as industry standards. However, guidelines are
not available for all configurations or new technologies and thus may limit innovation. This is especially
true when highly integrated systems are being conceived (water resource recovery facilities (WRRFs)
with many feedback loops due to sophisticated control or interconnected systems, e.g.,
sewer-WRRF-river). Recent developments in simulation-assisted approaches means that the behaviour of
such complex systems can be described.

The challenge when using a process-based model is how to appropriately account for uncertainty, that is,
how to appropriately translate the safety factor approach of a guideline. The designer/engineer may
explicitly acknowledge the uncertainties present in the modelling exercise in different ways. One
possibility is to document how each uncertain input value was determined, to provide the rationale for
the decisions made for each of the uncertain inputs. Another possibility would be to express the
uncertainty by using quantitative probability distributions for model inputs and model parameters.

The main practical advantage of explicit approaches is increased transparency regarding uncertainties
(Flyvbjerg et al., 2003). It is expected that such methods can be refined by conducting post-project
audits during which the assumptions made in the design phase are compared with the performance of the
built plant and the causes of any discrepancies are identified.

3.4 SCOPE AND LIMITATIONS OF MODELS
Models by definition are not exact replicas of real-world systems. The necessary simplifications inevitably
lead to the introduction of uncertainty. When using a model, the model scope needs to be considered. For
example:

• Which phenomena were included, and which ones were not included?
• What is the range of values for model inputs and parameters for which the model is expected to give

adequate results?

3.4.1 Evolution of wastewater treatment modelling
The scientific development of activated sludge models (ASMs) reflects the improvements in the
understanding of the fundamental microbiological transformation processes occurring in biological
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wastewater treatment and the current ASMs are widely applied in engineering practice as state-of-the-art
models and used to predict plant performance.

3.4.2 Desirability criteria for models
The following features are often used to judge the desirability of a model (e.g., Reichert, 2009):

• Causality: The model represents the relevant cause−effect relationship for the system response at the
required level of resolution.

• Universality: The model structure and as far as possible the model parameter values should be
transferable to a similar system.

• Predictive capability: The model should remain valid for the extrapolation of external influence
factors to ranges required for predictive use.

• Identifiability: Unknown parameter values should be identifiable with the available data. This means
that a model can be fitted (i.e., parameters can be identified) when applying a fitting (optimisation)
algorithm. When this is not the case, prior knowledge of non-identifiable parameters must be
available.

• Simplicity: The model should be as simple as possible.

With respect to the five desirability criteria listed above, an attempt to classify the importance of these
features to ASMs is: causality (high), universality (medium−high), predictive capability
(medium−high), identifiability (see Box 3.1) (low), simplicity (medium). The strength of the ASM suite
lies in characterising the microbial processes. However, when trying to emulate full-scale systems, other
factors such as hydrodynamics, mass-transfer (such as oxygen transfer during aeration), varying sludge
settling characteristics, precipitation chemistry, sensors and actuators, equipment reliability may become
equally important or even more important. The following example shows the relationship between
WRRF model limitations and sources of uncertainty.

3.4.3 Example of wastewater treatment plant model limitations
Consider the following scenario: An engineer is given all the details of the configuration of a plant and is
then asked to model the (expected) effluent time series of the plant using one year of measured influent
data (Figure 3.1). For this example, it is assumed that the measurements do not contain errors and are
representative of the true values.

Assuming that the model is representative of the behaviour of the full-scale plant, it is reasonable to
expect the modelled and the measured effluent time series to be similar. However, if the plant effluent
data include an effluent limit exceedance due to a toxic spill from an industrial source, resulting in
inhibition of microorganisms, this will not typically be reflected in the modelled time series, as such
processes are not captured in the ASM-based models.

True
Measured

Influent = I(t) System State = S(t) Effluent = E(t)
Modelled

True
Measured

Figure 3.1 Influent, effluent and system state as functions of time. The effluent can be modelled using the
measured influent and a model representation of the system state.
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The comparison of the predicted (modelled) and the measured effluent time series demonstrates what the
model does and does not account for. It identifies the processes that are not included in the model domain.

This simple example demonstrates the challenge faced when using standard ASMs for the prediction of
WRRF behaviour. Because models do not perfectly emulate real-world plant behaviour, there exist
processes and events, such as equipment failures, that impact plant performance but are not captured in
the models.

It is therefore essential for the designer/engineer to determine which processes are crucial for each
model-based design project. If additional processes or elements (e.g., equipment models) need to be
included, the models need to be expanded (e.g., Rosen et al., 2008). However, even in cases where
model expansion is required but not possible, models can be used very effectively to compare alternative
configurations with the same assumptions.

3.5 WHAT DON’T WE KNOWABOUT DEALING WITH UNCERTAINTY?
Although there are many ways to include explicit descriptions of uncertainty in model-assisted designs,
there remain several challenges. A selection of challenges that the authors believe to be relevant are
listed in the following sections.

3.5.1 How conservative are we with the safety factor approach?
To evaluate how conservative the safety factor approach is, we need to answer the question: what do safety
factors account for? This question is difficult to answer. On the one hand, safety factors have been developed
over time, and the rationale and the data that were used to determine their values are not always known. On
the other, it is very difficult to assess the actual quality of a design: ideally one needs the designed plant
running at design conditions to determine if it is over- or under-designed. However, by the time that the
design conditions are reached the plant has typically undergone substantial changes compared to the
start-up configuration.

Deviations from the original planning assumptions could quite easily be detected in post-project audits:
for example, number of person equivalents connected to a WRRF. Deviations from design assumptions, for
example, critical SVI or growth rates could be detected by long-term monitoring of such parameters.
Therefore, long-term post-project audits might be a valuable tool to improve design approaches.
Long-term monitoring of influent and effluent quality could provide information for developing more
robust design procedures (e.g., Bott & Parker, 2011).

Also, inter-guideline comparisons and the comparison of guidelines with ASM-based process models
(Corominas et al., 2010) can help quantify margins of safety inherent in design approaches and enable
the exploration of aggregated safety factors.

3.5.2 How to move from guidelines with the safety factor approach to
probabilistic model-assisted design?
Often biokinetic models are used to verify designs obtained from guidelines or standards. It is not
common practice to design a facility solely with the use of a biokinetic model especially for
greenfield plants. There are several reasons for this. In some cases, the engineer is legally protected if
he/she uses a ‘recognised’ design guideline or standard. Model-assisted design may transfer liability to
the engineer. Even if there are no liability issues with respect to model-based design, an engineer will
need to decide where to add safety and how much to add. In many cases, biokinetic models are much
easier to employ for plant upgrades where prior knowledge exists on influent and effluent
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characteristics, process operations, or verifiable model parameters. In these cases, a probabilistic
model-assisted design can more easily be used as a primary approach for design, than in the case of a
green field project. Under such conditions innovative technologies that are not already included in
guidelines or standards can be incorporated.

3.5.3 Determination of prior uncertainty ranges
Two major issues to address within a probabilistic framework include which elements to select as uncertain
and, secondly, how to quantify the uncertainty surrounding them. It is common practice for prior uncertainty
ranges to be obtained from experts who have experience in determining typical values. Many models and
simulation software also provide helpful prior uncertainty ranges.

3.5.4 Parameter (uncertainty) estimation in systems with poor identifiability
Available data, together with models can be used to estimate parameters and their uncertainty by using
parameter estimation techniques. However, poor identifiability (see Box 3.1) of ASM-based models
remains an issue (see also Box 3.2).

BOX 3.2 FREQUENTIST VS. BAYESIAN PARAMETER ESTIMATION

In Frequentist parameter estimation, the models are confronted with observed data to obtain
parameter estimates. Hereby, random observation errors in the data are mapped to uncertainty
about the parameters. As wastewater treatment plant models are typically over-parameterised,
optimisation (fitting) algorithms cannot find a unique solution due to compensation (technically
termed non-identifiability, see Box 3.1). For example, increasing the value of one parameter can be
compensated by decreasing the value of another one. Therefore, most parameters are set to default
values (taken from literature) and only a few are estimated with statistical techniques. This leads to
biased estimates (i.e., dependent on where the other parameters were fixed).

An alternative is to use a Bayesian framework where information from literature and expert
knowledge can be combined to define prior value ranges for all the parameters. Then, the
probabilistic model is confronted with the data and the parameter ranges are updated, typically
narrowed. This framework does not require identifiability of the parameters. However, this framework
requires the elicitation of ‘inter-subjective’ (i.e., experts must agree) prior parameter ranges. Also, in
this framework, the parameter updating procedure is computationally expensive which may still be a
limiting factor for dynamic WRRF models.

BOX 3.1 PARAMETER IDENTIFIABILITY

Parameters are identifiable when model fitting (optimisation) algorithms are able to find best estimates
for the model parameters. For ASM-type models this is usually not the case due to the high number of
parameters which one aims to identify and due to the lack of sufficient data.
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Often, the data does not provide enough information to enable a statistical estimation of uncertain
parameters. As a result, engineering practice often fixes most of the model parameters at default values
and just a few are estimated/calibrated. As a consequence, it is important that the estimated parameter
values as well as their uncertainty estimates be assessed in an informed manner. One approach for
obtaining uncertainty ranges is by extracting probability distributions for an influent characteristic or
model parameter using performance data at brownfield locations (Alikhani et al., 2017; Sharifi et al.,
2014).

3.5.5 How to adequately deal with biokinetic model structure uncertainty?
Uncertainty about the biokinetic model structure remains a difficult issue. Conducting statistical inference in
the presence of model structure error, leads to biased estimates of the parameter values and unreliable
uncertainty assessment (Neumann & Gujer, 2008; Villez et al., 2020). This is especially critical for
practising engineers as they cannot be expected to modify predefined bio-kinetic model structures (e.g.,
ASM). Nevertheless, several model structures are now available in most commercial simulators. In
engineering projects, model structure selection often depends on the key process being simulated or the
effluent parameter(s) associated with a permit limit.

3.5.6 Full-fledged probabilistic model-based design
When considering the replacement of a design guideline with a probabilistic WRRF simulator it is
important to identify which real-world phenomena are included. If the model is expected to be a true
emulator of the future WRRF, then current models would need to be significantly enhanced with
models that account for operational behaviour of sensors, actuators and other equipment. They would
need to be able to re-produce toxic spill events, inhibition events, bulking and foaming events, and
operator failures, among other things. If these aspects are not covered by the simulator, alternative
ways need to be found to take them into account. Such aspects should be clarified by modellers and
process engineers by adding a disclaimer on which kind of processes are included in the model and
which ones are not.

3.6 HOW CAN WE CURRENTLYACCOUNT FOR VARIABILITY AND
UNCERTAINTY?
3.6.1 Accounting for variability
Whereas accounting for temporal variability is the central aspect of dynamic modelling, spatial variability
has until recently only been coarsely resolved using compartmental models such as tanks-in-series.

3.6.1.1 Temporal variability
Accounting for temporal variability include the use of probability distributions, dynamic modelling
(multivariate) time-series analysis, and influent generators.

Probability distributions can be used to characterise the variability of dynamic variables such as flows,
concentration or loads. This approach is also useful when using a steady-state solution of the model: for
example, when describing average monthly behaviour, the influent concentrations and flows can be sampled
from the probability distributions to capture meaningful scenarios (Bixio et al., 2002; Mc Cormick et al., 2007).
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In addition, empirical cumulative distributions are often used to characterise plant performance. They
condense the information contained in a time series and can, for example, extract the frequency of
exceedance of effluent concentration limits. An advantage of directly using time-series analysis over
distributions, is that temporal dependence (auto-correlation) is appropriately and explicitly accounted for.
A typical time-series analysis identifies:

• trends;
• periodic phenomena;
• autocorrelation.

An example is given in Figure 3.2 for one year of nitrate effluent data with the original time series in
the left panel and the corresponding cumulative distribution in the right panel. The y-axis in the
cumulative distribution quantifies the percentage of time that the concentration is below the value on the
x-axis.

To account for correlation between variables (cross-correlation) the same procedure can be followed with
multivariate techniques. Dynamic simulators capture how dynamic influents affect the state variables of the
system and predict a dynamic effluent profile from which desired statistics can be extracted.

If synthetic time series are required that represent future load scenarios, then influent generators can be
used (Gernaey et al., 2011; Martin & Vanrolleghem, 2014). Influent generators are typically either based on
(stochastic) catchment models or are derived from black-box models that are calibrated with historic
time series.

3.6.1.2 Spatial variability
Concerning the description of spatial variability, the rapidly growing computational fluid dynamics
(CFD) field enables the investigation of spatial phenomena at high resolution (e.g., Alvarado et al.,
2013; Gresch et al., 2011; Rehman et al., 2017). Such analyses are critical for multiphase systems (e.g.,
settling), systems with spatial heterogeneity (e.g., anaerobic digestion) or systems that need to guarantee
a certain contact time (e.g., disinfection). To decrease the computational burden, methods have been
developed that enable the translation of a CFD model to a compartment model (Gresch et al., 2009).

Figure 3.2 365 days of NO3-N effluent concentration data (sampling interval: 1.2 hours). Left: Time series.
Right: The corresponding empirical cumulative density distribution.
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An example of a typical CFDmodel output illustrating the distribution of mean residence time in a reactor
is shown in Figure 3.3.

3.6.2 Accounting for uncertainty
3.6.2.1 Uncertainty related to design scenarios
When planning a treatment plant, significant uncertainty is associated with defining the appropriate design
loads. This uncertainty can be accounted for by applying foresighting tools such as scenario analysis
techniques. These techniques enable multiple possibilities of future loads or other requirements to be
accounted for (e.g., Dominguez et al., 2009). They often involve expert interviews and participatory
methods. A systematic use of such techniques within the water resources field is not yet widespread, but
is increasingly an imperative, especially in cities where urbanisation is rapid or, in service areas where
changes to wastewater characteristics are anticipated due to reductions in infiltration and inflow within
sewers, due to changes to septage management practices or due to industrial development within the
service area.

Figure 3.3 2-D concentration profiles in a reactor (Rehman et al., 2017).
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3.6.2.2 Uncertainty related to data
Measurements contain uncertainty due to both random errors, systematic and gross errors.

Random errors are a consequence of the many uncontrollable and unpredictable errors that exist in the
measurement process. They are the effect of many small errors added together. Random errors are
indeterminate and can be potentially minimised but never completely removed. They arise in any
measurement process and can only be reduced by improving the precision of the measurement.

Systematic errors are non-random errors caused by miss-calibration or malfunction of instruments or the
improper location or method for manual or automated sampling. Calibration errors can be reduced through
prevention (regular calibration of instrumentation) and partly through data analysis, for example, mass
balancing or fault detection (e.g., Lee et al., 2004). Sampling errors can be reduced through better
knowledge of the underlying process and increasing of sampling frequency (e.g., Ort et al., 2010).
Systematic errors are determinate and can be detected and removed thereby reducing the uncertainty in
the measured model inputs. They may be occasional errors or persistent errors.

Gross errors include human oversight and other mistakes while reading, recording, and reading
measurements. The most common errors, human errors in the measurement, fall under this category.
They can be reduced by the adoption of quality control procedures.

3.6.2.3 Uncertainty related to process modelling
Uncertainty in process modelling arises due to parameter uncertainty (which values to use?), model structure
(which model to select?) and errors in implementation.

Parameter uncertainty can be addressed by assigning probability distributions to parameters. In
applications where no data are available, a priori uncertainty estimates are obtained from expert
knowledge and/or literature. The effects of parameter uncertainty on model outputs can be quantified
by the use of Monte Carlo (MC) simulation techniques (Benedetti et al., 2008; Sin et al., 2009).
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Figure 3.4 Output from an MC simulation with time series for 5th, 50th and 95th percentile values.
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Figure 3.4 shows a possible output from such an MC simulation. The plant effluent dynamics are depicted
by a range of time series representing percentile values.

In applications where data are available, some parameter values and their uncertainty range can be
estimated with the approaches described in Section 3.5.4.

For the practitioner, model structure uncertainty can be addressed in various ways. For example, he/she
may want to repeat the modelling exercise with a different model structure or integrate his/her own model
structure extensions or reductions (Rieger et al., 2013).

Uncertainty due to modelling errors can be checked by running redundancy checks and elemental
balances (e.g., Hauduc et al., 2010). Uncertainty due to software errors can be checked by running a
verified model on multiple simulators (reference). Uncertainty due to numerical errors can be captured
through the use of multiple simulators, numerical accuracy can be checked by changing the solver
properties (such as time step size or solver type and accuracy).

3.6.3 Sensitivity analysis
Typically, a sensitivity analysis is required to prioritise the sources of variability and uncertainty. ‘Local’
methods analyse how variation in one of the parameters affects the model output while all other
parameters are held at the nominal values. ‘Global’ methods analyse how variation in one parameter
affects the model output while all the other parameters are also varying within their uncertainty ranges.
Such global methods are quite easy to implement, although some require many simulations (e.g.,
Benedetti et al., 2011; Neumann, 2012; Sin et al., 2011). An example of such a global analysis is
depicted in Figure 3.5.
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Figure 3.5 Example of a global sensitivity analysis for a membrane bioreactor. Grey section: direct impact of
the parameter on the model output uncertainty. Black section: indirect impact of a parameter due to its
interaction with all other parameters (Cosenza et al., 2011).

Uncertainty in Wastewater Treatment Design and Operation42

Downloaded from http://iwaponline.com/ebooks/book-pdf/1117949/wio9781780401034.pdf
by guest
on 19 January 2023



The grey section of the bars quantifies the direct influence of the parameter in determining model output
uncertainty (as a fraction of model output variance) and the black section quantifies the interaction effect,
which is the indirect influence of a parameter due to its interaction with all the other parameters (Cosenza
et al., 2011).

3.7 OPPORTUNITIES OF COMBINING MODELS WITH
UNCERTAINTY – EXAMPLE
Figure 3.6 illustrates a typical output of a design example where a mathematical model in combination with
uncertainty analysis has been implemented. The x-axis represents concentration and y-axis represents costs
(diagonal lines) or probability density.

In this hypothetical example, strict effluent concentration limits (e.g., for maximum month) need to be
met. A designer/engineer using a deterministic model will predict a single value for the effluent
concentration (vertical grey line in Figure 3.6).

If, however, the engineer expresses her uncertainty about the model parameters with probability
distributions and runs an MC simulation, the simulated effluent concentration will become a probability
distribution (grey curve in Figure 3.6). Given the permit, the engineer can now either design to a chosen
failure probability (e.g., probability of failure= 0.05) or, if cost functions for the treatment plant (capital,
operating costs and as non-compliance costs) are available, determine a design that minimises the
expected total cost. In Figure 3.6, proposing a smaller design (e.g., smaller tank volumes) would move
the entire probability distribution to the right and then the costs due to non-compliance would increase

Cost of non-compliance

Cost of treatment plant

Permit

Probabilistic 

effluent 

prediction

Total Cost

Deterministic 

effluent prediction

Figure 3.6 Probabilistic design: An optimal design is found by combining probabilistic model predictions with
cost functions. X-axis represents concentration and y-axis represents costs (diagonal lines) or probability
density in the case of the probabilistic concentration prediction (grey curve). The dashed black vertical line
represents the permit limit and the grey vertical line represents the effluent prediction of the deterministic
design. Through iteration of the design variables (e.g., tank volume) a design can be found that locates the
grey curve in such a way that the expected total cost is minimised.
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rapidly. Proposing a larger design would move the distribution to the left and then costs would
increase due to higher construction- and capital costs. Presumably, the optimal design is the one that
leads to a probability distribution that minimises total expected costs, that is, the design with∫1
−1

{ f ( predicted concentration) · (total cost)} = min (see also Reckhow, 1994). This can be seen as an

illustrative example of a rational design approach that explicitly deals with uncertainty.

3.8 SUMMARY
Current design approaches still rely heavily on guidelines and on the use of safety factors to account for
uncertainty. At the same time, simulators using mechanistic models that capture the details of hydraulic
and biochemical dynamics have become common tools in the wastewater engineer’s toolbox. If such
models are used in design, then uncertainty is typically accounted for in an implicit way, such as
designing to stricter standards than those specified. However, these models do also offer the opportunity
for explicit considerations of variability and uncertainty. On the one hand, spatial and temporal
variability can be examined at higher resolution through CFD and dynamic models, respectively. On the
other, (statistical) techniques can be applied that make possible the consideration of measurement
uncertainty, parameter uncertainty and model structure uncertainty. This opens up the possibility of
moving towards full probabilistic and risk-based designs. At the same time this requires that the limits of
predictability are better appreciated by clarifying which real-world phenomena are captured by the
models and which are not.
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Chapter 4

Available methods for uncertainty analysis
in model-based projects – critical review

4.1 INTRODUCTION
This chapter reviews and summarises the uncertainty analysis methods described in the published literature
from the wastewater treatment field. The objective of the review is to capture the breadth of the state of
uncertainty analysis within wastewater treatment and does not attempt to focus on a detailed evaluation
of individual methods. Most publications reviewed date between 1958 and 2009, with key papers added
between 2009 and 2013. Some of the more popular methods referenced in this chapter are illustrated in
more detail in Appendix B. Appendix C includes the full list of papers reviewed by the Task Group
(including about two topics not covered in this chapter: on-line control and regulatory issues).

Appendix C also includes more recent publications (2011–2019) covering a wide range of uncertainty
topics (not reviewed in this chapter).

The presentation in this chapter is of a highly technical nature. Much of the discussion assumes a
familiarity with the mathematics that underlie probability theory. The chapter is not meant to be a
statistics compendium; it is rather structured as a review article to point interested and theoretically
inclined individuals to the body of literature containing examples and discussion of how uncertainty
analysis has been applied to wastewater treatment problems. Many practitioners that use treatment plant
models for design, or to analyse operational issues, may not find that the material within provides them
with guidance that can be applied to their day-to-day work. The connection between this material, and its
potential practical applications is the subject of Chapter 5.

Table 4.1 lists the main methods available for uncertainty assessment in model inputs, model parameters,
model structure and model-based decision-making. The methods covered in this chapter address variability
and quantifiable uncertainty. Additional details on the methods referenced in Table 4.1 can be found in
Appendix B.
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4.2 METHODS AND LITERATURE REVIEW RESULTS SUMMARY
Literature searches were conducted on ISI/Web of Knowledge (Science), Compendex, Scopus, and
Pollution Abstracts and Toxicology Abstracts. The list of wastewater treatment uncertainty references
collected is included in Appendix C.

Table 4.2 summarises the results of the search and provides a framework to synthesise the considerable
breadth of the topic and size of the literature search results into discrete topics. The categorisation in
Table 4.2 is based on subjective judgement and there are several references assigned to one category that
address other categories.

It must be noted that not all of the above categories could be covered comprehensively in a succinct
manner within this chapter. Specifically, categories 4 and 5 are not covered in this chapter. However, the

Table 4.1 Uncertainty assessment methods (see Appendix A for definitions).

Category Method

Model inputs Summary statistics
Statistical tests
Outlier detection
Data reconciliation
Principal components analysis (PCA)

Model parameters Estimation of inference (confidence) region
Bayesian statistics

Model structure Compartmental modelling

Model-based decision making Monte Carlo simulation

Table 4.2 Literature search results.

No. Category Description Number of
Papers

1 Input and
parameters

References that provide information on the uncertainty in model
parameters (single values for steady-state models) or in input time
series (inputs for dynamic models)

51

2 Model structure References that address uncertainty generated from the structure of
a wastewater model or references that address mathematical
concepts related to uncertainty within the context of a wastewater
treatment model

58

3 Propagation of
uncertainty

References that address uncertainty evaluation of one or more
different treatment trains or plant-wide alternatives in model-based
decision-making

119

4 On-line control
signals and
strategies

References that consider the uncertainty of an on-line measurement
or references dealing with the use of on-line signals within a real-time
control loop

92

5 Fate of pollutants
in the environment

References that address the uncertainty associated with the
presence of pollutants in the environment and resulting regulatory
(WRRF effluent standards) issues

85
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reader may review the references under these categories in Appendix C as a starting point for further
information on these subjects.

This chapter focuses on the first three categories listed in Table 4.2. Within each category, abstracts were
further screened, and a number of papers was selected for detailed review.

4.3 ASSESSMENT OF INPUT AND PARAMETER UNCERTAINTY
4.3.1 Input uncertainty (measurement errors)
This area of research focuses on quantifying the uncertainty in model inputs and on the use of techniques to
minimise the model input uncertainty before performing further analysis. Input uncertainty is due to
measurement errors and here the methods implemented in the literature to quantify them are discussed.
Measurements contain uncertainty due to random, systematic and gross errors (for a definition of
measurement errors, see Chapter 3, Section 3.6.2.2 and Appendix A).

Methods for quantifying the uncertainty stemming from the assumption that the measured data are an
unbiased estimate of the underlying population have not been included in this review.

4.3.1.1 Overview of statistical techniques used in measurement error detection
The topics addressed in the reviewed papers include quantifying the uncertainty in data and data collection
methods and identifying systematic errors in data. The uncertainty in measured data is typically assessed
using statistical techniques. Standard Methods for the Examination of Water and Wastewater (1998)
provides background on measurement uncertainty and basic statistical techniques used to quantify this
uncertainty as applied to the examination of wastewater. Skoog et al. (1995) describe the use of these
uncertainty evaluation techniques in the field of analytical chemistry.

The precision of a measurement can be determined by replicate measurements and by the calculation of
the standard deviation and variance of the replicates. A common technique for assessing the accuracy of
measurements and detecting systematic errors in an analytical method or an instrument is to analyse a
sample whose composition is accurately known (i.e., a calibration check standard). Statistical hypothesis
testing is then used to assess whether the difference between the measured value and the known
calibration check standard value could be caused by random error or systematic error. Outlier detection
tests are available for detection of large biases but must be used cautiously (Skoog et al., 1995). More
advanced techniques, such as data reconciliation, may be more suitable for outlier detection where
applicable (see discussion below).

4.3.1.2 Error propagation
In cases where results are computed frommultiple sources of experimental data or a calibration curve is used
to provide the measured value, it is necessary to determine how the error in the measured values is
transmitted to the results. For general non-linear functions, a few uncertainty assessment approaches are
available such as the law of propagation of uncertainty, Monte Carlo simulation, and empirical
sensitivity studies based on designed experiments (Standard Methods for the Examination of Water and
Wastewater, 1998). A common approach is to use the law of propagation of uncertainty where the
function of interest (e.g., the calibration equation) is linearised using a first-order Taylor-series expansion
about the key variables and then the variance formula for a linear sum of variables is used to calculate
the total variance (Box et al., 1978).

In the wastewater treatment literature, these statistical techniques have been used to quantify the
uncertainty in various types of wastewater measurements. Friedler and Butler (1996) used basic
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statistical techniques to quantify the inherent uncertainty in the quantity and quality of wastewater
discharged from domestic appliances. The analysis was based on data from two surveys conducted in the
United Kingdom. The appliance volumes, pollutant loads, and frequency of use were not found to be
normally distributed variables. The authors suggest that Monte Carlo analysis could be used to help
quantify the combined effects of the uncertainties at the household level on the overall uncertainty in the
wastewater flow rate and concentrations within a sewer system.

4.3.1.3 Examples of measurement error detection
Joannis et al. (2008) studied the uncertainty in wastewater turbidity measurements. They found that the
major sources of uncertainty were in the standard solutions used for calibration and the nonlinearity of
the calibration curve. Bertrand-Krajewski et al. (2007) compared the uncertainties in COD measurements
between standard laboratory techniques, small tube tests (STT) employing a photometer, and field
UV−visible spectrometry. They found that standard laboratory methods and small tube tests had similar
levels of uncertainty but had different mean values, indicating that specific calibration functions are
needed to correct systematic errors if high accuracy is required or the methods are compared.
Bertrand-Krajewski et al. (2007) found that the use of low-frequency sampling is the major source of
uncertainty with standard laboratory methods and methods for COD determination. UV−visible
spectrometry was found to have a similar level of uncertainty as standard laboratory methods but only
under strictly controlled conditions.

Rieger et al. (2005) evaluated the uncertainty of on-line sensors at WRRFs using comparisons between
independent measurements of the same sample (i.e., sensor and a reference laboratory method). The
comparison is based on a linear regression fitted between the sensor and reference measurements. The
authors assess whether the linear regression is applicable by considering a relationship between the
variables (using an F-test), checking the linearity between the sensor and reference measurements
(using an F-test), checking for outliers, and checking the homogeneity of the variances. If the linear
regression is applicable, statistical tests on the regression predictions and the regression slope and
intercept are used to assess whether the regression equation is significantly different from the perfect
correlation (i.e., slope= 1 and intercept= 0), indicating the presence of systematic errors. If no
systematic errors are detected, the total uncertainty is represented by a confidence interval for the
regression predictions, assuming a perfect correlation between the sensor and reference measurements.
If systematic errors are detected, the bias is quantified by the linear regression fit between the sensor
and reference measurements. The random errors are quantified by the confidence interval for the
regression predictions.

4.3.1.4 Multivariate statistical methods
Robinson et al. (2005) used multivariate statistical methods to identify outliers in water quality data.
They advocated the use of multivariate statistical methods due to the correlation between plant variables.
Methods discussed include: Mahalanobis distance, jack-knife distance, and Hadi’s method. These
methods are more applicable than univariate methods but do not account for the serial correlation of the
variables over time. Multivariate statistical control methods are available that can address serial
correlation, as discussed below.

There are also more advanced statistical methods available for detecting and removing systematic errors
and gross errors. These methods range from statistical process control and fault detection methods to
data reconciliation.
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4.3.1.5 Statistical process control and fault detection methods
Statistical process control techniques involve monitoring process variables over time using statistical control
charts. The variables of interest are charted over time and compared to control limits to determine if the
process is within control (i.e., its correlation structure is unchanged). The methodology is used to
distinguish between common cause variability and special causes. Typically, these methods are used to
study process variability but can also be used in the current context to detect sensor or measurement
process faults leading to large systematic or gross errors.

Because WRRF measurements can exhibit autocorrelation, seasonality, and non-constant variance
(Berthouex, 1989), it can be difficult to apply traditional control charts such as Shewhart or cumulative
sum (CUSUM) charts to the measured process variables themselves. One option discussed by Thomann
et al. (2002) and Thomann (2008) is to create a control chart that tracks the difference between the
sensor values and reference values at a WRRF. Unfortunately, this approach may not always be practical
if reference measurements are not taken at a suitable interval. Another approach is to fit a time-series
model such as an auto-regressive integrated moving average (ARIMA) model to normal operating data
and then use the model as a charting tool (Berthouex, 1989). The model would be used to continually
predict process data given the previous data and the difference between these predictions and the actual
measurements (i.e., residuals), are plotted on a conventional control chart. When the measurements are
collected normally, the residuals will be independent, random, and have constant variance.

A simpler alternative is to construct exponentially weighted moving average (EWMA) charts. The
one-step-ahead prediction errors (i.e., residuals between predictions and actual measurements), calculated
using the EWMA statistic, can be plotted on a traditional control chart. As discussed by Montgomery
and Mastrangelo (1991), the EWMA approach can be a reasonable approximation of the ARIMA model
approach in many cases. For suitably selected value of the EWMA filter constant, the EWMA statistic is
an excellent one-step-ahead predictor for processes where the mean does not shift too rapidly, and the
observations are positively auto-correlated.

The limitation of univariate control charts is that they do not consider the correlation between the
variables within the process. Some researchers have looked at the use of multivariate statistical
techniques such as principal components analysis (PCA) and partial least squares (PLS) to monitor
process data. PCA involves projecting multivariate data into a lower dimensional or latent variable
space. The variables in the lower dimensional space are uncorrelated and explain the majority of the
variance in the data. PLS is a latent variable regression method used when multivariate input and/or
output data are available. The PLS regression model captures the correlation between the inputs and
outputs in a lower dimensional variable space. PCA and PLS models used for monitoring are built using
data from normal operation so that they model the normal measurement variability and correlation.

Using a PCA model for example, one can create control charts for outputs from the model including
t-scores, the Hotelling T2 statistic, and the squared prediction error (SPE) to detect unusual
measurements in a multivariate context (Kourti & MacGregor, 1995). Although PCA and PLS consider
static covariance relationships, they can be adapted to the analysis of dynamic data by including
time-lagged data into the data matrices so that the correlation over time is included into the models. In a
wastewater treatment context, some examples of latent variable monitoring are discussed by Lennox and
Rosen (2002) and Tomita et al. (2002).

4.3.1.6 Data reconciliation
Data reconciliation is a technique used to adjust process measurements so that they are consistent with
known conservation laws and other process constraints. The procedure requires a set of redundant
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measurements to verify that the conservation laws have been obeyed. Optimal data reconciliation is a
constrained least-squares problem requiring the minimisation of a weighted sum of the measurement
adjustments subject to the process constraints. The weighting matrix is typically the inverse of the
variance−covariance matrix of the errors in the measurements. The weighting may be selected based on
previous experience, calculated using the sample variance for the data, or using robust estimators (Chen
et al., 1997). The measurements in the data reconciliation procedure are weighted inversely to their
variance so that measurements with large variance are adjusted more than those with a smaller variance.
Therefore, the success of the method is dependent on the use of reasonable variance estimates.

In the context of biochemical reactions, data reconciliation has been studied by Van der Heidjen et al.
(1994a, b, c). Mass balancing has been discussed in a WRRF context by Nowak et al. (1999) and Barker
and Dold (1995), while more formal data reconciliation analyses have been reported by Meijer et al.
(2002), Puig et al. (2008), and Thomann (2008). Recently, Rieger et al. (2010) discussed data
reconciliation for WRRF simulation studies. Their focus was on planning measurement campaigns so
that high-quality data can be collected. They discuss the use of basic reliability checks and manual
checking of mass balances to verify the quality of the data and to identify systematic errors.

In a WRRF context, it is most common to reconcile flow and total phosphorus measurements across the
plant, and suspended solids measurements around clarifiers and thickening and dewatering processes. COD
and total nitrogen measurements could be also potentially reconciled using mass balances, but this typically
requires measurements not typically collected such as the oxygen utilisation rate (OUR), oxygen transfer
parameters, and nitrogen gas flows.

Data reconciliation can be performed using either a steady-state or dynamic analysis. Steady-state data
reconciliation is commonly performed using averaged measurements over a period of approximate
steady-state or zero accumulation. Examples in a WRRF context are provided by Meijer et al. (2002)
and Puig et al. (2008). Puig et al. (2008) suggest that the data be averaged over a period of at least two
to three sludge retention times. In the case of steady-state reconciliation, the process constraints
(typically mass balances) are assumed to be known and the measurements are considered to be stochastic.

In dynamic data reconciliation, the process constraints are typically dynamic process models so that
uncertainty is considered to exist in the model structure and parameters, and the measured data. Dynamic
data reconciliation can be conveniently performed in a simulation environment by minimising a
weighted least-squares function of the measurement adjustments, subject to the WRRF model, over
successive time horizons or windows. This method is known as the horizon method (Romagnoli &
Sanchez, 2000). In the horizon method, the initial values of the model states for each time horizon are
the optimisation variables.

Dynamic data reconciliation can also be performed using a filtering approach based on the extended
Kalman filter (Romagnoli & Sanchez, 2000). In this context, the filter acts as a state estimator which
takes the states predicted by the model and adds the filtered difference between the measured and
predicted model outputs. The filtering approach has an advantage in that its calculations are recursive
and do not require iteration as in the horizon method. The horizon method is thought to be better suited
to slower processes (Cameron et al., 1992), such as biological growth, while the filtering method is
thought to be better suited to faster processes.

Following data reconciliation, gross error detection techniques can be used to identify and eliminate
systematic errors caused by sensors and other faults. Gross error tests involve statistical hypothesis
testing on the least-square’s objective function (which is a Chi-square variable), and on the ratios of the
measurement adjustments and the mass balances errors to their standard deviations. Meijer et al. (2002)
and Thomann (2008) illustrate the use of simple gross error detection techniques in a WRRF context.
More sophisticated techniques are discussed by Crowe (1996) and involve the use of tests of maximum
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power in detecting gross errors for the case of a single gross error and the use of PCA in cases where multiple
gross errors exist.

The use of formal data reconciliation in the wastewater treatment field has been limited due to a lack of
data, the complexity of the solution procedure, and the lack of availability of software dedicated to the
solution of the data reconciliation problem. For simulation studies, most model calibration protocols
typically recommend basic reliability checks and manual evaluation of mass balances to verify the
quality of the data and to identify systematic errors (Rieger et al., 2013). This is expected to change in
the future as online instrumentation becomes common in WRRFs, and modelling and other software
vendors add the necessary tools to their products. Data may be taken at different intervals, contain
missing measurements, have redundancy, and could sometimes be erroneous. Adaptation of existing
mathematical tools into the databases and SCADA systems of full-scale plants will be required in order
to promote the progressive incorporation of advanced monitoring systems, decision support systems, and
plant-wide controllers.

4.3.2 Parameter uncertainty
Whole plant models are complex and have hundreds of parameters, all with some uncertainty. While most of
those parameters can be assumed to be fixed, others require to be considered uncertain, given their
importance towards the results of the model use.

Uncertainty in model parameters arises from many sources such as the model structure, their
measurement error (in case they are directly or indirectly measured), the choice of experimental
conditions used for model calibration, the calibration data, and the objective function or criterion used
for parameter estimation.

4.3.2.1 Inference vs. confidence regions
Uncertainties in model parameters are typically assessed during the process of parameter estimation. See
Bard (1974), Draper and Smith (1989), and Bates and Watts (1988) for the theory of nonlinear parameter
estimation. Parameter estimation problems are often solved using maximum likelihood estimation.
Depending on the assumptions on the error structure, the number of response variables, and the available
information on the variance and covariance of the errors, the objective function minimised during the
procedure ranges from ordinary least squares, to weighted least squares, to the Box−Draper criterion
(Box & Draper, 1965).

Parameter uncertainty is typically assessed following parameter estimation, through the calculation of
approximate joint confidence regions for the parameters and approximate confidence limits on individual
parameters. The inference regions and limits or bands are often estimated by extending linear regression
theory. The model residuals are linearised using a Taylor-series expansion and analogous formulas as
those used for linear regression inference regions and bands are developed (Draper & Smith, 1989).

The inference region formulas require the calculation of the variance−covariance matrix for the
parameters. The variance−covariance matrix is often approximated as the inverse of the Hessian matrix
of the objective function (i.e., matrix of second derivatives of the objective function) multiplied by a
scale factor at the solution to the parameter estimation problem (Bard, 1974). In the linearisation
approach, the Hessian matrix is calculated using first-order model sensitivity coefficients only
(Gauss−Newton approximation). First-order model sensitivity coefficients, which express the local
sensitivity of the process model to infinitesimally small changes in the model parameters, are defined as
the partial derivatives of the model with respect to the model parameters. The sensitivity coefficients can
be determined using finite-difference approximations, by solving the model sensitivity equation (Leis &

Available methods for uncertainty analysis in model-based projects – critical review 53

Downloaded from http://iwaponline.com/ebooks/book-pdf/1117949/wio9781780401034.pdf
by guest
on 19 January 2023



Kramer, 1988), using variational methods, or by automatic differentiation (De Pauw & Vanrolleghem,
2003). Alternatively, it is also possible to approximate the variance−covariance matrix using the full
Hessian matrix which requires the calculation of second-order sensitivity coefficients which can be
calculated as shown by Guay and Maclean (1995).

4.3.2.2 Application to wastewater treatment models
In the context of biokinetic models of the activated sludge process, the calculation of approximate inference
regions for the model parameters has been discussed by numerous researchers including Vanrolleghem et al.
(1995), Vanrolleghem and Keesman (1996), Brouwer et al. (1998), Petersen (2000), Petersen et al. (2000),
Dochain and Vanrolleghem (2001), Marsili-Libelli and Tabani (2002), Sin (2004), Checchi and
Marsili-Libelli (2005), and De Pauw (2005). Parameter estimation techniques are most often applied in a
wastewater treatment context when fitting biokinetic models to respirometric batch experiments. Formal
parameter estimation (e.g., using maximum likelihood estimation) is not recommended for calibrating
entire WRRF models to historical plant data due to the lack of data, the complexity of the models, and
the correlation between the model parameters (Petersen, 2000; Vanrolleghem et al., 2003). Historical
plant data are rarely suitable for estimating complex model parameters and for assessing their uncertainty
due to missing data, inconsistencies in the data, limitations in the ranges of the variables due to process
control, confounding effects between variables, and variations in unmeasured variables (Box et al.,
1978). Typically, model calibration focuses on influent characterisation, accurate modelling of plant
hydraulics and aeration, and manual adjustment of some model parameters to achieve a reasonable fit
between the measured data and model outputs.

In the context of parameter estimation, it is possible to design experiments that minimise the uncertainty
in the estimated parameters. One common approach, introduced by Box and Lucas (1959), is to minimise the
volume of the parameter confidence region. This involves minimising the determinant of the inverse of the
variance−covariance matrix. A sequential strategy is often used, as the best set of experimental conditions
depends on the parameter values (Box et al., 1978). Vanrolleghem et al. (1995) discuss the use of optimal
experimental design in the context of activated sludge models (ASMs) and list alternative optimal
design criteria.

The main drawbacks of these approximate parameter uncertainty assessment methods are that they
assume that only the response variables in the parameter estimation procedure contain uncertainties, they
use an approximation to the variance−covariance matrix, and they are specific to the local solution to
the parameter estimation problem.

4.3.2.3 More sophisticated methods
It is possible to reformulate the parameter estimation problem using an error-in-variables (EIV) approach
so that both the independent and dependent variables (i.e., all model inputs) are considered to contain
uncertainties (Bard, 1974; Romagnoli & Sanchez, 2000). This becomes a simultaneous data
reconciliation and parameter estimation problem.

Better estimates of the parameter uncertainties can be obtained using the Monte Carlo method where the
parameter estimation problem is solved repeatedly for different simulated samples of the measured model
inputs leading to a distribution of parameter estimates (Bard, 1974). Another option is to use the technique
known as profiling (Bates & Watts, 1988), after parameter estimation, to obtain exact marginal likelihood
intervals for the model parameters. Cox (2004) used Bayesian statistics to develop uncertainty distributions
for the parameters in the ASM1 model. That procedure involves combining expert opinion (prior
distribution) and measured or calibrated parameter values into a single posterior distribution known as a
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universal distribution. The method is promising but the specific application given by Cox may not be useful
given that many of the calibrated values are taken from subjective calibration studies involving historical
plant data.

4.4 ASSESSMENT OF MODEL STRUCTURE UNCERTAINTY
A portion of the references identified by the literature search addressed the fundamental wastewater process
model uncertainty issues of (1) model structure and (2) mathematical methods. These areas of the literature
search may be of most interest to researchers investigating fundamental information and approaches to
uncertainty assessment in wastewater treatment engineering. Some of the most compelling works
published in these areas are discussed in the following sections.

4.4.1 Macroscopic vs. microscopic mixing scales
Several researchers have investigated structural issues at the core of activated sludge models (ASMs) that
arise from the conceptual basis of some state variables and assumptions used in modelling of the
completely stirred tank reactor (CSTR) configuration. While Danckwert’s (1958) and Zwietering’s
(1959) seminal publications on residence time distribution and reactor modelling identified the influence
of the nature of the reactants, reaction rates, and local mixing scale on CSTR reactor analysis, and while
chemical engineering text books (e.g., Levenspiel, 1999; Rawlings & Ekerdt, 2002) have further
formalised the concepts to recognised limiting cases of ‘complete segregation’ and ‘maximum
mixedness’, it was perhaps not until Gujer (2002) that the importance of these concepts to ASMs was noted.

Gujer (2002) observed that ASM state variables representing cell internal storage products are
conceptually linked to a local environment (an individual cell), and that reaction rates in ASMs are not
necessary first order. There are, therefore, resulting consequences of applying ASMs on a macroscopic
and microscopic mixing scales that impact the applicability of kinetic parameters determined for and by
different reactor configurations. Gujer (2002) considered a model with a simple single substrate with cell
storage product and applied it in both the typical macroscopic fashion and in a microscopic fashion
which tracked individual bacteria and used a probabilistic rule to control the residence time of a
bacterium within a CSTR zone. While Gujer (2002) notes that this simple model is not directly
applicable to any relevant system, the results he presents identify the nature of this basic model structure
issue and lead to important conclusions regarding the differences between the determination and
applicability of kinetic parameters for sequencing batch reactors and flow through systems.

Gujer (2002) suggests that (1) there may be an inherent amount of quantifiable uncertainty in ASM
results associated with reactants’ local environment and residence time and (2) that there may be
uncertainty or inaccuracy induced into modelling efforts by application of kinetic parameters estimated
from differing flow schemes.

Schuler (2005, 2006) extended the concepts of Gujer (2002) to a model that included the competition
between phosphorus accumulating organisms and heterotrophic organisms, without nitrifiers and the
potential interference of nitrate, and applied the model to reactor configurations relevant to activated
sludge treatment systems. Schuler (2005, 2006) illustrated the differences in results that occur between a
lumped parameter (macroscopic) model structure and a (microscopic) model structure that includes the
distributed state of reactant residence times and concluded that the lumped parameter approach
consistently predicted better effluent phosphorus performance.

Curlin et al. (2004) also reported on this issue and applied formal concepts from the field of chemical
engineering. They used activated sludge model (ASM) No. 1 for a laboratory-scale membrane
bioreactor. They established the macroscopic mixing characteristics of their system through tracer studies
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and arrived at a CSTR combination that fits the experimental tracer results. They then solved the ASM not
only using the CSTR assumption typically employed (the ideal mixing case, an assumption of constant
reactant concentration over the reactor volume) but also microscopic mixing scale limiting cases of
complete segregation and maximum mixing.

Curlin et al. (2004) conclude that (1) in ASMs that do not include cell internal storage product state
variables, the non-first-order reaction rates may result in un-quantified model structure uncertainty if
only the ideal mixing CSTR assumption is considered, (2) the model structural uncertainty generated by
imperfect knowledge of microscopic mixing might be quantified through consideration of the limiting
cases and (3) the magnitude of the uncertainty may be significant. A validation of the simplified
transport models is suggested, compared to more sophisticated approaches.

It is worthwhile to note that other researchers, including Lee et al. (1999a, b) and Makinia and Wells
(2000a, b) have considered the impact of mixing conditions and residence time distribution in ASMs,
using an advection and dispersion equation approach. This line of development, as well as combined
unit process modelling and computation fluid dynamics modelling, may also be useful for the
identification or reduction of non-ideal mixing contributions to model structure uncertainty.

4.4.2 Unquantified model structure uncertainty
Other researchers have reported on a variety of specific structural issues related to the modelling of
wastewater treatment processes that may contribute to what is, at this time, un-quantified model
structure uncertainty. Abusam and Keesman (2002) carried out a factorial sensitivity analysis on the
use of the double-exponential function in secondary clarifier models and concluded that the model had
a structural problem related to the prediction of solids in the underflow stream. Haider et al. (2003)
reported on experimental results that illustrated that the characterisation of modelled influent
non-biodegradable substrate was not independent from the system sludge age and concluded that two
such influent biodegradable state variables may be required for models of short sludge age systems.
Lavallee et al. (2005) similarly noted that observed kinetic parameters depend on substrate, process
configuration and sludge, and introduce an ASM within the ASM framework that mimics enzyme
induction and may lead towards models applicable over more widely varying conditions. Sin and
Vanrolleghem (2006) observed that, even with constant influent conditions, the ASM2d model
structure had to be adapted in response to changes in system behaviour observed for three different
operational scenarios to match experimental findings. Neumann and Gujer (2008) provided an analysis
of model structure uncertainty by generating synthetic data with one model structure (using Tessier rate
equation) and fitting it with another putative model (using the Monod rate equation). They illustrated
the application of a range of methods for analysing model fit and for propagation of parameter
uncertainty to modelling results. This made possible a comparison of model predictions with parameter
uncertainty addressed to be compared to the ‘true’ result and illustrated that the propagation of
parameter uncertainty was not adequate to address an error in model structure. Neumann and Gujer
(2008) concluded that uncertainty estimates obtained from regression of time-continuous environmental
systems should be used with caution.

This is a small sampling of reports in the literature that may be taken to illustrate the degree of
structural uncertainty present in wastewater treatment models. In general, these reports suggest
recognition that the current wastewater models may be calibrated only to narrow and specific ranges of
influent, operating and process configurations conditions, and that any extension of the use of a model
outside its specific range of calibration may induce what is, at this time, an un-quantified degree of
uncertainty.
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4.4.3 Mathematical methods for quantification of model structure
uncertainty
While some researchers have focused on and provided useful information on issues of uncertainty within
wastewater treatment model structure, other researchers have considered issues related to the
mathematics and numerical methods of the quantification of uncertainty.

4.4.3.1 Monod growth model
Tenno and Uronen (1995) applied an ASM1-like model structure within a stochastic model to arrive at a
method of carbon removal process control using on-line instrumentation. Kops and Vanrolleghem (1996)
investigated the incorporation of uncertainty analysis into wastewater modelling predictions through
consideration of the Monod growth model. They compared three methods for approximating prediction
uncertainty: Monte Carlo simulation, Monte Carlo simulation with stochastic parameters, and stochastic
differential equations. They identified the Monte Carlo simulation as having the disadvantage that for a
dynamic simulation all the parameters must stay constant during one model run. The other two
alternatives permit time-varying parameters within one model run. They identified the disadvantages of
the stochastic differential equation alternative as requiring parameters to have Gaussian distributions and
that stable solutions may be limited to a certain range of parameter values. The Monte Carlo simulation
with stochastic parameters did not have the disadvantages of the stochastic differential equation
alternative. For the situation examined, Kops and Vanrolleghem (1996) found the stochastic differential
equation alternative to give a higher predicted variable variance than either of the Monte Carlo-based
methods. In their case, the stochastic differential equation method generated a variance of almost 40%
while the Monte Carlo with stochastic parameters simulation resulted in a variance of 1%. They
concluded that the comparison of these two alternatives becomes a question of which result is more
realistic. This appears to remain a crucial, valid and unresolved issue.

Omlin and Reichert (1999) provide a comparison of parameter estimation methods and their related
model prediction uncertainty for a simple Monod equation model. They concluded that classical
frequentist (i.e., least squares) technique is superior in the case of identifiable model parameters but in
the case of poor parameter identifiably, a Bayesian approach is recommendable. Rauh et al. (2004, 2007)
and Krasnochtanova et al. (2009) discuss incorporation of parameter uncertainty at the numerical
simulation time step interval level. They note that the efficiency of Monte Carlo methods decreases
significantly for higher dimensional systems and present numerical solution algorithms that generate
upper and lower bounds on variable uncertainty at each step interval.

4.4.3.2 Non-linear dynamical and chaotic behaviour
The final area of the literature review addressed in this subsection is published work which has
considered the potential role of non-linear dynamical and chaotic behaviour in the variability and
randomness of wastewater treatment process observations and process models. Graham et al. (2007)
report the experimental demonstration of chaotic instability in biological nitrification. They operated
three highly controlled aerobic chemostats. They indicate that their experimental results and analysis
suggest broad chaotic behaviour and conclude that nitrification is prone to chaotic behaviour
because of a fragile ammonia oxidising bacteria and nitrite oxidising bacteria mutualism. Zhang and
Henson (2001) demonstrated the possibility of multiple steady-state solutions for several continuous
biochemical reactor models and advocate the use of bifurcation analysis to aid in obtaining more
efficient and complete characterisation of model behaviour. Saikaly and Oerther (2004) and Stroot
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et al. (2005) investigated the potential dynamical nature of competition between several species for
several resources within activated sludge treatment systems. They report on modelling results as
well as fluorescence in-situ hybridisation determination of biomass composition within the pilot
reactors. They found the potential for population oscillations within the bacterial community under
some operating conditions and conclude that such a dynamical nature could contribute to system
stability while confounding the tracking of activated sludge system composition when done by
limited grab sampling. Ibrahim et al. (2008) present results of static and dynamic bifurcation
investigations of an activated sludge system model using a rate equation that includes an inhibition
term. Their analyses show a complex variety of dynamic results when inhibition is significant,
including periodic attractors, point attractors, and chaotic attractors for realistic ranges of parameter
values.

Thus, several publications suggest that the non-linearity and dynamical nature of wastewater treatment
process models and, perhaps, the systems themselves result in inherent randomness, periodicity or chaotic
behaviour. The tools of this branch of mathematics may, therefore, be useful in characterising uncertainty for
some conditions and model applications.

4.5 PROPAGATION OF UNCERTAINTY FOR MODEL-BASED DECISIONS
4.5.1 Review of uncertainty propagation methods
Models are used in process engineering to configure and size facilities to reliably meet effluent quality
requirements. The research reviewed for this effort included a variety of biokinetic models used for
process engineering including ASM1, ASM2, and ASM3 models as well as 2-D clarifier modelling.
Amongst all consulted literature sources, there was a common understanding that the models are both
relatively complex and the inputs used for modelling include significant uncertainty. With this basis, the
researcher’s general goals were then to understand the sensitivity of model results to uncertainty in
model inputs, and the evaluation of methods for generating robust designs.

The literature reviewed focused on three main subject areas: model calibration, sensitivity analysis, and
design optimisation.

The review was structured following a number of criteria that involve the purpose, method, accuracy,
difficulty/simplicity, time to do the analysis, data requirement, applicability and stakeholder interest (e.
g., researchers, control decision support, design, operation). The review is summarised in Table 4.3 and
in the following sections.

In addressing the input uncertainty for modelling, the majority of the researchers relied on a Monte Carlo
approach both for determining uncertainty in model outputs and for calibrating models. Variations on the
Monte Carlo approach included:

• Using Spearman’s rank correlation to determine model sensitivity to input data (Griborio et al., 2007);
• Applying the Hooke−Jeeves direct search technique for design optimisation (Tansel, 1999);
• Applying various statistical analyses techniques with Monte Carlo outputs for model calibration.

In addition to Monte Carlo techniques, researchers used genetic algorithms and the ‘ϵ constraint method’ to
determine optimal designs. Although these methods appear to have their strengths, the special expertise
needed to apply them may not make them useful for most process engineers.

The information provided did not allow for a detailed assessment of the time required for each method.
Furthermore, because the methods were applied to several different models with varying levels of
complexity, a direct comparison is not possible.
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Table 4.3 Review of uncertainty propagation methods and analysis works applied for model-based evaluation.

MODEL CALIBRATION

Purpose Method Accuracy Difficulty Time Data Engineering Task Reference

Model calibration of
ASM3

Monte Carlo (MC) + 20% for
denitrification with
sludge digestion

Medium Not quantified Estimation of N
removal and sludge
production

Koch et al.
(2001)

Model Calibration of
ASM2d

MC+ results
analysis with MAE,
RMSE and Janus
coefficient

Medium 2 weeks for 500
MC runs on
Pentium IV 3
GHz

Plant data (assumed
uniformly distributed),
uncorrelated kinetic
parameters

Calibration of
dynamic models

Sin et al.
(2008)

Estimate enclosures
of state variables in a
simple ASM model

MC More difficult Not quantified,
but would be
significant for
complex model

Kletting
et al. (2007)

SENSITIVITY ANALYSIS

Purpose Method Accuracy Difficulty Time Data Engineering Task Reference

Sensitivity analysis
for control strategies

MC+ input
variables
classification

More difficult Not quantified,
but MC× 10
Not completely
automated

Von
Sperling
(1993)

Uncertainty and
sensitivity with
ASM1

MC+Spearman’s
rank correlation

Medium Only kinetic variables,
not influent
characteristics

Huo et al.
(2004)

Estimate secondary
clarifier performance
with 2Dc

MC Relatively
simple
statistical
approach

Uncertain Floc and settling
parameters

CFDmodelling of SC
and some info onSVI
and settling
relationships

Griborio
et al. (2007)
Kletting
et al. (2007)
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A
va

ila
b
le

m
e
th
o
d
s
fo
r
u
n
ce

rta
in
ty

a
n
a
lysis

in
m
o
d
e
l-b

a
se

d
p
ro
je
cts

–
critica

lre
vie

w
5
9

Downloaded from http://iwaponline.com/ebooks/book-pdf/1117949/wio9781780401034.pdf
by guest
on 19 January 2023



DESIGN OPTIMISATION

Purpose Method Accuracy Difficulty Time Data Engineering
Task

Reference

Dependability of
design using
non-ASM model

MC+
Hooke-Jeeves
optimisation

Lower (less
sophisticated
model)

Simple Not quantified Tansel (1999)

Optimised design
using a precursor to
ASM

Genetic algorithm
also briefly
discusses coupling
with MC

Better probability
than non-linear
programming
approach

High Not quantified but
faster than
non-linear
programming

Varied process sizing –

did not look at variability
in kinetic parameters or
influent

May be
applicable to
optimising or
calibrating

Doby et al.
(2002)

Risk-based design
(ASM1)

MC Good
(comparing
model results to
ammonia data)

Plant data and kinetic
variables from Cox
(2004)

Huo et al.
(2006)

Low-cost design using
ASM3 for BNR

ε constraint
method to generate
Pareto optimality

More difficult Not quantified ASM3/ASM2d
standard

Afonso and
da
Conceição
Cunha
(2007)

Predict failures of
wastewater pipe
systems (utility)

Generalised
likelihood
uncertainty
estimation (GLUE)

Sensitive to
errors in model
and data
(subjective)

High (GLUE
algorithm
more
complex than
MC)

Not quantified but
expected to be
long (GLUE
requires
thousands of
model evaluations)

Past failure rate of pipes
Hydrological/
climate/geological
data of the area
flows

Operators,
control decision
support

Franks
(1999)

Compute extreme
event statistics in the
water quality field (e.
g., after pollutant load
discharge from CSO
to lake) (utility)

MC
first order reliability
model (FORM)+
importance
sampling (IS) or
LHS
Random
directional
sampling (RDS)

FORM/LHS
most accurate

High (FORM
algorithms
quite
complex)

Thousands of
simulations (e.g.,
15× 2500 for
some methods)

Rainfall
COD
Water quality model
Extreme events
Input uncertainty
characterisation

Researchers Portielje et al.
(2000)

Table 4.3 Review of uncertainty propagation methods and analysis works applied for model-based evaluation (Continued).
U
n
ce

rta
in
ty

in
W
a
ste

w
a
te
r
T
re
a
tm

e
n
t
D
e
sig

n
a
n
d
O
p
e
ra
tio

n
6
0

Downloaded from http://iwaponline.com/ebooks/book-pdf/1117949/wio9781780401034.pdf
by guest
on 19 January 2023



DESIGN OPTIMISATION

Purpose Method Accuracy Difficulty Time Data Engineering
Task

Reference

Rank
stormwater
control
strategies under
uncertainty

MC
ranking methods
(mean+ sd)
uniform
distributions

Sensitive to type of
ranking method
used
Depends on the
scenario

Medium (MC
engineering
standard)

500 MC simulations
(NO CPU time
reported)

Flows, BOD, DO,
temperature
Hydraulic/biochemical
data
Control strategies (seven
total)

Decision makers Duchesne
et al. (2001)

Quantify
uncertainty for
WRRF design /

retrofit

MC Relative1 measure Medium Long (days),
depends on
computational
power and case

Plant data (influent
load/composition, size,
layout, …)

General
applicability
(researchers,
designers,
operators,
control)

Rousseau
et al. (2001)

Uncertainty in
estimating the
cost of WRRF
constructions

Linear regression
Fuzzy linear
regression
Fuzzy goal
regression

Sensitive to
database used for
building regression
models

Medium
(regression is
standard
practice)

3 simulations Database on construction
cost of domestic/industrial
plants in Taiwan

Decision makes Chen and
Chang
(2002)

Risk-based
WRRF design
(replace safety
factors)

MC (method of
Rousseau et al.,
2001)

Relative1 measure
for
decision-making

Medium (see
data
requirement)

Long (days),
depends on
computational
power and the plant
in question

Influent load/composition
Rainfall
Plant model
Temperature

Researchers and
designers (highly
relevant)
Dedicated
software to
generate MC
samples+ run
them

Bixio et al.
(2002)

Integrated
process design
and control via
global
optimisation

Non-linear
programming
(NLP)
Mixed integer
optimal control
problem (MIOPC)
Global
optimisation
methods

Depends on initial
layout and starting
point for
optimisation

Complicated
(NLP
programming
tedious)

1000 CPU seconds
(1 s is worth of the
computer’s
processing time)
(depends on
different solvers)

Plant layout with initial
design values
Ranges for different
design and control
parameters
Plant model
Influent characteristics

Design and
control engineers

Moles et al.
(2003)

(Continued)
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DESIGN OPTIMISATION

Purpose Method Accuracy Difficulty Time Data Engineering
Task

Reference

Screen WRRF
technologies
(emerging+ state of
the art) with a
decision-making
framework

Stochastic
dynamic
programming
Latin hypercube
sampling
Orthogonal arrays

Sensitive to
performance of
emerging
technology (i.e.,
data)
Influent
characteristics

Decision-making
framework clear yet
numerical solution
complicated

12 167 model
evaluations
(CPU time not
quantified but
expected to be
long)

Influent data
Emerging WRRF
technologies and
performance data
Uncertainty in data

Technology
screening
purposes hence
for design
engineers and
decision makers

Tsai et al.
(2004)

Evaluate WRRF
system
design/upgrade
options

MC (method of
Rousseau et al.,
2001)

Relative
measure for
comparison1

Medium Long (weeks),
depends on the
computation
power and the
scenario (9×
100 MC runs)

Models for WRRF
configurations
Yearly influent
profile/load
Influent fractions
Climate
cost index

Researchers
and designers
(highly relevant)
Dedicated
software to
generate MC
samples+ run
them

Benedetti et al.
(2006)

Challenge the
traditional design
approaches in view of
future uncertainty of
WRRFs: scenario
planning for
accounting

Historical plant
data analysis

Simple Pending data
collection issues

Historical data on
influent load,
performance,
modifications,
changes, …
Socio-economic
development data

Designers Dominguez
and Gujer
(2006)

Control alternatives
evaluation for WRRF
operation

Monte Carlo+
multi-criteria
decision-making
framework

Relative Medium Long (weeks) Models for WRRF
configurations
Influent
profile/load
Influent fractions
Cost index

Designers and
operators,
control engineer;
for decision
making

Flores-Alsina
et al. (2009);
Flores-Alsina
et al. (2008)

Note: Monte Carlo (MC).
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4.5.2 Discussion
4.5.2.1 Model calibration
With respect to how uncertainty affects model calibration, the publications that were reviewed focused on
determining wastewater composition and kinetic variables based on available plant data. They present
methods relevant to determining the parameters that result in the best fit of the models along with
whether the model results are statistically significant.

4.5.2.2 Sensitivity analysis
Several authors focused on the sensitivity of models to the uncertainty of inputs and how that affects the
design and performance of treatment facilities. In the simplest approach to sensitivity analysis, the
change in model result for a selected output was measured by individually varying input parameters by
10%. Most of these sensitivity analyses were completed using the Monte Carlo approach to varying
input parameters. This approach is generally considered more rigorous because it may show the
interaction between multiple parameters. As would be expected based on the ASM-based models, each
output had a unique set of input parameters that it was most sensitive to. Even when model inputs fell
within the expected range, ASMs showed that the uncertainty in the output was significant enough that
the ability to meet discharge limits could be uncertain. Similarly, the 2-D clarifier model showed
significant uncertainty in secondary clarifier performance due to uncertainty in model inputs.

4.5.2.3 Design optimisation
The studies that focused on robust designs, all generally defined their goal as a design that had the lowest
cost, while reliably capable of meeting discharge requirements. The results of these studies generally try to
illustrate how increasing or decreasing the amount of money spent changes the risk of being capable of
meeting permit requirements.

From the reported studies, Monte Carlo emerges as the most commonly used method of uncertainty
analysis when evaluating different WRRF plant design and controller alternatives. While there is no
explicit mentioning of how the procedure is applied in these studies, one can infer the following
requirements for the uncertainty analysis: (i) a mathematical model describing the system, (ii) uncertainty
range and distribution of the parameters in the system (that could be influent data or biochemical
parameters). Mostly a uniform distribution is assumed with the upper and lower ranges adopted from
literature. There is no standard on the upper and lower range of ASM parameters, (iii) uncertainty
analysis typically represented by a cumulative distribution function (CDF) or by a mean accompanied by
a standard deviation.

Besides the Monte Carlo method, the following methods are alternatively used (i) generalised likelihood
uncertainty estimation (GLUE) which is a Bayesian approach, (ii) fuzzy linear regression method, (iii)
stochastic dynamic programming. All these alternative methods add complexity since the user is
expected to have some skills and expertise in statistical and numerical programming. It is the authors’
opinion that Monte Carlo simulation is intuitively simple hence can be understood by a larger number
of practitioners.

4.5.2.4 Computational demand
About the computational demand of uncertainty analysis methods, it depends on the method used. The
number of Monte Carlo simulations ranges from 100 to 1000 model evaluations. On the other hand, the
GLUE method requires a number of simulations on the order of 10 000. It should be remarked that
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Monte Carlo simulations are used just for the purpose of propagating input uncertainty (assumed from expert
knowledge) to output uncertainty, however, GLUEmethod aims to first identify the posterior distribution of
parameters (a step which requires many model evaluations in the order of 10 000’s) and then propagate this
to output uncertainty (this step will be comparable to running a Monte Carlo simulations). Similarly, the
stochastic dynamic programming required also on the order of 10 000 simulations. The computationally
simplest method appears to be fuzzy linear regression as it involves formulation of linear programming
problem with fuzzy inequality constraints for which many effective LP solvers are available.

4.5.2.5 Method accuracy
About the accuracy of the methods, this is difficult to comment on but it is clear that the outcome of an
uncertainty analysis depends on how the scenario for the uncertainty analysis is defined, on the framing
of the analysis (Sin et al., 2009). This sets the objective (what is the question to be answered) and the
boundaries for the analysis, that is which system parameters are included as uncertain, what are the
upper and lower ranges selected for each uncertain parameter. In other words, the framing of the analysis
reminds the analyst to ask the right question and to set-up the right framework to do so. If the scope of
the analysis is set too narrow, the outcome will also be narrow, hence missing out the important
implications on the design decisions (the outcome being the right question asked, but the answer is
biased). On the other hand, if one sets the scope of the uncertainty analysis too large, then the outcome is
likely to be too complex to make sense (as there are too many sources contributing to the decision
variable), hence uninformative. While there are still needs for better ways to frame uncertainty analysis,
there are already available useful examples on how to setup an uncertainty analysis (see Benedetti et al.,
2012; Sin et al., 2009, 2011).

In terms of the purpose of uncertainty analysis, most studies reported in this category aimed at providing
decision support for comparing different design alternatives, operation (control) alternatives or technology
selection alternatives.

4.6 SUMMARY
4.6.1 Input and parameter uncertainty assessment

• Random errors are characterised using statistical measures of precision such as standard deviation and
variance. A common technique for detecting systematic errors in an analytical method or an
instrument is to analyse a sample whose composition is accurately known. Another option is to
use two independent methods to analyse the same sample as shown by Rieger et al. (2005).

• Alternative techniques for detecting and removing systematic errors include multivariate outlier
detection methods, statistical process control methods, and data reconciliation. Statistical process
control methods and data reconciliation are well suited to on-line applications as they can be easily
automated, can simultaneously consider a number of variables, and do not require comparison to a
reference method or sample, which may not always be practical. In addition, they can account for
auto- and cross-correlation.

• The uncertainty in model parameters is typically assessed as part of parameter estimation. Parameter
inference or confidence regions can be developed after parameter estimation based on an approximate
variance−covariance matrix for the parameters. This often provides a sufficient approximation of the
uncertainty, which can be better approximated using other, more sophisticated techniques.

• Other potentially more powerful techniques include profiling (Bates & Watts, 1988), Monte Carlo
analysis, and the use of Bayesian statistics to create a parameter distribution based on prior and
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current knowledge (Cox, 2004). Combining Monte Carlo simulation with a parameter estimation
algorithm is recommended when a more detailed evaluation of parameter uncertainty is required as
it is a powerful and reasonably easy to understand method. It has the disadvantage of requiring a
considerable number of simulations.

4.6.2 Model structure uncertainty assessment

• It is largely recognised that wastewater treatment models have structural uncertainty, but methods for
quantifying this are generally not available or addressed. This may be an area where considerable
additional work is required.

• The level of sophistication and the nature of the state variables included in wastewater treatment
models require that those that use them understand and address the limitations of the mathematical
approaches used in the models. The completely mixed stirred tank reactor uniform concentration
assumption is widely employed in wastewater treatment models but its limitations, which may be
more pronounced with the nature of state variables representing storage products and with
non-first-order rate expressions, are not generally addressed. In this case, however, the work
within the chemical engineering field provides tools to consider the structural uncertainty of this
model assumption and the limiting cases of maximum mixing and complete segregation may need
to be addressed more often by wastewater treatment modellers.

• The wastewater treatment modelling profession should not become complacent with the Monte Carlo
approach to quantify uncertainty. The tools and knowledge of fundamental and applied mathematics
should be considered. There is some indication in the literature that different methods for model
uncertainty quantification generate different uncertainty results and, therefore, additional
understanding and work are required to determine what meaningful uncertainty results are and
how they are truly achieved. Research should focus on finding the best methodologies for specific
cases and types of analyses.

• There is some indication in the literature that inherent random variability, and hence uncertainty, in
wastewater treatment processes may arise from the nature of the systems. The complex, non-linear
nature of the systems and the numerous potential competitive and cooperative populations in
systems modelled by the wastewater professional may result in dynamical, so-called chaotic,
behaviour. The tools of this discipline of mathematics may play a useful role in describing some
wastewater treatment systems.

4.6.3 Propagation of uncertainty in model-based decision making

• Although detailed modelling is useful for process engineering, the uncertainty in the inputs and the
complexity of the models still result in significant uncertainty in the model outputs.

• Monte Carlo type techniques can be used for design, sensitivity analyses, and calibration. How the
Monte Carlo techniques are applied and how the results are interpreted has been approached
differently within all of the publications reviewed with no consensus on the best approach.

• Some more mathematically advanced techniques have been applied to process engineering. Although
these approaches may improve results, it is unlikely that they can easily be adopted by practicing
engineers due to their complexity.

• All approaches for ‘robust designs’ showed that the uncertainty in some inputs, both wastewater
characterisation as well as kinetic parameters, can significantly affect the model predicted rate of
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failure. Therefore, the critical inputs need to be identified, and the variability or uncertainty in their
values should be defined and used in the modelling exercise.

This section has reviewed methods that have been used to assess and propagate uncertainty in wastewater
treatment analyses. Together, these reviews converge to several overarching conclusions:

(1) There is uncertainty in wastewater treatment process model structure, parameters and inputs.
Currently, the profession does not have a comprehensive understanding of the extent, impact or
relative importance of these contributions.

(2) The Monte Carlo method is the engineering standard method for uncertainty analysis. It is
understood widely and works well. However, the community may benefit from the development
of further advanced methods and tools.

(3) Framing of uncertainty analysis by asking the right question and setting up the right framework
(boundaries of the analysis) are key to arriving at a meaningful and useful result.

(4) Some successful industrial applications were found, but more case studies are needed to realise the
benefits of uncertainty analysis methods.
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Chapter 5

The DOUT uncertainty analysis
methodology – combining models,
statistics and design guidelines

5.1 INTRODUCTION
To facilitate the transition of wastewater treatment plant design from guidelines (heuristic) and deterministic
approaches to a probabilistic approach, models need to be combined with statistical methods. Models
consider the plant as a system and take into account the interdependencies within the process train.
Statistical methods can be used to propagate for variability and uncertainty to the model outputs.

Success in transitioning to a probabilistic design requires the development of a set of protocols to
guide the design engineer through the process with the maximum degree of objectivity and transparency.
This will enable stakeholders with the proper expertise to understand the rationale for the design and
how the uncertainties in the design were handled. In each engineering project phase (planning,
preliminary design, detailed design, operation), modelling can be applied to support the design decisions
and evaluate specific uncertainties.

This chapter discusses the steps and key elements of such a methodology, based on the work of the Task
Group. The work presented in this chapter is largely based on Talebizadeh (2015).

5.2 THE INCLUSION OF UNCERTAINTYANALYSIS IN A MODEL-BASED
PROJECT
5.2.1 General tasks
There are several published uncertainty analysis protocols, most of them developed by researchers working
in the water resources field (e.g., Jakeman et al., 2006; Refsgaard et al., 2007).

Figure 5.1 shows a list of tasks that need to be incorporated in a model-based project when uncertainty
analysis is undertaken.
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5.2.2 Linking process modelling steps and uncertainty methodology tasks
Figure 5.2 identifies which uncertainty-related tasks need to be considered at each stage of a wastewater
treatment modelling project if uncertainty and variability are to be evaluated. The typical six-step
simulation-based project execution flow sheet (Rieger et al., 2013) has been used as a basis for a
modelling project.

At the project definition step, the various sources of uncertainty need to be identified. Depending on the
boundaries of the project some of these uncertainties may be associated with external non-controllable
sources. It is crucial that sources of uncertainty are considered explicitly early in the modelling study.
However, at this stage uncertainties are seldom quantified. It is also at this stage that the expected model
performance/predictive accuracy needs to be established. The accuracy performance criteria will be
reconsidered during the modelling process to assess whether the original expectations were realistic
based on the available data and model capabilities.

During the data collection and reconciliation step, extra experiments or measurements can be taken to
reduce the uncertainty of certain sources. The statistical description of key sources of uncertainty can be
performed at this stage.

At the model set-up phase the modeller typically selects the model category (e.g., ASM1, ASM2d) and
configuration of the process train (e.g., number of tanks, number of trains to be modelled). These decisions
will determine the model structure uncertainty of the simulated process.

Tackling Uncertainty Analysis (UA)

Identify:

Decision drivers

Metrics

Sources of uncertainty

Uncertainty propagation:

Influent variability 

Parametric uncertainty

Prioritize:

Sensitivity analysis

Expert knowledge

Scenario analysis

Fore sighting methods

Life cycle assessment 

Multi-attribute-utility theory

Benefit-cost-risk approach

Benchmarking and auditing
Reduce:

Sampling

Experimental design

Model:

Influent

CFD

Process

Integrated modeling

Synthesize and communicate results:

Probability of compliance

Cost estimates

....

Figure 5.1 List of tasks in a model-based project with uncertainty analysis (adapted from Jakeman et al.,
2006).
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Towards the end of the calibration and validation step, an assessment is undertaken that compares
calibration with validation results. The validation step is performed with an independent data set that
contains none of the data used for calibration. This task evaluates possible biases in the model and
assesses whether the model performance is good enough to meet the expected accuracy requirements.
The calibration and validation steps are only relevant for existing plants going through an upgrade.
Models for green-field sites where the plant does not exist, cannot be calibrated/validated. In the
simulation step, uncertainty assessment and propagation are conducted. Uncertainty propagation is often
limited to quantitative uncertainty. However, scenario uncertainties can also be taken into account in this
step (Refsgaard et al., 2007). For definitions of quantifiable and scenario uncertainty, see Section 1.3.2.

During each step of the modelling project an evaluation is performed to decide whether there are
sufficient data to proceed with the modelling, whether the uncertainty in the model is at a level where the
results can be expected to be useful, whether the assumptions made in the model are realistic and how
the study outcome may be influenced by the implicit and explicit assumptions made in the model
(Refsgaard et al., 2007).

5.3 BRIDGING DESIGN GUIDELINES AND STEADY-STATE DESIGN
WITH DYNAMIC STOCHASTIC MODELLING
Part of the work of the Task Group was to develop a methodology that incorporates explicit uncertainty
evaluations specifically for wastewater plant design. The goal of this methodology is to provide design
engineers with a quantitative probability of compliance for the design under consideration. This section
describes the proposed design methodology in a typical design project.

Modelling project steps

Project 
definition

•Define
objectives

•Context and 
framing

•Determine
requirements

Data collection
and
reconcilliation

•Influent

•Physical 

•Operational 

•Performance

•Additional 
information

Model set-up

•Influent

•Biological 

•Hydraulic

•Aeration system

•Clarifier 

•Sludge train

•Interfaces
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•Model numerical 
aspects
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validation

•Model 
parameter
selection
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evaluation

Simulation
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evaluation

•Future "what-if"
scenarios

Results 
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Figure 5.2 Modelling project steps and uncertainty evaluation tasks.
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Figure 5.3 shows the tasks to be followed in the proposed protocol. The Task Group methodology
includes two additional tasks (compared to Figure 5.1).

(1) An evaluation of a set of preliminary designs based on design guidelines (e.g., ATV (2000), Metcalf
& Eddy et al. (2013)).

(2) An optimisation loop.

5.3.1 Define project objectives
At the start of a project the specific objectives, design constraints and the boundaries of the system should be
clearly defined. Defining the system boundaries will define the inputs to the model, the sources of variability
and uncertainty and the type of analysis required to evaluate the performance of each design alternative.

5.3.2 Select configurations to be evaluated
5.3.2.1 Generation of a set of pre-designs with different levels of safety
In this task a set of pre-designs is generated. Each pre-design incorporates project specifications, available
data and other prior knowledge. These pre-design alternatives can be generated using design guidelines
(see Chapter 2, Section 2.2.1) or by running a steady-state model.

Analyse
Synthesize
Communicate

Model
Propagate

Identify
Prioritise
Reduce

Section 5.3.1:
Define project objectives
Boundary of project/model

Effluent standards and probability of 
compliance

Design horizon

Section 5.3.2:

Select configurations and 
processes to be evaluated 
Preliminary sizing and approximate 
costing based on guidelines/ steady 
state rules

Section 5.3.3 & 5.3.4:
Compile list of sources of 
uncertainty that need to be 
evaluated for design under 
investigation

Use expert elicitation and site 
information to compile a "reduced" 
list of uncertainties for the design 
objective

Section 5.3.7:
Propagate uncertainty and 
variability using Monte Carlo 
simulation
Run dynamic simulations for each 
design using the random stochastic 
variables

Compile effluent CDFs

Section 5.3.5 & 5.3.6:
Translate key uncertainties 
into stochastic variables
Characterization of uncertain inputs 
and parameters in terms of PDFs

Define scenarios for those 
parameters that can't be 
defined with PDFs

Section 5.3.8:
Calculate metrics for the 
objectives of each design 
under evaluation
Verify that the critical sources of 
uncertainty have been captured 

Quantify the probability of 
(non)compliance using Monte Carlo 
simulation 

Estimate detailed total cost

Section 5.3.9:
Multi-criteria decision and 
selection of best alternative
Summarizing the corresponding cost 
and probability of non-compliance for 
all design alternatives

Figure 5.3 Flow sheet of the Task Group methodology for probabilistic plant design. Abbreviations: PDF=
probability density function, CDF= cumulative frequency distribution (adapted from Talebizadeh, 2015).
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In contrast to current practice where single values are selected for design inputs to generate the size of
different treatment units, in this methodology, each design input is described with a uniform distribution.
The lower and upper limits of the distributions are based on expert opinion, previous studies or available
data. The various pre-designs are then generated by randomly sampling (Monte Carlo) the distributions.
As a result, each pre-design has a specific level of conservatism resulting from the random selection of
design inputs.

Figure 5.4 shows a schematic representation of this step. The grey areas represent the uniform distribution
of each input and of the output (design alternative). The white, dark grey and black lines represent examples
of three distinct levels of conservatism.

Figure 5.4 also shows the categories of the design inputs typically required to generate a pre-design using
design guidelines (or a steady-state model):

• Influent wastewater constituents derived from the basis of design (e.g., flow, COD, ammonia);
• Safety factors applied to design parameters such as biomass growth rates, influent concentrations or

effluent standards;
• Unit process design targets (e.g., overflow rates for clarifiers, SVI);
• Operational targets which include utility-specific wishes or constraints relating to the operation of the

treatment plant;
• Effluent standards (fixed values with no uncertainty attached to them) which include the effluent

concentration values that are to be met.

Correlations between inputs need to be taken into account by including correlation relationships.
Alternatively, a correlated sampling technique which produces correlated input variables can be used
(Iman & Conover, 1982).

Finally, the number ofMonte Carlo simulations to be performed should be large enough to ensure that the
entire space of potential design outputs (i.e., the size of different treatment units) is covered.

5.3.2.2 Screening of pre-designs
A number of the design alternatives generated in the previous step may not be feasible due to site-specific
constraints and many may not be significantly different from each other in size and performance. In addition

Influent constituents 

Safety factors

Design targets

Operational targets

Effluent standards

Design alternatives 
(process unit sizes) 

Design 
guidelines

and/or 

Steady state 
model

Figure 5.4 Generating a set of design alternatives using different input values sampled from uniform
distributions of each of the inputs (Talebizadeh, 2015).
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to plant performance, a preliminary cost estimate (Gillot et al., 1999) might identify and eliminate
pre-designs with prohibitive capital or operational costs.

Non-feasible, very similar or very high-cost design alternatives should be removed and only a small
number of pre-designs that are representative of the design space generated in the previous step should
be analysed further.

An efficient way to reduce the number of generated pre-designs is through the application of a K-means
clustering method (Hartigan & Wong, 1979). The K-means algorithm aims to partition a dataset into K
clusters by minimising the sum of distances between all values in a cluster and the respective centroid.
The cluster centroids are representative pre-designs to be analysed further.

Figure 5.5 shows an example of the implementation of the K-means algorithm for a hypothetical set of
pre-designs. The light grey dots plot the area of the secondary clarifier vs. the total bioreactor volume for the
several hundred pre-designs generated for this example. The black dots represent the cluster centroids that
were determined based on a K-means clustering method with seven clusters.

In addition to the pre-designs identified with the K-means clustering method (the centroids), the design
engineer may choose additional pre-designs, for various reasons (e.g., to evaluate performance under
extreme influent conditions), to be included in the group subjected to further analysis.

5.3.2.3 Preliminary evaluation of pre-designs with dynamic data
The preliminary design alternatives chosen from the analysis discussed in Section 5.3.2.2 are then evaluated
under dynamic influent conditions. A one-year long influent time series representative of the expected
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Figure 5.5 Generated pre-designs and cluster locations for a K-means clustering with seven clusters
(Talebizadeh, 2015).
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variability in influent conditions is developed for this purpose. The model is run with this time series as input
using the model’s set of default parameters. However, certain parameters can be adjusted, if information is
available that indicates that the default values do not apply for the facility under design. The output from the
simulation is taken as an indicator of the expected performance behaviour of the plant under
dynamic conditions.

Cumulative distribution functions (CDFs) can be constructed for each preliminary design for the
critical effluent water parameters as shown in Figure 5.6. The CDFs are examined to eliminate those
design alternatives with a poor performance in terms of effluent quality under dynamic conditions. In
addition, the comparison can serve as a tool for eliminating design alternatives having the same
treatment performance. This step reduces even further the number of pre-designs that receive further
consideration.

5.3.3 Identify sources of variability and uncertainty to be evaluated
In the step described above, several pre-designs are selected for further evaluation. These selected
pre-designs are subjected to dynamic probabilistic analysis to generate a profile of their expected
performance. In the previous step, the dynamic simulation of the selected alternatives used an influent
time series representative of the expected variability in influent conditions and default model parameters.
The dynamic probabilistic evaluation in this next step, involves running simulations with stochastic
influent and model parameter values (Table 5.1).

To prepare for this, the sources of uncertainty that will be propagated through the dynamic model must be
determined. As a first step, a list of the relevant sources of uncertainty is composed. Of all the potential
sources of uncertainty only the ones considered by the design engineer critical for the specific objective
are evaluated. An uncertainty matrix specific for the project can be constructed along the lines of
Tables 5.2−5.4.

The uncertaintymatrix lists the location of uncertainty and each source, its nature (variability: irreducible/
epistemic: reducible) and its level (statistical or scenario). Additional discussion on the uncertaintymatrix can
be found in Walker et al. (2003).

Figure 5.6 Example of effluent CDFs for seven pre-design alternatives. The performance of each of the
pre-designs is evaluated against the effluent permit. In this case 2 mg/L of ammonia (Talebizadeh, 2015).
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5.3.3.1 Input variability and uncertainty
Table 5.2 lists the sources of variability and uncertainty introduced during the data input phase of a
modelling project and classifies them as reducible or irreducible. In most cases, uncertainties in input
data that are irreducible can be attributed to the inherent variability of the system being modelled,
especially influent data. As noted in Table 5.2, uncertainty related to measurement/sampling/reporting
errors is reducible. Physical data needed for the model is in most cases known. Uncertainties related to
physical information can be irreducible due to unknown factors or reducible. For example, uncertainty
regarding the active tank volume of an anaerobic digestion that has sediment accumulation can be
reduced through tracer studies. Operating settings and performance data can include some inherent levels

Table 5.1 Location (source) of uncertainty in WWTP modelling (after Belia et al., 2009).

Location Details Sources Examples

Inputs Measured data Influent data Current and future predicted flow, COD,
ammonia

Physical data Tank volume and geometry
Operational settings DO set points
Performance data Effluent data, reactor concentrations
Additional info Input from connected systems for example,

sewers, catchment

Model structure
and parameters

Model parameters Hydraulic Number of tanks in series
Biokinetic Maximum growth rates
Settling Settling coefficients

Models Equations
describing
processes

Influent model, hydraulic model, aeration
system model, process models (biological,
settling, etc.)

Interfaces between
models

Mapping of state
variables

Waste-activated sludge pumped to an
anaerobic digester; digester effluent
pumped to sludge treatment

Numerics Software (model
technical aspects)

Solver settings Wrong solver used (solver does not
converge)
Mistakes in model coding

Numerical
approximations
Software limitations
Bugs

Model output Propagation of
uncertainty

All model
uncertainties

Probability of meeting effluent criteria

Chapter 3, Section 3.5, discussed key challenges in transitioning from the guidelines/safety factor
design approach to probabilistic design. One of the major challenges identified in the work of the
Task Group was that, in the wastewater field, when using models to quantify risk, researchers often
focused on a few model parameters. Furthermore, the identification of uncertainties for use in risk
analysis tended to be done in an ad-hoc manner. To remedy these weaknesses, and to create a
more structured framework for uncertainty analysis the Task Group compiled and categorised the
most important sources of uncertainty that impact a wastewater project (Table 5.1). Though this list
is not exhaustive, it should cover most of the sources of uncertainty of interest.
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Table 5.2 Examples of input variability and uncertainty.

Location Details Nature of Uncertainty Examples

Influent data Flow rate, concentrations, influent
characterisation data, temperature,
data from other models and other
systems like sewers

Irreducible: due to the inherent
variability of the real system like weather,
unexpected demographic changes,
unexpected factory shutdowns

Increase in influent TKN in new developments due to low-water
fixtures and water conservation.
New community development with no existing wastewater to
characterise or treatment plant to calibrate.
Industrial toxic effects on microbial community in treatment plant.

Reducible: due to data collection for
example, sampling method, location,
frequency, accuracy of sensors,
accuracy of analytical techniques

Plants historically collecting influent BOD, with limited to no COD
data.
No measurement of influent temperature.
Limited influent N and P data available because plant was not
required to remove TN or TP, but new permits have TN and TP limits.
Biodegradability of industrial waste. C/N/P ratios of industrial waste.
Scenario: Future predicted flow, rate of growth, ….

Physical data Process flow diagram, active (effective)
tank volumes, clarifier surface areas,
flow splits

Irreducible: due to the dynamic
behaviour of structures to flow splits and
flow changes

Scenario: CFD or tracer studies to determine flow split under
different scenarios, however variability in flow splits may remain
irreducible.

Reducible: due to incorrect physical
information provided

Unknown true volume constructed or operational depth of structures.
Take field measurements if inadequate as-builts provided.
Reduction in tank volume due to sediment/grit accumulation.
Influent of plant construction (e.g., circular tanks with non-ideal flows
and hydrodynamic inefficiencies).

Operational
settings

Controller set-points, valve positions,
pumped flows

Reducible: due to actions different from
planned or changes not logged

Change in set-points, incorrect controller set-up (e.g., scales
different between field and control room).
Uncalibrated controller or instrument (e.g., DO probes, nutrient
analysers).
Insufficient logging of operator actions (e.g., turning on or off a pump
without mentioning the flow rate).

Operational
data

Plant performance data Reducible: due to sampling and data
collection issues

Composite vs. grab sampling of for example, MLSS.
Changes during sample collection and storage can impact
performance data.
Continuous vs. intermittent pumping. If a pump operates
intermittently, the concentration of the TSS on primary sludge can
vary if sample taken at beginning or end of pumping cycle.
Poorly functioning online equipment.

Equipment
performance

Equipment failures Irreducible: for example, due to
unexpected equipment failures

Mixers not working in aeration system because limited screening
allowed rags into tanks, resulting in different mixing conditions
throughout tank.

Reducible: provide redundant design of
critical pieces of equipment and
processes

Provide standby unit processes or pieces of equipment to ensure
continues operation (e.g., aeration blowers, secondary clarifiers,
filers)
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Table 5.3 Examples of model structure and model parameter uncertainty.

Location Details Nature of Uncertainty Examples

Influent model Influent dynamics, characteristics,
influent fractions

Reducible: due to simplifications
of influent dynamics and influent
characteristics

Generic diurnal patterns
Fixed ratios for influent fractions
Limited data used to determine influent
fractions

Biological
model

Model structure: ASM and ADM
type models for processes. Type of
mathematical expression used to
describe processes

Reducible: due to simplifications
in model structure, choice of
mathematical description of
processes

ASM models are approximation of reality
Biological active species in the wastewater
Monod vs. enzymatic kinetics
Processes not included or included in
simplified form
Removal of particulate and colloidal
fractions assumed as an instantaneous
process
One-step vs. two-step nitrification

Model parameters: growth rates,
yields and half saturations are
fixed, a priori chosen, calibrated,
time varying

Reducible: due to lack of
knowledge of the appropriate
value

Toxic components
New process elements that are not
properly characterised in literature with
poorly defined parameters.

Hydraulic
model

Model structure: transport and
mixing processes, number of trains,
number of tanks in series

Reducible: due to the
simplification of transport and
mixing processes in models,
inadequate spatial resolution

CSTRs vs. plug flow.
Selection of number of trains to model,
number of tanks in series.

Model parameters: empirical
hydraulic loading relationships
fixed, a priori chosen, calibrated,
time varying

Loading on filters are based on simple
hydraulic parameters resulting in poor
prediction of performance.

Aeration
system model

Model structure: gas transfer
processes, mechanical system
details

Reducible: due to the
simplification of gas transfer
processes and aeration system.

Improper model structure for gas−liquid
transfer

Model parameters: fixed, a priori
chosen, calibrated, time varying

Parameters such as alpha factors and
oxygen transfer efficiency not known

(Continued )
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Table 5.3 Examples of model structure and model parameter uncertainty (Continued ).

Location Details Nature of Uncertainty Examples

Clarifier model Model structure: separation
processes, calculation of
composite variables and type of
mathematical expression used to
describe processes.

Reducible: due to simplifications
in model structure, processes
omitted, processes included in
simplified form, choice of
mathematical description of
processes.

Model selection may not sufficiently
address solids transport.
1-D, 2-D, CFD analysis

Model parameters: fixed, a priori
chosen, calibrated, time varying

Irreducible: due to inherently
varying biomass settling
properties.
Reducible: due to our lack of
knowledge of the appropriate
value.

Selection of design settling characteristics
and how they can be related to historical
values expressed as the sludge volume
index (SVI)

Controllers in
plant
operations

Control loops, sensors, actuators,
time variation of set-points

Reducible: due to the oscillation
of the aeration system, time
delays in control loops,
non-linearity of actuators.

Approximate PID tuning values

Interfaces
between
models

Use of one or several sets of state
variables, calculation of composite
variables

Reducible: due to the
aggregation of state variables.

Incompatibility between output of one
model and input of another model

Table 5.4 Examples of numerical uncertainty.

Location Details Nature of Uncertainty Examples

Model numeric
aspects

Numerics: solver selections
and settings, bugs
Simulators: limitations of
simulation platforms

Reducible: due to numerical
approximations and software bugs

Lower imposed solver accuracy is chosen to
allow for higher speed of calculations
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of uncertainty but in most cases, this can be reduced by collecting additional data at the plant. Table 5.2
provides examples of input-related uncertainty and variability.

5.3.3.2 Model structure and parametric uncertainty
Each of the sub-models (influent model, activated sludge model, settling model, etc.) used within a
plant-wide model contain sources of model structure uncertainty. Table 5.3 lists the sources of
uncertainty linked to model structure and parameter values and classifies them as reducible or
irreducible. Decreases in load due to industrial discharge reduction can be represented as scenarios by
adjusting the historic influent loads. Uncertain kinetic parameter values can be described as probability
functions with extreme values as bounds.

5.3.3.3 Model numerical uncertainty
Table 5.4 provides examples of uncertainty linked to numerical aspects of model implementation and
classifies each source as reducible or irreducible (Benedetti et al., 2012; Claeys et al., 2010).

5.3.4 Prioritise and reduce sources of uncertainty
In this task, a reduced list of the sources of uncertainty that have the greatest impact on the specific project
objective is compiled. To that list, the sources of uncertainty which will improve the general confidence in
the model should be added. In this step the uncertainty matrix is also reduced.

Once the parameter ranges are defined, sensitivity analysis can help identify to which uncertainties the
model outputs are most sensitive (Saltelli et al., 2004).

The collection of additional data or the execution of experiments will reduce the spread of values of an
uncertain parameter. Reducing uncertainty improves model predictive accuracy.

5.3.5 Describe sources of variability and uncertainty explicitly
5.3.5.1 Influent variability and generation of input time series
One of the major sources of uncertainty/variability with which both plant designers and operators have to
deal is the dynamics of the influent. Typically, influent wastewater variability related to flow, temperature or
water quality characteristics can be described using a time series when data are available.

In the absence of measurements of adequate frequency and duration, the appropriate variability can be
introduced into the model by using an influent generator (Martin & Vanrolleghem, 2014) to randomly
generate synthetic time (see Box 5.1). The synthetic time series must incorporate the underlying
stochastic characteristics of the different variables and their correlations.

BOX 5.1 INFLUENT GENERATOR

An example of an influent generator, the one developed by Talebizadeh et al. (2016), uses two types of
statistical models. Onemodel for the synthetic generation of rainfall time series (aMarkov chain-gamma
distribution) and another for the time series describing the influent during dry weather flow (DWF)
conditions (a multivariate autoregressive model with periodic terms). These two-time series (i.e.,
rainfall and influent in DWF conditions) serve as stochastic inputs to a conceptual model of the
sewershed in order to generate the influent time series during both wet weather flow (WWF) and
DWF conditions.
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5.3.5.2 Parameter uncertainty
Uncertain parameters can be described in terms of probability density functions (PDFs). When site
measurements are available the data can be used for the estimation of the parameters of the PDF. In the
absence of historical data, subjective judgment (expert elicitation) can be used instead. Extreme
parameter values can be designated as bounds. Any knowledge regarding the correlations among the
different model parameters need to be also taken into account.

Different types of distribution functions (e.g., triangular or truncated normal distributions) can be used.
In the absence of prior knowledge or site data the uncertainty can be characterised by assigning uniform
distributions to the model parameters in order to avoid the under-estimation of uncertainty in model
outputs (Freni & Mannina, 2010). Other than recognised and total ignorance, all uncertainties need to
be described in such a way that they can be accounted for in the analysis, by propagating them
through a model.

5.3.6 Model set-up and model structure uncertainty
In this task the selection of the category of models (i.e., for activated sludge selection between ASM1,
ASM2d, …) and the complexity of the layout is decided. Model selection and layout complexity are
usually dictated by the project objective, process configuration under investigation and the available
data. The model variables, structure and the links between system components and processes contribute
to model structure uncertainty.

Identifiability analysis can be used to ‘expose inadequacies in the data or suggest improvements in the
model structure’ (Matott et al., 2009). Identifiability can be defined as the situation where it is difficult
to give a unique value to the model parameters. This is usually the result of the combination of (1) a
model with a rather large number of parameters and (2) lack of sufficient data or lack of data of high
quality (see Appendix A for more details).

Model structure uncertainty or uncertainty about expressing the relationship among the different
variables of a system (Beck, 1987) as well as evaluation of different model structures for selecting
the optimum model structure for dynamic simulation of WWTPs are not addressed in this
methodology.

5.3.7 Propagation of uncertainty and variability using Monte Carlo
simulation
Following model set-up, variability and uncertainty can be propagated through the model by running
simulations with different influent time series and random samples from the joint distribution of
model parameters selected as uncertain and quantified as described in Sections 5.3.3–5.3.5. This
will generate different realisations of operational and effluent time series (different ‘possible
realities’).

The simulation outputs are aggregated and evaluated after each run and output metrics are calculated.
These metrics, such as the probability of compliance or non-compliance (PONC) provide quantitative
estimates of the stochastic features of the system response (Talebizadeh, 2015). Figure 5.7 summarises
the uncertainty propagation and effluent metric estimation procedure, and is further described in the
sections below.
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5.3.7.1 Monte Carlo simulations
Monte Carlo simulation in combination with modelling is the most common method implemented for
uncertainty propagation as discussed in Chapter 4 (see also Benedetti et al., 2006; Bixio et al., 2002;
Huo et al., 2006; Rousseau et al., 2001; Sin et al., 2009).

Depending on how uncertainty and variability are propagated through the model, different types of
Monte Carlo methods can be applied. Monte Carlo simulation can be implemented using either a
one-dimensional or a two-dimensional approach. To address short-comings in these two methods,
Talebizadeh (2015) proposed a third approach called the pragmatic Monte Carlo method. All three of
these approaches are explained below.

In each Monte Carlo run, a different vector of model parameters is used (Figure 5.8). Each vector is
randomly sampled from the joint (the probability of two events occurring simultaneously) or marginal
(the probability of an event irrespective of the outcome of another variable) distributions of the uncertain
model parameters.

Two commonly used sampling methods used in the wastewater treatment field are the random sampling
(RS) and Latin hypercube sampling (LHS) (Benedetti et al., 2011; Stein, 1987). A short description of these
two methods has been included in Appendix B.

Monte Carlo Convergence

Monte Carlo runs must continue until the statistical properties of the different effluent constituents such as
average, standard deviation or a certain percentile, become stable (Benedetti et al., 2011). For example, the
fluctuation in the average, 5th, 50th, 95th percentiles can be evaluated at each Monte Carlo run, and
simulations continued until the relative changes in the values of these four statistics drop below a
pre-determined percentage (e.g., 1%). The effluent time series obtained may require some time-series
aggregation prior to the convergence test.

Uncertainty propagation using the 
model under dynamic conditions

Synthetic generation of 

influent time series

Random generation of 

model parameter vectors

Calculation of statistical 

parameters for each effluent 

constituent  

• Estimating the CDFs for 

wastewater constituents 

• Calculation of metrics such as 

PONC    

Convergence of 

the statistical 

characteristics 

of effluent?

YES

NO

Figure 5.7 Uncertainty propagation and effluent metric estimation procedure (Talebizadeh, 2015).
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5.3.7.2 One-dimensional Monte Carlo simulation
In one-dimensional Monte Carlo simulation, no distinction is made between uncertainty and variability.
In order to obtain the effluent distribution, the following steps are followed (Talebizadeh, 2015):

(1) Random generation of a vector of uncertain model parameters.
(2) Synthetic generation of a year-long influent time series (generated by an influent generator).
(3) Running the dynamic simulation of a design alternative using the parameter values in (1) and the

influent time series in (2).
(4) Repeating 1–3 N times until the effluent distribution passes the specified convergence test.

Because uncertainty and variability are lumped together (uncertainty in model parameters and variability in
the influent time series), a sample of uncertain model parameters (step (2) above) and influent time series
(step (1) above) are input simultaneously to the dynamic model for each design alternative in each
Monte Carlo run.

One of the main problems that can arise by combining uncertain and variable sources is that the
information regarding the contribution of each source is lost and the result may become technically
difficult to interpret (Wu & Tsang, 2004). If a one-dimensional Monte Carlo simulation is to be used
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Figure 5.8 Graphic description of Monte Carlo simulation.

The DOUT uncertainty analysis methodology 85

Downloaded from http://iwaponline.com/ebooks/book-pdf/1117949/wio9781780401034.pdf
by guest
on 19 January 2023



correctly for uncertainty analysis, the effect of either uncertainty or variability on the key outcomes of a
design (e.g., tank volumes, effluent quality), must be negligible (Merz & Thieken, 2005).

5.3.7.3 Two-dimensional Monte Carlo simulation
Two-dimensional Monte Carlo simulation is comprised of two loops. A variability loop is nested inside an
uncertainty loop. This allows variability and uncertainty to be considered separately (Frey & Rhodes, 1996).
For a given design alternative, the uncertainty loop will be executed P times. Within each iteration of the
uncertainty loop, the variability loop will be executed N times. Neither the value for P or N is known at
the beginning of this analysis. Instead, at the end of each iteration of either loop, the effluent output
series that is generated is subjected to a statistical analysis to determine if pre-determined convergence
criteria have been satisfied. If the answer is yes for the variability loop, then a new iteration for the
uncertainty loop is begun. If yes for the uncertainty loop, then the uncertainty analysis is considered
completed.

The execution of a two-dimensional Monte Carlo simulation can be summarised as follows (Talebizadeh,
2015):

(1) Begin an iteration of the uncertainty loop by randomly sampling from the probability distribution of
each uncertain parameter. This generates values for a vector of uncertain parameters that will be
used throughout Step 2.

(2) Begin an iteration of the variability loop.
(a) Using an influent generator, synthetically generate a year-long influent time series.
(b) Simulate effluent quality time series for the influent time series generated in Step 2a and for

the randomly chosen uncertain parameters from Step 1.
(c) Calculate statistics for the effluent time series from all runs completed for Step 2 to determine

if the a priori established convergence criteria for the effluent distribution for this variability
dimension have been met.

(d) If convergence has been achieved (N simulations), continue to Step 3. If not, repeat Steps 2a
through 2c.

(3) Go to Step 1 for the next iteration of the uncertainty loop by randomly sampling from the probability
distribution of each uncertain parameter. Follow Steps 2a through 2d.

(4) Evaluate data to determine whether the convergence criteria for the uncertainty dimension have
been satisfied (P simulations).
(a) If convergence is not satisfied, return to Step 1;
(b) If convergence is satisfied end the uncertainty loop.

The result of the two-dimensional Monte Carlo simulation is a cloud of CDF distributions (rather than a
single CDF for one-dimensional Monte Carlo). Each CDF represents plant performance with different
levels of conservatism (Figure 5.9).

The two-dimensional Monte Carlo simulation is very computationally expensive (Hoffman &
Hammonds, 1994), however, if necessary, more efficient computing methods like cluster computing can
reduce overall simulation time (Benedetti et al., 2008; Claeys et al., 2006).

5.3.7.4 Pragmatic Monte Carlo method
Talebizadeh (2015) proposed a novel approach that addresses the shortcomings of the one-dimensional
Monte Carlo simulation method and has a substantially lower computational load compared to the
two-dimensional Monte Carlo method.
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In the proposed method, named the pragmatic Monte Carlo method, uncertainty is evaluated at a small
number of particular vectors of model parameters. One vector of model parameters could correspond to
values obtained from previous studies on the plant, a calibrated model or expert knowledge. Another
vector could represent a ‘worst-case’ scenario that would result in a conservative effluent CDF. A third
vector could represent parameter values representing a very aggressive design. For details on the
proposed method and the procedure for identifying a ‘worst-case’ vector of model parameters, see
Talebizadeh (2015).

Once the vectors of model parameters are selected, one-dimensional Monte Carlo simulations can be run
for each of the selected vectors with different influent time series (generated by an influent generator).

5.3.7.5 Effluent constituents cumulative distribution generation
As stated previously, at the end of the Monte Carlo simulations the CDF of each of the effluent constituents
of interest is generated. It must be noted that the simulated effluent time series may require aggregation
before deriving any statistics to check the convergence of the Monte Carlo runs or to compare with
effluent permits. Time-series aggregation is necessary when the temporal resolution of the model output
(simulated effluent time series) is different than the one by which compliance to a specific effluent
standard is measured. For example, if the simulated effluent time series has a temporal resolution of 15
min and the compliance to effluent standards is measured based on flow-proportional daily-average
concentration values, then the effluent time series (with 15 min temporal resolution) needs to be
aggregated to daily effluent time series (Figure 5.10). Once the simulated effluent time series is
aggregated, the convergence of effluent distributions can be evaluated for the three types of uncertainty
propagation methods explained in Section 5.3.7.1.

Figure 5.9 A cloud of effluent CDFs resulting from a two-dimensional Monte Carlo simulation. (Talebizadeh,
2015). The graph showsN×P number of CDFs. Each CDF has been generated by fixing the uncertain model
parameters at a particular vector of parameter values and running the dynamic model of the plant under N
different influent time series.
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5.3.8 Synthesise evaluation metrics (output analysis)
Once allMonte Carlo runs are completed, evaluation metrics for each design alternative can be compiled and
compared. These metrics will quantify the level of risk or conservatism of each design under investigation. A
variety of metrics can be devised however, the most important two are:

• The probability of compliance or PONC which is directly linked to the effluent permit under which
the design will be operating.

• The total cost of each design alternative.

These two quantitative criteria are used (in conjunction with other qualitative criteria) for the selection of the
optimum design alternative. They are described in more detail below.

5.3.8.1 Calculation of PONC
Figure 5.11 shows the CDF for an example effluent constituent (of a specific design alternative), generated
by means of the uncertainty analysis discussed in the previous sections. This CDF can be used to estimate a
PONC for that constituent. Taking the example of an effluent limit for the constituent of 1 mg/L, the CDF
indicates that the design alternative would produce an effluent concentration for that constituent that is 1
mg/L or less for 92% of the compliance periods. For 8% of the compliance periods, the 1 mg/L effluent
limit would be exceeded resulting in a non-compliance event.

The PONC value represents the expected ratio of non-compliance events to the total number of events.
For example, if the effluent permit is based on daily average concentration values, then each day constitutes
either a compliance or non-compliance event. In the example shown in Figure 5.11, the expected number of
days of non-compliance can be calculated by multiplying the value of PONC corresponding to the effluent
permit (in this case 1 mg/L) with the total number of days in a year (i.e., 0.08× 365= 29). It must be noted
that the number of days of non-compliance may vary significantly for different years depending on the
different realisations of the influent time series as well as the set of model parameters used in the
particular Monte Carlo run.
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Figure 5.10 Aggregation of the simulated concentration time series (Δt= 15 min) into daily values and
calculation of PONC using the empirical CDF (bottom) (Talebizadeh, 2015).
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Depending on effluent compliance laws, in certain jurisdictions, some non-compliance events are
allowed. In such cases, knowing the probability of a certain number of events occurring in a year
will be of interest. Calculating the probability of a specific number of days of non-compliance
requires the estimation of a discrete probability distribution (a probability distribution that can take
on a countable number of values) from the Monte Carlo simulation outputs. This CDF is created
using the number of days of non-compliance at a specific effluent target, obtained after each
dynamic simulation run. The total number of Monte Carlo simulations will be determined as
described in Section 5.3.7.1. Figure 5.12 illustrates a CDF describing the number of non-compliance
events that may occur in a year. For example, the probability of having 10 or fewer non-compliance
events in a year is 0.87. In other words, the probability of having more than 10 non-compliance
events in a year equals 0.13.

The application of Monte Carlo simulation in conjunction with process-based models for estimating the
PONC in WRRF systems has already been reported in several studies (Benedetti et al., 2006; Bixio et al.,
2002; Cierkens et al., 2011; Martin et al., 2012; Rousseau et al., 2001).

5.3.8.2 Calculation of total cost
Following the calculation of the PONC values, the second metric of interest to be calculated is the total cost
(capital and operational) associated with each design alternative. The cost of a WRRF can be calculated
using cost functions (Benedetti et al., 2006; Bode & Lemmel, 2001; Gillot et al., 1999) which are
typically region specific or engineering company specific.

The calculated total cost of the design alternatives under investigation can be plotted against their
corresponding PONC values to help identify the design alternatives with the most appropriate cost and
PONC combination.
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Figure 5.11 Calculation of PONC corresponding to an effluent standard (Talebizadeh, 2015).
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5.3.9 Communicate results
The tools and methods used for the communication of model results following an uncertainty analysis will
depend on who is looking at the model outputs. There is currently no established best practice for
communication and visualisation of model results and uncertainty and probabilities can be difficult to
communicate effectively to some stakeholders.

The most common graphical displays of probabilistic information are probability density functions
(PDFs), cumulative density functions, and box-and-whisker plots.

Graphics that list the sources of uncertainty and describe the impact of each source of uncertainty on key
outputs (e.g., reactor size, cost) will be an important aid to decision making.

Selecting the optimal design can be aided by multi-objective evaluation/optimisation methods. The
selection can be narrowed down by a Pareto front. An example of such multi-criteria analysis comparing
different WRRF configurations under uncertainty is shown in Figure 5.13 (Benedetti et al., 2008). The

Figure 5.13 Pareto front of 10 30 000 PE configurations studied for total cost (TC) and effluent quality (EQI)
(Benedetti et al., 2008).

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of non-compliance events in a year

C
D

F

Figure 5.12 CDF for the number of non-compliance events in a year based on N years of simulation
(Talebizadeh, 2015).
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figure shows a comparison of the simulated annual average effluent quality index (EQI) and the total cost
(TC) for 10 treatment plant configurations. The figure on the left (A) plots a cloud of 100 dots for each of
the 10 configurations compared, with each dot representing EQI and TC for oneMC simulation. In the figure
on the right (B), each cloud is summarised by a polygon joining the 5th and 95th percentiles for the EQI
and TC and by a marker for the 50th percentile. The larger the projection of a configuration’s polygon
on an axis is, the larger the uncertainty of that configuration for the variable plotted on that axis.

Such outputs encourage decision makers to make trade-offs explicit by using multi-criteria methods and
make the decision more transparent to stakeholders.

5.4 SUMMARY
In this chapter the outline of a probabilistic design method for the design of WRRFs was presented. The
method includes identifying the relevant sources of uncertainties and characterising them where possible
with probability distribution functions (PDFs).

The sources of uncertainty include numerical uncertainties resulting from the selection of a numerical
solver, uncertainties stemming from the selection of model structure, inputs and parameters and
uncertainties linked to the equipment selection and operational procedures that result in the desired
plant reliability.

PONC is proposed as a metric for the stochastic evaluation of the response of a specific design. The
PONC is calculated using a dynamic model of the plant and Monte Carlo simulation. Calculating PONC
as a quantitative measure of safety for each design alternative helps designers better understand and
compare the performance of different design alternatives. Even in projects in which the sizing of a
WRRF should be consistent with a specific design guideline, the proposed probabilistic design can be
used as a tool for selecting proper values for safety factors and other inputs that are required for
dimensioning the different units of a WRRF.

It should be noted that the proposed methodology does not cover all sources of uncertainty. For example,
sources of uncertainty such as plant failures due to equipment (e.g., pumps or sensors) malfunction were not
considered. Considering the impact of equipment failure on the PONC requires including their performance
in the model and implementing reliability analysis. This was outside the scope of this study. Equipment
failure models exist in the literature but have not yet been implemented in commercial simulators.
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Chapter 6

Case studies

6.1 INTRODUCTION
This chapter presents two examples that illustrate the application of uncertainty analysis, in combination
with process models, to inform decisions on treatment plant design and operations. These case studies
illustrate how these tools can be utilised to quantitatively define the risks and opportunities in different
design and operational decisions, and thus how a utility might select the appropriate levels of cost and
risk. The examples include a steady state and a dynamic application.

6.2 STEADY-STATE UNCERTAINTYANALYSIS EXAMPLE: OPERATION
OF THE DURHAM WRRF
6.2.1 Project objectives
In this example, Clean Water Services (CWS) (Tigard, Oregon, USA) was exploring how to best operate
their Durham Advanced Wastewater Treatment Facility (Figure 6.1) in anticipation that the local
regulatory authority would require it to nitrify year around (Menniti et al., 2014). Their permit at the
time only required nitrification during the summer (dry) season. In reality, the dry season extends to a
large part of the year and during this period the plant contributes a significant fraction of the river flow.
Nitrification is needed to dilute the plant’s effluent ammonia. However, the expected winter (wet) season
effluent permit ammonia would be based in part on the receiving river flow, with lower river flows
requiring higher levels of nitrification.

Operations staff wished to understand what operating sludge age they would need to target in the winter
that would allow them to reliably achieve the required winter effluent ammonia targets.
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6.2.2 Conventional design approach using safety factors
As discussed previously, design safety factors are normally based on industry experience for developing
a design robust enough to accommodate: (1) future variability (2) uncertainty in operating conditions and
(3) uncertainty in effluent requirements. The nitrification safety factor (NSF) is a widely applied heuristic
(‘rule of thumb’) used to estimate the design sludge retention time (SRT) of a nitrifying activated sludge
system (Scheible et al, 1993). The safety factor lumps together various performance-related
uncertainties including vulnerability to inhibitory substances in the influent wastewater, pH swings, and
difficulties in maintaining adequate dissolved oxygen.

The EPA Nitrogen Control Manual notes that safety factors are ultimately expressions of design
confidence. For example, in the 1993 USEPA Manual on Nitrogen Control (Scheible et al., 1993), as
part of a design approach for a nitrifying suspended growth system the following is mentioned: ‘the
anticipated variations in process conditions and the uncertainty in the kinetic coefficients warrant a safety
factor of 2.0’ (Scheible et al, 1993). An overly conservative choice of a safety factor can lead to an
unnecessarily expensive design. Conversely, a safety factor that is too low can lead to a plant that
frequently fails to achieve its effluent ammonia target. The 1993 USEPA (Scheible et al, 1993)
document defines the minimum sludge age (SRT) as the SRT at which nitrifiers are just about to wash
out of the system. The equation they provide for the washout SRT (SRTMIN, for pH values ,7.2) is
given in equation 6.1. The NSF is defined in equation 6.2.

SRTMIN = 1

mmax × u (T−20)
m,max × DO

DO+ KOA

( )
× [1− 0.833× (7.2− pH)]− b× u (T−20)

b

(6.1)

where:

SRTMIN =washout sludge age for nitrifiers (days)
µmax =maximum specific growth rate at 20°C (1/d)

θµ,max =maximum specific growth rate temperature adjustment

Figure 6.1 Durham advanced wastewater treatment facility.
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DO = dissolved oxygen concentration (mg/L)
KOA = oxygen half-saturation value for autotrophs (mg/L)

b = autotrophic decay rate (1/d)
θb = decay rate temperature adjustment
T = temperature in °C

NSF = SRTAerobic
SRTMIN

(6.2)

where:

NSF = nitrification safety factor
SRTAerobic = actual (or design) operating SRT

6.2.3 Probabilistic design approach
CWS chose to use a probabilistic approach to determine a suitable NSF for wet weather operations. The
approach used is described below.

Firstly (step 1), the anticipated wet weather ammonia effluent requirements were determined from an
analysis performed by CWS based on calculations of ammonia toxicity in the river. Ammonia toxicity
is based on river flows, pH, temperature and ammonia concentrations. These effluent ammonia
requirements were expected to decrease as the flow in the Tualatin River (discharge location) decreased
(i.e., increasing impact of plant effluent ammonia on lower river flows). Figure 6.2 shows these values.
At river flows above 21.24 m3/s (750 ft3/s), the target effluent ammonia is actually higher than the plant
effluent ammonia when not nitrifying, thus eliminating the need for nitrification.

Secondly (step 2), historical data were analysed, to estimate the frequency at which the combination of
river flow and plant influent water temperature would require the plant to nitrify to meet the anticipated
effluent ammonia limits. When river flow is high, there is greater capacity in stream to dilute the

Figure 6.2 Target effluent ammonia requirements as a function of river flow.
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ammonia received from the plant effluent. This lessens the extent of nitrification that must be accomplished
within the plant. Influent temperature figures into the calculation because at higher temperature, nitrification
proceeds at higher rates and sufficient nitrification can be achieved at lower aerobic SRT.

Thirdly (step 3), the results from step 2 were reviewed in order to select for planning purposes, the most
appropriate target NSF. USEPA’s Nitrification Safety Factor calculation (equation 6.2, Scheible et al, 1993)
was used to determine the probability of achieving nitrification when river flows were low.

A Monte Carlo analysis was used for the probabilistic analysis. In a Monte Carlo analysis, the sources of
uncertainty and variability in the parameters of a deterministic calculation are identified. For this project, the
deterministic calculation is the NSF as described previously. The model input parameters considered
variable or uncertain, defined by probability distribution functions (PDFs) and correlated against each
other were:

• Wastewater influent temperature.
• Operating SRT. While determining this SRT was the goal of the work, the ability of operational staff

to maintain this exactly is limited, therefore a normal distribution with a standard deviation of 1 day
was set up around the target SRT.

• Nitrifier kinetic parameters. The maximum specific growth rate, µmax (0.77+ 5% 1/d), oxygen
half-saturation coefficient, KOA (0.05+ 25% mg/l) and decay rate, b (0.5+ 25% 1/d) were
estimated through model calibration. These parameters were not measured directly and could vary
over time. Therefore, their uncertainty and variability were accounted for in the probabilistic
analysis using a uniform distribution following Sin et al. (2009).

Additionally, the river flow rate was correlated with the wastewater temperature. A probability density
function is applied to those sources of uncertainty and variability to describe the range of possible
parameter values. When possible, the probability density functions are fitted to historical data to ensure
they describe actual conditions as accurately as possible. The influent temperature and operating SRT
were fitted to historical data. These probability density functions are sampled hundreds or thousands of
times to generate hundreds or thousands of possible parameter sets. The deterministic calculation is
performed with each parameter set and the results are analysed to estimate the probability of different
outcomes occurring. The impact of pH was also evaluated as described below.

Once the target NSF was determined, the sources of variability and uncertainty in the calculation of the
NSF were identified, and this variability and uncertainty was quantified with PDFs.

Finally (step 4), to determine the design SRT, a Monte Carlo probability-based analysis was used. First,
the reliability criteria were set with CWS’s input to determine the acceptable level of risk assumed in the
design. Then the design SRT was chosen for the planning alternatives to ensure the reliability criteria
were satisfied. These risk criteria were:

• For a system pH of 7.2 (or for an assumption of no pH inhibition), the reliability criterion is that the
NSF must be 1.3 or greater 95% of the time for the entire wet weather season.

• For a system pH of 7.0 (or for an assumption of nitrification inhibition due to low pH), the reliability
criteria are that the NSF must be 1.3 or greater 95% of the time when the river flow is less than 21.24
m3/s (750 ft3/s), (the first benchmark river flow) and the NSF must be greater than 1.3, 75% of the
time for the entire wet weather season.

Steps 1−4 described above did not involve a full plant simulation but, instead, used an NSF spreadsheet
calculation with river input flows and temperatures (both wastewater and river) to determine the needed
operating SRT, with the goal of running as low a SRT possible while minimising the probability of
washing out nitrifiers during the winter period. For the final determination of the target minimum NSF,
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the SRT for nitrifier washout was also estimated with a steady state whole plant simulator based on IWA’s
ASM2d model and compared to the minimum SRT predicted from the EPA NSF equation.

For NSF calculations using the whole plant simulator, the model input SRT and the aerobic fraction of the
plug flow basins were used to determine the NSF. The equation for SRTMIN shown above was used to
determine the washout SRT.

6.2.4 Results and discussion
The results from step 4 indicated that the nitrifiers start allowing significant ammonia in the effluent (begin
to wash out of the system) just below an NSF of 1.3. This change in nitrification happens abruptly in the
simulated plant, with the effluent ammonia increasing from around 1 mg-N/L to around 20 mg-N/L
when the NSF decreased from 1.3 to 1.2. The fact that the model indicates loss of nitrification above an
NSF of 1 indicates that the EPA approach and the simulation are not exactly in alignment, which is not
surprising in light of the simple approach of the EPA equation vs. the ASM2d model. In reality,
however, there is a wider band of operating conditions where nitrification is unstable, but the nitrifiers
do not wash out. This is due to variability in SRT control, wastewater temperature, and other
operating factors.

Imminent nitrifier washout in the operating plant was defined to occur when the plant effluent ammonia
concentration increased above 1.0 mg-N/L. Nitrifier washout was predicted by the ASM2d-based simulator
at an NSF of 1.3, indicating that the EPA NSF equation predicts nitrifier washout at a lower SRT than that
predicted by the whole plant simulator. The same parameter values were used in NSF calculation as were
used in the ASM2d model, accounting for the differences in the ASM2d death/regeneration approach.

The minimum target NSF of 1.3 was also confirmed with actual plant operating data (Figure 6.3), which
further supports the idea that the EPA equation does not quite reflect actual kinetics. However, even in light

Figure 6.3 Durham AWTF operational results for determining the target NSF.
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of this discrepancy, once adjusted for observed operations (i.e., 1.3 vs. 1.0 NSF), the NSF calculation
provides a simple approach for understanding how close nitrification is to failure within an activated
sludge system.

The wastewater influent temperature was found to be negatively correlated with the river flows. As the
river flows went down (and decreased the target effluent ammonia, the wastewater influent temperature was
found to increase. Figure 6.4 shows the measured values of river flow vs. the wastewater temperature as well
as the equivalent sampled values from the probability model correlation that was set up between these
two parameters.

In the absence of the probabilistic analysis, a ‘rule of thumb’ NSF, based on engineering and
operations experience of 1.5 would have been applied to operation at the minimum week wastewater
temperature, resulting in a design SRT of 8.5 days. This probabilistic analysis resulted in a design SRT
of 8.0 days as this SRT satisfied the reliability criterion (NSF .1.3 95% of the time) as shown in
Figure 6.5. In Figure 6.5, the 5% bar (i.e., 95% reliability) shows that at 8 days the NSF was at 1.34,
while at 8.5 days it was at 1.44 (results not shown), which was unnecessarily high. The comparison of
these two SRTs illustrates the level of unnecessary conservatism inherently saved by quantifying the
uncertainties with probability analysis. The lower design SRT maximises existing infrastructure
investment because it increases the rated capacity of the secondary process at a lower SRT while, very
importantly, providing CWS with confidence that the system will perform under critical wet weather
conditions.

The data set was also sorted so only parameter sets with river flows less than 21.24 m3/s (the river flow
triggering the need for nitrification) were evaluated (Figure 6.5 right). These results demonstrate that the
NSF is greater than the minimum target value of 1.3, more than 99% of the time when nitrification is
required, providing CWS further assurance (a level of conservatism) that the secondary process will be
able to reliably nitrify under critical wet weather conditions.

Figure 6.4 Correlation between influent temperature and river flow. Data in black are actual values, data in
grey are results from PDF sampling.
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6.3 DYNAMIC UNCERTAINTYANALYSIS EXAMPLE: DESIGN UPGRADE
FOR THE EINDHOVEN WRRF
6.3.1 Project objectives
The Eindhoven WRRF (Figure 6.6) has a design capacity of 750 000 population equivalent (PE) and is the
third largest WRRF in the Netherlands. Wastewater entering the plant is screened and de-gritted before
going through primary treatment. The maximum design flow of the influent pumping station,
preliminary treatment and primary clarifiers is 35 000 m3/h (343 ft3/s). However, the secondary
treatment design flow is 26 250 m3/h (258 ft3/s). During high flow rates, excess flow is diverted to a
storm storage tank. The biological treatment comprises three activated sludge tanks with anaerobic,
anoxic, and aerated zones. Each activated sludge tank sends flow to four secondary clarifiers. The final
effluent is discharged to the Dommel River. A detailed description of the plant can be found in Cierkens
et al. (2012). Information on the plant effluent permit, as well as the basic characteristics of the
connected sewershed can be found in Schilperoort (2011) and Belia et al. (2012).

Between 2003 and 2006 the Eindhoven WRRF underwent an upgrade to comply with new, more
stringent, nutrient effluent limits (e.g., daily average flow proportional ammonia of 2 mg-N/L) and also
to increase the hydraulic capacity of the secondary treatment from 20 000 to 26 250 m3/hr (196−258 ft3/s).

The objective of this study was to use the probabilistic design methodology presented in Chapter 5 and
summarised in Figure 6.7 to determine the area and depth of the secondary clarifiers and the total bioreactor
volume (aerobic, anaerobic and anoxic) for this upgrade.

Figure 6.5 Durham AWTF NSF results showing the 50th, 25th, 5th, and 1st percentile NSF values for the
chosen design SRTof 8.0 days and the results at 8.5 days SRT.
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6.3.2 Generation and screening of steady-state pre-designs
The German ATV (2000) guidelines were used as a steady-state design tool for the generation of the
pre-designs. A uniform uncertainty range was assigned to each input of the ATV design guideline
parameters and the design outputs were generated by Monte Carlo simulation. The ranges of uncertainty
were derived using the information obtained from the previous studies on the Eindhoven WRRF (Belia
et al., 2012; Schilperoort, 2011), ATV (2000) design guideline recommendations, effluent standards
(imposed by regulations), and expert opinion. Table 6.1 shows a selection of the uncertain parameters for
each major category. The complete list can be found in Talebizadeh (2015).

Generation of steady state pre-designs with
different levels of safety

Screening of pre-designs and preliminary
evaluation

Variability and uncertainty propagation

Quantification of probability of non-compliance
of selected designs and cost estimate

Figure 6.7 Proposed design methodology.

Figure 6.6 Arial view of the Eindhoven WWPT.
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Five thousand pre-designs were generated by random sampling of 5000 sets of ATV inputs. The ATV
standards were applied to each of the 5000 sets to generate unit process dimensions for the aerobic,
anoxic and anaerobic volume of the bioreactors and the area and depth of the secondary clarifiers. This
resulted in 5000 alternative designs. The number of alternatives to be evaluated with a model run under
dynamic conditions was reduced to the seven most representative ones by k-means clustering.

These seven design alternatives were representative of the overall design space of the outputs. The
reduction of design alternatives for further evaluation through the k-clustering method keeps the
computational load for the overall analysis at a manageable level.

The histograms on the diagonal panels in Figure 6.8 represent the distribution of design outputs (SST area
and depth, total and anaerobic bioreactor volume) that were generated according to the ATV design
guidelines. The red dots in the scatter plots of the other panels represent cluster centroids that were
calculated using the k-means clustering method. For instance, the total activated sludge tank volume in
the seven design alternatives varied between 71 000 and 107 000 m3.

The selected design alternatives were further evaluated with a year-long influent time series, representing
a typical year (Talebizadeh et al., 2016). The simulation was performed using the ASM2d biological model
(Henze et al., 1999) and the Bürger et al. (2011) secondary settling model. For this set of simulations, the
model parameters were given ‘best estimate’ values.

For each alternative a simulated effluent time series was generated. This effluent time series was
processed to produce 24-hour mean values for COD, NH4-N, TSS and TN. Cumulative distribution
functions (CDFs) were constructed for the four constituents. The objective of this step was to flag and
eliminate alternatives that did not meet the desired performance criteria for a typical intra-annual
variability. This step also identified alternatives that had very similar performance. Following this
evaluation step five alternatives were selected for further analysis (Table 6.2).

Table 6.1 Range of values assigned to the ATV design inputs (lower and upper limits of the uniform
distribution).

ATV Design Inputs Lower Limit Upper Limit Units

Influent constituents

Primary effluent COD1,2 200 400 mg/L

Primary effluent nitrogen1,2 30 50 mgN/L

Maximum hourly wet weather flow rate as 2-h mean1,2 45 000 65 000 m3/h

Inert particulate COD fraction of particulate COD3 0.2 0.35 %

Inorganic TSS fraction of total TSS3 0.2 0.3 %

Safety factors

Safety factor for nitrification3 1.45 1.5 -

Safety factor applied to the effluent inorganic nitrogen3 0.6 0.8 -

Safety factor applied to the effluent phosphorous3 0.6 0.7 -

Operation parameters

Minimum contact time in anaerobic tanks1,2 0.9 1.1 hr

Effluent concentrations

Total nitrogen concentration in the effluent4 10 10 mgP/L

Phosphorous concentration in the effluent4 1 1 mgP/L

Notes: 1: Expert opinion, 2: Previous studies on the Eindhoven WRRF, 3: ATV design guideline, 4: Effluent standards.
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6.3.3 Variability and uncertainty propagation
For the five alternatives selected for further evaluation, a pragmatic Monte Carlo simulation was performed,
aimed at evaluating the impact of influent variability and parametric uncertainty on the performance of
each design.

6.3.3.1 Influent variability
For the influent variability evaluation, as described in Section 5.3.5.1, N influent time series were generated
by an influent generator calibrated using available weather, catchment and plant data. Details of the influent
generator are described in Talebizadeh et al. (2016).

The influent data used for the calibration of the influent generator included flow, and sensor data for
ammonia, soluble COD, total COD and TSS. Long-term daily rainfall data and also rainfall data with
finer temporal resolution provided were used for estimating the parameters of the weather generator.

Figure 6.8 Distribution of the generated 5000 pre-designs and the centroids locations corresponding to the
k-means clustering with seven centroids (i.e., the red dots). Total volume refers to total reactor volume.

Table 6.2 Dimensions of the design alternatives selected for further evaluation.

Design
Alternatives

Total Reactor
Volume (m3)

Anaerobic
Volume (m2)

Depth of Secondary
Clarifier (m)

Area of Secondary
Clarifier (m2)

Alt1 47 850 12 200 3.1 27 250

Alt2 59 400 11 100 3.0 25 250

Alt3 70 650 10 250 3.0 26 900

Alt4 106 650 11 850 3.0 24 600

Alt5 118 700 9500 3.1 26 250
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With the weather generator an indefinite number of rainfall intensity time series can be generated, each
leading to one of the N influent time series.

6.3.3.2 Model parameter uncertainty
The uncertainty in the model parameters was characterised by assigning uniform distributions to uncertain
model parameters. In this study all of the ASM2d model kinetic and stoichiometric parameters were
considered uncertain. The lower and upper limits of the distribution of each parameter were calculated
using a Nominal value (most likely value) multiplied by a percentage of the Nominal value as described
in Brun et al. (2002). The Nominal values and uncertainty ranges were based on a combination of expert
opinion, modelling experience and previous studies. Random sampling (RS) with no-correlation was
selected for sampling from the distribution of uncertain model parameters. The choice of random
sampling of model parameters was based on the study of Hauduc et al. (2011) in which no strong
correlation was reported between the parameters of the ASM2d model.

The ‘pragmatic’Monte Carlo method (for details see Chapter 5, Section 5.3.7.1) was implemented for the
propagation of variability and uncertainty. The following sets of parameters were used:

(1) The lower limit of the uniform distributions
(2) The upper limit of the uniform distributions
(3) The Nominal set of model parameters
(4) The ‘Worst Case’ set of model parameters

Table 6.3 includes a sub-set of the model parameters considered uncertain. It shows the lower and upper
limits of the uniform distributions used to describe the uncertainty surrounding the parameter values as
well as the Nominal and ‘Worst Case’ values used in the uncertainty propagation simulations. The
‘Worst Case’ set of model parameters was selected to represent a very unfavourable condition for
removal of ammonia and other parameters of interest. The ‘Worst Case’ set of model parameters
corresponded to 95% confidence for the NH4 effluent standards (i.e., 2 mg/l) and a higher than 95% for
other pollutant concentrations. For a complete table see Talebizadeh (2015).

6.3.4 Quantification of probability of non-compliance (PONC)
From the simulated effluent time series of BOD, COD, and NH4 (with 15-min temporal resolution) 24-h
daily flow-proportional average concentrations were calculated. This matched the sampling frequency

Table 6.3 Selected uncertain model parameters with their upper, lower limits, Nominal, and
Worst-Case values.

Model Parameters Lower Limit Upper Limit Nominal Worst Case

Reference temperature of the activated sludge 20 20 20 20

Decay rate 0.075 0.225 0.15 0.224

Rate constant for lysis and decay 0.32 0.48 0.4 0.419

Hydrolysis rate constant 1.5 4.5 3 2.856

Maximum growth rate 0.8 1.2 1 0.862

Anoxic reduction factor for decay of autotrophs 0.165 0.495 0.33 0.386

Anoxic reduction factor for decay of heterotrophs 0.4 0.6 0.5 0.428

SVI 100 140 120 125
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used for compliance. The plant also has discharge standards for TN and TSS that it must meet on an annual
basis. Therefore, annual average concentrations for these water quality measures were calculated from the
simulated effluent time series. Once the convergence of the effluent distributions was achieved, the CDFs of
the different effluent constituents were derived and their corresponding PONC values were calculated.

For each design alternative, several PONC values were derived. Table 6.4 includes the PONC
corresponding to the pragmatic Monte Carlo simulation at the Nominal and ‘Worst Case’ set of model
parameters (refer to Chapter 5, Section 5.3.7.1 for discussion of the pragmatic Monte Carlo simulation).
The PONC values calculated using the pragmatic Monte Carlo with model parameters set to the Nominal
values correspond to the most likely behaviour of the plant. The PONCs calculated with model
parameters set to the ‘Worst Case’ set of model parameters, correspond to a possible (but less likely
compared to the Nominal set of model parameters) condition. As expected, the calculated PONC values
are larger compared to the case of Nominal model parameters.

Table 6.4 also includes the expected number of days that the effluent ammonia and TN concentrations are
expected to exceed the effluent standards. The metrics shown in Table 6.3 can be used to compare the
behaviour of the design alternatives. As expected, an increase in bioreactor volume results in a reduction
of PONC.

To better explore the relationship between the total volume of the bioreactors and the PONC, the
PONC values for NH4 of each design alternative were plotted against the total bioreactor volume
(Figure 6.9).

The NH4 PONC values for all of the design alternatives, calculated using the pragmatic Monte Carlo
simulation at the Nominal set of model parameters are below 5%. However, the NH4 PONC values for
Alt1, Alt2, and Alt3 calculated at the ‘Worst Case’ set of model parameters (i.e., corresponding to a
possible but conservative set of model parameters) are very high (i.e., 86.4, 78.7, and 29 expected days
of non-compliance in a year, respectively), which may render them unacceptable due to their poor
expected performance in NH4 removal. In contrast to alternatives Alt1, Alt2 and Alt3, alternatives Alt4
and Alt5 have near zero PONCs at the Nominal set of model parameters and small values at the ‘Worst

Table 6.4 PONC values for different design alternatives calculated using the pragmatic Monte Carlo
simulation for two sets of model parameters (‘Nominal’ and ‘Worst Case’) (Talebizadeh, 2015).

Alternatives Alt1 Alt2 Alt3 Alt4 Alt5

Total bioreactor
volume

47 850 59 400 70 650 106 650 118 700

Pragmatic Monte Carlo simulation with Nominal parameter set

NH4 PONC 0.04 0.02 0.01 0.003 0.001

Days1 15.1 6.2 3.4 1 0.2

TN PONC 0.08 0.023 0 0 0

Per cent2 8.00% 2.20% 0.00% 0.00% 0.00%

Pragmatic Monte Carlo simulation with Worst-Case parameter set

NH4 PONC 0.24 0.13 0.08 0.03 0.01

Days1 86.4 48.7 29 7.8 5.1

TN PONC 0.8 0.52 0.4 0.02 0.04

Per cent2 80% 52% 40% 4% 2%
1Expected number of days with non-compliance event in a year (i.e., PONC× 365).
2Expected percentage of years with non-compliance events.
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Figure 6.9 Relationship between PONC values (calculated using the pragmatic Monte Carlo simulation for
the Nominal and ‘Worst-Case’ parameter sets) and the total bioreactor volume of the five design
alternatives (Talebizadeh, 2015).
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Figure 6.10 Relationship between PONC values (calculated using the pragmatic Monte Carlo simulation for
the Nominal and ‘Worst-Case’ parameter sets) and the total cost of the five design alternatives included in
Table 6.2.
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Case’ set of model parameters (i.e., 7.8 and 5.1 expected days of non-compliance in a year corresponding to
Alt4 and Alt5, respectively).

6.3.5 Total cost estimates
The CapdetWorks (CapdetWorks, 2018; Harris et al., 1982) software was used for calculation of the total
cost corresponding to the different design alternatives. The calculated costs are based on the costing database
for 2013 in the United States with 8% interest rate and 40 years for the lifetime of the project. They include
operational, maintenance, materials and energy and capital costs. Figure 6.10 illustrates the relationship
between the PONC values and the corresponding total cost for the different design alternatives.

Plotting the variation of PONC against the total cost can help designers identify those regions in design
space for which the ratio of reduction in PONC to the increase in the total cost is at its highest and the effluent
standards are met with a tolerable PONC. For example, if designers were interested in a NH4 PONC value of
less than 5% and a total cost in the range of 6 million dollars for the ‘Worst Case’ set of model parameters,
Alt4 would be selected as the best design alternative.

6.4 SUMMARY
The application of the methods illustrated in this chapter provides additional insights into traditional
approaches. The advantage of the proposed methods can be summarised as follows:

(1) They reduce subjectivity in the selection of design values, especially in situations where the
engineers do not have enough experience (e.g., not enough knowledge on the effect of different
process configurations on treatment performance).

(2) They provide an explicit, quantitative measure of compliance to effluent standards.
(3) They assist design engineers in identifying the limits of a specific treatment technology or process

configuration as well as the design regions where the increase in certain process unit size would not
result in a significant increase in the probability of compliance.
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Chapter 7

The bigger picture

7.1 INTRODUCTION
The previous chapters discussed how to use models for the evaluation of risk in engineering projects. They
covered the identification and classification of the sources of uncertainty, their prioritisation and
quantification and the methods by which we can incorporate them into a modelling project. However,
the execution of engineering projects entails additional sources of uncertainty and risk.

This chapter provides a wider perspective of risks that can impact important decisions in infrastructure
projects. Uncertainty and risk in Water Resource Recovery Facilities (WRRF) design can be analysed not
just through the lens of a modelling project, but also through the lens of the project phase, stakeholder
involvement or project delivery method:

• Project phase (Section 7.2): The degrees of freedom change dramatically depending on the project
phase. Especially at the early stages of a project many decisions need to be made that have a huge
impact on the final outcome. Uncertainty associated with these early decisions remains an issue
that to date has received little attention.

• Stakeholders (Section 7.3): When planning, designing or operating treatment plants, various
stakeholders become involved in the decision-making process. The involvement of these
stakeholders may occur at different times during project development. Each stakeholder may bring
a unique perspective of project uncertainty and will bring his/her own attitude towards delineating
between acceptable and unacceptable risks. This creates uncertainty in how these conflicting
perspectives are eventually resolved.

• Project delivery method (Section 7.4): Project delivery methods can distribute risk in different ways
amongst stakeholders. In a design−build−operate (DBO) situation, all risk is borne by a single entity.
In contrast, one party may be given a contract to design the project, a second party the contract to
build, and a third party a contract to operate. Decisions will be influenced by each party’s natural
incentive to maximise project benefits for itself and to minimise the project downsides.
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These three ways of framing and the way they are interrelated are examined in more detail in the
following sections.

7.2 ENGINEERING PROJECT PHASES
7.2.1 Overview
Figure 7.1 captures how decisions taken at different project phases – from the regulatory to the construction
phase− impact the final process design (configuration and sizing) of a plant. This impact is proportional to
the amount of uncertainty involved in the decisions taken in each of these phases. The graph also shows that
following start-up, during commissioning and operation, additional decisions need to be taken that impact
efficiency in plant operations.

In the permit specification phase (regulation), the regulator must define the-end-of-pipe requirements,
thus determining plant effluent concentration and load limits. The effluent permit is a major driver in
plant sizing and technology selection.

In the planning stage, the owner typically specifies the service-life time, the location, and the design flow
and loads. Together with the regulatory requirements, the decisions in the planning stage are of major
influence for the final design.

Given these criteria, engineering consortia will compete at the level of preliminary design or detailed
design. It is at this stage that the process engineers are responsible for finding an optimal process
solution given the regulatory permit and the boundary conditions specified in the planning stage. The
degrees of freedom associated with uncertainty are the choice of a technology, the process configuration,
parameter values for process models, among other things.

During the detailed design phase these choices are further refined, down to the detailed construction and
implementation plans.

The construction phase typically does not have a large influence on decisions affecting the process design
of the plant. During start-up and commissioning, the plant may not work as intended (e.g., non-ideal mixing
or flow splitting), thus again increasing the degrees of freedom. Decisions need to be taken on how to adjust
operations (e.g., operational set-points) to meet the intended plant performance.
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Figure 7.1 Impacts of decisions on plant process design are dependent on the project phase. Black line:
decisions occurring from conception to start-up. Grey line: decisions occurring following start-up to
continuous operation.
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In the operations phase of a project, the risks are qualitatively different in that the owner is interested in
minimising both the operating cost and as well as the risk of effluent non-compliance at the same time. The
WRRF becomes an adaptive system and continuous changes to the initial design will take place during the
infrastructure’s lifetime. Table 7.1 includes more details on the tasks included during each project phase.

The degrees of freedom are the decision variables of each project phase. By making design decisions in
the different project phases, the degrees of freedom are reduced throughout the project (Figure 7.2). If, in a

Table 7.1 Typical engineering project phases.

Project Phase Definition

Regulatory phase Defining treatment plant permits based on water quality considerations driven by
local, regional and national legislation.

Planning Developing the overall criteria for a facility, such as location, flows, loads, effluent
quality, biosolids disposal, resource recovery and project time horizon. May
include conceptual level unit process configuration. Conceptual level capital and
operating costs are normally developed.

Preliminary design Developing the overall concepts for a facility which includes control philosophy,
process flow diagram, unit process sizing, and development of approach for
support disciplines such as electrical, mechanical, structural, odour control, and
site. Often considered approximately 10% of the total design effort.

Detailed design and
construction

Producing the final design documents for all aspects of the facility, followed by the
construction of the facility/improvements. Detailed design is sometimes split up
into multiple phases, such as schematic design (30% of the total design effort),
design development (60%), and construction documents (100% of the total
design effort). Normally also includes start-up and troubleshooting of the new
facilities.

Operations The new facilities are operated by the permanent plant operations and
maintenance staff to meet the regulatory requirements imposed on the facility
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Figure 7.2 The number of decisions under uncertainty are reduced as the project progresses and increase
again following plant start-up.
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specific phase, a decision is made, that degree of freedom is eliminated and is considered as given in the
subsequent project phases. The uncertainty associated with that degree of freedom is not always reduced
or eliminated but is no longer considered. For example, design flows and loads are typically decided at
the end of the planning phase. In the detailed design phase, the design flows and loads are typically
assumed as given, even though uncertainty may still exist regarding their actual values. Table 7.2
includes examples of the typical degrees of freedom and the project phase where they are fixed.

Table 7.2 Typical degrees of freedom and phase where they are fixed (P= planning, PD= preliminary
design, DD= detailed design, O= operation).

Phase/////Degree of
Freedom/////Decision Variable

Project Phase where Degrees of
Freedom are Fixed

Project Phase where
Uncertainty is Evaluated

Plant location P, PD

Load and flows P PD

Temperature profiles P, PD

Output requirements P PD

Definition of desired
reliability/allowable risk

P, PD, DD PD, DD, O

Technology pre-selection PD PD

Budget estimation P PD, DD

Technology selection PD

Process unit dimensions
(preliminary)

PD DD

Aeration capacity PD DD

Operational targets PD, DD, O

Chemical selection and dosing PD, DD DD, O

Number of reactors PD DD

Process unit dimensions (as builds) PD DD

Number and capacities of pumps PD DD

Number and capacities of blowers PD DD

Aeration system, number of
diffusers

PD DD

Redundancies PD DD

Mechanical equipment and
redundancy

DD

Electrical equipment and
redundancy (UPS)

DD

Control system and instrumentation PD DD

Operation of process equipment PD O

Set-points of automatic control
loops

PD, DD O

Software PD, DD O
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7.2.2 Regulatory phase
Effluent criteria, which are key drivers for both the design and operation of treatment plants, are established
by regulators. These criteria are either technology-driven or water-quality driven (e.g., Lijklema et al.,
1993). The criteria typically target the minimisation of acute toxicity, chronic toxicity or nutrient
loading. Using water quality modelling and dilution calculations, site-specific WRRF permits are obtained.

Deriving these permits involves decisions which are subject to (sometimes significant) uncertainty.
Various complex decisions are required in determining appropriate permit requirements for the WRRF
that will protect the beneficial uses designated for the receiving water body. Normally, the final permits
are a combination of effluent concentrations and load limits, either averaged over variable time limits or
using statistical approaches such as 95th percentiles and medians. Although the decision processes of
regulators are not the central focus of this STR, it is important to acknowledge that safety considerations
take place when developing permits. In some cases, it is impossible to reach water quality objectives. In
these cases, technology-based effluent limits are set.

Being responsible for the effluent discharge limits, the regulator assumes the risk that the effluent limits
will maintain or improve the quality of the receiving water body. The assumption in this case (and by
extension the risk), is that the information upon which the limits are based on is correct.

7.2.3 Planning phase
In the initial planning phase, the owner (typically with the assistance of a consulting engineer) makes
choices that will heavily determine the final design. These choices need to deal with uncertainty in future
loading, design life, costs and expected performance.

During the planning effort, the uncertainty considered by the designer/engineer and the owner is
primarily associated with the development of flow and loading projections for a given facility, as well as
the future effluent requirements. Uncertainties in flow projections are due to changes in population,
rainfall, and changes in inflow/infiltration in the collection system. Uncertainties associated with loading
projections are linked to changes in industry and population behaviour. Water conservation programmes
for example, can impact hydraulic loading projections due to flow reductions to the wastewater
treatment plants.

Moreover, uncertainty may be associated with the future impact on receiving water quality or ecology;
often, safety factors are (implicitly) introduced here. The degree of treatment required is also subject to
change over the life cycle of a project, and various scenarios must be considered during the planning process.

The sources of uncertainty of most importance to the owner are budget availability, changes in
city/county/state design standards, and environmental requirements related to current and future
regulations.

During this stage, both owners and designer/engineers need to review and understand uncertainties to
ensure that client goals and technical requirements have been met. Typically, this is done by evaluating a
range of possible scenarios and developing a path forward that addresses the needs of the stakeholders.

At the end of the planning phase, the degrees of freedom are reduced due to the decisions made and as a
result several sources of uncertainty will not be considered in the subsequent project phases.

7.2.4 Preliminary (conceptual) design
In the preliminary design stage, the process engineer proposes a technology, the layout and sizing of the
plant, as well as design effluent target levels. Design guidelines, simulators and costing tools are applied
by the engineer to find the best solution, given the requirements and constraints set during the planning
phase.
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The choice of technology will depend on the criteria, the estimated costs and the engineer’s familiarity
and confidence in the technology. In the case of bioreactor selection, a first decision could be whether to use
conventional suspended activated sludge treatment, a membrane or a biofilm system. In the next step, a basic
process configuration is decided upon. This includes such decisions as the use of step-feed, the number of
treatment lines, the number of bioreactors and their basic geometry.

The sources of uncertainty during preliminary design are related to the assumptions needed to develop the
conceptual approach and hydraulic profile. The engineer typically has to make assumptions about the
chemical/physical properties of the wastewater and its effects on unit process performance. Examples
include the influent profiles for wastewater flows and loads.

Tansel (1999) states that uncertainties are introduced into the design process as a result of gaps between
available and needed information at different points of the design process. This often leads to plants that are
30−50% overdesigned based on municipal codes and, after safety factors are used by designer/engineers,
are overdesigned by 100% or more (Russell, 2006).

Other sources of uncertainty for the designer/engineer are associated with the veracity of the existing
as-built information (for upgrade projects), topographical mapping, and geotechnical report.

The goals of this phase are typically technology selection, plant dimensioning of bioreactors, clarifiers,
and other unit processes as well as the evaluation of aeration capacity, and the determination of all major
control loops. In addition, the associated instrumentation and chemicals to be used are selected.

7.2.5 Detailed design, construction, and start-up
The detailed design stage deals with issues related to equipment redundancy and the selection of mechanical
and electrical equipment in view of robust and safe operations. Regarding uncertainty and risk, it is in this
step that reliability engineering gains importance.

Where the goal of preliminary design is to refine the design criteria and concepts initially established in
the scope of work, the purpose of detailed design is to produce the final contract drawings including the
plans, specifications and any other supporting documents. The number of uncertainties which have not
been addressed by the designer/engineer is reduced at this design stage with the goal of managing any
remaining uncertainties during construction.

The goal of the detailed design phase is to develop the conceptual design to the level of detail required for
plant construction. Fixed degrees of freedom at this stage are final reactor and other unit dimensions,
volumes, required flows, aeration capacities, chemical dosage type and amounts.

During the last decade, a shift has occurred, from identifying the main source of uncertainty as the
kinetic parameters, to influent variability and dynamics and proper model structure of transport physics,
such as mixing, aeration and sedimentation as well as chemical processes like precipitation. Modelling
scenarios focus on better aeration distribution modelling, improved clarifier modelling with
computational fluid dynamics (CFD) and controller models (Nopens et al., 2015; Rehman et al., 2017;
Sin et al., 2008).

The main uncertainties that are dealt with in the detailed design phase relate to process reliability as a
result of equipment reliability and redundancy.

The determination of the number, sizing and configuration of equipment is made in view of reliable plant
operations. At this stage, robustness and redundancy are considered. Precautions are taken to provide
adequate treatment under malfunction as well as maintenance scenarios. Malfunction scenarios include
failure of equipment, such as pumps, valves, aeration equipment. A typical maintenance scenario is a
tank being out of service due to cleaning or repair.

Blower configuration and tank geometry, inlet and outlet structures are specified to guarantee optimal
transport and mass transfer. CFD, introduced above, is a methodology that can assist the engineer with this.
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Also, the design of robust Instrumentation/Control and Automation (ICA) equipment is considered at
this stage. Methods include failure detection and the use of soft sensors.

Although construction itself includes many risks, they are not strongly related to the final plant
configuration. However, during start-up, new degrees of freedom may be introduced. It is here where
some of the assumptions made in the design are tested and some decisions may need to be revised: for
example, sludge settleability, inhibition of organisms, obtaining the required population of
microorganisms in the bioreactors, non-ideal mixing or flow splitting, among others.

7.2.6 Operations
After the commissioning phase, a treatment plant is not typically running at the design load but will be
initially under-loaded. From this point onwards, the plant becomes an adaptive system (Dominguez &
Gujer, 2006; Neumann et al., 2015). As part of a robust design, plant operating strategies will be
preliminarily defined by the design engineer. Operations staff then determine how best to run the facility
within the designed constraints. For example, a facility might be designed to operate as a plug flow
system under normal conditions but switched to step feed for wet weather conditions. Daily decisions are
made on how much sludge to waste, how much chemicals to dose, how to time digester supernatant
return, and so on. The daily operation includes the management of problems such as bulking and
foaming, toxic inflows and equipment failure. A typical longer-term decision the operator needs to take
is how close to the permit to run the plant. This will typically depend on the penalty scheme in place
related to permit compliance (e.g., incrementally increasing taxation, binary penalty (pass/fail) or
penitentiary sentence). Incentives such as maintaining prestige may also be present. Figure 7.3 gives an

Month

1 2 3 4 5 6 7 8 9 10 11 12

E
ff
lu

e
n

t 
c
o

n
c
e

n
tr

a
ti
o
n

Permit for annual average 
concentration

Permit-optimised operation
Current Operation

Figure 7.3 To safeguard against violating the annual effluent permit the plant is operated so that (black bars)
the plant effluent concentration is permanently (e.g., for the maximum month) below the legal annual permit
(bold horizontal line). The grey bars indicate how it may be possible to operate the plant, and still meet the
annual permit.
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example in which an operator runs the plant at a high margin of safety in the presence of a yearly average
concentration limit. To safeguard against violating the annual effluent permit, the operator aims (black bars)
to maintain the plant effluent concentration below the legal yearly permit in every month. In this way, the
operator eliminates the risk of not complying. The grey bars indicate how it may be possible to run the plant,
and still meet the yearly limit. However, this strategy implies that the operator could predict the loads and
plant performance for the coming months with a small margin of error.

A feasible strategy will lie between the two extremes. It is one objective of the Task Group to highlight
the importance of considering how the incentives of different stakeholders may lead to a risk-taking or
risk-averse strategy.

Table 7.3 summarises the typical project phases, the uncertainties associated with each phase, the
decisions that need to be taken under uncertainty, the expected deliverables of each project phase and
examples of how models can be used to assist in uncertainty evaluations.

7.3 STAKEHOLDERS
7.3.1 Overview
When planning, designing or operating treatment plants, various stakeholders make decisions at different
points in time. Uncertainty is associated with the degrees of freedom available when making those
decisions. This is a function of how far project development has progressed (see Section 7.2). As the
project moves forward, certain decisions either become irreversible (like the regulator has made the
decision on permit level) or they can only be reversed at tremendous cost. The associated uncertainties
can be removed from the analysis.

Project decisions vary with each stakeholder. The regulator needs to decide on the plant’s permit. The
planner needs to specify a design horizon and an associated design load. The design engineer needs to
make assumptions on the current and future wastewater composition; he needs to choose an appropriate
configuration as well as a process technology and values for the associated parameters. The operator
needs to decide on how close to the permit to run the plant. Finally, the owner needs to decide on an
upgrading and investment strategy. Depending on the contract type, the stakeholder sequence may differ.

7.3.2 Regulators
Translating water quality objectives intoWRRF permits is associated with considerable uncertainty. It is not
uncommon for safety factors to be included at this stage of the process. Often some form of pollution
allocation takes place when the WRRFs in the same watershed need to comply with different permits.
Exposing the rationale of these regulatory decisions may reveal alternative solutions for water
infrastructure planning at the watershed level (e.g., set bubble permits where a single permit is set that
covers multiple plants within a watershed).

7.3.3 Utilities – owners and operators
Utilities’ decisions that pertain to uncertainty can range from the normal decision making that is a part of
everyday operations to strategic management choices such as bid selection or finding an optimal
investment strategy. The risks and benefits from these decisions accrue at the level of individuals. For
example, if the plant operator lowers dissolved oxygen in the plant to reduce energy costs, she may not
be acknowledged for the associated benefits even though she has increased her highly visible risk of not
meeting effluent limits. Clarifying how incentives and penalty schemes affect individuals and their
decisions is therefore a basis for modifying behaviour.
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Table 7.3 Typical project phases, associated uncertainties and examples of how models can be used to assist in uncertainty evaluations.

Project Phase Risk/////Uncertainties Decisions Deliverables Model Implementation Examples

Model Use Key Sources of
Uncertainty

Regulatory Information upon which the limits are
based on is correct

Permit limits Permit limits Simulate receiving water
body quality

Flows and loads
Measured data

Planning Designer:
Flow and load projections
Future effluent requirements
Owner:
Budget availability
Changes in design standards
Environmental requirements related to
current and future regulations

Future wastewater
infrastructure
Plant location
Technology selection
Wastewater flows/loads
during dry/wet weather
Performance requirements
(extent of treatment)

Capital improvement
plan
Specifications
Location selection
Budget planning

Future scenario
evaluation
Technology investigation
Checking if future output
requirements are
achievable

Flows and loads
Boundary conditions (i.e.,
temperature profiles)

Preliminary design Designer:
Wastewater chemical/physical
properties
Influent flows/loads/characterisation
Variability in influent flows / loads
Data quality
Veracity of the existing as-built
information (for upgrade projects)
Topographical mapping
Geotechnical report

Design inputs
Safety factors
Process design parameters
Selection of effluent design
criteria
Selection of design values
for unit processes and
mechanical equipment

Technology selection
Process configuration
Sizing
Layout
Capital costs
Operational costs

Plant dimensioning
Performance evaluation
System selection
System optimisation
Control system design
Selection of sensors,
actuators and locations

Flows and loads
Model structure
Model parameters
Influent fractionation
Mass transfer model
Kinetic
Stoichiometric
Actual (imperfect) flow
distribution

Detailed design,
construction, start-up and
commissioning

Project management
Low bid environment and poorly written
specifications
Lack of flexibility in design features
Errors and omissions in contract
documents
Cost estimating errors by
designer/engineer
Equipment reliability/redundancy
Process reliability from equipment
reliability and redundancy

Schedule
Selection of mechanical and
electrical equipment
Quality control of documents
and plant systems installed
Design change orders
during construction
Manual control handles
Automatic control loops
Fall-back procedures

Final contract drawings
Plans, specifications and other
supporting documents
Design of
instrumentation/control and
automation (ICA)

Impacts of tanks out of
service
Impacts of equipment
malfunction
CFD modelling

Aeration system design
Required equipment
redundancy to achieve
requested reliability
CFDmodels to design flow
patterns and proper
mixing

Operation Designer:
Proper implementation of any control
systems
Owner:
Compliance
Financial risk of power/chemical use,
mechanical failures and maintenance

Operational decisions Operational risk management
action
plans

Process optimisation
Controller settings
Limits of performance
Debottlenecking
Operational strategies
Performance
benchmarking
Post project audits
Impact of failures on
effluent quality
Redundancy evaluations

Equipment failures
Unforeseen weather
Toxic spills
Pandemics
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7.3.4 Engineers
Inherent variability in the inputs to a WRRF, along with uncertainty in the value of parameters critical to
design, complicates the engineer’s effort to design a system that will produce an effluent of acceptable
quality at all times. The incentive to minimise the probability of a performance failure creates incentives
for oversizing the system. WRRFs will always be subjected to unanticipated events that are difficult to
design for.

In-depth knowledge about uncertainty and variability and how to successfully address them can give
an engineering company a competitive advantage and help owners better understand the proposed
designs. As the degrees of freedom increase when moving from guidelines to mechanistic model-based
design, addressing the uncertainties and the associated risks becomes more important for engineers.

7.3.5 Public
A common assumption is that communicating the risk involved in engineering projects will reduce public
trust. However, a lack of systematic research makes it difficult to evaluate such claims. Van der Bles et al.
(2020) found that transparency on issues of uncertainty does not harm the public’s trust in the facts or in the
source. On the contrary, people ‘can handle the truth’ about the level of certainty or uncertainty in scientific
facts and knowledge. Based on their results, the authors recommend that the communication of uncertainty
in the media is best conveyed through numerical ranges with a central point estimate. This format, in
particular, did not seem to significantly influence (i.e., reduce) perceived trust and reliability in either the
number or the source of uncertainty. In addition, they draw attention to the fact that using the word
‘estimate’ or increasing the magnitude of the confidence interval did not seem to alter people’s
perception of uncertainty, which points to the need to better contextualise the degree of uncertainty
for people.

A key challenge to maintaining public trust in science is for communicators to be honest and transparent
about the limitations of the current state of knowledge.

7.4 CONTRACT DELIVERY METHODS
7.4.1 Overview
In infrastructure procurement, the contract delivery mechanism determines how risk is allocated among
different stakeholders. Depending on the way the infrastructure procurement contract is set-up, risk will
be allocated differently to the owner, engineer or contractor. The type of contract determines who is
going to profit from the opportunities and who is going to bear the cost of possible failures. For instance,
a consortium competing in a design bid might want to optimise between not being sued due to proposing
a plant that turns out to be under-sized and not losing the bid to a competitor due to being too
conservative in the choice of the values for the design inputs. It is obvious that the incentives for
different stakeholders are dependent on how risks and opportunities are shared in these contracts.
Molenaar et al. (2004) discuss the risk allocation among stakeholders for different contract types in the
wastewater sector.

7.4.2 Examples of delivery methods
A common method of project delivery method is the design−bid−build (DBB). In a DBB delivery, the
owner normally hires a designer/engineer to develop project documents. Once the design is complete,
the owner bids the work and hires a contractor to construct the project. The successful bidder then builds
the project, with oversight by the owner and (normally) the designer/engineer. In this delivery method
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the owner and the contractor each assume cost risks. Most of the cost risk is assumed by the owner and
builder. The designer/engineer assumes only a small amount of the cost risk.

For DBB-type projects, the owner, and to some degree the engineer, take responsibility for the influent
parameter selection. In this case it is the engineer’s responsibility to provide the owner with adequate
information to make informed decisions about the design parameters, and their impacts upon the project.

Alternate delivery methods, such as design−build (DB), and design−build−operate (DBO) have
become increasingly popular to owners because these delivery methods shift in varying degrees the
financial and process risk to the contractor. In addition, they also move the risk to the party that is best
able to balance the various process-related and financial risks. The alternate delivery methods often
result in a different analysis of risks than a conventional design approach.

Additional discussion on these project delivery methods has been included in Appendix E.

7.4.3 Stakeholder involvement as a function of contract type
Table 7.4 illustrates the involvement of different stakeholders as a function of contract type and
project phase.

In many parts of the world, traditional procurement in the water sector has relied on DBB contracts. In
this example, based on water quality considerations, a regulator (R) will develop an effluent permit for the
new treatment plant. The utility (U) together with the municipality (M) and a private company (P0) will
develop the requirements for the future plant, possibly in collaboration with the regulator.

Usually, the utility will hire a private company P1 to assist in developing the preliminary and detailed
design. This is followed by a tender for the construction of the plant which is then carried out by
construction company P2. The commissioning of the new plant will typically be undertaken by both the
design company P1 and the construction company P2. Then, the utility (U) will operate the plant.

During the past 30 years, there has been a steady increase in public−private−partnerships (PPP)
leading to many different types of delivery mechanism. This has led to the rise of DB contract where
consortia bid for both the design and the construction. In some cases, it may also include operation
(DBO) and in some other cases, also ownership is transferred for a pre-determined length of time
(design−build−own−operate−transfer: DBOOT). Some of these different schemes are discussed in

Table 7.4 Stakeholders responsible for taking decisions within the project phases
for two contract delivery methods.

Delivery Method

Project Phase DBB DBO

Regulatory R R

Planning P0, U, M, R P0, M, R

Preliminary design P1, U P1

Detailed design P1, U P1

Construction P2 P1

Commissioning P1/P2 P1

Operation U P1

P0: private company, U: utility; M: municipality; R: regulator. The indices 1 and 2 in P
differentiate between different companies. In bold the phases covered by the actual contract.
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more detail in Appendix E. Appendix E also includes examples of the types of project delivery methods used
in several countries across the world.

7.5 SUMMARY
Engineering decisions taken under uncertainty are heavily influenced by the contractual environment, the
role of the stakeholders and the phase of an infrastructure project. This chapter discussed how these play
a far greater role in shaping the final outcome of an infrastructure project than is widely acknowledged.
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Chapter 8

Perspectives

8.1 INTRODUCTION
This chapter seeks to provide a vision on how uncertainty and variability may be handled in the future. We
structure the main discussion along the major project phases: regulation, planning, design and operation. A
central objective followed by the Task Group has been very technical in nature: ‘Replacing the safety
factor-based approaches with methods that account for uncertainty in explicit ways’. While investigating
the feasibility of such approaches, the Task Group has encountered broader implications. These
implications extend far beyond the scope originally set out by the Task Group, which was essentially
limited to the explicit inclusion of uncertainty in models describing the physical and bio-chemical
processes occurring in treatment plants. In this chapter, a vision integrating the above-mentioned broader
implications is developed, by formulating two general objectives and then, listing methods that support
these within the different project stages.

The two general objectives that underlie the quest for uncertainty-based methods are:

• Explicitness: In current approaches, variability and uncertainty are mostly handled in an implicit way,
that is, they are lumped into a safety factor approach. In the future, the Task Group envisions that the
sources of uncertainty and variability are made explicit and when possible quantified.

• Transparency: In current projects, the rationale of how a design was selected− a process that
involves taking decisions under uncertainty− is not always available. A more detailed
documentation of decisions in design and optimisation projects as well as in bid selection would
improve transparency. This could also be supported by post-project audits to measure the
long-term success of a design. A continuous monitoring of loads, capacity and performance of a
plant and comparison to planning and design assumptions may also lead to the adoption of
alternative service delivery mechanisms or alternative infrastructure configuration and reduce
planning biases of future projects.
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8.2 SOCIOECONOMICS AND APPLIED MATHEMATICS
The Task Group believes that a combination of methods from both socioeconomics as well as applied
mathematics and statistics will be helpful in realising the two objectives presented in the introduction.

8.2.1 Socioeconomics
The wastewater engineering field has successfully integrated the natural sciences (physics, chemistry,
biology). Can we assume a similar integration with socioeconomic sciences in the near future? New
approaches such as fore-sighting or multi-attribute decision theory may enhance the toolbox of the
engineer and lead to new ways of thinking about infrastructure planning and design. Specific methods
that might be used include:

• Fore-sighting methods: The adoption of exploration tools such as structured scenario analysis could
be especially useful in the early planning phases of wastewater treatment plant projects (Schoemaker,
1995). Spending more time and resources in developing a wide range of potential storylines on how
the catchment could develop into the future can improve the credibility of the entire project (e.g.,
Dominguez et al., 2011) and create better support from all stakeholders.

• Life-cycle assessment (LCA): Including sustainability criteria, for example, through an LCA means
that projects can be judged more holistically than in current practice which often focuses on
cost−performance criteria (e.g., Corominas et al., 2013; Renou et al., 2008), leading to a more
transparent and explicit trade-off between different objectives.

• Multi-attribute-utility theory: Such tools (Clemen, 1996) structure decision-making processes in
order to reach ‘optimal’ decisions under multiple criteria (e.g., Reichert et al., 2007) enabling a
smoother decision-making process.

• Benefit−cost−risk approaches: Making explicit the incentives of different stakeholders and
showing how benefits, costs and risks are spread among them can improve overall infrastructure
provision.

• Environmental economics: Valuing the benefits of preventing pollution, and maintaining ecosystem
services go beyond the fulfillment of discharge limits and can make the services provided by
wastewater treatment more visible to society.

• Benchmarking and auditing: Independent reviews of a city’s infrastructure performance and the
comparison of results to other cities can identify best practice approaches in view of handling or
reducing uncertainties.

8.2.2 Applied mathematics and statistics
For the more detailed technical design stages as well as for the optimisation of operations, a more rigorous
use of applied mathematics and statistics offers significant potential for managing both uncertainty and
variability in more explicit ways. The increase in computer efficiency results in faster processing of
larger problems. This means that one can compute more complex models (computational fluid dynamics,
plant-wide models, integrated models including sewer systems and rivers), perform long-term dynamic
simulations, apply more sophisticated techniques from systems analysis and artificial intelligence
(probabilistic procedures, data mining) or introduce real-time systems for model-based predictive control.
All of these advances address various sources of uncertainty and variability. When applying these
methods, the wastewater engineer/modeller will need to make a trade-off between rigour and
pragmatism in deciding which uncertainties are relevant and need to be considered explicitly in a
quantitative fashion, as considering all possible uncertainties is not feasible nor desirable.
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8.3 ACCOUNTING FOR UNCERTAINTY IN PROJECTS
The following sections assess how methods from both socioeconomics and applied mathematics can be
applied to different stages of wastewater infrastructure development projects.

8.3.1 Regulatory phase
At several instances, the Task Group was confronted with the question: ‘What about uncertainty/variability
concerning WRRF effluent requirements?’ Two main issues are of interest. The first relates to the
uncertainty in the derivation of effluent requirements while the second concerns how different effluent
permits treat uncertainty and variability when assessing compliance.

Considerable uncertainty is involved in establishing water quality targets to protect a receiving water and
as a result their determination often evokes debate. Tools from environmental and ecological economics
may offer support to regulators, increase transparency on the benefits of a specific target and facilitate
comparisons of infrastructure cost vs. environmental benefits.

Once water quality targets have been determined, they need to be translated into effluent permits. With
regard to these effluent permits, the Task Group found considerable differences in their formulation,
especially between North America and Europe. In North America, often criteria such as average yearly
concentration or maximum monthly concentration are prevalent. When performing model-based design,
it is not evident how to define the critical scenarios.

In Europe, percentile-based requirements are used mostly (e.g., 90th percentile day, 50th percentile day).
These types of permits account for temporal variability in a straightforward way when using dynamic
simulation for design. This permit formulation also facilitates explicit uncertainty evaluation and thus
enables more realistic project design.

8.3.2 Planning phase
A successful development of the urban wastewater infrastructure requires continuous interaction with urban
planning departments.

Uncertainty is reduced through good relationships between different departments, such as between the
infrastructure- and urban planning departments. Then issues can be addressed in a way that leads to
integration on questions such as: ‘what type of urban development facilitates sustainable wastewater
management?’ or ‘what type of wastewater infrastructure best serves the intended urban development?’

As the life span of a WWTP is in the order of 25 years, uncertainties in the planning phase can be
considerable. Scenario analysis is the most widespread tool to deal with these issues (e.g., Dominguez
et al., 2009).

The introduction of new infrastructure procurement methods such as service contracts can also be used to
change the agent responsible for decisions on planning variables that contain uncertainty. Making explicit
how benefits, cost and risk are spread among different stakeholders could improve the formulation of tender
requirements and thereby attempt to quantify the uncertainty involved (Flyvbjerg et al., 2003).

8.3.3 Preliminary design
Multi-attribute-utility methods, LCAs and benefit−cost−risk analyses can be ways to make uncertainties
explicit and visible at this stage. For the dimensioning of reactors, the Task Group envisages an
increased use of complex models for plant-wide design as well as the application of probabilistic procedures.

An example of a desired output of a probabilistic procedure is given in Figure 8.1. The example shows
how an engineering consultant may obtain a least-cost design within a ‘Design−Build−Operate’ bid. The
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company tends to consider capital- and operational expenditure (Capex+Opex) which is with increasing
safety (e.g., larger tank volume). Being able to quantify the probability of non-compliance as a function
of a design variable enables the estimation of the expected cost of non-compliance as a function of that
design variable. In this way, a design with lowest total cost can be identified.

8.3.4 Detailed design
Since unit operations are interconnected, procedures are needed to analyse how the design of a particular
unit operation might impact the design of a different unit operation and the overall system performance.
The design engineer would benefit from having a tool built upon a knowledge base that would automate
a sensitivity analysis that would consider how the individual pieces affect the performance of a whole.
The sensitivity analysis would lead to an initial version of the final design that would then require
further refinement.

The use of computational fluid dynamics may offer significant potential for optimisation of the flow and
transport characteristics of reactors (such as preventing dead-zones and hydraulic short-circuits).

In this design stage, reliability engineering is expected to gain importance in the future for the structural,
mechanical and electrical engineering domains to guarantee redundancy in view of robust operations
(Sharma et al., 1993; Tung et al., 2006). The design of an Instrumentation Control and Automation (ICA)
system can be supported using reliabilitymodelling of actuators (pumps, compressors, diffusers) and sensors.

8.3.5 Operation
The Task Group suggests the introduction of continuous post design-project audits in order to continuously
reduce uncertainty. This requires the use of robust sensors for continuous performance assessment and the
reporting of non-compliance events in order to correlate failures with their causes: for example, is a
non-compliance event due to system size, due to the malfunctioning of a sensor or a controller, due to
the inhibition of microorganisms from toxic discharges or the unintended functioning of a process (e.g.,
foaming or bulking)?

Expected cost of
non-compliance

Design variable, e.g. volume 

Capex + Opex

C
o

st
Total cost 

Figure 8.1 Optimisation exercise of an engineering company in a Design-Build-Operate bid. The total cost is
the sumof capital and operational expenditure (Capex+Opex) and ‘expected’ cost of non-compliance (= cost
of non-compliance× probability of non-compliance).
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Modern data mining techniques can support the understanding of the plant reliability and the
identification of failure events (Duerrenmatt & Gujer, 2012). Process auditing could be done at different
time scales: high-frequency data (e.g., 15-minute intervals) to yearly performance measures. Monitoring
at high frequency can identify critical reliability issues and improve operational strategies, such as ICA
and facilitate the use of model-predictive control. It may also yield insights into the impact of other
factors, like human/operator behaviour on plant performance.

The analysis at larger timescales (Dominguez & Gujer, 2006) can uncover issues related to planning
assumptions: for example how realistic were the wastewater load projections? Did innovations in
technology allow a more efficient use of the installed infrastructure? Did the introduction of new permits
render the initial design obsolete? Often, the initial assumptions and the decision process leading to a
design are not revisited once the plant is in operation. Performance audits performed across many plants
would identify strengths and weaknesses of different procurement strategies and through feeding
benchmarking studies help to identify best practices for WWTP planning and design. Such long-term
studies could also point to the potential of alternative infrastructure settings and strategies discussed in
the following section.

8.4 ALTERNATIVE WAYS OF HANDLING UNCERTAINTY
One of the central objectives of this STR is to propose methods that expose and where possible quantify
sources of uncertainty to increase transparency. An alternative to trying to better account and quantify
uncertainty is to construct systems that are less vulnerable to the actual sources of uncertainty and
variability. These include systems that change when conditions change (adaptive systems) or that are
capable of absorbing alternative outcomes (robust systems).

Adaptivity of systems in view of uncertainty can be attained by increasing flexibility, modularity or
decentralisation. To increase flexibility, methods (such as ‘real options’) have been suggested to quantify
the value of higher up-front investments that significantly decrease costs for possible expansions that
might become necessary in the future (Gersonius et al., 2013). Increasing modularity is another option,
where a treatment system is made up of single modules with shorter service lifetimes that can be
exchanged more easily. Finally, decentralisation of treatment systems offers another pathway to increase
adaptability. For instance, in the case of a one-plant-per-building approach, the uncertainty in the
planning stage (such as population growth/shrinkage) and its relevance to the required capacity would
be almost completely eliminated. However, the uncertainty linked to performance and the resulting
receiving water quality may increase if there is a lack of professional supervision typically present at
larger scale plants. An additional disadvantage of small decentralised plants is that, adapting one large
plant may be easier than adapting very many small ones, especially when trying to improve effluent
water quality, decreasing GHG emissions or implementing resource recovery.

Robustness means that systems are conceived that are not looking to be optimal for an expected outcome,
but that work satisfactorily for many possible conditions or future. Robust systems include systems that can
switch between different regimes. Such systems would typically require higher implementation of
instrumentation, control and automation.

8.5 OUTLOOK
In the ideal approach, most uncertainties are discoverable and can be expressed in some type of
mathematical/statistical formulation that can be considered during model simulation. The information
needed to achieve this can be extensive. In the end, the practice of probabilistic designs will at best be an
approximation of this ideal. In addition, not all uncertainty can be expressed in a statistical sense.
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Fore-sighting, such as scenario analysis will necessarily be part of the process. Even so, there will always
remain recognised ignorance and total ignorance that by their nature live outside the realm of uncertainty and
scenario analysis and can only be observed with hindsight, that is, after having occurred. Nonetheless, by
combining the lessons learnt from past plant design and operational experiences with the knowledge and
tools that are currently available, significant improvements can be achieved.
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Appendix A

Terms and definitions – application and
discussion

A.1 INTRODUCTION
Discussions on the topic of uncertainty can be confusing as similar terms are often used interchangeably for
different concepts. This Appendix defines and discusses the concepts and terms related to uncertainty within
the context of model-based design and operation of wastewater treatment systems. This Appendix is
organised in four sections.

The first section includes terms commonly used in modelling.
The second section covers general terms relating to basic statistical concepts and metrics that form the

basis for all uncertainty evaluations. The section lists a set of general terms that describe relationships
between measured and simulated quantities. Knowledge of these terms is necessary as they form the
basis of all the key concepts in the field of uncertainty. For each term, a general definition has been
included and how the term is applied to measurements, model structure and parameter values and results
of model simulation and prediction.

The third section covers the most essential concepts and terms regarding uncertainty.
The final (fourth) section presents comparative discussions on terms and concepts confounded

with uncertainty.
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Table A1 Terms and definitions relating to model architecture.

Area Term Definition Example

M
o
d
e
la

rc
h
it
e
c
tu
re

Model Abstract mathematical description of a system. The ASM1 model.

Variable (of
system)

Changing characteristic of a system. A biomass or substrate concentration

State (of model) Model states describe system variables. Bulk liquid ammonia concentration, symbolised
as SNH.

Dynamic model Model describing the evolution in time of variables of
interest (dx/dt= f (x, t)).

The ASM1 model describes temporal changes
in variables such as COD, oxygen and
ammonia (among others).

Steady-state
model

Model describing the expected values of variables of
interest under fixed conditions for process inputs and
operational variables (dx/dt= 0).

Total COD=C1+C2+C3, pH= log(H+ )

Algebraic state State which is computed from other states by means of
an algebraic (non-dynamic) equation

Acid−base equilibrium equations in some
applications

Parameter Value that specifies the behaviour of a system or system
model. A parameter is considered to have a single true
value only for a given system and/or model, although it
may be unknown a priori, and can be determined
separately for each application of a given model
structure.

Maximum growth rate, affinity constants, kLa

Stoichiometric
parameter

Numerical relationship between compounds
participating in a given (bio)chemical reaction or the
conversion rates of a compound relative to those of
another compound.

Yield

Kinetic parameter A parameter included in the equation describing the rate
by which a given (bio)chemical reaction occurs as a
function of one or more model states

Maximum growth rate, affinity constant

Constant Value that specifies the behaviour of systems or models
in a universal and invariant way. A constant remains
unchanged throughout all applications of a model

Gravitational constant, molar masses
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Table A2 Terms and definitions relating to acts of modelling.

Area Term Definition Example
A
c
ts

o
f
m
o
d
e
lli
n
g

Simulation Generation of a model response Effluent ammonia concentrations are simulated

Forecasting Generation of a model response for future conditions based on
currently available information

Expected future nitrogen removal rates are evaluated by means
of prediction of nitrogen concentrations in the effluent

Model set-up or
structure
identification

Definition or adjustment of the model structure including: reactor
design, reactor configurations, reactions and biokinetic model
structure

Fixed-film or suspended growth reactor, anoxic and aerobic
zones, ASM-type or model using other growth/inhibition terms.

Calibration or
parameter
optimisation

Adjustment of parameters for a given model structure so to better
reflect observations made in a specific set of conditions (operation)

Observations made during a measurement campaign are used
to fit the model to the data

Validation Comparison of the simulation results of a calibrated model and an
independent set of observations. In theory, the data used for validation
contains no information contained in the data used for calibration.

Industrial practice: validation is executed for a wide range of
purposes.
Good statistical practice: validation is exclusively aimed at the
selection of a better/best model structure.

Objective (function) Degree of performance of a given model. An optimal model is a model
with the best performance. The same objective is used throughout
calibration, validation and testing steps.

Often a least-squares objective is used (e.g., mean-squared
residual, MSR), in which the objective (MSR) needs to be
minimised for model improvement.

Identifiability Ability to assign a unique, optimal value to the model parameters
under reasonable expectations for data availability and data quality. A
model lacks structural identifiability when one cannot assign unique
values to the model parameters even in the hypothetical case with an
infinite amount of data that is representative (e.g., including dynamics)
and is perfectly accurate (no bias, no variability). Parametric
identifiability concerns the idea that the parameters of a structurally
identifiable model are not necessarily identifiable in practically
realisable situations with finite resources and practical limits on
available dynamics and data quality.

Domain of validity or
generalisation

A set or range of situations, either foreseen or not, under which a given
model is (still) applicable. A good quality of the model is the ability to
stretch its use or extrapolate it further compared to other models. The
domain of validity can also be seen as the set of conditions within
which amodel will give results reliable enough to serve as a basis for a
decision, despite its uncertainty. This ability can be defined as
generalisation properties or domain of validity. The term domain of
validity suggests that a distinct quantifiable boundary for
generalisation exists.

Optimality An optimal model is a model that is the best among those available in
reaching a certain objective. Such objectives may range from
describing a certain phenomenon qualitatively to predicting
concentrations of interest.
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Table A3 Terms and definitions relating to model evaluation.

Area Term Definition Example
M
o
d
e
l
e
v
a
lu
a
ti
o
n

Least-squares (LS) Least-squares objectives/optimality refer to the
practice of using a penalty function which is a
sum of squared prediction errors/residuals used
to calibrate, validate and select models. The use
of a LS objective is usually motivated based on
the assumption that measurement errors are
independently and identically distributed
according to the normal distribution.

Sum of squared residuals (SSR), mean -squared
residual (MSR) and root mean-squared residual
(RMSR).

Sum of squared
residuals (SSR)

Sum of squared residuals. SSR = ∑m
i=1

(ri)
2 for i = 1 . . .m residuals

Mean-squared
residual (MSR)

Average of squared residuals. MSR = 1
m

× SSR for i = 1 . . .m residuals

Root mean-squared
residual (RMSR)

Average of squared residuals.
RMSR = 1

m
× SSR

( )1/2

for i = 1 . . .m residuals

Sum of absolute
residuals (SAR)

Sum of absolute residuals. SAR = ∑m
i=1

|ri | for i = 1 . . .m residuals

Mean absolute
residual (MAR)

Average of absolute residuals.
MAR = 1

m
× SAR for i = 1 . . .m residuals

Independently and
identically distributed
(i.i.d.)

Notion that a set of given outcomes (e.g.,
prediction residuals) are distributed
independently and characterised by the same
distribution. Independence practically means
that the value of one outcome is not informative
about another outcome. I.i.d. conditions are
typically assumed for measurement errors.

Normal distribution The normal or Gaussian distribution is a widely
assumed and applied distribution for residuals
and errors and can be characterised by two
parameters, namely mean and standard
deviation. The probability density function
follows a symmetric bell-shape.
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Table A4 Terms and definitions relating to basic statistical concepts and metrics.

Term General Definition Measurement Model Structure/////Parameters Model Simulation/////Prediction

Outcome Result of measurement,
experimentation, simulation
or modelling.

For example, a nitrate
concentration.

− For example, an OUR estimate, a
biomass concentration prediction, a
kinetic parameter estimate.

Measurement Assessment of the value of a
variable of interest by means
of an analytic experiment or
on-line signal generation.

For example, a dissolved
oxygen measurement.

− −

Error Deviation between an
outcome and its true value.

Numerical difference
between a measurement
and the true corresponding
value in the sampled
system.

Difference between the true system
and the model representation. This
can be in structure and parameters
(separately or simultaneously).

Difference between a predicted
value and the reference value in the
modelled system or a reference
value.

Residual Deviation between an
outcome and its reference
value.

− − Difference between a predicted and
a measured concentration.

Credibility Probability or degree of belief
that a given outcome
corresponds to its true,
usually unknown, value.

Probability or degree of
belief that a given
measurement reflects the
true underlying variable
well.

Probability or degree of belief that a
model is representative for the true
system.

Probability or degree of belief that a
simulated result corresponds well
to the true corresponding value.

Credible
interval/region

Interval within which an
outcome or the region within
which a set of simultaneous
outcomes are believed to lie,
with a given probability.

Range around a
measurement within which
the true value is expected
to lie with a given level of
confidence.

Range of model structures and/or
parameters within which the true
system is expected to be with a
given level of confidence.

Range around a simulated result
within which the true corresponding
value is expected to lie with a given
level of confidence.

Confidence
interval/region

Interval in which an outcome
or the region in which a set of
simultaneous outcomes are
to be found with a given
frequency, when repeated
many times

Range within which a
repeated measurement is
expected to lie with a given
level of probability

Range of model structures and/or
parameters that will be reached
with a given frequency upon
repetition of the applied data
collection, model identification,
and/or calibration procedures

Range of model structures and/or
parameters that will be reached
with a given frequency upon
repetition of the applied data
collection, model identification,
calibration, and/or simulation
procedures

(Continued )

A.3 STATISTICS
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Table A4 Terms and definitions relating to basic statistical concepts and metrics (Continued ).

Term General Definition Measurement Model Structure/////Parameters Model Simulation/////Prediction

Bias or
systematic
error

Bias is the consistent
deviation of the measured
value from an accepted
reference value (ISO
15839:2003). In statistical
texts, bias and systematic
error are considered to be
one and the same.

Bias is introduced into
measured variables by
means of consistent error
(s). It is recommended to
use measurement bias to
explicitly refer to bias in a
measurement device or
outcome.

Bias in model structure selection or
model parameter identification is
the systematic deviation between
the real system and the model
representation. This concurs when
the considered model(s) are not
representative of the system or
when the data used for model
identification, calibration, and
validation is biased.

Bias in model simulation is the
systematic over- or
under-prediction of a variable of
interest as the model is unable to
sufficiently predict the observations
made.

Trueness Antithesis of bias, that is, the
degree of how close an
outcome is to an accepted
reference value.

How close the
measurement is to its
reference value.

− −

Precision Precision is the closeness of
agreement between
independent measured
values obtained under
stipulated conditions (ISO
15839:2003). Precision is a
qualitative concept and not a
number.

− Degree to which repeated
modelling exercises will deliver a
similar model.

Closeness of independently
reproduced outcomes under the
same, specified conditions to each
other.

Variability Spread of ‘true’ values of a
quantity. In measurements,
variability is the opposite of
precision (ISO 5725-1:1994).
Variability is an expression of
random error and is a
property of the population,
not of our state of knowledge
(Kelly and Campbell, 2000).

Degree to which repeated
measurements show
different or dissimilar
results; also, the degree of
being far from each other.

− −

Accuracy Comprises trueness and
precision and is therefore a
single expression for
systematic and random error.

Closeness of agreement
between a measured value
and the accepted
reference value (ISO 5725-
1:1994, ISO 15839:2003).

− −
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Table A5 Terms and definitions relating to essential concepts regarding uncertainty.

Term Definition

Uncertainty Degree of inability to determine or predict the exact behaviour of a system or process both now and in the future.
Uncertainty relates to (1) the inability to determine truly and precisely what has happened in the past because several
possibilities lead to similar observations and (2) the inability to predict truly and precisely what will happen in the future.
Uncertainty results from lack of knowledge and is partly reducible through the acquisition of additional knowledge, for
example, more data or further understanding of a process.

Nature of uncertainty Aleatory (irreducible)
uncertainty

Aleatoric uncertainty is representative of unknowns that differ each time the same experiment is run. It is due to the
inherent variability of a system and cannot be reduced with any further research (e.g., rainfall, toxic spills). It is classified
as irreducible and called variability.

Epistemic (reducible)
uncertainty

Epistemic uncertainty is due to things that could be known in principle but are not known in practice. This may be
because a quantity has not been measured sufficiently accurately, or because the model neglects certain effects. It can
be reduced with further research or measurements (e.g., experimental determination of kinetic parameters) in which
case it is classified as reducible and called epistemic uncertainty.

Level of uncertainty Quantifiable uncertainty Can be quantified and described with statistical methods and can be attributed to uncertainties such as a random
measurement error of a sensor.

Scenario uncertainty Can be described with qualitative estimations of possible outcomes that may develop in the future. Realistic
assumptions about relationships and/or driving forces within the model can be established. It is not possible, however,
to derive the probabilities of the scenarios taking place.

Recognised ignorance State where fundamental uncertainty exists, and the scientific basis is insufficient to develop functional relationships,
statistics or scenarios.

Total ignorance State where the actors are not aware of uncertainty. It is unknown what is unknown.

Location (source) of
uncertainty

Context uncertainty Context refers to the economic, political, social and technical conditions and circumstances that influence the model
boundaries and frame the issues that the model is to address. Context uncertainty also relates to the suitability of a
model for its intended purpose.

Input uncertainty Includes system data uncertainty and external driving force uncertainty. Data uncertainty includes uncertainty in, for
example, the influent flow and concentrations to a model. External driving force uncertainty relates to uncertainty
associated with changes in conditions that are outside the model boundaries but rather are inputs describing the
reference system and external forces driving changes in the current system.

Model uncertainty Both model structure uncertainty and model numerical uncertainty arising from computer implementation of the model.

Parameter uncertainty Parameter uncertainty is associated with the lack of knowledge regarding the true value of the model parameters as
well as uncertainty associated with parameter optimisation technique used during model calibration (e.g., lack of
convergence, parameter selection for optimisation).

Model output uncertainty The total uncertainty assessed by uncertainty propagation taking all model uncertainties into account.

A.4 UNCERTAINTY
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A.5 DISCUSSION OF TERMS OFTEN CONFOUNDED WITH UNCERTAINTY
A.5.1 Precision and variability
Precision is the quality of a repeated process or procedure to deliver similar results. Variability is the degree
of absence of that quality. The larger the variability, the lesser the precision. The term variability is
recommended to describe the concept qualitatively while standard deviation and variance are measures
used to quantify variability (Taylor & Kuyatt, 1994).

A measurement is variable when subjected to random disturbances or fluctuations. An example that is
easily demonstrated is that of a noisy sensor. Even in lab conditions one expects different values for
repeated measurements. A less obvious example is sampling error which can induce variability. Indeed,
one does not always sample the exact same volume of water or at the exact same spot. Heterogeneity of
the medium may cause variation as well.

Precision of simulation results is the degree to which several simulation results are similar to each other.
For model quantities (e.g., influent) that are variable, a simulation result can be generated for each possible
value of that quantity. A distribution for the simulated variable can be generated based on a single simulation
only, usually based on the mean parameter value and transformed into a confidence interval for
interpretation. As such, the confidence interval quantifies the precision/variability quality of the simulation.

A.5.1.1 Quantification of precision and variability
Precision should not be defined as the inverse of standard deviation (Taylor & Kuyatt, 1994). Precision is
therefore a qualitative concept and not a number. It is most typical to quantify variability (imprecision) rather
than precision (ISO 15839:2003). To this end, it is common to estimate the standard deviation. Root mean
square residual (RMSR) is the most popular approach to estimate the standard deviation. For this, one
subtracts reference values and/or (estimated) bias from the measurements and then computes the
averaged square of these residuals. This is then a measure of spread of the measurements.

For simulation results, variability is obtained in a similar way as for measurements. One subtracts
reference values and (estimated) bias and then measures the spread, for example by computing RMSR.

A.5.2 Accuracy and uncertainty
An outcome that is close to its reference/true value is more accurate; one that is further away is inaccurate or
uncertain. Accuracy comprises trueness and precision and is therefore a single expression for systematic and
random error. For this reason, accuracy should only be used as a qualitative concept (Taylor &Kuyatt, 1994)
and one should avoid quantifying it. Instead, accuracy/uncertainty should be described with separate
measures of bias and variability.

Improving both trueness and precision simultaneously to any desired degree is generally impossible,
thereby resulting in a necessary compromise. Since it is not defined how this compromise should be
made a priori and since measures for trueness and precision are typically in different scales, it is most
often left to the end-user to make this trade-off.

The accuracy of a measurement is the closeness of the given value to the true value. Measurement
uncertainty is thus the degree of inability of the measurement to describe the true corresponding value.

The accuracy of a model is the closeness of the model to the described true system. Naturally, model
uncertainty is then the inability of the model to describe the targeted system well. Model
accuracy/uncertainty can be quantified in several ways depending on the information available. In the
purest sense, it is quantified based on the mismatch between the model (structure and parameters) and
the true system from which data was derived. More practical measures are based on the ability of the
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model to predict the true behaviour of the system. A model validation or test step (see below) can serve
this purpose.

A.5.2.1 Quantification of accuracy and uncertainty
Accuracy and uncertainty are difficult to quantify for several reasons. Firstly, because the true values are not
available for real systems. This can be accommodated in practice by using reference values (see Section
A.5.6). Secondly, because accuracy/uncertainty encompasses both systematic as well as random
deviations from the truth. Quantifying both by means of one single measure is difficult and has little
value in view of model improvement as systematic and random deviation requires different actions for
model improvement. As such, accuracy should be decomposed into trueness and precision when
attempting quantification. Similarly, uncertainty should be decomposed into bias and variability for
purposes of quantification.

A.5.3 Error and residual
The term error is recommended to describe the difference between the obtained value and the corresponding
true value and residual for the difference between the obtained value and the reference value if this reference
is different than the true value. Except for well-designed laboratory experiments, only residuals are available
in practice. Figure A.1 illustrates this notion where the obtained value is given by model simulation (ySIM)
and the reference value is a measurement (yREF) for a true value (yTRUE).

A.5.4 Trueness and bias
An outcome that is generally or systematically close to its reference/true value is truer; one that is generally
or systematically further away is biased. In this definition, the terms generally or systematically are
important as they define the difference with accuracy/uncertainty. Conceptually, trueness/bias describes
the consistent, general, or long-term characteristics of an outcome.

Upon repetition (of a measurement or experiment), an averaged outcome will (typically) converge to a
value called the expected value. The difference between this expected value and the reference value is an
estimate of the bias. As such, bias expresses systematic error. The larger the bias, the smaller the
trueness. Bias is introduced into measured variables by means of consistent error(s). In Taylor and
Kuyatt (1994), bias is reserved exclusively to measurements and systematic error is considered a
generally applicable term. [ISO 5725-1:1994; ISO 15839:2003] do not make such a distinction. This
may be due to sampling at a location that systematically results in values too high or too low for the
overall system. Other possibilities include sensor calibration errors, systematic error in the analytic
protocol, and systematic error in handling of samples and/or results.

Figure A.1 Suggested separation of true value and reference value and, correspondingly, error and residual.
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Bias in model structure selection or model parameter identification results when the considered model(s)
are not representative for the system. In other words, insufficient flexibility of the model(s) to be fit to a
given data set results in a systematic deviation between the real system and the model representation. For
example, kinetic reaction rate coefficients may be far from reality, a one-step nitrification model may be
consistently off if the second step nitrification is relatively slow. Another reason for model bias is that
the data used for model identification, calibration, or validation was biased.

Bias in model simulation is recognised as the systematic over- or under-prediction of a variable of interest
as the model is unable to sufficiently predict the observations made. This may be due to errors introduced
throughout measurement campaigns or in modelling or, alternatively, introduced in the measurement of the
variable of interest. It may also be due to the extrapolation of a model to a situation which it was not
calibrated for or it could be that the system behaviour has changed since the measurement campaign
used for modelling.

A.5.4.1 Quantification of trueness and bias
It is most common to quantify bias, rather than trueness. Bias can be quantified relatively easily for
measurements. For this, one repeats the measurement (same sampling and measurement procedure)
several times and compares to a reference value. The distance between reference and the average of the
measurements is an (least-squares optimal) estimate of the bias. The reference value may consist of a
trusted reference measurement (e.g., standard protocol) or the set concentration in lab-made standards
or samples.

For model structure/parameters, it is difficult to estimate bias, as it requires a true or reference model,
which generally is not available. As a result, bias in the model is usually ignored in practice, implicitly
assuming that model structure and used data are unbiased. One way of assessing model bias, is to
compare simulation results to real measurements to evaluate whether consistent deviations are present.
The validation or testing step (see below) may serve that purpose.

For simulation results, one compares simulation results with reference values and computes the
consistent deviation between the two. A practical measure is the mean deviation between simulation
result and reference value.

A.5.5 Note on true values
Many of the definitions presented in Appendix A include the term ‘true value’. True values are generally not
known and by virtue of this, definitions based on the knowledge of ‘true’ values are of little practical use. It is
therefore common to replace ‘true values’ with ‘accepted reference values’ (ISO 5725-1:1994; ISO
15839:2003; Taylor and Kuyatt, 1994). It is however crucial to realise that one then deliberately ignores
the mismatch between accepted reference values and true values as a source of uncertainty. Whether this
is of importance will depend on the quality of the accepted reference values. According to [ISO
5725-1:1994; ISO 15839:2003], an accepted reference value is:

(a) An assigned or certified value based on experimental work of some national or international
organisation;

(b) A consensus or certified value based on collaborative experimental work;
(c) A theoretical or established value based on scientific principles;
(d) When (a), (b) and (c) are not available, the expectation of the (measurable) quantity, that is, the

mean of a number of measurements.
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The use of accepted reference values is common for sensor calibration. For example, one obtains laboratory
standard measurements and uses these to check a sensor which is based on a different measurement
principle. This is unlikely to be useful for model parameters. For predictions, one may be able to obtain
standardised measurements as a reference. Importantly, when one uses reference values, one inherently
assumes that these show no bias or variability of their own, that is, one considers the reference values perfect.

A.5.6 Note on repetitions
Variability of measurements, parameter estimates and model predictions can be described by means of
repetitions. It is assumed that these repeated values are produced in the exact same way each time
(identically distributed) and that they are independent of each other (independent sampling). In practice,
this may not be the case for the following reasons:

• There is simply no repetition made;
• The measured/parameter/prediction value depends on other values, for example, through redundant

relationships or dynamic relationships. For example, it is common that two parameters are correlated.
Also, consecutive measurements of a variable in a dynamic system are likely auto-correlated.

Without repetitions, one can do little to obtain separate descriptors of bias and variability. In the rare case
where the true value is known, one can only obtain an overall measure of uncertainty based on a single
measurement. In such a case, one has little clue on how one can reduce this uncertainty since the
reduction of bias and variability require different actions.

One can try to explicitly account for dependencies between distinct variables through redundancy or
dynamic relationships when one has measurement or values for these variables. For example, data
reconciliation techniques may be used. To obtain corrected values which satisfy the assumed
relationships, for example, a mass balance over a process unit, one uses the corrected values as reference
values. Following that, one can compute residuals between measurements and corrected values, which
then serve to characterise the residuals in terms of bias and variance. Here, one will now typically
assume that the residuals are independent and identically distributed. Available techniques belong to the
fields of statistical process control and data reconciliation. Note that one typically assumes that the
relationships are given without error, that is, they are a perfect representation of reality.

A.5.7 Bias, variability and uncertainty: a graphical example
Consider that one aims at a target in a shooting game and one has multiple chances to try. At each trial,
one may or may not be close to the target. After a series of trials, one can characterise the distribution of
the result in the different trials. Suppose four people are participating in the game. For each individual,
one obtains results as in Figure A.2. It is typical to describe these results in terms of bias and variance.
The combination of both represents the uncertainty.

In the result on the top right of the figure, one has the results for the best player. This player has a low bias,
that is, the average of all trials is close to the target. This player has also low variability since all trials are
close to each other. The second player (top left) also has low bias (average of trials is on target) but shows
much more variability.

At the bottom-right, the third player’s results are shown. In this case, the average of the results is far from
the off target. One says that the player shows bias. However, the trials are very close to each other, meaning
that the player shows low variability. Finally, the average of results for the fourth player is off target while
the trials are rather far from each other. This player thus shows high bias and high variability.
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Uncertainty is now a combination of both bias and variability. As such, one can say that the first player
shows low uncertainty. One also says that this person is accurate. The fourth player shows high uncertainty,
or in other words, low accuracy. The second and third players show uncertainty levels between the first and
fourth players’ uncertainty. Importantly, it is not always clear how one should weigh accuracy against
precision. It is difficult to gauge whether player 2 is better or worse than player 3.

A.5.8 Link between measurement, modelling and prediction
One can also characterise measurements, model (parameters) and prediction in terms of uncertainty, bias and
variability. In these cases, a bias is the general tendency of a measurement, model parameter estimates or
prediction to have a different value than the true value. Variability is the descriptor for how far repeated
values for measurements, model parameter estimates or predictions are from each other. In Figure A.3,
each square represents the average of three measurements demonstrating measurement error, the vertical
dotted line represents the influent variability of the daily average, the horizontal dotted line shows the
annual average and the continuous line shows the interannual variability of the measurement.

A.5.9 Qualitative model performance criteria
A.5.9.1 Identifiability
In certain situations, it may not be possible to obtain (good) estimates of parameters. This is usually the result
of the combination of (1) a model with a rather large number of parameters which one aims to identify, (2)
lack of representative, dynamic data or (3) lack of data quality. According to Dochain et al. (1995),
identifiability can be defined as follows:

Assume that a certain number of the state variables are available for measurement; on the basis of model
structure (structural identifiability) or on the type and quality of available data (practical identifiability), can
we expect to give via parameter estimation a unique value to the model parameters?

A model lacks structural identifiability when one cannot assign unique values to the model parameters
even in the hypothetical case with an infinite amount of perfect data that is representative (for example
including dynamics) and is perfectly accurate (no bias, no variability).). In this case, additional data
collection cannot aid in the modelling process. In contrast, parametric identifiability concerns the idea

Figure A.2 Top left: low bias, high variability. Top right: low bias, low variability. Bottom-left: high bias, high
variability. Bottom-right: high bias, low variability. (Source: http://www.minedesignwiki.org/index.
php/Sampling_QAQC).
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that the parameters of a structurally identifiable model are not necessarily identifiable in practically
realisable situations with finite resources and practical limits on data quality.

A.5.9.2 Generalisation and domain of validity
As one may expect that during modelling, one has no access to data representative of all behaviours of the
system, it is important to consider the capacity to extrapolate the model beyond the conditions covered in the
calibration and validation set also, one may expect that the true system itself may change over time.
Consequently, one will likely arrive in a situation where the model is used still while not exactly
representative of the true system. Such extrapolation may be valid or not. A good quality of the model is
thus the ability to stretch its use or extrapolate it further compared to other models. The domain of
validity can also be seen as the set of conditions within which a model will give results reliable enough
to serve as a basis for a decision, despite its uncertainties. This ability can be defined as generalisation
properties or domain of validity. The latter suggests that a certain and quantifiable boundary for
generalisation exists.

A.5.9.3 Optimality
An optimal model is a model that is the best among those available in reaching a certain objective. Such
objectives may range from describing a certain phenomenon qualitatively to predicting concentrations
of interest.

A.5.10 Reliability and redundancy
According to IEEE (1990), reliability is the ability of a system or component to perform its required
functions under stated conditions for a specified period of time. For example, reliability of a model is the
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Figure A.3 Measurement error, daily average variability and inter-annual variability of influent TSS.
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degree to which one is certain that a given model will support its intended task over a time horizon, that is,
the extent to which one can rely on the model in the future. As such, reliability includes the notion that the
performance of a model will degrade over time due to the inability to incorporate unforeseen changes in the
represented systems or inherent incompleteness.

The basic method to assess reliability is to define the risk, define the likelihood, and define the
consequence (preferably as a cost). This method has been used to assess criticality, which is used for
capital improvements planning and prioritisation. The criticality of a project is the product of the
likelihood/frequency of failure and the consequence of failure.

Redundancy in an engineered system can be defined as a design practice to include backup components
in a system or incorporate interchangeable components so that the system can be repaired quickly. In either
case, the intention is that the system can operate at an acceptable performance level without interruption
when a piece of equipment fails or must be taken out of service. This is important in safety-critical
systems (e.g., plane, nuclear reactor) to avoid damage in the case of failures in a single part of the
system. Data redundancy is the degree to which multiple measurements contain the same information.
This property is what one uses to remove gross outliers from data sets by means of mass balances. Most
statistical techniques for fault detection are based on redundancy (e.g., Frank, 1990).

Wastewater treatment redundancy should not be confused with process reliability. Reliability refers to
the inherent dependability of a piece of equipment, a unit process, or the overall treatment process in
meeting the design objective (Tanaka et al., 1998). In terms of effluent quality, Niku et al. (1979) and
Bott and Parker (2011) referred to process reliability as the ability to meet the specified effluent
requirements free from failure, or as the probability of success, where failure is the probability that the
effluent concentration is greater than the discharge permit limit. McBride and Ellis (2001) defined
reliability as the percentage of time a wastewater treatment plant remained in compliance with discharge
standards. Reliability analysis has been used to predict the performance of a technology over time and to
determine the strategies that improve performance and reduce risks of failure (Etnier et al., 2005).
Redundancy on the other hand, can be viewed as a subject of reliability. Redundancy is practiced in the
design of wastewater treatment plants to improve reliability through the provision of standby equipment
or processes that reduce the risk of failure to meet water quality regulations or guidelines (Palmer et al.,
2003).

Although the definition of redundancy does not include regulatory compliance or reliability standards,
some data show a direct relationship between treatment process reliability, redundancy design and
regulatory compliance. Bott and Parker (2011) concluded in a comprehensive study of nutrient removal
plants, that one of the main causes affecting the performance of treatment plants was the reliability and
redundancy of important unit processes or pieces of equipment in the wastewater treatment plants.

A.5.11 Robustness and resiliency
In general, one desires that any engineered system can handle disturbances for quite some time before
(large) deviations in operation are seen. Robust systems do not easily break down or disintegrate, that is,
they can withstand extreme conditions without visible changes in structure or functionality. This capacity
is usually described as robustness which can be defined as the property that permits a system to maintain
its functions against internal and external perturbations (Kitano, 2004). Robustness is a characteristic
which becomes apparent when imposing extreme or potentially harmful conditions (stress) onto a
good-working system. For example, concrete is a robust material as it does not change shape under
considerable stress. Rubber is not a robust material as it changes form and shape under slight stresses
already. Naturally, a larger robustness is generally a good thing. However, robustness generally comes at
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a cost. For example, in order to make a buffer tank more robust to extreme flows, one needs to design a
larger tank.

Resiliency is a term used broadly and differently in different contexts. In the field of process control, it
signifies a property very similar to robustness, for example, resilient control systems are those that
tolerate fluctuations via their structure, design parameters, control structure and control parameters
(Mitchell & Mannan, 2006). More recent definitions provided in the context of cyber-security, include a
non-random component to the cause of disturbances and a goal of awareness: A resilient control
system is one that maintains state awareness and an accepted level of operational normalcy in
response to disturbances, including threats of an unexpected and malicious nature (Rieger et al., 2009).
Thus, to achieve resiliency, it is not sufficient to tolerate or cope with a disturbance, one must also be
aware of it. This makes a clear distinction with robustness, which is a passive approach to handle
(random) disturbances.

A general definition of resiliency could be the degree to and/or rate at which a system can recover from
disturbances or upsets, caused by random causes or wilful actions. In contrast to robustness, which is
characterised under stress conditions, resilience is, in addition, characterised by means of a recovery
process or period. For example, can one get the initial performance again? Does the system
return quickly to normal behaviour? Concrete can be considered a non-resilient material. Indeed, once
broken it is not easy to fix and one will generally replace it with new concrete. Rubber is a resilient
material. Indeed, as one releases stress, rubber generally goes back to its original shape and form.
Resilience can also be regarded as a capacity of self-healing. As with materials, it is expected that
robustness and resilience are to be bargained against each other. In addition, resilience also comes at a
certain cost. For a buffer tank to recover faster from an extreme flow event, one may need pipes with a
larger diameter.
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Appendix B

Methods for uncertainty analysis

B.1 UNCERTAINTY FRAMEWORKS
B.1.1 Frequentist
In the frequentist framework, it is assumed that the true value of a quantity (e.g., model parameter) is fixed
(Johnson & Wichern, 2007). The problem is then to find a good approximation of that value as well as a
region of confidence where this true value lies. This confidence interval is a measure of the uncertainty
about the true value of the quantity. The distribution describes the probability for the obtained value of a
variable or parameter (e.g., of variable measurements, model parameter estimates).

In general, the frequentist framework advocates the repetition of experiments in order to obtain samples
of measurements or parameter estimates. Based on this sampling, one then estimates the distribution of the
obtained values for the variable or parameter. For example, one can calculate the mean and variance which
offer a complete characterisation of the normal distribution, assuming that the choice of a normal
distribution is correct.

In the application of frequentist theory, it is assumed that by increasing the size of the sample, the
estimated distribution will converge to the true distribution. For this to be true, two important conditions
need to be met. First, the sampling procedure must lead to independently sampled values for the
quantified variables. This is not always the case, especially when dealing with dynamic processes. Often,
one has no access to repeated measurements or parameter estimates which are independent from each
other. Second, the true distribution function should be able to be described by means of the fitted
distribution function. This is often violated as well. Indeed, it is typical to assume the normal distribution
for parameters in models that are non-linear in the parameters while the true distribution is not normal.

B.1.2 Bayesian
In the Bayesian framework, it is assumed that the quantity one seeks to identify is uncertain. Therefore, the
quantified variable can take several plausible values. Each of these values will appear with different
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probability. This probability can again be described by a distribution; however, this distribution describes
the probability for the true value of a variable or parameter (e.g., of the true variable value, true model
parameters).

In the Bayesian context, one assumes a process which generates data. This process is given as a model
which includes parameters and possibly input values. With such a process model, one generally describes
the likelihood of measurements, y, conditional to the model parameters, p, denoted L(y|p). Note that the
likelihood is proportional to probability. It is not the same as probability however, as probability should
sum to one while the likelihood does not in general sum to one.

The objective is to determine the likelihood (or probability) of the model parameters given some
observations, written as L( p|y). This describes the distribution of the parameters. To obtain this
likelihood, one uses Bayes’ rule (hence Bayesian statistics):

L( p|y) = L(y|p) · L(p)/L(y) (Bayes’ Rule)
with

L(y) =
∫
L(y|p) · L(p) (Sum rule: sumover all plausible values for p)

In this formula, L(p) represents the so-called prior likelihood for the parameters, in short prior.
By means of this prior, one includes prior information, knowledge or beliefs about the parameter into the

calculations. For example, if a certain parameter cannot be negative then one constructs a prior which is zero
for negative values of the parameter: L(p) p,0 = 0. L(y) represents the total likelihood of the data. This is the
overall likelihood for the data to have been observed for all considered values for the parameters p. In Bayes’
rule, L(y) is a scaling factor which makes sure that L( p|y) integrates to one and thus represents a probability.
If one does not scale with L(y) then one can still find the parameters which maximise L( p|y) since L(y) is a
constant. Such parameters are called the maximum likelihood parameter estimates. However, to obtain
confidence limits for the parameters, one relies on the probability and should scale properly. Hence, L(y)
is needed for the quantification of uncertainty. In general, the calculus of L(y) is difficult because there is
no closed form or analytic solution for this sum/integral equation. As a result, several methods have
been developed to approximate this integral.

B.2 MONTE CARLO SIMULATION
In Monte Carlo methods, the uncertainties in the model inputs and parameters are expressed as probability
distributions. Multivariate samples are then obtained using a statistical sampling method, propagated
through the model using simulations, and the results are analysed to develop probability distributions for
the model output variables.

With sufficient sampling from an unknown distribution, the true distribution can eventually be
approximated numerically. This paradigm can be put to use in a classic frequency-based statistical
framework, where the true parameters are considered fixed and distributions of parameter estimates are
characterised, or in a Bayesian context, where the model parameters, are considered to be uncertain and
where the distributions of the parameters, not their estimates, are characterised. In the latter, a prior
distribution is set up for the parameters, which reflects the expected distribution for the parameters in the
absence of experimental data and/or before experimentation (hence prior).

One of the earliest documented applications of the basic Monte Carlo method was in the determination of
the value of π (Hall, 1873). The term ‘Monte Carlo’ was coined in the 1940s by researchers working on
nuclear fusion at the Los Alamos National Laboratory (Metropolis & Ulam, 1949).
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Monte Carlo methods generate the solution of the integral of the product of two variables. Many
problems can be formulated in this context such as finding the mean of a stochastic variable which is
defined as the integral of the variable multiplied by its probability density function. Monte Carlo
methods are often used to evaluate difficult multidimensional integrals with complicated boundary
conditions. The problem of estimating uncertainties in simulation results can be formulated as an
integration problem. For example, the mean of the model outputs is the integral of the product of the
model outputs and the joint probability density function.

The basic Monte Carlo method can require a large number of samples in order to converge. The
uncertainty in Monte Carlo simulations is proportional to 1/

��
n

√
(Eckhardt, 1987), where n is the number

of samples. This means that every decimal point of extra accuracy requires 100 times the number of
samples. As a result, Monte Carlo simulations could require hundreds or thousands of simulations to
converge depending on the required accuracy.

In order to reduce the number of simulations that must be run, methods have been developed to generate
more efficiently the sets of random numbers required as model inputs. These include Markov chain Monte
Carlo (Metropolis et al., 1953), stratified sampling methods such as Latin hypercube sampling (LHS) and
quasi-Monte Carlo (see Torvi & Hertzberg, 1998). Quasi-Monte Carlo methods construct deterministic
sequences such as the Halton, Sobol or Hammersley sequences that share properties of random or
pseudo-random sequences. These methods are found to have less error than random Monte Carlo
methods and require fewer samples to converge but the advantage may be slight in large problems
(Morokoff & Caflisch, 1995).

The probability density functions used for the model input variables and parameters depend on the
available data. In cases where data are available, the distribution of the data can be determined using
statistical techniques. For variables for which little information is known except for expected minimum
and maximum values, a uniform distribution is often used. A triangular distribution is used if a most
likely value and minimum and maximum values are known.

B.2.1 Random sampling and LHS
In the random sampling (RS) procedure, at each Monte Carlo run, a vector of model parameters is randomly
sampled from the joint distribution of parameters. The sampling of parameters at each Monte Carlo run is
independent from the previous ones. Therefore, in this sampling approach, the coverage of the entire support
of distributions (used for the characterisation of model parameter uncertainty) might not be guaranteed,
unless a large-enough number of Monte Carlo simulations is performed.

An alternative sampling to the RS method for exploring the support of different parameter distributions is
the LHS method. In the LHS method, the range of the input variable distribution is divided into N
sub-intervals (e.g., N = 4 in Figure B.1) with equal probabilities. One value is selected from each
sub-interval and this process is repeated for all the input variables. The generated input variable values
are then paired randomly to generate a sequence of input samples for use in the Monte Carlo
simulations. Compared to the RS method in which different samples are generated by RS directly from
the entire range of distributions, in LHS, RS is performed in each sub-interval and all sub-intervals
are sampled.

Figure B.1 illustrates the result of generating four vectors of parameters in a two-dimensional parameter
space generated using RS and LHS methods. As indicated in (a), in this particular realisation of four
samples, generated according to the RS method, no value is sampled from sub-interval (1) of parameter
u1 and sub-interval (2) of parameter u2. However, the sampling result based on the LHS method
indicates that the generated values include representatives from all sub-intervals.
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In general, the application of LHS could reduce the number of sampled values required to reach
convergence of the output distributions (Tung & Yen, 2005). However, there could be some cases where
LHS sampling would not lead to a more rapid convergence of output distribution compared to the RS
sampling as the convergence also depends on the complexity of the model and its parameters.

In addition, in the RS method, the sampling of parameters at each Monte Carlo run is independent from
the next one and in each run the convergence of the output distributions can be checked to determine whether
more simulations are required or not. In contrast, in the LHSmethod, the number ofMonte Carlo runs should
be determined and samples generated before running any simulations. Therefore, if the selected number of
Monte Carlo simulations turns out to be insufficient, the users cannot simply add more samples (like in the
RS method) unless the consistency of the LHS procedure is insured.

Apossible solution to increase the size of samples in theLHSmethod is the replicatedLHSmethod (McKay
et al., 1979) inwhich insteadof generatingNnumber of samples using theLHS, knumber ofLHSdesignswith
nnumber of samples each, is generated (N= k×n).After the termination of eachMonteCarlo simulationwith
n samples, the convergence of the output distributions is checked, and ifmore simulations are required, othern
samples are generated using the LHS and Monte Carlo simulation continues using the newly generated
samples. The efficiency of the repeated LHS depends on the appropriate choice of n as selecting it too
large may not result in significant reductions of model runs and a value that is too small could result in
inadequate coverage of the entire parameter space (Benedetti et al., 2011).

B.2.2 Introducing correlations between parameters
One of the important factors in Monte Carlo simulations that could affect some of the statistical properties of
the simulated output distributions is proper incorporation of possible correlation structures in the sampling
of uncertain parameters. Different methods presented in the literature can be used to introduce a desired
correlation structure among the sampled values (Iman & Conover, 1982; Tung & Yen, 2005). However,

Figure B.1 (a) Schematic of a RS and (b) LHS procedures.
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some of the methods suffer from certain shortcomings and their application depends on the validity of a set
of assumptions regarding the marginal distribution of the parameters (Tung & Yen, 2005).

One of the commonly used methods for introducing correlation among uncertain parameters is the
method of Iman−Conover (Iman & Conover, 1982). Being independent from the type of marginal
distributions, applicability to any sampling scheme (e.g., RS or LHS), and relatively simple
implementation have been mentioned as the main advantages of this method (Iman & Davenport, 1982).
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Appendix C

Existing methods for uncertainty analysis
in WWT model-based projects – Complete
literature search results

C.1 INTRODUCTION
Several literature searches were conducted to identify potential references for review. One of the authors
conducted a search using ISI/Web of Knowledge (Science) in 2008 using various keywords related to
wastewater treatment and uncertainty. In 2009 and 2010 the services of a research librarian were used to
conduct additional literature searches. The searches of the research librarian included the data bases
Compendex, Scopus, and Pollution Abstracts and Toxicology Abstracts 1998 to the present. These
searches used key words and topics related to uncertainty in wastewater treatment (wastewater,
treatment, uncertainty, evaluation, assessment, modelling, probabilistic, stochastic, sensitivity analysis)
and also included searches using author and researcher names known to be working in the area.

The literature searches resulted in an initial list of over 500 references. Abstracts of the references in
the initial list were reviewed and 386 references were determined to be directly relevant to the purpose
of this chapter. The number of references in the short list fluctuated, with additions made during the
detailed review process. An updated literature review for 2011–2019 has been added at the end of
the chapter.

While the list cannot be considered comprehensive or complete, it does represent a credible search of the
literature and provides the current status of literature activity regarding the subject. The categorization that
follows is based on the judgement of the authors and hence is not unique. For example, there are some
references assigned to one category that address several other categories. Similarly, some reference
studies maybe listed in a category which are not perfectly explained by the concise category titles itself.
However, the present choice of categories serves as a framework to synthesize the considerable breadth
of the topic and size of the literature search results into discrete and discussable topics.
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Appendix D

Application of uncertainty analysis
methods – knowledge from other fields

D.1 INTRODUCTION
The overall objective of this chapter is to incorporate knowledge from other fields on applications of
uncertainty analysis methods. The fields selected were chemical and hydrogeological (groundwater)
engineering, as they share similarities with wastewater treatment (WWT). The scope and objectives of
the work are as follows:

• Identify the key attributes of the chosen fields and how they compare to wastewater treatment;
• Determine how uncertainty is typically accounted for in model-based studies in the chosen fields;
• Determine the main uncertainty methods used and whether there are any novel methods not used in

wastewater treatment that are transferable to the wastewater treatment field.

The research was based on a targeted literature search and review of the uncertainty analysis methods in the
selected fields. Based on the experience of the teammembers, key areas of research were selected for review.
Each team member selected an area of focus and performed an initial screening of the available research
papers, followed by a detailed review of a selected set of key papers. The initial screening focused on
identifying key researchers and research groups in uncertainty analysis in the selected fields. The work
of these researchers formed the basis of the detailed review. A review of the different uncertainty
frameworks uncovered is provided followed by the literature review.

D.2 REVIEW OF UNCERTAINTYANALYSIS METHODS IN CHEMICAL
ENGINEERING
D.2.1 Comparison of chemical engineering with wastewater treatment
D.2.1.1 Background
In general, chemical engineering deals with the production, transportation and separation of chemical
products. The focus is typically on using chemical reactions to create a compound and then using
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vapour/liquid and solid/liquid separation processes to purify the product. The reactants and products are
often fluids (liquids, gases, or solid slurries).

In a classic sense, chemical engineering does not involve living matter but because research in classic
areas has matured (e.g., refinery operation, catalysis, batch process optimization), recent developments in
society (e.g., biofuels) have pushed the boundaries of the field towards a broader set of applications. As
such, chemical engineering researchers, consultants and industries are increasingly venturing into newer,
unexplored areas. This includes biochemical engineering and engineering of particulate processes (e.g.,
powder formulations of pharmaceuticals). This also means that in these particular areas, less knowledge
is available and, as a result, more uncertainty exists for such applications. However, uncertainty has not
been explored to a great extent in these emerging areas.

D.2.1.2 Similarities
Wastewater treatment plants (WWTPs) share similarities with chemical plants in that they often use a series
of interconnected processes to purify influent water streams using a combination of biologically mediated
reactions and solid/liquid separation processes. The basic mechanistic modelling and simulation principles
remain essentially the same between the two fields, with plant models being based on mass and energy
balances and consisting of algebraic and/or ordinary and partial differential equations (ODE and PDE)
that are solved using numerical methods. In both fields, the fluid is often assumed to be incompressible
and reactors are often assumed to be well-mixed. This means that the continuity equation for fluid
motion can be described by a simple volume continuity equation. When more complex analysis of fluid
motion is required, both fields employ computational fluid dynamics (CFD) analysis, although this is a
more recent phenomenon in WWT. CFD analysis uses numerical methods to solve the conservation
equations for linear momentum, known as the Navier−Stokes equations.

Process models are used in both fields for planning, process synthesis and design, control design,
comparison of alternatives, ‘what-if studies’, and trouble-shooting. To date, the chemical engineering
field has placed more emphasis on model-based control and optimization of its plants. This has led to the
use of advanced control methods such as model-predictive control (MPC) and model-based optimization
of plant design and operation using techniques such as linear programming (LP), non-linear
programming (NLP), mixed-integer non-linear programming (MINLP), dynamic optimization, and
optimization under uncertainty.

Both industries make use of empirical models, but the chemical process industries have made greater use
of data-driven models such as Box−Jenkins time-series models, neural network models, and latent variable
models (i.e., principal components analysis (PCA) and partial least squares (PLS)).

D.2.1.3 Differences
The major differences between the chemical engineering field and WWT, which are of importance when
considering model-based analysis, are as follows:

• Process inputs and operational variables are more certain in the chemical process industries.
• Sensors are more widely used, and the process variables are often easier to measure.
• Process inputs in the chemical process industries have less variability.
• Raw material inputs into a chemical process system are tightly controlled and buffered. Wastewater

streams have a high degree of variability in flow and composition and are subject to regular daily,
weekly and annual variations as well as unexpected storms and industrial discharges.

• Process inputs in the chemical process industries are often not as strongly correlated with each other.
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• The raw materials are usually independently controlled in a chemical process whereas influent
pollutant variables are correlated in a WWT process.

• The underlying processes operate on much faster time-scales in chemical process systems and
therefore can be more easily controlled. There is more interaction between control loops in
chemical process systems due to similar time-scales, which is less of a problem in WWTPs.

D.2.1.4 Comparison in the context of model-based projects
A summary of how the chemical engineering field compares with the WWT field in terms of modelling,
simulation, and uncertainty issues is given in Table D.1.

It is natural for evolving scientific fields to borrow modelling, analysis, control, and optimization
techniques from other fields that are further advanced. Chemical engineering and process systems
engineering (PSE) have borrowed heavily from the electrical engineering, operations research, and
aeronautics fields. In turn, the WWT field has drawn heavily from chemical engineering. This
technology transfer has flowed from industries where the phenomena are known with greater certainty
and operate on faster time-scales to industries where the phenomena are known with less certainty and
operate on slower time-scales. It follows that chemical engineering is an important field to consider
when looking for novel uncertainty analysis techniques, but the techniques must be tailored to the
WWT field.

D.2.2 Uncertainty methods used in chemical engineering
D.2.2.1 Methods overview
Uncertainty analysis has not received as much attention in the chemical engineering literature, as compared
to fields such as WWT and hydrology. This is largely because uncertainty is perceived to be a less of an
issue. The perception is that process inputs and outputs are more tightly controlled and precisely known,
and first principle models are generally considered to be good representations of the processes. This
perception is changing, and plants are being designed for flexibility. Uncertainty in chemical engineering
appears more in the context of raw material availability and pricing, changes in weather, availability of
power, and product demand. For example, one source of uncertainty could be that a company may
decide to change product lines in a plant depending on market demand or may decide to start producing
a product that the plant was not designed for.

In chemical engineering, the largest fraction of the literature deals with finding a best model, where best is
usually stated as expectation, maximum likelihood or maximum posteriori likelihood (e.g., Maria, 2004).
There are also papers dealing with parameter estimation, either using a specific data set or with
continually updated online data. In these studies, uncertainty is not a concern, but approximate
confidence intervals or regions do follow from the Kalman filter theory or non-linear regression theory.
See Vachhani et al. (2001), Jang et al. (1986), and Ramamurthi et al. (1993) for examples where
parameters are estimated online by means of inclusion as states in the applied model or by means of
recursive estimation schemes.

There are several potential reasons for the lack of attention to uncertainty analysis in chemical
engineering as compared to WWT:

• Models have largely been used in the context of operation and design of potentially unsafe systems,
for which constraint satisfaction (e.g., physical constraints, safety constraints) has been considered a
more important problem to solve.
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Table D.1 Comparison of wastewater treatment and chemical engineering fields in terms of uncertainty analysis.

Characteristic Wastewater Treatment Field Chemical Process Industries/////Process Systems
Engineering

Types of models used Mainly continuous models Both continuous and discrete models
Steady-state and dynamic Steady-state and dynamic
Linear and non-linear algebraic equations Linear, non-linear, mixed-integer linear, mixed-integer

non-linear algebraic equations
Ordinary differential equations, partial differential
equations, and differential/algebraic equations

Ordinary differential equations, PDEs, and
differential/algebraic equations

Some data-driven models such as latent variable
models (PCA/PLS) and neural networks

Data-driven models such as latent variable models
(PCA/PLS) and neural networks
Stochastic differential-difference equations for
chemical reaction networks

Level of detail in the models Usually lumped parametermodels (spatial variation of
variables and parameters ignored) so ODEs used
instead of PDEs

Usually, lumped parameter models

Distributed parameter models used for biofilm
modelling

Distributed parameter models also used

CFD modelling becoming more prevalent CFD modelling commonly used
Usually, model surrogate organisms not individual
bacteria

Stochastic simulation approach models processes at
the molecular level

Sources of uncertainty Unexpected equipment failures and operational
disturbances

Unexpected equipment failures and operational
disturbances

Influent conditions (flow rate, concentrations) Unexpected changes in inlet and operational
conditions

Variability found in influent due to diurnal, weekly, and
annual patterns

Changes in economic value of product

Variability may be well characterized but can have
storm events and industrial discharges that are
unexpected and unknown in advance

Changes in availability or quality of raw materials

Population growth patterns and changing water-use
and climate patterns that are uncertain

Future regulations

(Continued)
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Table D.1 Comparison of wastewater treatment and chemical engineering fields in terms of uncertainty analysis (Continued ).

Characteristic Wastewater Treatment Field Chemical Process Industries/////Process Systems
Engineering

Numerical methods used Nonlinear algebraic solvers Linear and nonlinear algebraic solvers

Differential equation solvers including stiff solvers Differential equation solvers including stiff solvers

Linear programming

Nonlinear programming algorithms

Mixed integer, non-linear programming methods

Data typically available Depends on region of world Large amount of highly correlated data
Can be very limited Data often collected with on-line instrumentation
Additional sampling campaigns typically required
when doing modelling studies

Are models calibrated/fitted
to field data? Methods
used?

Yes, depends on how model used Yes, depends on how model used
Typically usemanual calibration with visual inspection Typically use formal parameter estimation techniques

What are models used for? Most common: Planning, design, control design,
comparison of alternatives, and what-if studies

Planning, scheduling, comparison of alternatives,
‘what-if’ studies, plant design, product design, process
monitoring, soft sensors, optimization, control design
and model-based control, trouble-shooting

Less common: Model-based control, process
monitoring, soft sensors, plant operational advice,
trouble-shooting, and optimization

How is uncertainty
addressed within the field?

Monte Carlo analysis and error propagation analysis Most common: Optimization under bounded
uncertainty, explicit modelling of input and output
disturbances, and error propagation analysis
Less common: Monte Carlo analysis, polynomial
chaos

What is the tolerance for
uncertainty in the field?

Historically high as plants designed with large safety
factors to handle the expected uncertainty in loading
conditions

Low as products must meet tight quality standards and
plants subject to more safety concerns due to
possibility of explosions, release of toxic compounds to
the atmosphere, etc.Effluent limits are often based on averages calculated

over long time periods
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• First principles knowledge (chemistry, thermodynamics) and extensive laboratory scale testing means
that more precise identification of kinetic models for many applications can be made before full-scale
modelling is attempted.

• Inputs to chemical process systems are often of a constant or well-characterized nature and process
control is aimed mostly at steady-state operation in a single, well-known condition, leading to
limited uncertainty and effective use of linearized models around the operating point.

• The available measurements are often easier to interpret. For example, in a refinery, temperatures,
pressures, and flow rates have an explicit and unambiguous meaning. In contrast, many variables
(e.g., TSS) in WWT are reflective of the process but are not easily linked with the underlying
variables of interest.

Despite this, researchers in the field have developed and/or used fundamental methods to deal with
uncertainty. The literature review uncovered the following methods used to account for uncertainty in a
chemical engineering context:

• Error propagation analysis: To determine how uncertainties are propagated through an equation or
a model. The main drawbacks are that its results are approximate and specific to the local solution to
the parameter estimation problem.

• Explicit modelling of input and output disturbances: To deal with uncertainty by modelling input
and output disturbances explicitly, using state estimators, like Kalman filters (Brown&Hwang, 1996;
Harvey, 1989). It is often assumed that the modelling of input disturbances effectively deals with
uncertainty in the parameters, so that the input disturbances are regarded as a lumped source of
uncertainty, which includes parameter uncertainty.

• Sampling methods (i.e., Monte Carlo methods) and stochastic simulation: To eventually
approximate the true distribution of uncertainties in the model inputs and parameters. One issue
that is explored is whether research exists on accounting for model input correlations when using
sampling techniques as part of stochastic simulation. In wastewater influents, the pollutant
concentrations are correlated with each other and with other plant operational indicators (e.g., SVI)
but this is often not accounted for in Monte Carlo simulation studies.

• Bounded uncertainty: To solve problems in production planning and scheduling, location,
transportation, finance, and engineering design, using robust control algorithms and model-based
decision-making. Uncertainties and disturbances are assumed to occur in a limited region. In the
case of robust control, which finds control actions for the worst of possible disturbance sequences
within bounds, the bounds which describe the disturbance intervals are usually used as a tuning
parameter (Skogestad et al., 1988; Skogestad & Postlethwaite, 1996).

• Polynomial chaos: To determine uncertainty propagation in predictive models. Such methods often
offer a computational advantage over stochastic sampling methods (e.g., Monte Carlo), though the
computational load can be still be substantial. Note that the uncertainties in the model inputs
and parameters are required to be quantified ahead of time. For detailed explanations of the
technique and examples of its use in chemical engineering, see Androulakis et al. (2006),
Balakrishnan et al. (2002), Damian et al. (2002), Lovett et al. (2006), Mathelin et al. (2005),
Phenix et al. (1998), Reagan et al. (2003), Reagan et al. (2004), Reagan et al. (2005), and Xiu and
Karniadakis (2002).

A more thorough review of sampling methods, stochastic simulation and bounded uncertainty is provided
below.
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D.2.2.2 Error propagation analysis
This approach has been well documented and is widely used for calculating confidence regions for model
outputs and model parameters. A typical example is in nonlinear least-squares parameter estimation, where
parameter and model response uncertainty are typically assessed through the calculation of approximate
joint confidence regions for the parameters and approximate confidence limits on individual model
responses and parameters. The inference regions and limits are often estimated by extending linear
regression theory. The model residuals are linearized using a Taylor-series expansion and analogous
formulas as those used for linear regression inference regions and bands are developed.

D.2.2.3 Explicit modelling of input and output disturbances
State estimators, like Kalman filters (Brown & Hwang, 1996; Harvey, 1989), deal with uncertainty by
modelling input and output disturbances explicitly. In most cases, the parameters are fixed following first
principles modelling and/or model calibration. It is often assumed that the modelling of input
disturbances effectively deals with uncertainty in the parameters, that is, the input disturbances are
regarded as a lumped source of uncertainty which includes parameter uncertainty.

The Kalman filter is popularly interpreted as a Bayesian method for state estimation, see for example,
Roweiss & Ghahramani (1999). Special challenges occur when the modelled system behaves
non-linearly (nonlinear differential equations) or when the measurements are nonlinear in the state
variables (nonlinear observer equations). Historically, this has been handled with the extended Kalman
filter (EKF) (Becerra et al., 2001; Brown & Hwang, 1996; Fotopoulos et al., 1998; Harvey, 1989),
which linearizes the model around the last state estimate at each time step. However, the EKF has been
shown to be unstable in certain cases. In addition, the EKF cannot handle (equality and inequality)
constraints very well (e.g., non-negativity of concentrations; thermodynamic balances). Particle filters
(Arulampalam et al., 2002; Doucet et al., 2001), also called sequential Monte Carlo methods, are better
suited for systems with non-linear dynamics, discrete states and non-Gaussian disturbances. Such filters
are based on stochastic sampling methods, akin to Monte Carlo sampling in Bayesian integration. The
downside of this approach is the computational load which comes with all stochastic sampling methods.
This can be prohibitive for on-line applications. In such cases, the unscented Kalman filter (UKF) has
been proposed as the better method compared to the EKF (Wan & Van der Merwe, 2000). The UKF
achieves second-order accuracy (e.g., it estimates means and variances correctly) with a limited number
of deterministic samples (in particle filtering the samples are numerous and chosen randomly). The UKF
has been used and adapted to handle nonlinear dynamics, nonlinear observer equations, equality and
inequality constraints (e.g., Mandela et al., 2010; Romanenko et al., 2004; Teixeira et al., 2010). Note
that it does not handle non-Gaussian distribution of disturbances. As a last method, the moving horizon
estimation (MHE) is mentioned (Rao & Rawlings, 2002; Rao et al., 2003). The MHE estimates process
states at a time in the past given current and past observations. As such it is smoother, rather than a filter.
Smoothers are less sensitive to disturbances because additional information is available (the observations
after the considered time instant). In contrast to classic smoothers based on the Kalman filter (Kalman
smoother, extended Kalman smoother), it delivers the maximum likelihood trajectory of states over a
time window instead of the expected trajectory.

D.2.2.4 Sampling-based methods
Sampling methods, also known as Monte Carlo methods, use statistical sampling techniques to obtain a
probabilistic approximation to the solution of a mathematical model or problem. Monte Carlo methods
are discussed in the chemical engineering and PSE literature, although their use for uncertainty analysis
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appears to not be as prevalent as in water and wastewater engineering. Many applications of the method are
not in the context of uncertainty analysis but involve the solution of mathematical problems that are difficult
or impossible to solve with other numerical methods.

Gazi et al. (1996), Lee et al. (1996), Sin et al. (2010), Tørvi and Hertzberg (1998), Vásquez and Whiting
(2000), and Vásquez et al. (2010) report the use of Monte Carlo methods to estimate the uncertainty in
models used in the chemical process industries. Tørvi and Hertzberg studied different sampling methods
including basic Monte Carlo, median Latin hypercube sampling, a Halton sequence, and a method based
on Gaussian quadrature. Gaussian quadrature was found to be very accurate but not well suited to larger
problems.

Gazi et al. (1996) use dynamic simulation for controller verification in the presence of uncertainties and
employ Monte Carlo simulation to quantify the uncertainties. Qualitative reasoning techniques such as
QSIM (Kuipers, 1986) are used to translate the Monte Carlo results into qualitative descriptions of the
possible behaviour of the system. The qualitative descriptions are summarized in a tree structure which
can be checked for interesting behaviours using computation tree logic. The approach is reported to
provide the answers to qualitative questions about a system concerning its safety, reliability, and operability.

Lee et al. (1996) use Monte Carlo simulation in the context of dynamic chemical process simulation.
Monte Carlo simulations are used to assess the uncertainty in the dynamic modelling results given the
uncertainties in model inputs and parameters. The handling of discrete events such as start-up or
shut-down of equipment is incorporated into their modelling approach. Statistical analysis is then used to
interpret the results of the Monte Carlo analysis such scatterplots and regression analysis of the input and
output samples.

Vásquez et al. (2010) used Monte Carlo analysis to obtain confidence limits on the output variables of a
chemical process simulation models. To account for systematic errors, they used values from either the
uniform distribution or another appropriate distribution when a priori information was available.
Gaussian probability distributions were used to characterize random variables. The presence of
systematic errors can lead to heavy tails in the probability distributions of the output variables, and
Vásquez et al. (2010) developed a technique for estimation of the confidence intervals in these situations.

The research group led by Gintaras V. Reklaitis at Purdue has studied supply chain management and have
used Monte Carlo simulation to evaluate schedule robustness under planning uncertainty (see Honkomp
et al., 1999; Mignon et al., 1995). They have also incorporated Monte Carlo simulation into
deterministic supply chain planning and scheduling models (Jung et al., 2004).

The inputs to a simulation model may be correlated in some way and this can be accounted for when
running Monte Carlo simulations. Wu and Tsang (2004) demonstrate the use of four different methods
for generating correlated random numbers in the context of ecological modelling: Iman-Conover,
standard normal transformation, normal copula, and maximum-entropy copula. The Iman and Conover
(1982) method is the most well-known method and is used in software such as Crystal Ball and @Risk.
The basis of the method is that independent random numbers can be transformed into correlated ones
using an orthogonal transformation. The correlation matrix between the input variables is decomposed
using the Cholesky decomposition. The resulting lower triangular matrix is then multiplied by the matrix
of independent random numbers (N× k matrix; N sets of k independent random numbers) to produce a
matrix of correlated random variables which serves as an input into the Monte Carlo simulations. In this
manner, the Monte Carlo analysis is not biased by unreasonable combinations of variable values.

Sin et al. (2010) used Monte Carlo simulations to determine the model output uncertainty in cellulose
hydrolysis models used in biofuel process design. They considered both input variable and model
parameter uncertainty and considered correlation between the input parameters using the method of Iman
and Conover (1982).
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Vásquez and Whiting (2000) used equal probability sampling (EPS) to analyse uncertainty in
thermodynamic models. They report that EPS provides more realistic results than other sampling
techniques, such as Latin hypercube sampling or shifted Hammersley sampling when the model
parameters are highly correlated. The EPS method involves stratifying the parameter space of the
parameter estimation objective function. This is done by stratifying the probability distribution of the
objective function into a number of intervals of equal probability. The inverse images of these intervals
form shells of equal probability in the parameter space. A resampling scheme for each of the shells is
used to ensure uniform coverage of the parameter space.

D.2.2.5 Stochastic simulation algorithm (SSA)
A variation on the Monte Carlo simulation approach, described in the physical chemistry literature, is the
stochastic simulation algorithm (SSA) first discussed by Gillespie (1977). The SSA regards the time
evolution of a chemical reaction system as random-walk process governed by a single
differential-difference equation instead of a set of coupled ODEs. This differential-difference equation is
often mathematically intractable and does not lend itself well to numerical solution (Gillespie, 1977).
Instead, the stochastic simulation problem can be solved using Monte Carlo methods. The difference
between the SSA and traditional Monte Carlo simulation is that in the SSA, random numbers are
generated at each time step and used to determine when the next reaction will occur (how far along the
next time step occurs) and what kind of reaction occurs.

The stochastic simulation approach has a firmer theoretical basis than the deterministic one as chemical
reaction systems are actually discrete, stochastic processes. Molecular population levels can only change by
discrete integer amounts and chemical reactions require molecular collisions which are essentially random
processes when the molecules are at thermal equilibrium.

For many problems that can be represented as linear or nonlinear ODEs or PDEs, the stochastic
simulation algorithm (SSA) gives results that are comparable to the numerical solution of the
deterministic differential equations. The SSA produces results that have the appearance of ‘noisy’
solutions of the differential equations (Erban et al., 2007). There are certain problems where the SSA
gives results that cannot be obtained by solving the deterministic model. Examples include chemical
reaction systems that have two or more stable steady states, where the SSA can predict random
switching between steady states due to fluctuations in the number of molecules, or systems with
self-induced stochastic resonance, where the SSA predicts oscillatory solutions.

The SSA has been applied to biological reaction−diffusion systems involving cell growth. Testing of the
technique in the context of activated sludge modelling would be required to determine if the SSA has
practical applications in the field of WWT. The SSA would not be used to evaluate the impact of model
input or parameter uncertainty on simulation results, but instead to assess the potential for uncertain
stochastic processes to impact the outcome of processes over time.

D.2.2.6 Bounded uncertainty
The concept of bounded uncertainty is used to solve chemical engineering problems where decisions are
made in the presence of uncertainty, such as production planning and scheduling, transportation and
location problems, finance, and engineering design. In these problems, uncertainty is considered to
impact the weather, the prices of fuels, the availability of power, and the demand for resources
(Sahinidis, 2004).

The study of optimization under uncertainty began with the works of Beale (1955), Bellman (1957),
Charnes and Cooper (1959), Dantzig (1955), and Tintner (1955). The main approaches to optimization
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under uncertainty are: stochastic programming, fuzzy programming, and stochastic dynamic programming
(Sahinidis, 2004).

Grossman and Sargent (1978) and Halemane and Grossman (1983) published some of the earlier studies
of deterministic flexible programming approach in the field of chemical engineering. Their objective was to
determine optimal process designs under uncertainty. As in stochastic programming, a two-stage strategy is
used that takes advantage of the fact that control variables can be adjusted during operation to satisfy the
design specifications of the plant, and that only the design of the plant remains fixed in the second stage.
The strategy is intended to avoid overdesign, which can lead to non-optimal or even infeasible operation.
The model used is a combination of equations and inequalities. The model variables include stage 1
design variables (plant structure and equipment sizes), stage 2 control variables that can be adjusted
during operation (e.g., flow rates), state variables that describe the process, and uncertain parameters. For
a given design (determined in stage 1), the next step is to solve the so-called feasibility problem to
determine if the design is feasible for a realization of the uncertain parameters (stage 2). The more
general problem of quantifying flexibility involves finding the maximum deviation that a given design
can tolerate such that every point in the uncertain parameter space is feasible.

Dynamic programming involves the solution of multi-stage decision processes such as discrete-time
systems. The problems often suffer from the curse of dimensionality as the number of state and control
variables increases. See Sahinidis (2004) for a discussion of dynamic programming.

The literature review found the following areas of research and associated research papers in the field of
optimization under uncertainty in chemical engineering:

(1) Optimal design of chemical plants under uncertainty:
(a) Flexible programming with bounded uncertainties: Grossman and Sargent (1978), Halemane

and Grossman (1983), Ostrovsky et al. (2003), Rooney and Biegler (2003), Song et al. (2002).
(b) Use of a sensitivity analysis and parametric programming approach for linear process

engineering problems under uncertainty: Acevedo and Pistikopoulos (1997).
(c) Flexible programming with probability distribution functions for the uncertainties: Acevedo

and Pistikopoulos (1998), Ierapetritou et al. (1996).
(d) Flexible programming for dynamic systems: Mohideen et al. (1996)

(2) Reviews of optimization under uncertainty: Biegler and Grossmann (2004), Pistikopoulos (1995),
Sahinidis (2004).

(3) Process scheduling under uncertainty: Li and Ierapetritou (2007).
(4) Supply chain design and planning under demand uncertainty: You et al. (2009), You and

Grossmann (2010).
(5) Pharmaceutical waste management under uncertainty: Linninger and Chakraborty (2001).

D.2.2.7 Polynomial chaos expansion
Polynomial chaos is another available technique for uncertainty propagation in predictive models. The
theory is based on the fact that a stochastic process can be described as an infinite combination of linear
processes (spectral decomposition). Therefore, the distribution in the next time interval can be
approximated based on the distributions in the current one.

The main requirement is that the uncertainties in the parameters or system inputs are quantified and are
available in the form of probability density functions (PDF). Polynomial chaos techniques then proceed
by expanding the available density function into an expanded basis function. Each original parameter is
then converted into a set of parameters which describe its density function. Usually, a polynomial basis is
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used for this purpose (e.g., Hermite polynomials, Legendre polynomials). This parametric description of the
density function is then propagated through a predictive model. Following this propagation, one can then
recover the density function at each successive time interval. Such methods often offer a computational
advantage over stochastic sampling methods (e.g., Monte Carlo), though the computational load can still
be substantial. Note that the uncertainties in the model inputs and parameters are required to be quantified
ahead of time. The technique is often used as part of a stochastic response surface methodology.

For detailed explanations of the technique and examples of its use in chemical engineering, see
Androulakis et al. (2006), Balakrishnan et al. (2002), Damian et al. (2002), Lovett et al. (2006),
Mathelin et al. (2005), Phenix et al. (1998), Reagan et al. (2003), Reagan et al. (2004), Reagan et al.
(2005), and Xiu and Karniadakis (2002).

D.2.3 Applicability to WWT
There are some uncertainty analysis techniques used in the chemical engineering field that could be adapted
for use inWWT. Optimization uncertainty appears to be a technique that could provide benefits in the area of
plant design and operation. Research is needed to determine how the techniques could be best applied and
whether they provide significant benefits over traditional methods. Problems based on linear programming
are typically easier to solve, and may provide the most benefits with the least computational burden. The
interesting aspect is that optimization under uncertainty has the potential to assist in developing plant
designs that not only focus on robustness, but also flexibility and operability.

Monte Carlo methods are used in chemical engineering as inWWT, but there are some unique techniques
used that warrant further study. The SSA of Gillespie (1977) may be of interest to those studying biological
transformations at the cellular level. Its applicability to whole plant uncertainty analysis is likely limited.
The techniques for incorporating correlation among input parameters should be tested for applicability
in WWT.

Inclusion of explicit disturbances as part of state estimation or process modelling in general is a topic of
interest. The concept has been applied in WWT modelling, but there may be some ideas (e.g., the
disturbance models) that could be taken from chemical engineering that could improve the methodology.
Running long-term dynamic simulations with realistic input disturbances is a method of uncertainty
analysis and has the benefits of simplicity.

Polynomial chaos is an interesting concept and has been used by a number of researchers in chemical
engineering. Further study is required to determine if whether its potential to reduce the computational
load would provide benefits over existing Monte Carlo-based methods.

D.3 REVIEW OF UNCERTAINTYANALYSIS METHODS IN
HYDROGEOLOGICAL (GROUNDWATER) ENGINEERING
D.3.1 Comparison of hydrogeological engineering with WWT
D.3.1.1 Background
The modelling of hydrogeological processes shares a similar focus as WWTP modelling in that it deals with
the prediction of liquid component concentrations, has dynamically varying inputs, and is concerned with
the spatial/temporal variability of parameters.

Hydrogeological (groundwater) modelling focuses on the following:

• Modelling of the flow of liquids (of various densities) in a partially or fully saturated porous
heterogeneous media;
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• Transport of contaminants in porous or fractured heterogeneous media via advective, diffusive or
dispersive processes; and

• Transformative processes during transport (e.g., biodegradation, sorption to media surfaces,
volatilization, dissolution of dense phase liquids).

D.3.1.2 Comparison in the context of model-based projects
Despite some of the similarities between hydrogeological processes andWWTPs, the associated uncertainty
is often fundamentally different than WWTP uncertainty. The major sources of uncertainty in
hydrogeological modelling are in the characteristics of the systems (i.e., aquifers) being modelled.
Aquifers can be difficult to model for the following reasons:

• They are buried underground out of plain sight, and often not easily observable/measurable,
• Are spatially heterogeneous,
• Have boundaries (in three dimensions) that are often unknown,
• Can hydraulically connect to other aquifers,
• Can be difficult and expensive to sample, and
• Conceptual structural models are often assumed to be ‘correct’ if they can be calibrated, and

subsequently can be difficult to disprove once accepted.

A summary of the differences between groundwater and WWTP models is provided in Table D.2.

As in our review of the chemical engineering field, the focus of this report is on methods for
accounting for uncertainty in model-based projects. Common uncertainty analysis methods used in this
field include:

• Calculation of approximate confidence regions and limits around parameters and model outputs as
part of parameter estimation.

• Stochastic simulation in classic and Bayesian frameworks.

Due to the nature of the systems modelled, application of the above techniques can be computationally
intensive. In addition, aquifer systems can be very non-linear and discontinuous, limiting the use of
approximate confidence regions and intervals.

Table D.2 Comparison of groundwater and WWTP models.

Groundwater Models WWTP Models

System size, boundaries, composition often
unknown/unmeasurable

Well-defined, measurable tanks, with known
hydraulic connectivity

Significant spatial heterogeneity (e.g., porosity,
conductivity)

Effective tank volumes often well known.

Potentially significant discontinuities from depositional
origins (e.g., discrete boundaries between clay and silt
layers) not easily identified

Biofilm structure not as well known.
Aerated/non-aerated zones are often defined by
design, and often well-known and/or measurable

Underlying model structure definition (e.g., aquifer
thickness) unlikely to change temporally, even if not well
known.

Some system definition can change temporally
(e.g., tank volumes in SBRs) but more likely to be
known/measurable.
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D.3.2 Uncertainty methods used in hydrogeological engineering
D.3.2.1 Model structure uncertainty
It is a widespread challenge in science to develop and use models without any explicit fundamental
philosophy. The lack of interdisciplinary knowledge, particularly in mathematics, is often the reason
for a scientist, working for instance in the field of hydrology, to develop solutions that are
numerically incorrect.

Other limitations can be the constraints of current knowledge, computing capabilities and observational
technologies. In the Bayesian approach to inverse problems, prior estimates of model parameter
distributions are adjusted on the basis of a likelihood measure that can demonstrate how well a model
predicts the available set of observations to calculate a posterior distribution of parameters. In this
approach, likelihood functions can be used to approximate parameter values. With increased availability
of experimental data, the use of these likelihood functions can potentially lead to reduced uncertainty in
parameter values.

This probabilistic framework is considered as one of the only potential approaches to address model
uncertainty. However, one cannot treat the entire range of sources of uncertainty in an aggregate form
because, for instance, model structure uncertainties are nonlinear, non-stationary and non-additive
(Beven, 2006). Thus, they cannot be accounted for by the likelihood-based approach.

Bayes methods have a number of advantages, one of them being that different model structures can be
compared and combined. For many hydrological models, and presumably for WWTPmodels, the definition
of a formal likelihood measure can lead to misleading results if the assumptions on which it is based upon are
not valid. That is, it is questionable whether the various sources of uncertainty can be represented adequately
by a formal uncertainty structure, which defines the appropriate likelihood function. For most of the
hydrological models, being subject to uncertainty derived from input, boundary conditions and model
structure uncertainty, it is generally only possible to approximately represent the complexity of the
uncertainties. As a result, the likelihood function will only be an approximate, and the resulting
parameter estimates may well be biased.

From a statistical viewpoint, one can argue that model structure uncertainty can be represented by means
of a model discrepancy function. O’Hagan and Oakley (2004) suggest that the complexity of observed
uncertainty series in most of the hydrogeological problems does not directly imply that one should not
use a formal likelihood approach, but that finding an appropriate likelihood function may require some
more detailed assessment of various tools. Then, it is noteworthy that the problem is that the more
complex the model of the uncertainty used, the more the number of statistical parameters that must be
estimated. In some hydrogeological cases with complex uncertainty structures, the method can still be
applied using a transformation of the modelling uncertainty so that the assumptions of a simple formal
likelihood measure are more closely approximated. Other less formal methods are also used in the area,
in cases where the choice of a formal likelihood would be incoherent.

D.3.2.2 Model identifiability (equifinality)
When using statistical methods for model calibration (Pareto optimal set approach), there is an underlying
presumption that the experimental data are adequate to identify an optimal model structure (or Pareto
optimal set of models). This should be the case for Bayesian methods that aim to identify the complete
multi-parameter posterior distribution. Beven and Young (2003) argue that oversimplification of
likelihood functions often leads to this result in hydrogeological simulations. In general, there is no
such thing as the correct model structure, and one can only find true model parameters for a given
model structure.
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An acceptance of model equifinality is, in part, the recognition of possible model structure and input data
uncertainties. It means that the formal model of equations that are used to represent the hydrogeological
systems may be, at times, a poor approximation of the relevant processes. It also accounts for the
possibility that, even if there was a correct model structure, it may be difficult to specify accurately all
the boundary conditions (e.g., shape and size of an aquifer) required to run the correct model. There is,
however, not much one can do about model structure uncertainty in most hydrogeological modelling
cases since, if there were obvious improvements to be made, then there would be no reason why this
should not be done (limit: computational feasibility).

D.3.2.3 Conceptual model uncertainty
There are many studies in the hydrogeological literature that report on the difficulties of finding a single
‘true’ model to represent a process. It seems that model structure uncertainty is something that is
endemic to most of the models in the field. Beven and Freer (2001), and Rojas et al. (2010), both
illustrate the tendency for practitioners to assume that well calibrated models can be accepted as ‘true’
interpretations of a system structure.

Refsgaard (2006) demonstrate an example of how model structure can introduce considerable variance
in model results. Results from a hydrogeologic modelling exercise in the County of Copenhagen, Denmark,
are used to illustrate the effects of different model structures on final model results. Five different consulting
companies were asked to develop models of groundwater contamination risk in a 175 km2 area west of
Copenhagen. Each of the consultants was well-respected in the industry, with considerable experience in
modelling contaminant flow. Each of the consultants took a different approach to the model structure,
with some using a criteria-based method for risk assessment, while others used hydrological models of
varying levels of complexity. In each case, the consultant assumed the underlying model structure was
suitably correct, based upon past experience. The results from the five consultants differed substantially,
even though all five were using the same raw data (and therefore the same data uncertainty) indicating
the major source of uncertainty in model predictions was due to differences in model structure.

D.3.2.4 Model conditioning
Alternative approaches to model calibration are required to account for the effects of model structure and
data uncertainty – again, despite the fact that some of these uncertainties cannot be represented
explicitly. One alternative option in the field of hydrology is to identify a set of equations that derive
acceptable uncertainty in the range of the available data – a process called as model conditioning. In
hydrogeology, such approaches have generally been based on some form of Monte Carlo sampling from
the population of feasible models. Based on the simulation results obtained with each model in the
selected population, a qualitative or quantitative assessment is undertaken as to whether a particular
model is accepted/rejected as behavioural. This is the basis for the generalized likelihood uncertainty
estimation (GLUE) methodology, which was used, for the first time, by Beven and Binley (1992) in an
application to a hydrological model.

The GLUE methodology, used with a formal uncertainty model and likelihood, infers essentially
identical results to that obtained using a formal Bayesian likelihood approach. It has been noted that, for
forward simulations, a set of behavioural models can be used to provide a prediction range of model
variables as conditioned on the process of model evaluation. The fuzzy or probabilistic weights
associated with each model can be used to weigh the model simulation to reflect how well that particular
model has performed in the past.
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Traditional use of the GLUE methodology in groundwater modelling supplements the forward
propagation of parametric uncertainty (and/or spatial variability of parameters) through the model with
posterior information on the level of correspondence between model predictions and field observations.
The posterior analysis assists in the development of uncertainty bounds for each input parameter.
Because these measurements of uncertainty use measured field observations in the analysis of input
parameter uncertainty, the analysis is restricted to only those systems for which suitable data can be
observed. This diminishes the usefulness of traditional GLUE analyses to only model evaluation, and not
situations where predictive modelling is carried out (Hassan et al., 2008).

To address this issue, several alternative variations on the GLUE methodology have been proposed.
Rojas et al. (2008) combine GLUE methodology with Bayesian model averaging (BMA) to account for
the uncertainty associated with the choice of model structure. In addition to propagating parametric
uncertainty, the variability associated with models of different structures is incorporated into the analysis
by modelling the system with a group of plausible models. A hypothetical example of the prediction of
groundwater flow and head distribution within an aquifer is used to illustrate that while some predictions
varied considerably among the three models used, a comparison of predictions to the observed data was
unable to distinguish between models. When considering a combined prediction using BMA, the
combined prediction was more conservative than individual predictions from each model. Most
importantly, 30% of the total uncertainty was associated with the choice of model structure.

Rojas et al. (2010) applied the above multi-model approach to a real aquifer system in the Walenbos
Nature Reserve area in Belgium. Using a combination of GLUE and BMA, the authors modelled the
flow through the aquifer with three different models (of different levels of geological knowledge), with
associated input parameter distributions. Some parameters were common amongst the three models,
while others were unique. The concept of equifinality, as defined above, states that the combination of
many alternative models and parameter sets can produce equally good results when compared to limited
observations (Beven & Freer, 2001). In this study, GLUE analysis provided weights for each conceptual
model, and the results were combined via BMA. This approach, which no longer relies on a single
parameter set or conceptual model, was applied to the hydrogeologically complex aquifer system to
model the hydraulic budget under various recharge scenarios.

A key conclusion of the study illustrates that typically limited observational data (in this case,
observations of head in various locations in the aquifer) often cannot discriminate between conceptual
models, as shown by small differences in posterior model probabilities. An additional important
conclusion is that despite these small differences, the predictive distributions were different in shape and
spread among the alternative conceptual models and scenarios analysed. The authors emphasize the point
that relying on a single conceptual model driven by a particular simulation scenario will likely produce
‘biased and under-dispersive estimations of predictive uncertainty’.

D.3.3 Applicability to wastewater treatment
For parameter uncertainty analysis, simple Bayesian approaches used in the hydrogeological sciences are
applicable to WWT modelling, even though wastewater systems are generally more well defined than
groundwater aquifers. The lack of easily observable information on the completeness of mixing in
biological reactors is an example of a source of uncertainty that is analogous to the lack of information
on aquifer heterogeneity in the field. Approaches to assessing this unknown and quantifying the
predictive uncertainty in the hydrogeological field would be transferrable to WWT modelling.

In particular, the GLUE and BMA methods would be useful to assist in quantifying the uncertainty
associated with model structure. While model structure uncertainty is generally limited to describing the
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physical characteristics of the aquifer systems in groundwater modelling (which is analogous to the mixing
issue in wastewater modelling), there is an opportunity in the wastewater field to extend the multi-model
approach to the biological model structure as well.

In groundwater modelling, the active physical processes (advection, sorption/desorption, volatilization,
etc.) are well understood and well described by mathematical relationships. The major source of uncertainty
comes from the spatial heterogeneity of the physical properties of the aquifer. By contrast, the active
biological processes in an activated sludge tank are more complex and less well described
mathematically (e.g., hydrolysis, biomass growth, etc.) than the physical characteristics of the system (e.
g., hydraulic connectivity, effective tank volume, etc.). The opportunity exists to apply the multi-model
approach to account for conceptual model uncertainty in the biological model specifically. With a set of
activated sludge models already established in the industry (ASM1, ASM2d, ASM3, commercial
simulator default models), a WWT system could be easily modelled with several biological models to
provide an evaluation of the uncertainty associated with the conceptual model structure.
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Appendix E

Current practices in different countries

E.2 CURRENT PRACTICE IN NORTH AMERICA
E.2.1 Planning phase
In North America, planning for a wastewater treatment infrastructure project is almost universally done at
the owner level. The development of the plan itself is either done by the owner or by a designer/engineer
hired by the owner to work with them on developing an appropriate plan. In either situation, the risk for the
planning decisions rests with the owner.

At the planning level, cost estimation used for budgeting purposes for capital improvements should
follow American Society of Testing and Materials (ASTM) standard E2516 (ASTM, 2011). This
standard developed a five-tiered cost estimation matrix based on the degree of project definition. As the
degree of project definition increases, the accuracy of the estimate will be more refined. At
the planning-level stage, this matrix defines the level of accuracy to be between – 60% and +120% of
the cost estimate developed.

The following sections describe how different project delivery methods transfer risk.

E.2.2 Design−bid−build contracts
E.2.2.1 Preliminary design
The design−bid−build approach is very common in North America. Historically, in North America, design
criteria for processes have been selected from one of a number of sources including local regulatory
requirements or industry-accepted design standards that are generally published for reference when
undertaking the process design and operation of the facility. Some examples of these design standards include:

• Water Environment Federation Manual of Practice 8 (WEF MOP-8, 2009)
• Wastewater Engineering: Treatment and Resource Recovery 5th Edition (Metcalf & Eddy Inc. et al.,

2013); (Tchobanoglous et al., 2003)
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• EPA Nitrogen Control Manual (USEPA, 1993).
• EPA Phosphorus Removal Design Manual (USEPA, 1987)
• Biological Wastewater Treatment (Grady et al., 2011)
• Methods for Wastewater Characterization in Activated Sludge Modeling (Melcer et al., 2003)
• WERF/CRTC Protocols for Evaluating Secondary Clarifier Performance (Wahlberg, 2004)
• Virginia’s Sewage Collection and Treatment Regulations (Virginia DEQ, 2008)
• Biological Nutrient Removal (BNR) Operation in Wastewater Treatment Plants (WEF MOP-29,

2005)
• Great Lakes Upper Mississippi River Board, Recommended Standards for Wastewater Treatment

Facilities (Ten State Standards) (GLUMRB, 2014).

North American engineers place safety in their design in a few key process variables, most of which describe
the most important sources of uncertainty, for example: influent flows and mass loads, SRT, SVI, overflow
rates, denitrification rates and the design of the process air system.

E.2.2.2 Detailed design and construction
During detailed design for conventional design−bid−build projects, risks are mostly assumed by the
designer/engineer who has to follow through the concepts of the preliminary design while preparing
contract documents that can be built from. The owner does accept some risk accepting the design
criteria presented in the preliminary design report, type of equipment that is provided, and
operational procedures.

The development of tight contract documents and specifications is essential for the successful
management of risk during construction. Reliability and redundancy standards are also used to reduce
the risk of failure due to individual unit processes being out of service either due to mechanical failure or
maintenance. The EPA and some states have developed standards based on the sensitivity of
the receiving stream and the criticality of each unit process or piece of equipment. Typical requirements
include:

• A minimum of two aeration basins of equal volume;
• Multiple pumps that can pump peak flows with the largest pump out of service; or
• Multiple units with the capacity to treat a certain percentage of design flows.

In the design−bid−build approach, no flexibility is given to the contractor to change the amount of
redundant equipment, so the risk of adequate reliability falls upon the owner when the plant goes
into operation.

E.2.2.3 Operation
Design−bid−build places all the operational risks upon the owner. There are some initial risks to
the designer/engineer that the process design will perform as predicted, but once the plant
resumes normal operation after the project is completed, the designer/engineer and contractor are no
longer involved.
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E.2.3 Design−build contracts
E.2.3.1 Preliminary design
In the design−build contract types, there may be an emphasis at the preliminary design stage to introduce
additional risk in the design, which will be borne onto the owner during facility operations, in order to reduce
construction costs. The following sources of uncertainty during preliminary design were identified earlier in
this chapter:

• Variability in influent flows and loads;
• Selection of effluent design criteria;
• Selection of aerobic solids retention time;
• Selection of design sludge volume index (SVI);
• Denitrification rates;
• Considerations in the design of the process air system.

Examples of potential items which would introduce more risk to the owner would include a reduction in
aerobic SRT (thereby reducing the aerobic bioreactor volume), use of a lower SVI (thereby reducing
clarifier sizing), and a reduction in process air requirements (which would decrease blower or
mechanical surface aerator size, compressed air pipe size (if applicable), and number of diffusers (if
applicable)).

A second source of risk that is addressed in this stage that could be shifted to the owner during design
would be the cost to operate the facility. Examples of potential items that could potentially provide
capital cost savings during construction but increase operational costs include the use of chemical
phosphorus removal in lieu of biological phosphorus removal and use of aeration systems that are not as
efficient (mechanical aerators or course bubble diffused air).

Development of a strong design criteria package

To prevent undesirable items in the delivered plant, it is critical in a design−build project to have a detailed
contract−design basis package that is used to specify the owner’s goals for the project. However, the design
package should consider a design change path for the contractor to allow them to propose cost savings ideas
in a structured and thought-out manner.

At this stage of the design process, the owner will (most likely) hold a contract with a third-party
engineer who is responsible for preparing a design criteria package, which may include a preliminary
design of the facility along with minimum standards the facility must be designed around (the
‘owner’s engineer’). This will include design criteria for process mechanical, structural, electrical,
instrumentation, HVAC (heating ventilation and air conditioning) and plumbing, and architectural codes
and standards.

The development of a strong design criteria package by the third-party engineer can specify
minimum requirements for items above such as minimum aerobic SRT, minimum clarifier
solids/hydraulic loading rates, or standard oxygen requirements to prevent the design from becoming
overly aggressive and making the owner more risk adverse during operations to save money during
design and construction. In order to realise the benefits of this approach however, that is, reduced costs
and risks to the owner, careful consideration is needed in the development of the design package to
balance the true minimum requirements and the costs of being overly conservative.
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E.2.3.2 Detailed design and construction
In the case of a design−build contract, the owner mitigates project risk by having both the designer/engineer
and the contractor under one contract. This eliminates the so-called ‘finger pointing’ during the construction
process. It also, however, provides the owner less control over the aspects of the project unless these items
are specified in the design criteria package, which typically accompanies a design−build proposal. In this
case, the owner is taking on risk by not having as much control over day-to-day decisions (such as ensuring
that a specific manufacturer of a unit is provided) as long as the contract requirements are met and the price to
perform the work remains the same. For example, the design−build may use alternative manufacturers or
materials of construction as long as the minimum specified requirements in the design criteria package
are met.

In design−build, the risks during detailed design and construction lie entirely with the design−build
team to determine the level of design drawings needed to proceed to construction. There is some
flexibility in this approach since it is possible to change the design during construction, if needed, to
address issues that were not originally considered. In the traditional design−bid−build approach such
changes normally result in additional change orders from the contractor that add to project costs.

The design−build contractor is fully responsible for the costs of the project, so the contract must be clear
about where the project risks are and the limits on those risks. The goal of the approach would be to best
allocate risks to where they are best handled, either at the owner level, or at the design−build level.
Since it is not possible to have a ‘perfect’ contract, the design/builder will normally require supervision
by the owner/owner’s engineer to ensure that the intent of the contract is met.

Communication

Design−build eliminates some of the design−bid−build risks related to communication between the
engineer and the contractor but makes the communication between the owner/their consultant and the
design/builder critical. The owner and their consultant have less control over the product at this stage
than is normal in a design−bid−build delivery, so communications need to be held in light of the
contract language, which reduces the ability of the owner/owner’s engineer to influence the design.

E.2.3.3 Operation
As in design−bid−build, the risks during operation are almost entirely upon the owner upon
commencement of normal operation.

E.2.4 Design−build−operate contracts
E.2.4.1 Preliminary design
Addressing risk at this stage of the design process would be the same as for design−build systems. One
advantage of this delivery form is mitigation of the concerns stated previously for the design−build
contract. The designer−builder−operator will now be required to operate and comply with effluent
criteria as well as pay for costs associated with operating the plant and maintaining the equipment. The
benefit of this type of contract include transfer of most of the project risk to the contractor and having
them responsible for the operations allows that bidder to develop what they feel is an optimum balance
of risk and cost of the project.
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E.2.4.2 Detailed design and construction
Most major DBO contractors have sophisticated risk analysis tools that can be used to balance the initial
capital costs versus the predicted operational costs later. These tools range from as simple as applying
contingencies and safety factors based on experience, to full Monte-Carlo risk analysis tools that can be
used to estimate the cost impacts of various approaches. The tools consider process risks, design risks,
construction risks, and operational risks versus the likelihood of their occurrence and the probable costs
of the risks.

E.2.4.3 Operation
The design−build−operate (DBO) contract has significant risks related to long-term operational costs for
the contractor, as compared to the owner doing operations. The DBO contract stipulates a cost for given
loading conditions and what happens if conditions change, so the contractor is fully responsible for
operation of the plant within the contracted loading and effluent conditions. Owners typically have more
flexibility in their budgets for meeting changing conditions, within certain limits. The DBO does not
eliminate cost risk to the owner should loading or effluent conditions vary from the contracted values.

E.3 CURRENT PRACTICE IN OTHER COUNTRIES
E.3.1 Questionnaire
The approaches engineers take during design vary depending on their geographic location. This is a result of
the varying regional water situation and the legislative and contractual environment. In the following
section, the approaches used by engineers in a selected number of countries across the world is
presented. A questionnaire was sent to practicing engineers that included questions covering a variety of
topics that capture the way designs are approached and the way risk is apportioned and handled. The
questionnaire included the following questions related to design and risk:

(1) What is the prevalent type of contract delivery mechanism (Design (D), Design−Build (DB),
Design−Build−Operate (DBO), Design−Build−Own−Operate (DBOO); if several, give
percentages)?

(2) What are the most common types of design projects (green-field, replacement of an entire plant,
upgrade of plant; give percentage range of capital cost of plant being replaced, give percentages
for the three categories)?

(3) What information is included in the ‘Requests for proposal’ (RFP) prepared by the client (load
projections, effluent requirements, configuration, industry standards to be used (e.g., ATV-131,
2000)? How much is predetermined, using which type of methods and which information (e.g.,
city master plans)?

(4) What is the typical design strategy of the engineering consultants (guidelines vs. mechanistic
models, steady state vs. dynamic, calibration of models, performing of additional experiments
on-site, safety factors used or parameter sets in models)?

(5) What is typically the design level at submission (level of completion of process design)?
(6) What are the typical bid selection criteria (including weighting) (e.g., cost, technical merit, …)?
(7) Are post-audits performed (how is success/failure of a design defined)?
(8) What is the way that risk is typically apportioned (insurance – risk premiums)?
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E.3.2 United Kingdom

Question Response

Type of contract delivery
mechanism

D
DB

Type of design Anglian: green field (,5%); new plant (,10%); upgrades (85%)
United Utilities: green field (,2%); new plant (,5%); upgrades (.90%)
Severn Trent: green field (,2%); new plant (,1%); upgrades (.95%)

Requests for proposal as
prepared by the client

Internal design guidelines (alternative design guidelines implemented on
occasion).
Basis for design: flow and concentration
Several of the water companies prepare designs internally.

Design strategy of engineering
consultant

Team-based approach: engineering options listed and then eliminated.
Remaining options investigated and proposals prepared.
Presentation to programme board: questions asked, costs presented and
process options discussed. Programme board approves proposal, or
sends it back for more study. Water company and consultants work as a
team start-to-finish on proposal.
No bidding process: the consultants are part of a framework agreement,
so RFPs as typically done in USA are not really applicable.
The contractor agrees to provide an upgrade for a fixed amount of money.
If the design runs over budget, then the water company will attempt to
save the money on a different project. Costs debated internally.
Hydraulics are alwaysmodelled (sometimes evenwith a physical model).
Activated sludge plants might be modelled, but not always (steady-state
typically, sometime dynamic).
Safety factors: not specifically used, rather the design is sized to give an
effluent concentration that is some percentage of the requirement (e.g.,
for a 10 mg/L effluent consent, the design will be sized to give an effluent
of 3 mg/L).
Conservative design parameters are used (e.g., conservative SVI, OTE,
high max flow and loads).
Pilot plants used for biological phosphorus removal trials and new
innovative technologies.

Design level at submission See above. Same team structure is used from project start to finish.

Selection criteria in bidding
procedure

Capital cost
Total life cost evaluated secondarily (Capital+Operational)
For the Framework agreement: Contractor experience, financial stability,
health and safety record and reputation.

Post-audit Very little. Lessons learnt are incorporated into future projects.
Severn Trent allocates budget to post project activities. Models used are
not typically re-checked.

Risk spreading Risk shared contractually with the contractors but in reality, the water
companies assume the ultimate risk (contractor could be sued if
negligent issue with delivery, design, etc.)
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E.3.3 The Netherlands

Question Response

Type of contract delivery mechanism D (87%)
New, more innovative contracts (risk-based approach, more risk in
contracts, let market define solution).
Recently some projects were done with ‘innovative bidding’, that
was solution free (no design, only the problemwas submitted). This
appeared to put (too) much risk to the market and also led to
non-optimal designs and a poor cooperation during construction
(due to legal issues).
Currently, there is a tendency towards working with framework
contracts. In these contracts, a party or consortium is selected to
cooperate and organise the different project phases, from
performance/design specs to pre-design and construction.

Type of design Plant upgrades (biology and secondary clarifiers).

Requests for proposal as prepared
by the client

Design requested from 3 to 5 companies
Design specifications: load projection and effluent requirements
Standards: STOWA Guidelines on N-removal (HAS method),
P-removal (Scheer method), bulking sludge guidelines, final
clarifier design guidelines

Design strategy of engineering
consultant

Activated sludge part design based on the ATV-131 (2000)
guideline. The design approach includes:
– Simple mechanistic model for nitrogen removal
– Steady-state simulations
– Influent fractionation (focus on determining biodegradable COD
and volatile fatty acids, the latter for the Scheer Bio-P model)

– Influent loading targets

Design level at submission Preliminary design for the selection of the consultant and the
design
Detailed design for the final submission

Selection criteria in bidding
procedure

Best elements from each of the four () preliminary designs.
Detailed design.
Tender for the construction.
Quality and cost

Post-audit Performance within the defined effluent requirements.
Evaluation period.
Technological evaluation.

Risk spreading Typically, none, however, new design delivery methods are
currently being tested.
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E.3.4 Switzerland

Question Response

Type of contract delivery
mechanism

D: 90% (Assumption)
DB: 10% (Assumption)

Type of design Upgrades (biology, secondary clarifiers): 50%
Re-dimensioning of primary clarifiers: 50%

Requests for proposal as
prepared by the client

Effluent requirements, seldom load projections.
No industry standards like ATV-131 (2000), but an orientation
towards standards is desirable.
State-of-the-art technology expected, but effluent requirements do
not orient themselves on the best available technology.

Design strategy of engineering
consultant

Mechanistic models: often combined with experience and
guidelines.
Steady state
Safety factors

Design level at submission Competition at the design stage very seldom (e.g., WWTP Bern or
Zurich).
Competition for building is price based. Winner usually proposes
some modification to the original design during construction.

Selection criteria Investment cost
Technical merit
Flexibility for further adaptations
Yearly costs (includes personal, operation costs and value
conservation)
Acceptance by population (e.g., sludge treatment).

Post-audit Compliance with effluent criteria after one year of operation

Risk spreading None
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E.3.5 Czech Republic

Question Response

Type of contract delivery
mechanism

D: 80%, DB:20%
The design is almost always undertaken by a ‘Project Company’ which
composes the design and project drawings.
Some Project Companies may use an external expert/consultant for
design. Together they compose the project management team.
The Construction Company (usually the tender winner) must take on the
project, check it and take responsibility for the delivery, including the
guaranteed performance/effluent parameters.
In rare occasions, the Project Company is the tender winner and will
subcontract a Construction Company.
In smaller projects where technology cost is high, the Technology Delivery
Company may win the tender instead of a Construction Company.

Type of design Small WWTP ,2000 PE – 95% greenfield
Medium WWTP 2000 – 100 000 PE – 99% upgrade
Large WWTP .100 000 PE – 100% upgrade

Requests for proposal
as prepared by the client

RFPs include load projections and effluent requirements.
The design must comply with city master plans.
No restriction is placed on technology selection however, the design must
comply with best available technology given by legislation, the effluent
standards and the Czech norms.

Design strategy of
engineering consultant

ATV-131 (2000) guideline are often used. Compliance with Czech norms is
required (norms includeparameterssuchas load,SRT,HRTin reactors, etc.).
Mechanisticmodelsareusedmostly insteadystate.Dynamicsareaccounted
for by applying ‘irregularity coefficients’ (e.g., for aeration system design).
Irregularity coefficients reflect and correct for the real dynamic behaviour of
the plant. Czech norms include several. For example:
– hourly, daily, weekly, monthly irregularity coefficients
– oxygenation capacity irregularity coefficient (different for small, medium

and large WWTP can substitute a dynamic model with daily flow and
load fluctuations).

Standard modelling procedure:

(1) Model calibration if data are available (if not, conservative values are
used). On-site experiments are rarely required for model calibration.

(2) Steady-state design (of several alternatives) leads to selection of one
final alternatives. Steady-state design usually performed with more
conservative parameters thanwhat was used in the calibrationmodel.

(3) Dynamic design (parameters from calibration used).
For industrial plants, lab or pilot-scale experiments are performed (in 10–
20% of cases).
Applying new technologies usually requires pilot testing.

Design level at
submission

Tender documentation with basic plant design needed for cost calculation
(technology information, basic process design, configuration, volume, air
design, reactor depth, etc.)
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E.3.6 South Korea

E.3.5

Question Response

Selection criteria Merit: Compliance with effluent standards, city plan, …
Cost (90% weight)
References, guaranties (5% weight)
Technical equipment quality (5% weight)
Environmental criteria have been newly (2021) added to the selection
process however, there is no experience yet on how they will be
implemented.

Post-audit For projects which are partially funded from external sources, local, state or
EU funds (grant-in-aid projects), there often (not always) exist additional
criteria that must be met after the plant is finished. For example, the load
capacity reached at a specific time. Grant-in-aid projects are audited after a
trial period (usually 1 year).
Plant capacity must be justified by proving that the plant is loaded to certain
percentage of design capacity (usually 80%) andmust comply with effluent
standards.

Risk spreading Client requires insurance of the contracted Co., together with other usual
conditions for contract (financial, technical equipment, experiences, etc.).

Question Response

Type of contract Turn-Key: 30−50%
Separate contracts for DB, then operated by local
governments: 50−70%

Type of design Greenfield: about 30%
Replacement of an entire plant: almost 0%
Upgrades: 70%, as nutrients effluent quality is getting tougher

Requests for proposal as prepared by
the client

Only load projections and effluent requirements.

Design strategy of engineering
consultant

Design guidelines with safety factors.

Design level at submission Complete process design

Selection criteria Cost: 30%
Technical merit: 60%
Company’s status (financial, previous records, stability…)

Post-audit One- or two-years’ successful operation (meeting effluent
requirements).

Risk spreading No insurance
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E.3.7 South America

Question Response

Type of contract This varies enormously between countries. For example, municipal
treatment plants in Brazil (run by government operators) are most likely D,
whereas municipal treatment plants in Chile (being privatised) are mostly
DBO. It also varies frommunicipal to industrial/mining/etc. treatment plants.

Type of design Industrial treatment plant projects are evenly distributed between
green-field and plant upgrades
For municipal plants, there are quite a few greenfield sites in countries with
low coverage (Peru, Ecuador).
In countries with high coverage (Chile) plants are mostly upgrades.

Requests for proposal as
prepared by the client

Varies by country.
Projects funded by international financial institution, e.g., the World Bank,
generally have load projections and effluent requirements (mostly
concentrations).
Local design standards are often cited in the request for proposals.
Very few indicate design guidelines or standards to be used (e.g., ATV-131,
2000).

Design strategy of engineering
consultant

Established consulting firms use dynamic modelling. However, there is a
small number of these large, established firms.
Most consultants use Excel spreadsheets with the Metcalf & Eddy
steady-state equations. For larger plants (over 1 m3/s capacity),
established consulting firms tend to be hired.
For smaller plants, Excel-based design prevails.

Design level at submission Varies by country.
Turn-key dominant in industrial applications, that is, the client ‘buys’ a plant
from an equipment supplier that sells them the whole package (similar to a
DBOT).
Municipal plants are tendered with a preliminary process design. Bidders
complete process design and execute detail design, construction and initial
operation.

Selection criteria Technical merit and cost. However, the primary selection criterion is cost. A
few of the large utilities (two or three) are starting to give more weight to
technical merit.
Industrial clients: no defined standards, but mostly they pick companies
they trust to work with and then look for lowest price.
Little attention paid to life-cycle costs (present value including CapEx and
OpEx). CapEx only dominates in both themunicipal and industrial markets.

Post-audit Rarely done. If design achieves quality criteria at start-up, then it is
considered successful. Testing and auditing are not required.
Some effort is put into evaluating the performance of the electrical and
mechanical equipment.

Risk spreading Through insurance.
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Uncertainty in Wastewater Treatment Design and Operation aims to facilitate the 
transition of the wastewater profession to the probabilistic use of simulators with 
the associated benefits of being better able to take advantage of opportunities and 
manage risk.

There is a paradigm shift taking place in the design and operation of treatment 
plants in the water industry. The market is currently in transition to use modelling 
and simulation while still using conventional heuristic guidelines (safety factors). 
Key reasons for transition include: wastewater treatment simulation software 
advancements; stricter effluent requirements that cannot be designed for using 
traditional approaches, and increased pressure for more efficient designs (including 
energy efficiency, greenhouse gas emission control).

There is increasing consensus among wastewater professionals that the performance 
of plants and the predictive power of their models (degree of uncertainty) is a 
critical component of plant design and operation. However, models and simulators 
used by designers and operators do not incorporate methods for the evaluation 
of uncertainty associated with each design. Thus, engineers often combine safety 
factors with simulation results in an arbitrary way based on designer ‘experience’. 
Furthermore, there is not an accepted methodology (outside modelling) that 
translates uncertainty to assumed opportunity or risk and how it is distributed among 
consultants/contractors and owners.

Uncertainty in Wastewater Treatment Design and Operation documents how 
uncertainty, opportunity and risk are currently handled in the wastewater treatment 
practice by consultants, utilities and regulators. The book provides a useful set of 
terms and definitions relating to uncertainty and promotes an understanding of the 
issues and terms involved. It identifies the sources of uncertainty in different project 
phases and presents a critical review of the available methods. Real-world examples 
are selected to illustrate where and when sources of uncertainty are introduced 
and how models are implemented and used in design projects and in operational 
optimisation. Uncertainty in Wastewater Treatment Design and Operation defines 
the developments required to provide improved procedures and tools to implement 
uncertainty and risk evaluations in projects. It is a vital reference for utilities, regulators, 
consultants, and trained management dealing with certainty, opportunity and risk in 
wastewater treatment.
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