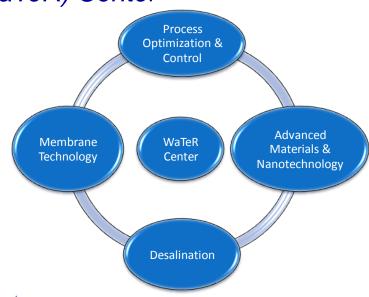
Water Technology and Sustainability For Southern California

Yoram Cohen


Chemical and Biomolecular Engineering Department
Water Technology Research (WaTeR) Center

"The mission of the WaTeR Center is to advance technologies of water production in order to develop new and economical alternative sources of potable, irrigation, and consumptive water uses."

UCLA Engineering

HENRY SAMUELI SCHOOL OF ENGINEERING AND APPLIED SCIENCE

MWD Water Portfolio Responsibility

MWD Water Responsibility

- MWD customers demand water for human consumption, sanitation, fire protection, agriculture, landscaping, recreation, and industrial production.
- The volume of water needed to provide the needs of MWD customers could vary in the future with new technology, changing lifestyles, and new patterns of urban development.

Water Portfolio

Imported water

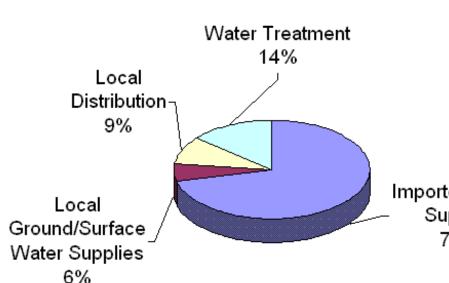
Groundwater

Water-use efficiency

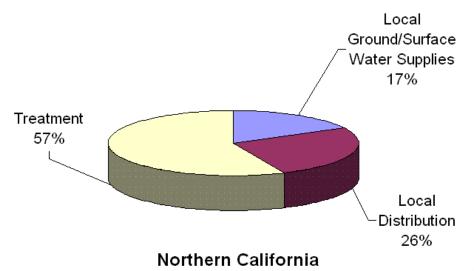
Wastewater

Rainwater

Seawater


California Water Supply

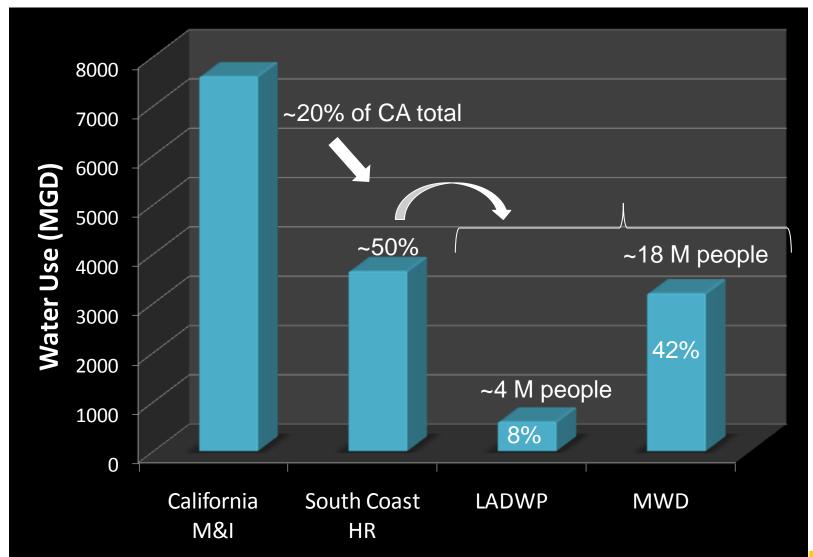
Water Energy Use for Water Production, Treatment & Distribution – The California Example

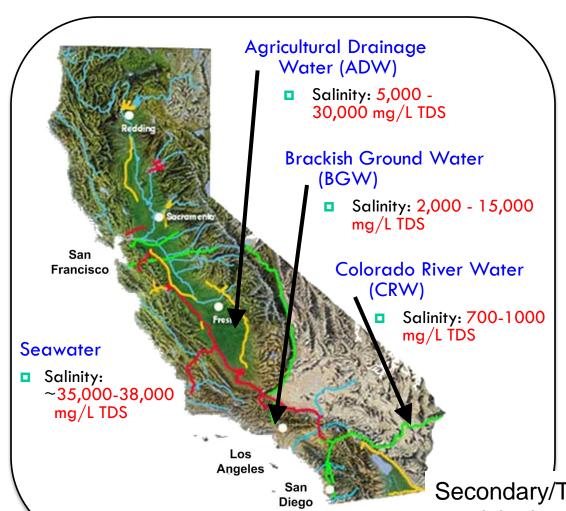

Water conveyance cost ~2.5 kwh/m³
Reclaimed water ~1 kwh/m³
Water Desalination cost ~1–5 kwh/m³

Electricity: 19% of State Use

Imported Water Suppply 71%

Southern California




Water Use in Southern California: The Case for Municipal and Industrial (M&I) Water Recycling

We are Surrounded by Saline Water

- Drought conditions and increasing population necessitate smarter water production and reclamation
- Opportunity to produce/reclaim water from several sources
 - Agricultural drainage water
 - Brackish groundwater
 - Seawater
 - Wastewater
- CA is a net salt importer

Secondary/Tertiary treated municipal wastewater effluent: 500-1500 mg/L TDS

Metropolitan's 2011 Business Model

Incentives for advanced technology use/development

Develop new imported supplies to meet growing demand

Moderate demand through conservation programs and subsidies to members

Enable members to take actions they could not take individually

Subsidize local supply projects

Lead regional integrated resource planning process

Subsidize conservation and some local production

Major Challenges

Local supply development

Improved regional storage

Delta restoration and conveyance

Climate change

Natural disaster and terrorism

Rising energy costs

fostering a water service and technology innovative region

MWD and Water Technology

- Host prototype technology demonstration efforts.
- Partner with member agencies in their technology-adoption and demonstration efforts.
- Work with national trade associations to set
 - Performance standards to guide the water technology industry.
 - Standards and steps necessary for technology deployment & acceptability.
- Serve as a conveyer of, and venue for, meetings among entrepreneurs, innovators, researchers, investors, and water policy officials in the public, private, and academic communities.
- Participate in state-level and regional efforts aimed at developing regional technology clusters.

In acting as an active sponsor, convener, conduit for information, and possibly even technology vendor, MWD could affect not only its capacity to perform its own missions but also the very nature of the region it serves.

Water Conservation and New Water Sources

Public perception may be limiting the adoption of efficient conservation technologies

For many water costs are a small fraction of living costs

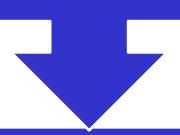
Cost-effectiveness of urban conservation methods often do not consider the "human factor"

Water use efficiency and energy are linked but the detailed impact of specific water conservation approaches needs to be quantified

Capital investment → return on investment

Institutional constraints

Cost of new water sources relative to the cost investment in water conservation and use efficiency


Future projections should consider an future technological advances → incentive for technological advances

MWD and Future Technologies

Advances in technology are highly likely to reduce the costs of desalination, recycling, groundwater storage, and other options.

Major question: How quickly will technological advances occur and be commercialized, and at what cost will those options become more attractive relative to the purchase of imports?

Smart meters

Water quality monitoring

Water use efficiency

- Smart irrigation
- · Efficient water use in appliances
- Efficient indoor water use

Greywater reclamation/recycling/reuse

Wastewater reuse

Leak detection in water delivery systems

Reduction of water evaporation in conveyance systems

Seawater desalination

Water supply storage & forecasting

Renewable energy sources for water conveyance and treatment

Dr. Yoram Cohen - UCLA

Technological Achievements and Opportunities

Water Technology Research

Waste water can be treated to level of drinking water standard

Brackish water desalination can be achieved up to 95% recovery in some cases

Seawater can be desalted at reasonable cost (as low as ~\$0.50-0.55 /m³)

Biological treatment can be carried out in small packed plants owing to developments in membrane bioreactors

New generation of membranes enable significant reduction in the size of water treatment/ production plants

The technology for compact distributed water treatment/reclamation and reuse is at our doorstep

Pretreatment

Water Sources:

- Seawater
- Surface Water
- Groundwater
- Reclaimed Water
- Agricultural
 Drain age Water

- Particle Removal
- Biofouling Control
- Disinfection
- Microorganisms
- Organics Removal

High Recovery Desalting (RO integrated with chemical demineralization

QUESTIONS?

